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Summary

Fungi have a wide range of lifestyles and hosts. We still know little about the impact of
lifestyles on their genome architecture. Here, we combined and annotated 562 fungal
genomes from the class Sordariomycetes and examined the coevolution between 12
genomic and two lifestyle traits: pathogenicity and insect association. We found that
many pathogens tend to evolve a larger number of protein-coding genes, tRNA genes,
and have larger non-repetitive genome sizes than non-pathogenic species. In contrast,
species with a pathogenic or symbiotic relationship with insects have smaller genome
sizes and genes with longer exons; they also have fewer genes if they are vectored by
insects, compared to species not associated with insects. Our study demonstrates that
pathogen genome size and complexity are the result of an interplay between drift,
imposed by symbiosis and small effective population size, which leads to genome
contraction, and the adaptive role of gene amplification, which leads to genome
expansion.
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Introduction
Variation in genome size has been explained through mutually non-exclusive
hypotheses invoking neutral and adaptive processes (reviewed in (Blommaert, 2020)).
For instance, neutral hypotheses are supported by the correlation of genome size with
non-coding DNA content (Lynch & Conery, 2003; Petrov, 2002), whereas natural
selection is invoked to explain the strong correlation between genome size and cell size
(Gregory, 2002). So far, genome size has been shown to correlate with various other
traits in eukaryotes, including body size in many species (e.g. salamanders
(Decena-Segarra et al., 2020) and amphipods (Hultgren et al., 2018)), life-history traits
(e.g. Pinus (Grotkopp et al., 2004), or birds (J. P. Yu et al., 2020)), flowering time across
latitudinal cline in Zea mays (Bilinski et al., 2018) or higher fitness in algae (Malerba et
al., 2020). Understanding the contribution of neutral and adaptive processes to genome
size evolution may thus require analyzing multiple mechanisms underlying the structural
complexity of genomes, such as the amount and distribution of coding and non-coding
DNA (Petrov, 2001).

Fungi display a great variety of genome sizes (from 8 to 177.6 Mbp) (Mohanta & Bae,
2015). Observations support both neutral and adaptive mechanisms in shaping this
diversity. The evolution of genome size in ascomycetes on a broad phylogenetic scale
supports the mutation-hazard hypothesis (MHH) according to which stronger drift
facilitates the accumulation of slightly deleterious non-coding DNA, including mobile
genetic elements and of introns (Lynch & Conery, 2003). As a consequence, species
with smaller effective population sizes (Ne) are more prone to genome expansion. As
expected with MHH in eukaryotes, ascomycetes with larger genomes have more
introns, lower gene density, and higher transposable elements (TE) activity than species
with smaller genomes (Kelkar & Ochman, 2012). On the other hand, some
host-specialized fungi and obligate pathogens, species that are also associated with
small Ne and strong drift, experience genome degradation and gene loss, which is
explained by the elimination of accumulated deleterious DNA in the long term due to
bias towards deletions (Kelkar & Ochman, 2012; Mira et al., 2001).

The role of adaptive evolution in shaping genome size has also been supported in fungi.
The most obvious observation is the strong correlation between the number of genes
and genome size (Stajich, 2017). For instance, the diversification of specific gene
families is often associated with pathogenicity in fungi (Baroncelli et al., 2016;
Muszewska et al., 2011; Sipos et al., 2017). Coincidentally, fungal plant pathogens
harbor some of the largest known genomes across fungi (Stajich, 2017). Some other
genetic mechanisms that contribute to genome expansion have been attributed to rapid
adaptation of pathogens to hosts and these include accessory chromosomes (Croll &
McDonald, 2012) or TE activity (Mat Razali et al., 2019), often linking the emergence of
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pathogenicity to genome size expansion (Raffaele & Kamoun, 2012). For instance, TE
expansions are known to play a role in the emergence of new virulence genes in
emerging pathogens (Bao et al., 2017; Wacker et al., 2021).

The ecological aspects of fungal lifestyles, for instance, the dependence on the host
species, can have an effect both on the gene repertoire of the species as well as on
their Ne, and as a consequence on the amount of non-coding DNA and genome size.
Pathogens can undergo phases of high clonality which significantly reduces their Ne,
however other mechanisms such as accessory chromosomes, or chromosome
duplication can increase Ne in parts of the genomes (Stukenbrock & Croll, 2014). Other
pathogens, such as the opportunistic human pathogen Aspergillus fumigatus, persist in
the environment where they can maintain high levels of nucleotide polymorphism,
consistent with large Ne (Rhodes et al., 2022). On the contrary, obligate endoparasites,
endosymbionts, and pathogens requiring vectors have typically small Ne due to their
association with a single host species and transmission bottlenecks. For instance, the
endoparasites Microsporidia have one of the smallest known fungal genomes, showing
signatures of strong genome contractions, including reduced gene repertoire (Katinka et
al., 2001). Therefore studying the impact of pathogenic lifestyle on genome size in fungi
requires a wider ecological context, including their symbiotic or mutualistic relationships
with other species.

In this study, we investigate how variation in fungal genome size and its underlying
potentially neutral or slightly deleterious genomic features (e.g. intron number, repeat
content) and adaptation (number of genes) coevolve with lifestyles. We consider
pathogenic and symbiotic relationships with plants and insects. We aim to answer the
following questions: 1) whether the fungal genome size and complexity coevolve with
lifestyle, and 2) if there are common genomic features related to the evolution of
pathogenicity. To answer these questions, we focus on the ascomycete class of
Sordariomycetes fungi, which have rich genomic resources and include species with a
wide range of lifestyles, from plant and insect pathogens, through wood decomposers,
and endophytes, to opportunistic human pathogens. We studied over 560
Sordariomycetes genomes and examined how various genomic features coevolved with
the diversity of lifestyles in this taxonomic group.

Results
Quality of genome assemblies of 562 Sordariomycetes fungal species
We analyzed 562 genomes from the class Sordariomycetes (Ascomycota) and 11
outgroup species together comprising fungi mostly represented by plant pathogens,
saprotrophs, and entomopathogens (Supplementary Table 1). All species were
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classified as pathogenic (including pathogens of plants, animals, and fungi) or
non-pathogenic based on a literature search. Initially, representative genome
assemblies for known species of Sordariomycetes and an outgroup (n=584 in total)
were downloaded from NCBI (n=580) or other resources (n=4, Supplementary Table 1)
and complemented with 21 genomes sequenced and assembled in this study
(Supplementary Table 2). In total, 605 assemblies were filtered for contaminants and
short contigs and analyzed for quality. Gene models were inferred ab initio for all
assemblies. Thirty-two assemblies were excluded due to lack of many single-copy
conserved genes (more than 25% of conserved genes were missing) or an excessive
number of inferred gene models (Blumeria graminis), arriving at a final number of 573
genome assemblies for further analyses. The number of genes was systematically
underestimated (10% on average) compared to the gene numbers that had been
submitted to NCBI for the corresponding species, but underestimation was not different
between pathogenic or non-pathogenic fungi (Wilcoxon rank sum test, w = 2994, p =
0.57). Species genomes ranged from 20.7 Mbp in Ceratocystiopsis brevicomis (CBS
137839) to 110.9 Mbp in Ophiocordyceps sinensis (IOZ07) and the ab initio gene
models ranged from 6,280 in Ambrosiella xylebori (CBS 110.61) to 17,878 in Fusarium
langsethiae (Fe2391).

Genomic traits correlating with genome size
The maximum likelihood tree generated from 1000 concatenated single-copy conserved
proteins has a 100% bootstrap support for all major nodes except for one (support of
82% for the split between two subclades of Ophiostomatales, Figure 1A). The topology
placed the Microascales order as a sister clade to Hypocreales, which is consistent with
a topology based on four nuclear genetic markers (Hongsanan et al., 2017) but not
consistent with the topology presented on the JGI MycoCosm (accessed July 10th
2022, https://mycocosm.jgi.doe.gov/mycocosm/home), where Hypocreales and
Glomerellales form sister clades, and Microascales is their outgroup. To check if the
discrepancy is caused by the inference method, we reconstructed the topology with two
other methods: i) from 1000 individual protein trees using a coalescent-based method,
and ii) with a maximum likelihood approach from concatenated 250 single-copy
conserved proteins with separate partition models assigned to each protein. Both
methods gave nearly identical topology to the first one and showed maximal support for
Microascales and Hypocreales as sister clades. Thus, the primary maximum likelihood
phylogeny (Figure 1A) based on 1000 concatenated protein alignments was used for all
downstream analyses.
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Figure 1. Several genomic traits are correlated with genome size in Sordariomycetes. A.
Maximum likelihood tree based on 1000 concatenated protein sequence alignments calculated
with IQ-TREE using ultrafast bootstrap approximation (n=573 species). The largest orders are
indicated with different colors. Bootstrap support for all major clades except one within
Ophiostomatales (82%, black dot) reaches 100%. B. R-squared values derived from
generalized least squares models fitted to all pairwise combinations of genomic traits. Colors
indicate positive (red) or negative (blue) coefficients obtained from fitting one trait to another.
Coefficients significantly different from zero (t-test, adjusted p<0.05) are highlighted with dark
colors and bold R2 values. Genomic traits include genome size (genome), size of the assembly
excluding repeat content (genome w/o repeats), the fraction of repeat content (repeats), the
number of genes (genes), mean intergenic length (intergenic length), the number of tRNA genes
(tRNA), mean intron length (intron length), the number of pseudo tRNA genes (pseudo tRNA),
the mean number of introns per gene (introns), the mean exon length (exon length), the fraction
of genes with introns (genes with introns), and GC content (GC). Correlation plots are shown in
figure supplement 1, and principal component analysis on all genomic traits in figure
supplement 2. Raw data underlying figures are in Figure 1-Source Data 1-3.

We used phylogenetic generalized least squares to estimate the correlation between
genome size (bp) and 11 genomic traits, including the number of genes, the fraction of
repeat content, size of the assembly excluding repeat content (bp), GC content, the
mean number of introns per gene, mean intron length (bp), mean exon length (bp), the
fraction of genes with introns, mean intergenic length (bp) and the number of tRNA and
pseudo tRNA genes. As expected from the MHH in eukaryotes, in Sordariomycetes,
genome size is positively correlated with the fraction of repeat content, intergenic
length, and mean intron length (Figure 1B, Figure 1-figure supplement 1). Genome size
is also negatively correlated with the GC content, as a consequence of the negative
correlation between repeat and GC content. Similar to other fungi, genome size is also
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strongly positively correlated with the number of genes (including tRNA genes) and
consequently to genome size without the repeat content. The numbers of introns and
exon length are strongly negatively correlated with each other, but weakly with genome
size, and they explain mostly the second principal component in the PCA analysis
(Figure 1-figure supplement 2). Similarly, the fraction of genes with introns is also not
correlated with genome size (Figure 1B, Figure 1-figure supplement 1). These results
support that drift has shaped genome size of Sordariomycetes fungi through expansion
of repeat content and intergenic DNA, and that adaptive evolution has shaped genome
size through the proliferation of genes. However, some signatures of drift, such as
frequency of introns and size of exons do not show a clear relationship with genome
size, suggesting opposing consequences of drift on small and large genomes.

Pathogenicity coevolves with the number of genes
Our dataset comprises 357 pathogens, 202 non-pathogens, and 4 species with
undetermined pathogenicity traits. Pathogens can be found in every order except for
Sordariales (Figure 2A). Even though the trait could not be inferred with high accuracy
at the root, the dispersion of pathogenic species across the phylogeny implies that the
evolution and loss of pathogenicity have occurred multiple times in Sordariomycetes
history (Figure 2A).

We used three methods (trait coevolution in BayesTraits, phylogenetic logistic
regression, and machine learning-based classification of pathogens vs. non-pathogens)
to test which genomic traits coevolve with pathogenicity. Using a discrete reversible
jump mcmc (rjMCMC) method in BayesTraits, we tested dependent versus independent
models of evolution of genomic traits with pathogenicity, by transforming all genomic
traits into binary traits (high/low) with respect to their median. All genomic traits except
for total genome size, fraction of genes with introns, and exon length show correlated
evolution with pathogenicity (Figure 2B, Supplementary Table 3). Posterior probabilities
of transition rates show that the most frequent gain of pathogenicity occurs when the
number of genes, introns, and genome size without repeats are high (Figure 2B, Figure
2-figure supplement 1). We also observe gains of pathogenicity for low values of
repeats (Figure 2B, Figure 2-figure supplement 1). We fitted a covarion model to test if
dependent evolution with pathogenicity is present across the tree or is rather limited to
some branches. There is a significantly better fit for varying rates of evolution than the
strictly dependent model for all genomic traits, except for the number of genes, in which
the support for the varying rates of evolution was the weakest (average log bayes factor
across five runs is 4.5, Supplementary Table 3).
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Figure 2. Genomic traits are evolving in concert with pathogenicity. A. Ancestral state
reconstruction of pathogenicity. Colors correspond to estimated likelihoods of pathogenicity,
calculated with ace function from the phytools package in R, using the “ER” model of discrete
evolution with a single rate for the transition from pathogen to non-pathogen and vice versa. B.
Results of the three methods for detecting correlation between pathogenicity and genomic traits:
BayesTraits, phylogenetic logistic regression (phyloglm), and random forest classifier. Red and
blue colors indicate positive and negative, respectively, coevolution/correlation of the trait with
pathogenicity. Violet indicates those traits which coevolve with pathogenicity according to
BayesTraits but a single direction of correlation could not be determined. Circles indicate
frequencies of pathogenic (P) and nonpathogenic (NP) species with low (below median) or high
(above median) values for 12 genomic traits. Posterior probabilities of transition rates are shown
in figure supplement 1, details of the Random Forest classification in figure supplement 2, and
results of analysis for ten subsets are in figure supplement 3. Raw data underlying figures are in
Figure2-Source Data 1-4.

In the second approach, the phylogenetic logistic regression was fitted to the
pathogenicity trait. This analysis confirmed a positive correlation between pathogenicity
and the number of genes and genome size without repeats, similarly to the analysis with
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BayesTraits, and revealed a positive correlation with GC content, and the number of
tRNA genes (Figure 2B, Supplementary Table 4). This method also positively correlated
genome size with pathogenicity.

Finally, we used machine learning classification to rank the most important among 12
genomic traits for predicting pathogenicity, with the random forest classifier providing
the highest accuracy predictions. We tested the performance of the classifier including
phylogenetic relationships, which did not substantially improve the accuracy (AUC=0.7
vs AUC=0.71, see Materials and Methods, Figure 2-figure supplement 2). Top-ranked
genomic features included the number of tRNAs, intron length, assembly size without
repeats, and the number of introns (Figure 2B, Figure 2-figure supplement 2).

To account for the uneven contribution of pathogenic and non-pathogenic species in the
analysis we run the BayesTraits and phyloglm analysis for subsets of species, with the
same number of pathogenic and non-pathogenic species. Pathogenic species were
randomly subsampled ten times giving a total of ten subsets. BayesTraits analysis
confirmed coevolution of six genomic traits with pathogenicity in all ten subsets (genes,
genome without repeats, repeats, intron length, intergenic length and tRNAs), and the
coevolution of GC, intron number, and pseudo tRNAs in six to nine subsets (Figure
2-figure supplement 3). Advantage of gains over loss of genomic features was,
however, not evident in BayesTraits analysis. Phyloglm analysis confirmed positive
correlation between genome size, genes, genome without repeats, and tRNAs in most
subsets, but not GC content (Figure 2-figure supplement 3).

All analyses were also repeated for a dataset that excluded repeated species (n=563
distinct species in total), giving nearly identical results, except that BayesTraits inferred
weaker coevolution between pathogenicity and the number of introns, and the phyloglm
model gave no support for the significant correlation with GC content (Supplementary
Tables 3 and 4, Materials and Methods).

Overall, several lines of evidence indicate that most pathogens evolve through an
increase in gene number, genome size excluding repeats, number and/or length of
introns, and the number of tRNAs. This is consistent with the observation that most
non-pathogenic species very rarely show high values for these traits (Figure 2B).

Genome reductions in species associated with insects

After reconstructing ancestral gene numbers in the Sordariomycetes phylogeny, as
predicted with phylogenetic approaches (Figure 2B), several clades enriched for plant
pathogens show an increased number of genes (Figure 3). These include Diaporthales
(D), Magnaporthales (Ma), Glomerellales (G), and many Fusarium pathogens within the
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Hypocreales (H1) clade. On the other hand, a couple of clades including insect
pathogens (eg. H2.4) and a few plant pathogens (M1, O) carry some of the smallest
gene numbers and genome sizes without repeats (Figure 3, Figure 3-figure supplement
1).

Figure 3. Substantial gene losses in some Sordariomycetes clades. Ancestral gene
numbers were estimated with fastAnc function in R package phytools. A circular heatmap on the
inside indicates species annotated as pathogens (red) or non-pathogenic (yellow), and the
heatmap on the outside indicates species annotated as insect-associated (blue) or not (yellow).
Black lines mark selected clades. The list on the right shows a corresponding order name or
representative genera for highlighted clades. Ancestral states for other genomic features are
shown in figure supplement 2. Raw data underlying figures are in Figure3-Source Data 1-2.

Symbiosis is one trait that often leads to streamlining of microbial genomes (Katinka et
al., 2001), therefore, we checked if association with insects can explain gene and
genome reductions in some clades. We consider species to be associated with insects
if they are symbionts, mutualists, or pathogens of insects, and we annotated a subset of
clades in the phylogeny that are either composed of mostly insect-associated species or
not (Figures 3-4, Supplementary Table 5). First, we compared genomic traits between
several pairs of insect- and non-insect-associated clades (groups a to e, Figure 4,
Figure 4-figure supplement 1). Clades O (group a), M1 (group b), and H2.8 (group c)
comprise insect vector-transmitted tree endophytes and pathogens. Clades H2.6 (group
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d), H2.4, and H2.3 (group e) are specialized entomopathogens. Clade H2.2 comprises
fly-transmitted grass symbionts (group e). In four groups (a to d), insect-associated
species have smaller genomes, smaller genomes without repeats, and longer exons
than their sister clades (Figure 4). Smaller genomes are accompanied in most cases by
fewer introns and fewer genes (groups b, c, and a except for clade S) or/and smaller
intergenic sizes (group d). All clades from group e show overall fewer differences
between insect and non-insect-associated clades, which can be explained by the fact
that, unlike other groups, they originated from an insect-associated ancestor (probability
of insect-association in the ancestor = 0.97, 95% CI [0.96 - 0.99], Supplementary Table
5). Consequently, all clades in group e except for one (H2.3) have among the smallest
genomes without repeats and the fewest genes out of all groups. By comparing current
values of genomic traits with estimated ancestral states in the most recent common
ancestor for each group, we found a consistent decrease in the total size of the
genome, genome size without repeats, number of genes, and number of introns in all
clades which are in symbiotic/mutualistic relationship with insects (clades O, M1, H2.8,
and H2.2, Figure 4-figure supplement 2).
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Figure 4. Genomic traits vary across insect and non-insect-associated clades. Five groups
(a-e marked with vertical black lines) comparing insect-associated (blue nodes) and
non-insect-associated (yellow) clades are shown. Black filled circles indicate clades composed
of >1 species. Numbers shown in the parentheses indicate clade abundances. Asterisks
indicate the comparisons with statistically significant pairwise differences, between blue and
brown clades within each group (Mann-Whitney test, adjusted p<0.05). Clades in group c have
too few species for testing. Clades O (group a), M1 (group b), H2.8 (group c), and H2.2 (group
e) are insect mutualists or symbionts, whereas clades H2.6 (group d) and clades H2.4 and H2.3
(group e) are insect pathogens. Comparison for the rest of the traits is shown in figure
supplement 1, and the fold change of extant species relative to the ancestral node is shown in
figure supplement 2. Raw data underlying figures are in Figure4-Source Data 1-2.

Next, we used three methods as described in the previous section, to test the
coevolution of genomic traits with insect association. All three methods consistently
suggest the presence of longer exons in insect-associated species, and two out of three
methods confirm smaller genome size but not fewer genes in insect-associated species
(Figure 5, Figure 5-figure supplements 1 and 2, Supplementary Tables 6-7). Analyses
conducted on a dataset that excluded repeated species (n=563 in total), gave nearly
identical results (Supplementary Tables 6-7, Materials and Methods), with the exception
that BayesTraits inferred additional inverse coevolution between insect association and
genome size without repeats, whereas phyloglm model gave no support for negative
correlation of insect association with genome size without repeats and the number of
introns.

Overall, these results show that insect-associated fungi are characterized by genes with
longer exons and usually fewer introns, and have smaller genomes. In addition, clades
in symbiotic/mutualistic relationships with insects experience a reduction in genome size
excluding repeats and a reduction in the number of genes.
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Figure 5. Genomic traits coevolve with insect-associated taxa. Results of the three methods
used for detecting correlation between insect-associated species and genomic traits:
BayesTraits, phylogenetic logistic regression (phyloglm), and random forest classifier. Circles
indicate frequencies of insect-associated (I) and non-insect-associated (NI) species with low
(below median) or high (above median) values for 12 genomic traits. I - insect association, NI -
no insect association, low - genomic trait value below the median, high - genomic trait value
above the median. Posterior probabilities of transition rates are shown in figure supplement 1,
details of the Random Forest classification in figure supplement 2, and losses and gains of
orthogroups are shown in figure supplement 3. Raw data underlying figures are in
Figure5-Source Data 1-3.

Losses in gene families are more frequent than gains

To evaluate the dynamics of gene losses and gains in Sordariomyctes, we estimated
rates of gains and losses of gene families (groups of orthologous genes with >= 1
member) from the root of the tree for a subset (112) of species. We found that gene
family losses are overall more frequent than gene family gains, in particular at the
deeper branches of the tree (Figure 5-figure supplement 3). The strongest gene family
losses are located on deep branches leading to subclades of H2 clade, on the branch
leading to clade M1, and on the branches leading to clades O, Ma, and D. Gene family
losses dominate over gains in most species but are overcome by gains only in
pathogenic species from clades H1, M2, G, D, and some X. The clades H1, M2, and G
did not undergo major ancient losses in their genomes. This analysis shows that gene
losses are prevalent across most Sordariomycete clades, and are not restricted to
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insect-associated fungi. Net gains of genes since the Sordariomycete common ancestor
are observed only in strictly pathogenic clades.

Insect-associated plant pathogens preferentially lose genes important for host
colonization
To resolve whether gene loss in insect-associated fungi is uniform across all genes or
constrained to specific functional classes, we annotated ab initio gene models with KOG
functions (Tatusov et al., 2003), annotated genome assemblies with Secondary
Metabolite Clusters (Blin et al., 2019) (SMC), and searched gene models against
databases of CAZymes (Cantarel et al., 2009), peptidases (Rawlings et al., 2018)
(MEROPS, M), and transcription factor pfam domains (Mistry et al., 2021) (TF). The
CAZymes and SMC genes are critical for overcoming external host barriers and for
entry into the host (Cantarel et al., 2009; Scharf et al., 2014). Therefore, selection
pressures acting on them are expected to vary with lifestyles. Ancestral content of
annotated gene classes was estimated for nodes at the split of each clade with its sister
clade (most recent common ancestor with a sister clade) and compared with mean
content observed in the clade to obtain a fold change.
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Figure 6. Insect-vectored clades lose genes involved in breaking plant host barriers.
Heatmap shows the fold change of genes/clusters relative to the ancestral state ((observed -
ancestral)/ ancestral state). Clades are shown in columns (clade names correspond to the ones
in Figure 3) with the number of clade members in parentheses, functional classes are shown in
rows. The dots indicate significant gain (red) or loss (blue) of genes/clusters across clade
members estimated from 100 rounds of bootstrapping of 10 species in clades with >= 10
members. SMC: secondary metabolite clusters, M: Merops, TF: transcription factors. Drawings
indicate clades that are associated with insects (M1, O, H2.8, H2.4, H2.2, H2.6, H2.3), and
three right-most clades, which are specialized tree (D) and crop pathogens (H1, G). Same
heatmap but for pathogenic species only is shown in figure supplement 1. Raw data underlying
figures are in Figure6-Source Data 1-2.

The insect-vectored clades Ophiostomatales (O), Microascales (M1), and Geosmithia
(H2.8) exhibit the highest gene losses across nearly all KOG groups (Figure 6). To a
lesser degree gene loss is also observed in non-pathogenic clades Sordariales (S),
H2.1 as well as other insect-associated clades H2.2, H2.4, and H2.6. Only one
insect-pathogenic clade H2.3 has an opposite pattern. On the opposite side of the
spectrum, strictly pathogenic Fusarium from Hypocreales (H1), Glomerellales (G), and
Diaporthales (D), exhibit gene gains across most KOG groups. Loss of genes is the
strongest in fungal clades in symbiotic/mutualistic relationships with insects (M1, O,
H2.8), with the most prominent loss in genes involved in secondary metabolites
synthesis, transport, and catabolism, defense mechanisms, and carbohydrate transport
and metabolism. Indeed, all analyzed types of CAZymes, SMC, as well as peptidases,
and transcription factors have contracted in these clades (Figure 6).

Only genes related to the cytoskeleton and cell motility exhibit no gain or change in
number in insect-vectored O, M1, and H2.8. These clades include some important
emerging tree plant pathogens, therefore, to test whether losses are experienced
equally by pathogenic and non-pathogenic members of these clades, gene gain/loss
analyses were repeated for pathogenic species only. Results confirm extensive losses
in similar clades and KOG groups (Supplementary Figure 7). Notably, KOG groups most
commonly lost in insect-associated clades (and clades derived from them), include
(apart from the ones mentioned above) lipid transport and metabolism, cell
wall/membrane/envelope biogenesis, or energy production and conservation, and are
the same KOG groups which undergo expansion in plant pathogenic clades (Figure 6,
Figure 6-figure supplement 1). These results show that plant pathogens and those
vectored by insects have distinct repertoires of genes and experience contrasting
dynamics in genes important for host colonization.

Gene structure of lost genes
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Genomes of insect-vectored species are characterized by fewer genes and genes with
longer exons and fewer introns, the last two being strongly negatively correlated (Figure
1B). This pattern can be explained either by the more frequent loss of intron-rich genes
or by a general trend towards a less complex gene structure. To test this, we first
compared gene structure (number of exons, exon, and intron lengths) in single copy
one-to-one orthologs between species belonging to two insect-vectored clades (O and
M1) and their non-insect-vectored sister clades (D and M2). Longer exons among
one-to-one orthologs of insect-vectored species would suggest a general trend toward
less complex gene structure. Indeed, one-to-one orthologs of insect-vectored clades
have longer exons (by 286 bp in O, Figure 7A, and by 140 bp in M1, Figure 7-figure
supplement 1), and fewer introns (by 0.58 in O, Figure 7A, and by 0.33 in M1, Figure
7-figure supplement 1). Intron length is either longer (by 9 bp in M1, Figure 7-figure
supplement 1) or shorter (by 10 bp in O, Figure 7A) compared to non-insect-vectored
species.

As a second test, we looked at the gene structure of gene families relative to the
occupancy of the gene family in the clade. If complex genes are more likely to get lost,
we should observe rare genes (present in a few clade members) to have more introns
(and exons) and shorter exons than common genes. Gene families that are frequently
lost since the common ancestor of the clade, indeed have shorter exons, however, they
also have fewer exons, contrasting our first hypothesis that more complex genes are
lost more often (Figure 7B and Figure 7-figure supplement 2, Poisson regression with 2
predictors: exon length and count, and species occupancy as a response, p<3.61e-08
for all clades). This trend is significant in both insect- and non-insect-vectored clades
(Figure 7B and Figure 7-figure supplement 2).
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Figure 7. Gene structure changes in insect-associated clades affect all genes. A.
Comparison of gene structures between one-to-one single-copy orthologs (n=583) from
insect-associated (IA) clade O (blue) and the corresponding non-insect-associated (non-IA)
clade D (yellow). Intron length was compared only between orthologs with at least one intron
(n=476). Ortholog features were averaged across eight species. Boxplots show medians, first
and third quartiles, and lines span minimum to maximum values excluding outliers. p - p-values
estimated with the paired two-sided Wilcoxon signed-rank test; d - mean differences between IA
and non-IA orthologs. B. Average exon length and the number of exons of gene families
(orthogroups) present in different frequencies across up to eight clade members. Corresponding
figures for the clades M1 and M2 are shown in figure supplement 1. Raw data underlying figures
are in Figure7-Source Data 1-2.
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Discussion

We investigated the impact of fungal lifestyle on the evolution of genome size and
complexity using 562 Sordariomycetes genomes. We analyzed 12 genomic traits and
two lifestyle traits: pathogenicity and association with insects, and found several
patterns of genome evolution in this group of fungi. First, genome size is strongly
positively correlated with the repeat content and the number of genes in the genome.
Second, fungi with the most streamlined genomes (smaller genomes, fewer introns, and
genes) belong to groups that associate with insects that serve as hosts, vectors, or
symbionts to fungi, or to groups directly derived from them. Third, pathogens exhibit
distinct patterns in gene dynamics, with most plant and animal pathogens having
increased gene numbers, tRNAs, and the number of introns per gene, and plant
pathogens vectored by insects showing opposite patterns with frequent losses of genes
and introns.

Impact of the lifestyle on genome size in Sordariomycetes

The strongest predictor of Sordariomyctes genome size is repeat content and to a
lesser degree other non-coding DNA, such as intergenic length and intron length.
Accumulation and expansion of non-coding DNA support the mutation-hazard
hypothesis in explaining genome size expansions, according to which a small effective
population size (Ne) leads to stronger drift and fixation of deleterious DNA. Eukaryotic
species with smaller Ne accumulate more noncoding DNA (Lynch, 2006). In the case of
fungi, drift can affect the amount of the repeat content and other non-coding DNA in
some species or clades, but this trend is not associated with any particular lifestyle
(note however that pathogens tend to have genes with more introns). Both pathogens
(Monosporascus, Ophiocordyceps) and non-pathogens (Claviceps, Epichloe)
experienced bouts of repeat expansions, which could be linked to some stochastic
events of low Ne in these species, rather than a specific occupied ecological niche.

As one of the important contributors to repeat content, transposable elements (TEs) are
often associated with pathogens. There are well-documented cases of virulence factors
emerging due to transposable element activity. In spite of a few cases of pathogens with
an expanded repeat content, suggesting an increased TE activity, in general,
pathogenic Sordariomycetes do not carry many repeats. In contrast, an average
pathogen experiences a decrease in the number of repeats. This pattern can be caused
by an effective selection in removing deleterious noncoding DNA, and/or by a strong
bias toward deletions in the genome. Pathogens with an expanded TE content may
indicate rare cases of fungi that developed means to accommodate fast-evolving
deleterious DNA, for instance in accessory chromosomes, chromosomal duplications,
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separate genome compartments, or experienced events of low Ne, due to
transmissions, or multiple rounds of population extermination (Stukenbrock & Croll,
2014).

The second major predictor of genome size is gene content. Expansion and
diversification of genes are usually linked to adaptation to a specific niche, for instance
in mycorhizal (Miyauchi et al., 2020) or wood decomposing fungi (Franco et al., 2022).
We find that an overall increase in gene repertoire is linked to a pathogenic lifestyle, and
this pattern is visible in pathogens from different Sordariomycetes clades, except for
vector-transmitted tree pathogens. The genomes of pathogens are located in the upper
part of the genome size scale in our dataset, a pattern that is mostly driven by gene
expansions since the repeat content is limited in most pathogens. Nevertheless, the
largest genomes belong to species that exhibit both high repeat content and a large
number of genes (for instance pathogenic Colletotrichum species).

Sordariomycetes with the smallest genomes are almost exclusively endosymbionts,
insect endoparasites, are vectored by insects, or are directly derived from clades
associated with insects. They evolved smaller genomes, genes with longer exons (and
fewer introns), and in the case of insect-vectored species, they have also lost many
genes. It has been suggested, that lack of diversification of carbohydrate enzymes in
Ophiostoma pathogens, might have been caused by the fact that beetle vectors take
responsibility for penetrating host tissues and entering their vascular system (Comeau
et al., 2014). These patterns of genome streamlining are reminiscent of the reductive
genome evolution in endosymbiotic and endoparasitic prokaryotes, as well as some
endoparasitic fungi. Gene-rich genomes of prokaryotes show an inverse correlation
between drift and genome size, explained mainly by the bias towards deletions (Kuo et
al., 2009; Mira et al., 2001). Loss of genes in endosymbiotic and some free-living
bacteria has been also explained by selection against non-essential genes (Giovannoni
et al., 2014), a loss of redundant genes with drift (Moran et al., 2008), or increased
mutation rate (Bourguignon et al., 2020). Our results show that in two major
insect-vectored clades (Ophiostomatales and Microascales) the change in gene
architecture towards longer exons and fewer introns is consistent across all the genes,
and is not caused by the retention of genes with such structure. Moreover, these clades
exhibit the longest branches in the phylogeny (measured by amino-acid substitutions),
an observation that can be explained by the fixation of deleterious substitutions when
Ne is small. Consistent gene structure and long branches support the impact of drift on
the genome complexity in species with the reduced Ne.

Gene expansions in Sordariomycetes pathogens

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.08.24.505148doi: bioRxiv preprint 

https://paperpile.com/c/YxI9HJ/ZXAhx
https://paperpile.com/c/YxI9HJ/ZXAhx
https://paperpile.com/c/YxI9HJ/cX2ZC
https://paperpile.com/c/YxI9HJ/m60ds
https://paperpile.com/c/YxI9HJ/nqvh
https://paperpile.com/c/YxI9HJ/nqvh
https://paperpile.com/c/YxI9HJ/cOItg+k3Y6p
https://paperpile.com/c/YxI9HJ/cOItg+k3Y6p
https://paperpile.com/c/YxI9HJ/BYea1
https://paperpile.com/c/YxI9HJ/BYea1
https://paperpile.com/c/YxI9HJ/PPxTI
https://paperpile.com/c/YxI9HJ/dsbT6
https://doi.org/10.1101/2022.08.24.505148
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pathogenicity has evolved multiple times across Sordariomycetes in nearly every order.
As we were unable to assign the probability of pathogenicity with high accuracy for
deeper branches in the tree, our findings confirm that this is a fast-evolving trait. In spite
of the emergence of pathogenicity across independent taxonomic groups, several
genomic traits proved to be reappearing among most pathogens, and these are high
overall numbers of genes, tRNA genes, larger genomes without repeats, genes with
longer introns, and less repeat content. Expanded gene numbers are most evident in
plant pathogenic species such as Fusarium (Hypocreales), Colletotrichum, and
Verticillium (Glomerellales) or Diaporthe (Diaporthales), but also in some (not all)
entomopathogens (Metarhizium), mycopathogens (Trichoderma) and opportunistic
human pathogens (Scedosporium, Sporothrix). This implies that most pathogens
(excluding those that are vectored by insects) benefit from expanded gene repertoires,
for example in a more effective establishment in host tissues and/or defense against
host immunological mechanisms. Indeed we see that the largest gains of genes in
pathogens correspond to genes involved in secondary metabolite synthesis,
carbohydrate metabolism, and defense mechanisms.

One group of genes that coevolves with pathogenicity are tRNAs. These observations
are more difficult to interpret. However, in fungi and other microbes, post-translational
modifications of tRNAs are known to play a role in triggering virulence and evading host
defense (Chen et al., 2021; Hinsch et al., 2016; Morrison et al., 2017). Duplications of
existing tRNAs may be an alternative way to maintain a variety of tRNAs to cope with
the host immune system.

Another trait observed in pathogens is an increased number of introns per gene.
Previous studies have shown that genes of fungal ancestors were intron-rich and
several events of massive intron loss occurred across fungi, leading to intron-poor
groups including Saccharomycotina as well as Pezizomycotina, which comprise
Sordariomycetes (Lim et al., 2021). In spite of an overall low number of introns, we
observe an increasing trend of introns in pathogens. Introns play an important role in
alternative splicing, and this process has been found to occur more frequently in
pathogenic species, affecting genes involved in dimorphism and stress response,
essential functions when entering the host environment (Grützmann et al., 2014;
Muzafar et al., 2021).

Different modes of genome evolution in Sordariomycetes pathogens

Our results show that the genome complexity of Sordariomyctetes fungi is influenced by
an interplay between drift and adaptation, both of which are affected by a specific
lifestyle of the pathogen. The distinctions between lifestyles are visible in particular in
the evolution of the gene content and gene structure. Based on these traits alone, three

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.08.24.505148doi: bioRxiv preprint 

https://paperpile.com/c/YxI9HJ/D3auh+FNGAg+j47Hu
https://paperpile.com/c/YxI9HJ/lu9QI
https://paperpile.com/c/YxI9HJ/ijoCD+JzPnh
https://paperpile.com/c/YxI9HJ/ijoCD+JzPnh
https://doi.org/10.1101/2022.08.24.505148
http://creativecommons.org/licenses/by-nc-nd/4.0/


groups of pathogens can be distinguished: i) specialized plant pathogens with expanded
gene repertoires and intron-rich genes, ii) insect pathogens with low to high gene
expansions counteracting strong ancient gene contractions, and with long-exon genes,
and iii) insect-vectored plant pathogens with overall gene contractions including many
genes responsible for host adaptation and pathogenicity, and long-exon genes.
Considering these observations, one can imagine a hypothetical scenario of genome
evolution in Sordariomycetes, in which species constantly reduce their genome size due
to the overall bias towards deletions. This trend would be exacerbated in species that
evolve in symbiosis, where drift is strong and many genes become redundant and thus
dispensable due to the presence of host gene products, eventually leading to genome
size contraction. But the trend of gene loss would be reversed if the species evolved as
pathogens, or switched from insect-symbiosis to insect-pathogenicity, in which case
their gene repertoires would increase through duplications. Finally, species that are
neither pathogenic nor symbiotic, would constantly reduce their genomes due to an
overall high deletion rate (but not small Ne), though not to the same degree as
symbiotic species (as can be exemplified by non-pathogenic Sordariales).

We show that fungi follow distinct evolutionary trajectories to gain their pathogenic
potential. It is worth noting, however, that out dataset contains more pathogenic than
non-pathogenic species, and some genetic clades are dominated by pathogens.
Therefore, to fully capture all evolutionary trends during transition to pathogenicity, more
effort needs to be placed on sequencing non-pathogenic species.
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Materials and Methods
Genome assemblies
14 strains (11 x Ophiostoma and 3 x Leptographium, Supplementary Table 2) were
selected for high-depth short-read Illumina sequencing. Isolates were grown on Malt
Extract Agar medium (15 g l−1 agar, 30 g l−1 malt extract, and 5 g l−1 mycological
peptone), and DNA was extracted with acetyl trimethylammonium bromide chloroform
protocol. The fungal isolates were handled in a facility that has received a Plant Pest
Containment Level 1 certifcation by the Canadian Food Inspection Agency. Library
preparation and sequencing were conducted at the Génome Québec Innovation Center
(Montréal, Canada). One strain (O. quercus) was sequenced with Illumina NovaSeq
(paired-end 150 bp), and the rest with Illumina HighSeq X (paired-end 150 bp). Data
quality was inspected with Fastqc v0.11.2/8 (Andrews, 2010). Ten strains were used for
de novo genome assembly (Supplementary Table 2). The depth of coverage of the
generated data was between 32x and 555x (Supplementary Table 2). Reads were
trimmed for adapters with Trimmomatic v0.33/0.36 (Bolger et al., 2014) using options
‘ILLUMINACLIP:adapters.fa:6:20:10 MINLEN:21’ and overlapping reads were merged
with bbmerge from BBTools v36/v37 (Bushnell et al., 2017). De novo genome
assemblies were generated with SPAdes v3.9.1 (Bankevich et al., 2012) with options ‘-k
21,33,55,77,99 --careful’. Mitochondrial DNA was searched in contigs with NOVOPlasty
v3.8.3 (Dierckxsens et al., 2017) using the mitochondrial sequence of O. novo-ulmi as a
bait (CM001753.1) and matching contigs were removed. Reads were remapped to the
nuclear assembly with bwa mem v0.7.17 (Li & Durbin, 2009), and contigs with
normalized mean coverage < 5% and shorter than 1000 bp were also removed.

A total of 11 Ophiostoma strains were selected for long-read sequencing with PacBio
(Supplementary Table 2). DNA extraction was done in the same way as for Illumina
libraries, except that no vortexing and shaking were done to avoid DNA fragmentation.
Library preparation and sequencing with the PacBio SMRTcell Sequel system were
conducted at the Génome Québec Innovation Center (Montréal, Canada). The average
depth of coverage of the generated data was between 47x and 269x. De novo genome
assemblies were generated with pb-falcon v2.2.0 (Chin et al., 2016). The range of
parameters was tested and the final configuration files with the best-performing
parameters for each species are on
https://github.com/aniafijarczyk/Fijarczyk_et_al_2022. O. quercus was sequenced in two
runs and read data from the two runs were combined together. O. novo-ulmi (H294) was
sequenced in two runs but only read data from one run was used for an assembly due
to sufficient coverage. Assemblies were ordered according to O. novo-ulmi H327
genome (GCA_000317715.1) using Mauve snapshot-2015-02-13 (Darling et al., 2004).
Assemblies were polished between two to four times by remapping long reads with
minimap2 (pbmm v1 (Li, 2018)) and correcting assemblies using arrow (pbgcpp v1). We
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also performed one round of polishing with pilon v1.23 (Walker et al., 2014) after
mapping short-read Illumina reads (bwa v0.7.17 (Li & Durbin, 2009)) from this study
(three assemblies) or from the previous study (Hessenauer et al., 2020) (seven
assemblies, Supplementary Table 2). The only exception is O. quercus, for which we
had no corresponding short-read data, therefore we performed four rounds of correction
using arrow. The effectiveness of polishing was assessed by analyzing the
completeness of genes with Busco v3 (Waterhouse et al., 2018). Mitochondrial
genomes were assembled using Illumina assemblies as baits (or those of related
species). Long reads were mapped to bait assembly with pbmm2 (Li, 2018), and a
subsample of mapped reads was used for mtDNA assembly with mecat v2 (Xiao et al.,
2017). Consecutive rounds of mapping and assembly were conducted until circularized
assemblies were obtained. Nuclear assembly contigs with more than 50% of low-quality
bases, those mapping to mtDNA, or with no mapping of Illumina reads (standardized
mean coverage < 5%) were filtered out. The genome assembly of O. montium was very
fragmented and had a high percentage of missing conserved genes (74.3%) so instead,
an Illumina de novo assembly for this species was considered in further analysis.

In both short-read and long-read assemblies, contigs were searched for viral or bacterial
contaminants by BLAST searches against bacterial or viral UniProt accessions and
separately against fungal UniProt accessions. Contigs having more bacterial/viral hits in
length than fungal hits were marked as contaminants and removed. Finally, repeats
were identified with RepeatModeller v2.0.1 (Flynn et al., 2020) using option -LTRStruct,
and recovered repeat families together with fungal repeats from RepBase were used for
masking assemblies with RepeatMasker v4.1.0 (Tarailo-Graovac & Chen, 2009).

Genes were annotated with Augustus v.3.3.2 (Stanke & Morgenstern, 2005) and
Breaker v2.1.2 (Hoff et al., 2019). To obtain ab initio gene models in Ophiostoma
novo-ulmi, ulmi, himal-ulmi, quercus and triangulosporum, a training file was generated
using RNA-seq reads from O. novo-ulmi H327 (SRR1574322, SRR1574324,
SRR2140676) mapped onto a O. novo-ulmi H294 genome with STAR v2.7.2b (Dobin et
al., 2013). A training set of genes was generated with GeneMark-ES-ET v4.33
(Lomsadze et al., 2005). Final gene models were merged from ab initio models, models
inferred from the alignment of RNA-seq reads (except O. triangulosporum) and O.
novo-ulmi H327 proteins. The rest of the genome assemblies were annotated only ab
initio using Magnaporthe grisea species training file.

Sordariomycetes genomes
580 Sordariomycetes genome assemblies (one reference genome per species) were
downloaded from NCBI (21/05/2021), the two assemblies were downloaded from JGI
Mycocosm (S. kochii, T. guianense), and two from other resources (O. ulmi W9
(Christendat, 2013), L. longiclavatum (Wong et al., 2020)). All assemblies were filtered
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for short contigs (< 1000 bp) and contaminants as described above. Gene completion
was assessed with Busco v3 (Waterhouse et al., 2018) using an orthologous gene set
from Sordariomycetes. Ab initio gene models were obtained with Augustus v.3.3.2
(Stanke & Morgenstern, 2005) with different species-specific training files: Magnaporthe
grisea, Fusarium, Neurospora, Verticillium longisporum1 or Botrytis cinerea
(Supplementary Table 1). 31 assemblies were removed based on the low percentage of
complete conserved genes (Busco score < 85%) and one due to an excessive number
of gene models (Botrytis cinerea).

Phylogeny
The maximum likelihood tree was built from 1000 concatenated genes (retrieved with
Busco v3 (Waterhouse et al., 2018)) with the highest species representation. Protein
alignments were generated with mafft v7.453 (Katoh & Standley, 2013) with E-INS-i
method (option ‘--genafpair --ep 0 --maxiterate 1000’), trimmed with trimal v1.4.rev22
(Capella-Gutiérrez et al., 2009) with option ‘-automated1’ and converted into a matrix.
Best protein evolution model JTT+I+G4 was chosen as the most frequent model across
all protein alignments, based on the BIC score in IQ-TREE v1.6.12 (Kalyaanamoorthy et
al., 2017; Nguyen et al., 2015). The maximum likelihood tree was inferred with ultrafast
bootstrap (Hoang et al., 2018), seed number 17629, and 1000 replicates implemented
in IQ-TREE. Time-scaled phylogeny was inferred with program r8s v1.81 (Sanderson,
2003), setting the calibration point of 201 My at the split of Neurospora crassa and
Diaporthe ampelina, retrieved from TimeTree (Hedges & Kumar, 2005).

To confirm the branching order of Hypocreales, Microascales, and Glomerellales,
another maximum likelihood tree was built, based on a subset of 250 protein alignments
(250 longest sequences out of 1000), with a separate model partition assigned to each
protein (Chernomor et al., 2016). The maximum likelihood tree was inferred with
ultrafast bootstrap, seed number 17629, and 1000 replicates implemented in IQ-TREE
v1.6.12 (Hoang et al., 2018; Nguyen et al., 2015).

In the third method for phylogeny inference, we used the multispecies coalescent-based
method to obtain a consensus topology based on 1000 separate protein-based trees.
The maximum likelihood tree was generated for each of 1000 protein alignments, with
their corresponding protein evolution model, ultrafast bootstrap, and 1000 replicates
using IQ-TREE v1.6.12 (Hoang et al., 2018; Nguyen et al., 2015). Tree nodes with
support of less than 30 were contracted using newick-utils v1.6 (Junier & Zdobnov,
2010). Consensus topology was obtained with Astral v5.7.8 (Zhang et al., 2018).

Genomic and ecological traits
Pathogenicity and insect association were assigned based on a literature search.
Pathogenicity was assigned if the species caused a well-recognized disease, or
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pathogenicity was experimentally documented at least on one host species. We
considered pathogens of plants, animals, and fungi, both obligatory and opportunistic.
Insect association included all types of relationships with insects, including pathogenic,
symbiotic, and mutualistic. Insect-vectored species were limited to documented cases of
insect transmission. Analyzed genomic traits included genome size (bp), number of
genes, a fraction of repeat content, size of the assembly excluding repeat content (bp),
GC content, the mean number of introns per gene, mean intron size (bp), mean exon
size (bp), a fraction of genes with introns, mean intergenic length (bp) and number of
tRNA and pseudo tRNA genes. Genome size is equivalent to assembly size after
filtering. Genome size excluding repeat content is assembly size excluding regions
masked by RepeatMasker (in this study or downloaded from NCBI), and repeat content
is the proportion of masked bases compared to total assembly size. Gene number
corresponds to the number of all ab initio gene models obtained with Augustus. GC
content is the proportion of GC bases in the total assembly. The mean number of
introns per gene, intron and exon size, a fraction of genes with introns and intergenic
length were estimated from gff files with annotated gene models. tRNA and pseudo
tRNA genes were obtained with tRNAscan-SE v2.0.9 (Chan et al., 2021).

Trait correlations
Correlations between genomic traits were calculated using phylogenetic generalized
least squares (gls) function from the R package nlme and independent contrasts using
pic function from the R package ape (Paradis et al., 2004). P-values in phylogenetic gls
models were obtained using anova() function, and adjusted for multiple tests with
Benjamini-Hochberg method at false discovery rate of 0.05. Some genomic traits were
rescaled: genome (bp x 10-7), genes (x 10-4), assembly wo repeats (bp x 10-7), intron
length (bp x 10-4), exon length (bp x 10-3), intergenic length (bp x 10-4), tRNAs (x 10-3),
and pseudo tRNAs (x 10-3).

Coevolution of ecological traits (pathogenicity and insect association) with genomic
traits was estimated using three approaches, i) a reversible jump MCMC discrete model
of evolution implemented in BayesTraits v3 (Pagel & Meade, 2006), ii) a phylogenetic
logistic regression with phyloglm function in R package phylolm (Ho & Ané, 2014), iii) an
investigation of feature’s importances from machine learning classification using
scikit-learn python (v3) package. All analyses were additionally run for the subset of
species (n=563), in which any repeating species were excluded.

For analysis in BayesTraits, genomic traits were converted into binary traits based on
their median (0 if below median and 1 if above median). Four different models were
investigated: independent evolution, dependent evolution, covarion model where
dependent evolution varies across the tree (Venditti et al., 2011), and for a subset of
significant genomic traits additional model testing equal transition rates. To determine
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the direction of coevolution with ecological traits (positive or negative), two models were
compared, one in which all transition rates were allowed to differ (dependent model),
and the second one in which the two most frequent transition rates were set to be equal.
If the model with differing transition rates performed better, the direction of coevolution
was determined by the most frequent transition rate, otherwise, no specific direction
was concluded. Models were tested by comparing complex to simpler models with log
bayes factor, i.e. dependent vs. independent, covarion vs. dependent, dependent vs.
dependent with selected equal transition rates. A complex model was chosen if the log
bayes factor surpassed 5. Each model was run three to five times to check for
consistency with 21 mln iterations, 1 mln burn-in, and thinning of 1000. Analyses for the
subset of species (n=563), in which repeating species were excluded, were run in three
independent runs for the dependent, independent model, and for the dependent model
with constrained rates.

In the second approach, a phylogenetic logistic regression was used to fit each genomic
trait to ecological trait using phyloglm function in R with the “logistic_MPLE” method,
btol option (searching space limit) set to 30, and 1000 independent bootstrap replicates.
Benjamini-Hochberg correction was applied to p-values. Species with missing
information on the ecological trait were filtered out.

In the last approach, genomic traits (features) were used to train several machine
learning classifiers for the prediction of ecological traits. Species with missing data were
filtered out, and data were rescaled (between 0 and 1) for classification with SVC.
Twenty percent of data was selected as held-out data. First, the performance of several
classifiers was investigated (KNeighbors, SVC, DecisionTree, RandomForest, and
GradientBoosting) with a balanced accuracy score, and 5-fold cross-validation, in which
train set (80%) was split into 5 parts (with two classes of a predicted trait in same
proportions), and accuracy measured 5 times, each time a different part being set as a
test set and the remaining four parts as the training set. Hyperparameters for the
best-performing classifier were chosen using grid search. Performance on held-out data
was evaluated with a balanced accuracy score, precision, recall, and ROC curve. To
account for the role of phylogeny, a matrix of internode distances was used in
combination with other genomic features. The classification models were evaluated in
the same way and compared with those not integrating phylogenetic distances. Feature
importances were obtained with a mean decrease impurity method from the
RandomForest classifier.

For the trait of pathogenicity, the RandomForest classifier performed best with an
accuracy of 0.7. Phylogeny had a negligible effect on model performance, improving it
only to 0.71. Top features included all genomic features, and two phylogenetic nodes
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corresponding to two overlapping clades with Claviceps species excluding C. paspali,
and C. citrina. The same model run on a filtered dataset (n=563), excluding repeating
species, gave an accuracy below 0.7, therefore we did not report resulting feature
importances.

For the trait of insect association, the RandomForest classifier also gave the best
performance, giving an accuracy of 0.83, and 0.87 when the phylogenetic matrix was
included. Both approaches revealed exon length and genome size without repeats as
the two most important features, and intron length or number of introns as a third
feature, respectively. The model ran on a filtered dataset (n=563), excluding repeating
species, gave an accuracy of 0.82% and 91% for the approaches without and with the
phylogenetic matrix, respectively. The most important features of the first approach
were: exon length, assembly w/o repeats, intergenic length, and intron length, and of
the second approach: exon length, assembly without repeats, number of genes, and
number of introns.

To compare the ancestral with the current states of genomic traits at focal nodes in the
tree, ancestral states were estimated with a continuous model for genomic traits
implemented in BayesTraits v3 (Organ et al., 2007) using the same MCMC parameters
as in the case of discrete traits models. Similarly, ecological traits were reconstructed
with a discrete model in BayesTraits v3 (Pagel & Meade, 2006). To visualize evolution of
traits on the tree, ancestral states of genomic traits were reconstructed with “ER” model
implemented in ace function from R package phytools (Revell, 2011), and discrete
ecological traits were reconstructed with fastAnc function from R package phytools
(Revell, 2011). Traits were visualized on the tree with ggtree R package (G. Yu, 2020)
using the continuous option.

Functional gene classes
Functional gene annotations were determined using several databases. Protein
sequences were searched against KOG (release 2003 (Tatusov et al., 2003)) and
MEROPS Scan Sequences (release 12.1 (Rawlings et al., 2018)) using diamond v2.0.9
(Buchfink et al., 2015) with options ‘--more-sensitive -e 1e-10’ and against CAZymes
(download 24/09/2021 (Cantarel et al., 2009)) with options ‘--more-sensitive -e 1e-102’.
Pfam domains were searched with pfam_scan.pl (Mistry et al., 2021) script with hmmer
v3.2.1 (Mistry et al., 2013) and matched with Sordariomycetes transcription factors
obtained from JGI Mycocosm database (download 9/12/2021). Secondary Metabolite
Clusters were inferred from genome assemblies using antiSMASH v4.0.2 (Blin et al.,
2019). Ancestral states of the gene and gene cluster numbers were inferred using the
fastAnc function from R package phytools (Revell, 2011). Per clade change ratio was
calculated as a mean difference between the observed number of genes in each clade
member and ancestral state divided by ancestral state. Mean gains or losses of genes
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per clade were tested with a bootstrap of 10 species with 100 replicates for clades with
>= 10 members.

Orthologs and orthogroups
A subset of 112 species was selected, by randomly selecting 1-8 species per clade.
Orthologs were searched using Orthofinder v2.5.2 (Emms & Kelly, 2019) with no a priori
defined tree. Orthogroup expansions and contractions were detected with CAFE v4.2.1
(Han et al., 2013) with a p-value threshold of 0.05. Genes belonging to one-to-one
orthologs and orthogroups were determined from the Orthofinder output, and the
presence of orthogroups in the ancestral clades was determined from CAFE output.

Limitations of the study
The major challenge of this study is the assignment of lifestyle traits. Two reasons
account for this. First, information on the given lifestyle is limited, and second, species
can potentially exert a given phenotype only in specific conditions, but that has not been
reported or tested. These reasons may account for some inevitable uncertainty in both
traits: pathogenicity and insect association. The trait of insect association is typically
characteristic of individual clades, therefore most members of the clade are expected to
carry this trait or to be closely related to species with that trait. Therefore we can
alleviate the misannotation by comparing insect-associated clades with their
corresponding non-insect-associated sister clades, as was done in the fourth part of the
Results. Pathogenicity on the other hand is a fast-evolving trait, exerting a large variety
of effects on the host. Nevertheless, the inferences of coevolution between
pathogenicity and genomic traits are generally consistent with observations in clades
enriched for well-studied pathogenic species. Because of the lack of ecological
information for many sequenced fungal genomes, many details on the fungal lifestyles
could not be included. One trait that is known to impact genome evolution is the host
range of pathogens (Badet et al., 2017). The availability of the host, as well as the ability
to switch from pathogenic to saprotrophic lifestyle, can potentially have a great impact
on Ne, and therefore genome evolution.

Gene annotations and genome processing was performed in a uniform way for all the
species, in order to remove any software-related biases. Repeat content was obtained
from NCBI repeat annotations together with downloaded assemblies, therefore the
quality of annotations is expected to vary mostly with the assembly quality. Short-read
assemblies which dominate in the dataset could cause an underestimation of the true
amount of repeats, however, the cases of repeat expansions in our dataset can be
detected in both contiguous and fragmented assemblies. Although the annotations are
mostly underestimated, our dataset allows us to detect general trends in both genes
and repeat dynamics.
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Several more detailed aspects of genome architecture could be informative about
pathogen evolution. For instance, we did not consider the level of compartmentalization
of the genome, which plays an important role in the evolution of virulence genes (Möller
& Stukenbrock, 2017). Accessory chromosomes or chromosome duplication are also
important factors in generating variation and aiding in adaptation to the host. In fact, we
know little about the frequency of these processes in non-pathogenic species. Similarly,
the distribution of specific genes, such as tRNAs or repeats in the genome can inform
us about the architecture of pathogenic genomes. Finally, whole genome duplications
are processes that can lead to major lifestyle transitions and at the same time can
influence the level of gene duplication and loss leading to major genome
rearrangements.

Data Availability
Raw short and long reads from sequenced genomes are available at NCBI under
project number PRJNA841745. Genome assemblies have been deposited at GenBank
under the accessions JANSLN000000000-JANSMH000000000. The versions described
in this paper are versions JANSLN010000000-JANSMH010000000. Code used in this
study is available on github (https://github.com/aniafijarczyk/Fijarczyk_et_al_2022).
Cleaned genome assemblies, sequences and coordinates of gene models were
uploaded to Dryad.
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Figure Supplements
Figure 1–figure supplement 1. Correlations among 12 genomic traits. Squares within the
matrix show scatterplots between pairs of genomic traits. K on the scale stands for x1000.
Figure 1–figure supplement 2. Principal component analysis on 12 genomic traits. The
inset shows a biplot from the principal component analysis performed on contrasts of 12
genomic traits. The color of the variables indicates the contribution of each variable to the
variance explained by principal components.
Figure 2–figure supplement 1. Posterior probabilities of transition rates estimated with
BayesTraits from one run of a dependent model of the evolution of pathogenicity with
each genomic trait. P - pathogen, NP - non-pathogen, low - genomic trait value below median,
high - genomic trait value above the median. Asterisks indicate traits for which two dominant
rates are not equal.
Figure 2–figure supplement 2. Results of the pathogen classification with Random
Forest. A. ROC curves (where the positive label is the pathogen), and performance metrics of
the best classifier (random forest) trained to distinguish pathogenic from non-pathogenic
species. C. feature importances (and credible intervals) from most to least important for all
genomic traits. D and E. Same as B and C, except that genomic traits were combined with
internode phylogenetic distances.
Figure 2–figure supplement 3. Coevolution of pathogenicity and genomic traits in 10
subsets, with the pathogenic species randomly selected to match the number of
non-pathogenic species. A. Cells show average log bayes factors across 3 runs equal to 4 or
more. Log bayes factors compared models of dependency and non-independency of genomic
traits on pathogenicity. B. Cells show a coefficient estimate obtained from the phylogenetic
logistic regression run with phyloglm. Values with p-value > 0.05 are shown.
Figure 3–figure supplement 1. Ancestral states of 12 genomic traits mapped on the
phylogeny. A. Assembly length in bp (genome). B. Number of genes (genes). C. Assembly size
excluding repeats in bp (genome w/o repeats). D. Repeat content measured as a fraction of the
whole genome (repeats). E. Proportion of GC bases (GC). F. Mean intron length in bp (intron
length). G. Fraction of genes with introns (genes with introns). H. Mean number of introns in a
gene (introns). I. Mean intergenic length in bp (intergenic length). J. Mean exon length in bp
(exon length). K. Number of tRNA genes (tRNA). L. Number of pseudo tRNA genes (pseudo
tRNA). Ancestral states were inferred using the fastAnc function in R package phytools.
Figure 4–figure supplement 1. Comparison of insect and non-insect associated clades in
5 groups (a-e). Comparison of genomic traits in current members of the clades, between
insect-associated clades (blue) and non-insect-associated clades (yellow). Numbers in
parentheses near the clade name on the tree indicate clade abundance. Stars show significant
pairwise differences between blue and brown clades within each group (Wilcoxon rank-sum test,
adjusted p<0.05). Clades in group C have too few species for testing.
Figure 4–figure supplement 2. Fold change of genomic traits in insect and non-insect
associated clades compared to the ancestral state. Insect-associated clades are shown in
blue, non-insect associated clades in yellow, and ancestral clades are indicated with a white dt
on the tree. Shown are only genomic traits with narrow credible intervals for ancestral nodes.
Clades O (group a), M1 (group b), H2.8 (group c), and H2.2 (group e) are insect mutualists or
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symbionts, whereas clades H2.6 (group d) and clades H2.4 and H2.3 (group e) are insect
pathogens.
Figure 5–figure supplement 1. Posterior probabilities of transition rates estimated with
BayesTraits from one run of a dependent model of the evolution of insect association
with 12 genomic traits. Asterisks indicate traits for which two dominant rates are not equal. I -
insect association, NI - no insect association, low - genomic trait value below the median, high -
genomic trait value above the median.
Figure 5–figure supplement 2. Performance of the Random Forest classifier trained to
distinguish insect-associated from non-insect-associated species. A. ROC curves (where
the positive label is the insect-associated) and performance metrics. B. Top feature importances
(and credible intervals) according to random forest classifier. C and D are the same as A and B,
but genomic traits were combined with internode phylogenetic distances.
Figure 5–figure supplement 3. Losses and gains of orthogroups estimated for 112 species
with CAFE. The time scale is in millions of years. Blue stripes cluster insect-associated clades,
and yellow stripes cluster other, non-insect-associated clades. The heatmap shows the
cumulative sum of all losses and gains between the root and each leaf (species) on the tree.
Figure 6–figure supplement 1. Insect-associated pathogens lose genes involved in
breaking host barriers. Heatmap shows the change ratio of genes/clusters relative to the
ancestral state. Clades are shown in columns with the number of clade members in
parentheses, functional classes are shown in rows. Dots indicate significant gain (red) or loss
(blue) of genes/clusters across clade members estimated from 100 rounds of bootstrapping of
10 species in clades with >= 10 members. SMC - secondary metabolite clusters, M - Merops,
TF - transcription factors.
Figure 7–figure supplement 1. Gene structure changes in orthologs and orthogroups of
clades M1 and M2. A. Comparison of gene structures between one-to-one single-copy
orthologs (n=583) from insect-associated (IA) clade M1 (blue) and the corresponding
non-insect-associated (non-IA) clade M2 (yellow). Intron length was compared only between
orthologs with at least one intron (n=476). Orthologue features were averaged across five
species within a clade. Boxplots show medians, first and third quartiles, and lines span minimum
to maximum values excluding outliers. p - p-values estimated with the paired two-sided
Wilcoxon signed-rank test; d - mean differences between IA and non-IA orthologues. B. Average
exon length and the number of exons of gene families (orthogroups) present in different
frequencies across up to five clade members.
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Source Data
Figure 1-Source Data 1. Transformed genomic traits for all species used to calculate
correlations.
Figure 1-Source Data 2. Genomic traits for all samples.
Figure 1-Source Data 3. Contrasts of genomic traits.
Figure 2-Source Data 1. Phylogeny and ancestral states of pathogenicity.
Figure 2-Source Data 2. Pathogenicity, raw genomic features, binary genomic features and
inter-node distances.
Figure 2-Source Data 3. Genomic traits transition rates estimated with BayesTraits for
coevolution with pathogenicity.
Figure 2-Source Data 4. Pathogenicity, raw and binary genomic features for 10 subsampled
datasets.
Figure 3-Source Data 1. Phylogeny and ancestral gene numbers.
Figure 3-Source Data 2. List of phylogenies and ancestral states of all genomic features.
Figure 4-Source Data 1. Genomic traits grouped by clade.
Figure 4-Source Data 2. Genomic traits and per-clade fold change estimates.
Figure 5-Source Data 1. Insect-association, raw genomic features, binary genomic features and
inter-node distances.
Figure 5-Source Data 2. Genomic traits transition rates estimated with BayesTraits for
coevolution with insect-association.
Figure 5-Source Data 3. Phylogeny with orthogroup contractions and expansions.
Figure 6-Source Data 1. Fold change estimates of gene counts since clade ancestors.
Figure 6-Source Data 2. Fold change estimates of gene counts since clade ancestors in
pathogenic species only.
Figure 7-Source Data 1. Intron and exon features in one-to-one orthologs.
Figure 7-Source Data 2. Per-orthogroup mean intron and exon features and their clade
occupancy.
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Supplementary Files
Supplementary Table 1. Informtion on Sordariomycetes genome assemblies including
assembly identifiers, quality statistics and estimated trait values.
Supplementary Table 2. Sequencing information for species sequenced in this study.
Supplementary Table 3. Log marginal likelihoods and bayes factors of compared models
of coevolution of pathogenicity with genomic traits. P - pathogen, NP - non-pathogen, low -
value below median, high - value above median over all species. In the column Dataset,
"Complete" includes all species, and "Filtered" excludes samples from the same species. Bold
values indicate log bayes factor >= 4.
Supplementary Table 4. Results of fitting genomic traits to pathogenicity with phyloglm
model. CI - confidence interval. In the column Dataset, "Complete" includes all species, and
"Filtered" excludes samples from the same species. Bold values in columns "Coefficient"
highlight positive coefficients, and in column "Adjusted p-value", p-values < 0.05.
Supplementary Table 5. Discrete trait estimates for the ancestral nodes in
Sordariomycetes. Node assignment corresponds to the one in Figure 3. Trait = 0 - Absence of
a trait (non-pathogenic, non -insect associated). Trait = 1 - Presence of a trait (pathogenic,
insect associated).
Supplementary Table 6. Log marginal likelihoods and log bayes factors of compared
models of coevolution of insect association with genomic traits. I - insect-associated, NI -
non-insect-associated, low - value below median, high - value above median over all species. In
the column Dataset, "Complete" includes all species, and "Filtered" excludes samples from the
same species.  Bold values indicate log bayes factor >= 4.
Supplementary Table 7. Results of fitting genomic traits to insect-association trait with
phyloglm model. CI - confidence interval. Complete dataset includes all species, and filtered
dataset excludes samples from the same species. Bold values in columns "Coefficient" highlight
positive coefficients., and in column "Adjusted p-value", p-values < 0.05.
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Figure 1–figure supplement 1. Correlations among 12 genomic traits. Squares within the
matrix show scatterplots between pairs of genomic traits. K on the scale stands for x1000.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.08.24.505148doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505148
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1–figure supplement 2. Principal component analysis on 12 genomic traits. The
inset shows a biplot from the principal component analysis performed on contrasts of 12
genomic traits. The color of the variables indicates the contribution of each variable to the
variance explained by principal components.
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Figure 2–figure supplement 1. Posterior probabilities of transition rates estimated with
BayesTraits from one run of a dependent model of the evolution of pathogenicity with
each genomic trait. P - pathogen, NP - non-pathogen, low - genomic trait value below median,
high - genomic trait value above the median. Asterisks indicate traits for which two dominant
rates are not equal.
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Figure 2–figure supplement 2. Results of the pathogen classification with Random Forest
A. ROC curves (where the positive label is the pathogen), and performance metrics of the best
classifier (random forest) trained to distinguish pathogenic from non-pathogenic species. C.
feature importances (and credible intervals) from most to least important for all genomic traits. D
and E. Same as B and C, except that genomic traits were combined with internode phylogenetic
distances.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.08.24.505148doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505148
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2–figure supplement 3. Coevolution of pathogenicity and genomic traits in 10
subsets, with the pathogenic species randomly selected to match the number of
non-pathogenic species. A. Cells show average log bayes factors across 3 runs equal to 4 or
more. Log bayes factors compared models of dependency and non-independency of genomic
traits on pathogenicity. B. Cells show a coefficient estimate obtained from the phylogenetic
logistic regression run with phyloglm. Values with p-value > 0.05 are shown.
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Figure 3–figure supplement 1. Ancestral states of 12 genomic traits mapped on the
phylogeny. A. Assembly length in bp (genome). B. Number of genes (genes). C. Assembly size
excluding repeats in bp (genome w/o repeats). D. Repeat content measured as a fraction of the
whole genome (repeats). E. Proportion of GC bases (GC). F. Mean intron length in bp (intron
length). G. Fraction of genes with introns (genes with introns). H. Mean number of introns in a
gene (introns). I. Mean intergenic length in bp (intergenic length). J. Mean exon length in bp
(exon length). K. Number of tRNA genes (tRNA). L. Number of pseudo tRNA genes (pseudo
tRNA). Ancestral states were inferred using the fastAnc function in R package phytools.
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Figure 4–figure supplement 1. Comparison of insect and non-insect associated clades in
5 groups (a-e). Comparison of genomic traits in current members of the clades, between
insect-associated clades (blue) and non-insect-associated clades (yellow). Numbers in
parentheses near the clade name on the tree indicate clade abundance. Stars show significant
pairwise differences between blue and brown clades within each group (Wilcoxon rank-sum test,
adjusted p<0.05). Clades in group C have too few species for testing.
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Figure 4–figure supplement 2. Fold change of genomic traits in insect and non-insect
associated clades compared to the ancestral state. Insect-associated clades are shown in
blue, non-insect associated clades in yellow, and ancestral clades are indicated with a white dt
on the tree. Shown are only genomic traits with narrow credible intervals for ancestral nodes.
Clades O (group a), M1 (group b), H2.8 (group c), and H2.2 (group e) are insect mutualists or
symbionts, whereas clades H2.6 (group d) and clades H2.4 and H2.3 (group e) are insect
pathogens.
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Figure 5–figure supplement 1. Posterior probabilities of transition rates estimated with
BayesTraits from one run of a dependent model of the evolution of insect association
with 12 genomic traits. Asterisks indicate traits for which two dominant rates are not equal. I -
insect association, NI - no insect association, low - genomic trait value below the median, high -
genomic trait value above the median.
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Figure 5–figure supplement 2. Performance of the Random Forest classifier trained to
distinguish insect-associated from non-insect-associated species. A. ROC curves (where
the positive label is the insect-associated) and performance metrics. B. Top feature importances
(and credible intervals) according to random forest classifier. C and D are the same as A and B,
but genomic traits were combined with internode phylogenetic distances.
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Figure 5–figure supplement 3. Losses and gains of orthogroups estimated for 112
species with CAFE. The time scale is in millions of years. Blue stripes cluster insect-associated
clades, and yellow stripes cluster other, non-insect-associated clades. The heatmap shows the
cumulative sum of all losses and gains between the root and each leaf (species) on the tree.
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Figure 6–figure supplement 1. Insect-associated pathogens lose genes involved in
breaking host barriers. Heatmap shows the change ratio of genes/clusters relative to the
ancestral state. Clades are shown in columns with the number of clade members in
parentheses, functional classes are shown in rows. Dots indicate significant gain (red) or loss
(blue) of genes/clusters across clade members estimated from 100 rounds of bootstrapping of
10 species in clades with >= 10 members. SMC - secondary metabolite clusters, M - Merops,
TF - transcription factors.
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Figure 7–figure supplement 1. Gene structure changes in orthologs and orthogroups of
clades M1 and M2. A. Comparison of gene structures between one-to-one single-copy
orthologs (n=583) from insect-associated (IA) clade M1 (blue) and the corresponding
non-insect-associated (non-IA) clade M2 (yellow). Intron length was compared only between
orthologs with at least one intron (n=476). Orthologue features were averaged across five
species within a clade. Boxplots show medians, first and third quartiles, and lines span minimum
to maximum values excluding outliers. p - p-values estimated with the paired two-sided
Wilcoxon signed-rank test; d - mean differences between IA and non-IA orthologues. B.
Average exon length and the number of exons of gene families (orthogroups) present in
different frequencies across up to five clade members.
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