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Abstract

Ecological relationships between bacteria mediate the services that gut microbiomes provide to
their hosts. Knowing the overall direction and strength of these relationships within hosts, and
their generalizability across hosts, is essential to learn how microbial ecology scales up to affect
microbiome assembly, dynamics, and host health. Here we gain insight into these patterns by
inferring thousands of correlations in bacterial abundance between pairs of gut microbiome taxa
from extensive time series data (5,534 microbiome profiles from 56 wild baboon hosts over a 13-
year period). We modd these time series using a statistically robust, multinomial logistic-normal
modeling framework and test the degree to which bacterial abundance correlations are cons stent
across hosts (i.e., “universal™) or individualized to each host. We aso compare these patterns to
two publicly available human data sets. We find that baboon gut microbial relationships are
largely universal: correlation patterns within each baboon host reflect a mixture of idiosyncratic
and shared patterns, but the shared pattern dominates by almost 2-fold. Surprisingly, the
strongest and most consistently correlated bacterial pairs across hosts were overwhelmingly
positively correlated and typically belonged to the same family—a 3-fold enrichment compared
to pairs drawn from the data set as awhole. The bias towards universal, positive bacterial
correlations was also apparent in monthly samples from human infants, and bacterial families
that had universal relationships in baboons also tended to be universal in human infants.
Together, our results advance our understanding of the relationships that shape gut microbial
ecosystems, with implications for microbiome personalization, community assembly and
stability, and the feasibility of microbiome interventions to improve host health.

Introduction

Mammalian gut microbiomes are highly diverse, dynamic communities whose members
exhibit the full spectrum of ecological relationships, from strong mutualisms like syntrophy and
cross-feeding, to competition, parasitism, and predation [1-4]. These relationships mediate a
variety of biological processes that have powerful effects on host health and fitness, including
the metabolism of complex carbohydrates and toxins, and the synthesis of physiologically
important compounds, like short-chain fatty acids, neurotransmitters, and vitamins [1-8]. Despite
their importance, major gaps remain in our understanding of microbial relationshipsin the gut
microbiome[1, 9, 10]. We typically do not know if the abundance of one microbe consistently
predicts the abundance of other microbes in the same host community, nor do we understand
whether these correlative relationships are consistent in strength or direction across hosts ([ 10-
13)).

Knowing the overall direction and strength of these correlative relationships isimportant,
not only because they partly reflect the ecological relationships that mediate gut microbial
processes, but also because overall correlation patterns can affect gut microbiome assembly,
stability, and productivity [14, 15]. For instance, sets of microbes that exhibit strong, positive
relationships within hosts sometimes represent networks of cooperating taxa that promote each
other’s growth [5, 9, 16]. In turn, these strong, mutualistic interdependencies can create an
ecological house of cards where microbes rise and fall together, hampering community assembly
and stability [14, 17]. In addition, understanding the degree to which correlative relationships
between microbes are the same or different in different hosts can shed light on whether hosts
share similar, underlying microbial ecologies[9, 10, 18-20]. Filling this knowledge gap has
consequences for the generalizability of microbiome assembly processes, stability, and the
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ecosystem services that emerge from microbiome dynamicsto affect host health [9, 10, 12, 14,
17, 21].

To date, there are several reasons to think that correlative relationshipsin the gut
microbiome will not be consi stent across hosts and will instead be individualized to each host.
For instance, several common community and evolutionary processes—such as horizontal gene
transfer, genotype by environment interactions, and priority effects—can lead microbiome taxa
to fill different ecological rolesin different hosts[3, 22-26]. Further, some microbes can adopt
context-dependent metabolisms and ecological roles depending on their microbial neighbors or
other aspects of the environment—all phenomena that could lead to personalized interspecies
relationships in gut microbiota[27-30]. Finally, the common observation that gut microbial
community compositions (i.e., the presence and abundance of taxa) are highly individualized is
sometimes proposed to arise from host-specific microbia ecologies and relationships [22-26, 31-
35].

However, to date, the handful of studies that have tested the generalizability of gut
microbial relationships across hosts suggest that these relationships are not highly individualized
and areinstead largely consistent (i.e., “universal”) across hosts (Fig. 1A; [10, 18-20, 36]). For
instance, Bashan et a. [10] inferred “universal” gut microbial relationships in the human gut
microbiome by applying dissimilarity-overlap analysis (DOA) to cross-sectional samples from
several human data sets. DOA infers universal microbial relationships by testing whether pairs of
hosts who share many of the same microbiome taxa also tend to have similar abundances of
those taxa [10, 18-20, 36]. This approach relies on the assumption that, when two communities
share many of the same species and have similar abundances of those species, they do so because
of ashared, underlying set of between-species abundance relationships[10, 36]. While many
studies using this approach find evidence that microbial relationships are “universal” [10, 18-20],
DOA’s assumptions have been questioned because some conditions can lead to the spurious
detection of universality, including environmental gradients, the strength of stochastic processes,
and the presence of many non-interactive species[10, 36, 37].

An obvious alternative is to measure microbial correlations directly from microbiome
time series collected from several hosts [9, 38]. Unlike DOA, this approach should be able to
pinpoint which microbiome taxa exhibit the most and least consi stent rel ationships across hosts.
However, measuring microbial correlations from longitudinal, multi-host microbiome time series
has its own challenges: time series with adequately dense sampling are rare, and most such data
sets exhibit temporal autocorrelation and irregular sampling [38]. Further, the most common, and
still most feasible, way to collect microbiome community data—via high-throughput
seguencing—generates noisy count data that usually can only be interpreted in terms of relative
(not absolute) abundances [39, 40].

To overcome these hurdles, here we combine extensive time-series data on the stool-
associated microbiota with a multinomial logistic-normal modeling framework (Fig. 1; n=5,534
samples from 56 baboons; 75 to 181 samples per baboon across 6 to 13.3 years, between 2000
and 2013; [41-43]). This framework uses 16S rRNA sequencing count data to learn a smoothly
evolving Gaussian process. The baboon hosts were the subject of long-term research on
individually recognized animals by the Amboseli Baboon Research Project in Kenya, which has
been studying baboon ecology and behavior in the Amboseli ecosystem since 1971 [41]. The
baboons range over the same habitat and experience similar diets and sources of microbial
colonization, facilitating inference about the consistency of microbial correlations across hosts
(Fig. S1; [42, 43]). Our modeling approach accounts for variation attributable to seasonal
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changesin the animals' diets, proportionality in the count data, and irregularity in sampling to
produce per-individual, per-taxon trajectories of log-ratio abundances that we used to estimate
pairwise microbial correlations within each host.

We pursued four main objectives. First, we characterized the overall sign and strength of
pairwise correlations in bacterial abundance within each host. Second, we tested the degree to
which these correlation patterns are systematically consistent across hosts or individualized by
host (Fig. 1A). Third, we identified taxonomic, phylogenetic, environmental, and host-related
predictors of the direction and universality of bacterial correlations. Finally, we tested the
generalizability of our findings by comparing the patterns of universality in our data set to two
microbiome time series from humans [ 34, 44].

Our predictions for these analyses were influenced by ideas from community and
microbial ecology. First, because strong interdependencies can hamper community assembly and
destabilize community dynamics[14, 15, 17], we expected that most microbial correlations
would be weak with few strong positive relationships between microbes. Second, consistent with
studies that used DOA, we expected that microbial relationships would be more consistent across
hosts than individualized (see Fig. 1A for avisualization of this prediction). This result would
suggest that personalized microbiota—their compositions and dynamics—do not arise from host-
specific microbiome ecologies [ 10, 18-20]. Third, because closealy related gut bacteria may have
similar functional properties, we expected to observe many positive correlations between those
that are close phylogenetic relatives. Alternatively, competitive exclusion may lead closely
related taxa to exhibit neutral or negative relationships. Fourth, because the environments
experienced by baboonsin Amboseli are far more uniform than those experienced by typical
human study subjects[42, 43], we expected that the signature of “universality” in baboons would
be stronger than that observed in humans. We discuss the implications of these patterns for
individual microbiome community assembly and dynamics, and for understanding how
microbiome communities are structured across hosts—a key requirement for successful
intervention to improve host health [10, 11, 45].
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Figure 1. Testing the generalizability of gut microbial correlations across hosts. (A)
Schematic illustrating our approach for testing the degree to which gut microbial abundance
correlations are consistent (i.e., “universal” [10]) across different baboon hosts. The left-hand set
of images show our expectations for consistent correlation patterns; the right-hand images show
our expectation for individualized correlation patterns. Colored circles next to each baboon
represent prevalent microbial taxafound in at least 20% of samples in each host (and excluding
putative duplicate 16S gene copies; see methods). In each host, we inferred centered log-ratio
(CLR) abundance trgjectories for these taxa using a multinomial-logistic normal modeling
approach implemented in the R package ‘fido’ [46]. Cartoons of two such trgjectories for the
orange and blue taxa are below each baboon. We used these trgjectories to infer covariances
between each pair of taxain all baboons (represented by covariance matrices). We then
converted these covariances to Pearson’s correlations and compared bacterial correlation patterns
across all hosts, shown as heat maps (red cells are positively correlated taxa; blue cells reflect
negatively correlated taxa). (B) Irregular time series of fecal samples used to infer microbial
CLR abundance trajectories in 56 baboon hosts (n=5,534 total samples; 75-181 samples per
baboon across 6 to 13.3 years). Each point represents afecal sample collected from a known
individual baboon (y-axis) on agiven date (x-axis). Samples from the same baboon were
collected a median of 20 days apart (range=0 to 723 days; 25th percentile=7 days, 75th
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179  families over time (x-axis) for all 56 hosts (samples from females are labeled with an F; male
180 sampleswith an M). Microbiota were somewhat individualized to each host (Fig. S2; [42, 43]).

181

182

183 Results

184 Most bacterial correlationswithin individuals are weak and negative

185 We began by characterizing the overall sign, strength, and significance of pairwise

186 corréationsin bacterial abundance within each host. To do so, we applied the approach outlined
187 inFig. 1A to stool-associated time series from 56 baboons (Fig. 1B) and calculated Pearson’s
188 correlations between all possible pairs of bacterial taxa for three taxonomic partitions of the data.
189 These partitionswere: (1) all pairs of CLR-transformed amplicon sequence variants (ASVS)

190 found in >20% of samplesin each host and were unlikely to represent a duplicate 16S rRNA

191 genecopy ([47]; see Methods; n=125 ASVs, Fig. 2A; Table S1); (2) all pairs of bacterial phyla
192 found in >20% of samplesin each host (n=12 phyla; Table S2; Fig. S3); and (3) al pairs of taxa
193  agglomerated to the most granular possible family, order, or class found in >20% of samplesin
194  each host (n=37 taxa; Table S3; Fig. S3). We assessed the false discovery rate for each

195 correation with athreshold for significance of FDR < 0.05, by comparing the nominal p-values
196 for each observed correlation to an empirical permutation-based null, obtained by shuffling

197  taxonomic identities within microbiome samples 10 times for each host and re-calculating the
198  Pearson correlation p-values obtained from the permutations (Fig. 2B). We also confirmed that
199 theresulting correlation patterns were insensitive to several modeling choices and were not

200  primarily driven by seasonal shiftsin microbiome composition (see results below and the

201  Supplement).

202 Consistent with the expectation that most bacterial correlations in the gut microbiome are
203  weak [14, 17], only 17% of ASV-ASV correlationsin the heat map in Fig. 2A were stronger than
204  expected by chance (FDR < 0.05; Fig. $AA; 20% of phylum-phylum; 21% of family/order/class
205 correations; Fig. S3). The strongest negatively correlated pair in Fig. 2A included two ASVsin
206 thefamily Lachnospiraceae that had a median correlation of -0.562 (+/- 0.118 s.d.) across all

207  baboon hosts (Fig. 2C; ASV25 and ASV107; Tables S1 and $4). The strongest positively

208 correlated pair of ASVsincluded two members of the genus Prevotella that had a median

209  correlation of 0.801 (+/- 0.053 s.d.) across all baboons (Fig. 2D; ASV2 and ASV3; Tables S1
210 and $4). While these two ASV s were assigned to the same genus, their V4 16S DNA sequence
211  identity was 97.6%, indicating they are probably not duplicate 16S gene copies in the same taxa
212  [47] (Table $4).

213 In support of the idea that positive bacterial interdependencies arerare[14, 15, 17], only
214  8.8% of ASV pairswere significantly positively correlated within hosts over time, and the

215 overall bacterial correlation patterns were dlightly skewed towards negative relationships—

216  especially for relationships between bacterial phyla. For instance, a the ASV-level, the median
217  correlation coefficient in Fig. 2A was -0.016, and 53% of these correlations were negative

218  (binomial test p < 0.0001). For family/order/class-level taxa, 55% of al correlationsin were

219 negative (Figs. S3A and AA; median family/order/class-level correlation=-0.031; binomial test
220 p<0.0001). Correlations between phyla exhibited the strongest negative skew, with 64% of

221  phyla-phyla correlations having anegative sign (Figs. S3B and $4A; median phyla-level

222  correlation=-0.092; binomial test p < 0.0001). This bias towards negative relationships may

223  reflect the fact that different phyla exhibit substantial differences in metabolism and lifestyle and
224 likely respond to distinct environmental drivers.
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228 Figure 2. Bacterial correlation patternsacross hosts. The heat map in panel (A) shows

229  Pearson’s correlation coefficients of CLR abundances between all pairs of ASVs (x-axis) in each
230 of the 56 baboon hosts (y-axis). Each pair of ASVsis represented on the x-axis, including all
231  parwise combinations of 125 ASVsresultingin 7,750 ASV-ASV pairsin each host (434,000
232  tota correlations across all 56 hosts). Columns are ordered by the mean correlation coefficient
233  between ASV-ASV pairs, from negative (blue) to positive (red). (B) Pairwise correlations

234  generated from random permutations of the data. Taxonomic identities were shuffled within

235 samplesand pairwise ASV-ASV correlations were estimated to produce a null model of ASV-
236  ASV correlation patterns within and between hosts. Column order isthe same asin Pand A.
237 Panes(C) and (D) show example trgjectories of CLR abundances for two pairs of ASVsinthe
238 samefive hosts. Pand (C) shows a strongly negatively correlated pair (median r across all

239  hosts=-0.562; two ASVsin family Lachnospiraceae: ASV 25 (orange) and ASV 107 (blue);

240 Tables S1 and $4) and pand (D) shows one strongly positively correlated pair (median r across
241  dl hosts=0.801; two ASVsin the genus Prevotella9; ASV2 (orange) and ASV 3 (blue); Tables
242 Sland $4).
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243  Within-host bacterial correlation patternsarelargely consistent acr oss baboons

244 Next, we tested the degree to which within-host ASV-ASV correlations were consi stent
245  across hosts. We began by plotting the absolute value of each ASV pair’s median Pearson’s

246  correlation coefficient as afunction of the consistency of their correlation sign (positive or

247  negative) across the 56 hosts (Figs. 3A and 3B). These plots provide two main insights into the
248  consistency of bacterial associations. First, in support of the ideathat ASV's do not exhibit vastly
249  different correlative relationshipsin different hosts, no ASV pairs were both strongly and

250 inconsistently correlated across hosts (Figs. 3A and 3B; Fig. S5A). Instead, the ASV pairs that
251 hadinconsistent correlation signs across hosts always had weak and often non-significant median
252  absolute correlation coefficients within hosts (Figs. 3A and 3B). Second, the pairs with the most
253  consistent sign agreement across hosts also exhibited the largest median absolute correlation

254 coefficients across hosts (Figs. 3A and 3B; Spearman’s r=0.844, p<0.0001). Hence, pairs of

255  ASVsthat have the strongest relationships, and are therefore likely to play the most important
256 rolesin structuring gut microbiome dynamics, also tend to have the most consistent relationships
257 indifferent hosts. Indeed, for the sets of positively or negatively correlated ASV-pairs that

258  showed universal agreement in the sign of their correlation across all hosts (i.e., where x=1in
259  Figs. 3A and 3B), the median correlation coefficient is 0.398, compared to 0.113 for those with
260 nosign consistency (x=0.5in Figs. 3A and 3B). Note, that the correlation strength for a given
261 pair of ASVswasonly weakly predicted by bacterial abundance. When both members of the pair
262 werereatively abundant, pairs tended to exhibit stronger median correlations (r=0.012,

263 p<0.0001; Fig. S6). However, while this effect is significant, it explained <1% of the variancein
264  median correlation strength.

265 Visual inspection of the patternsin Figs. 2A, 3A, and 3B indicate that ASV-ASV

266 correlations are largely consistent across baboons, as opposed to individualized to each baboon.
267  Toexplicitly quantify the relative strength of shared versus individualized signatures in the heat
268 mapin Fig. 2A, we calculated the population mean pattern for the ASV-ASV correlation matrix,
269  m. For each host, we then estimated the residual difference, e, between that individual’ s observed
270  ASV-ASV correlation matrix, y, and the population mean matrix: y — m (see Fig. S7A for a

271  cartoon example). We reasoned that the observed correlation matrix for each host can be

272  approximated by a mixture of contributions from the population mean matrix m and the host-
273  gpecific residual matrix e. To identify the optimal mixture for each host (i.e., the mixture of

274  consistent vs. individualized correlation patterns that best explained the observed data), we

275  titrated the contribution (i.e., weight) of e from 0% to 100% (and correspondingly, the

276  contribution of mfrom 100% to 0%) and identified the value that minimized the Frobenius

277  distance between the smulated combination and the observed correlation matrix, y.

278 In support of prior observations of “universality” [10, 18-20], we found that, across hosts,
279  the optimal mixture involved contributions from the shared correlation structure (i.e., m) of

280  between 50% and 70% (median 65%) and a host-level contribution (i.e., from e) of between 50%
281  and 30% (median 35%). Hence, population-level signatures contributed almost twice the weight
282  ashost-level signatures (a median population:host ratio of 1.86:1; Fig. S7B). Asaresult, ASV-
283 level relationships tend to be more consistent across hosts than host-specific.
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Figure 3. None of the ASV pairswere strongly and inconsistently correlated acr oss hosts,
and the strongest and most consistently correlated ASVsaretypically positively correlated.
Plotsin (A) and (B) show the median correlation strength for each ASV-ASV pair across all 56
hosts as a function of the consistency in direction of that pair’s correlation across hosts,
measured as the proportion of hosts that shared the mgority correlation sign (positive or
negative; ASV pairs that were positively correlated in half of the 56 hosts have a consistency of
0.5; ASV pairsthat were positively [or negatively] correlated in all hosts have a consistency of
1.0). Panel (A) presentsthis relationship for consensus positively correlated features and panel
(B) shows consensus negatively correlated features. The Spearman correlation between median
association strength and the proportion of shared sign for all correlated featuresis0.844 (p <
0.0001). Multiplying the two axes in either panel (A) or (B) creates a“universality score”, whose
distribution is shown in panel (C). This score reflects the strength and consistency of pairwise
microbial correlations across hosts and ranges from 0 to 1, where a score of 1 indicates ASV-
ASV pairs with perfect correlations of the same sign in all hosts. A vertical line indicates the
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300 minimum significant universality score. (D) Correlation networks for the top 2.5% most strongly
301 and consistently correlated ASV pairs across hosts (i.e., the top 2.5% highest universality scores;
302 parswithrank 1-194 in Table $4). Network edges are colored by the consensus sign of the

303 correlation between that pair (black for pairs where most hosts had a positive correlation; gray
304 for pairs where most hosts had a negative correlation). Node labels indicate the ASV identity in
305 Table Sl and colors represent bacterial families. (E) Significantly enriched bacterial familiesin
306 thenetwork in pane D (Fisher’'s Exact Test p<0.01 all, FDR < 0.05; see Table S5 enrichment
307 satisticsfor all families). (F) Significantly enriched same-family pairings in the network in panel
308 D (Table Sb). Notethat for visualization, the estimated log2 odds ratio intervals have been

309 truncated at 5; full estimates are given in Table S5.

310

311

312 Themost consistent ASV-level correlationsare postive and between phylogenetically

313 related taxa

314 One advantage of our approach, compared to dissimilarity overlap analyses [10], iswe
315 canidentify the bacterial pairsthat exhibit the most consistent relationships across hosts. Hence,
316  we next conducted several analyses to understand why some pairs of ASV's exhibit more

317  consistent correlation patterns across hosts than others. To do so, we created a “ universality”

318 scorethat could be calculated for each ASV pair. The score multiplies the pair’s median

319 correlation coefficient across hosts (y-axis of Fig. 3A, 3B) with its correlation consistency across
320 hosts(i.e., proportion of shared sign; x-axis of Fig. 3A, 3B). The resulting scores range from 0 to
321 1, whereascore of 1 equatesto perfect “universality” (i.e., al hosts have a correlation

322  coefficient of 1 or all hosts have a correlation coefficient of -1). Applying this score to all pairs
323  of ASVsrevealsaright-skewed distribution, reflecting the fact that most bacterial correlations
324  areweak, with inconsistent sign directions across hosts (Fig. 3C; Fig. $4B). However, 49% of
325 these scores were higher than expected by chance (permutation test; FDR < 0.05; Fig. 3C; Fig.
326 4B), reflecting asignal of universality in our data.

327 Interestingly, the ASV-pairs with the highest universality scores ailmost always exhibited
328 net positive correlations across hosts, as opposed to net negative relationships, suggesting that
329 the most universal relationships occur between pairs of ASV's that respond similarly to shared
330 driversor facilitate each other’ s growth. For example, among the ASV pairsin the top 1% of
331 universality scores (N=78 pairs), 96.2% exhibited net positive correlations across all hosts, while
332 only 5.6% (3 of 78 pairs) exhibited net negative correlations (Table $4). In the top 2.5% most
333  universal ASV pairs (n=194), 78.4% had net positive correlations across all hosts (Table $4).
334 To visualize these highly consistent positive correlations, we plotted bacterial co-

335  abundance networks connecting the top 2.5% most universal ASV pairs (Fig. 3C). A handful of
336 ASVswere highly connected within this network. The most connected ASV was ASV 107

337  (family Lachnospiraceae; Table S1; Table $4), which was connected to 20 other ASVs. Ten
338 other ASVswere connected to more than 10 other ASV's, including six other members of

339 Lachnospiraceae (ASV9, ASV25, ASV30, ASV106, ASV107, and ASV111), two members of
340 Coriobacteria (ASV 115 in the family Coriobacteriaceae and ASV 30 in the genus Sackia), one
341 member of Bifidobacteriaceae (ASV50), and one member of Prevotellaceae (ASV71). The ASVs
342  involved in these top 2.5% pairs were enriched for the families Atopobiaceae,

343  Bifidobacteriaceae, Coriobacteriaceae, Eggerthellaceae, Erysipel otrichaceae, and

344  Lachnospiraceae (Fig. 3E; Table S5; all Fisher’s Exact Test p-values < 0.01; FDR < 0.05).
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345 The network in Fig. 3D revealed clusters of positive connections, often between ASVs
346  assigned to the same family (Fig. 3F). In fact, same-family pairs were enriched by >3-fold in the
347  2.5% most universal taxon pairs (52 pairs observed vs. 19 expected, p < 0.0001). The cluster of
348 interconnected red nodesin Fig. 3D represents members of Lachnospiraceae, and

349  Lachnospiraceae-Lachnospiraceae pairings were 3.7 times more common in this network than
350 overall (30 pairsobserved vs. 9 pairs expected Fig. 3F). Bifidobacteriaceae also tended to exhibit
351  within-family ASV pairings (Fig. 3F).

352 The observation that the most consistent correlations often occur among ASVsin the

353 samefamily raises another question: does the phylogenetic distance between a pair predict the
354 nature of their relationship? In support of the ideathat closely related ASVs respond similarly to
355 theenvironment or facilitate each other’ s growth, we found a significant relationship between the
356 universality score of agiven pair of ASVs and their phylogenetic distance (Pearson’sr for

357  positively correlated pairs=-0.213; p < 0.0001; Fig. 4A). In contrast, negatively correlated ASV
358 pairsexhibited aweak positive relationship between phylogenetic distance and universality such
359 that closely related taxatended to be less universal than more distantly related taxa (Pearson’s
360 r=0.049; p=0.004; Fig. 4B). In other words, the strongest and most consistently negatively

361 correlated taxatend to be only distantly related. Positively correlated, closely related pairs were
362 often members of the families Atopobiaceae, Eggerthellaceae, and Lachnospiraceae, especially
363  pairs where both members belonged to the family Lachnospiraceae (Fig. 4C-D; Table S6).

364
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365
366 Figure4. The most consistent ASV-level correlations are positive and often between close

367 evolutionary relatives. Pairwise universality scores are plotted as afunction of phylogenetic
368 distance between the ASV-ASV pair for consensus positively correlated pairsin red (A) and
369 negatively correlated pairsin blue (B). Phylogenetic distance (x-axis) isbinned into 0.1

370 increments; each point represents agiven ASV pair, and box plots represent the median and
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interquartile ranges for a given interval of phylogenetic distance. Phylogenetic distanceis
negatively correlated with universality score in positive pairs (Pearson’s correlation for
positively associated ASV pairs=-0.213, p-value < 0.0001), and positively correlated with
universality score in negatively associated pairs (Pearson’s correlation for negatively associated
ASV pairs=0.049, p = 0.004). Panel (C) shows families for the ASV pairs enriched in the closest
related (distance < 0.2) and highly universal (score > 0.5) pairs. Pandl (D) shows enriched
family-family pairings for the same subset of closaly related and highly universal ASV pairsin
panel C. Note that for visualization, the estimated log2 odds ratio intervals have been truncated
at 5, which excludes 5 pairs with high uncertainty in the oddsratio; full estimates are givenin
Table S6.

Genetic relatives, and hosts with similar micr obiome compositions, have more similar
bacterial correlation patterns

We next asked whether host-level variables, including sex, social group membership,
genetic relationships, and baseline gut microbiome composition predict host differencesin
patterns of bacterial correlation. Consistent with prior research [10], the strongest predictor of
distance in bacterial correlation patterns was distance in terms of baseline microbiome
composition. Indeed, a Mantel test correlating compositional distance of average microbial
profiles (as Aitchison distances between the per-host mean of centered log-ratio-transformed
samples) with distance in microbial correlation patterns between hosts (via Frobenius distance)
revealed that 34% of the variation in correlation patterns was explained by baseline microbiome
community composition (Mantel: r’=0.343; p=0.001; Fig. 5A; Table S7).

Consistent with prior research in our population, which finds widespread heritability of
the abundance of individual gut microbiome taxa[43], we also found aweak but significant
relationship between host genetic distance and the distance in microbial correlation patterns
between hosts. Hosts who were more distantly related based on a multigenerational pedigree
have dlightly less similar ASV-level correlation matrices, as measured by Frobenius distance
(Fig. 5B; Table S7; r*=0.025; Mantel p-value=0.001). We found no evidence that members of
the same social group or sex exhibit especially similar microbial correlation patterns (social
group: F=1.994; p=0.106; sex: F=1.784; p=0.187; Table S7).

12
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404  Figureb5. Baboonswith more smilar bacterial correlation patternsare morelikely to have
405 moresimilar baseline microbiome compositions and are morelikely to be genetic relatives.
406 Inpand (A) each pointisapair of hosts; the y-axis shows the similarity of these hosts' bacterial
407  correlation patterns (via Frobenius distance) as a function of their microbiome compositional
408  similarity (via Aitchison distance; Mantel: r’=0.343; p=0.001). Colors show samples from pairs
409  of baboons living in the same social group and grey dots are pairs of animals living in different
410 social groups, there is no detectable effect of social group on correlation pattern similarity. Panel
411  (B) shows the same Frobenius distances as a function of host genetic dissimilarity (1 —the

412  coefficient of genetic relatedness between hosts; R?=0.025; p-value Mantel test 0.001). Colors
413  reflect pairs of hosts living in the same social group, asin pand A.

414

415

416  Universality in Amboseli isnot solely explained by seasonality or synchrony

417 Without experiments, we cannot disentangle whether our observed bacterial correlations

418 aredueto ecological interactions between bacterial species (e.g., mutualisms, direct or indirect
419  competition etc.) or to shared responses to environmental gradients. While our modeling

420  approach accounts for seasonal changesin the first three principal components of the baboons
421  diets, toidentify other potential effects of season we re-estimated the ASV-ASV correlation

422  matrix after removing an oscillating seasonal trend from the observed |og-ratio abundance for
423 each ASV (Fig. S8). Removing this trend had little effect on the ASV-ASV correlation matrix;
424 the variance explained by the seasonal oscillation is small for all ASV's (median 1.1%,

425  minimum=0%, maximum=6%) and the between-ASV correlation estimates were almost

426  identical to those derived from our original model (Pearson’s r=0.979, p<0.0001; Fig. S8C). We
427  aso tested whether pairs of ASVswith especially consistent between-host correlation patterns
428  tend to show large seasonal changesin CLR abundance. To do so, we focused on 13 families that
429  exhibit significant seasonal changesin CLR abundance, based on a previous analysis of the same
430 dataset [42]. While ASV pairsin which one member belongs to one of these significantly

431 “seasonal” families are dightly more universal, this effect is small (difference of 0.026,

432  p<0.0001 vs. pairswhere 0 or 1 partner were “seasonal”; Fig. S9).
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433 Because the high level of universality we observed was not well explained by season, we
434  aso tested whether universality is explained by synchronized dynamics. We reasoned that if one
435 member of an ASV pair shows highly synchronized dynamics across different hosts, and the
436  other member is also strongly synchronized across hosts, then universality could be an inevitable
437  outcome of each member of the pair’ s strong synchrony. We quantified synchrony as the degree
438  towhich the observed dynamics of asingle, focal ASV are consistent across hosts, such that high
439  synchrony (near 1) implies that the timing and direction of shiftsin log-ratio ASV abundance are
440 identical across hosts in the population (see Methods; Fig. S10). Estimates of synchrony ranged
441 from 0.019 to 0.477 (median=0.196). Interestingly, ASVsin the 13 “seasonal” families are not
442  more likely to have high synchrony than other families (ANOV A, p=0.358; Fig. S11). However,
443  the average synchrony of an ASV-ASV pair did predict that pair’s universality score (r=0.264,
444  p<0.0001): ASV pairsthat are more synchronous on average are also more likely to show

445  consistent correlations across hosts. These high synchrony, high universality pairs are highly

446  enriched for Bifidobacteriaceae-Bifidobacteriaceae and Lachnospiraceae-Lachnospiraceae

447  family pairs (Fig. S12).

448
449  Baboon microbiomes are not substantially more “universal” than human microbiomes
450 Finally, to investigate the generalizability and applicability of our observationsin

451  baboons, we turned to two publicly available gut microbial time-series data sets: daily samples
452  from 34 adults over a 17-day span (483 total samples; hereafter “Johnson et al.” [34]), and the
453 DIABIMMUNE cohort that consists of 285 samples, collected monthly over 3 years, from 15
454  infants and toddlersliving in Russian Karelia ([44]; at the time of writing, these cohorts were the
455  only publicly available data sets we could find that included large numbers of repeated samples
456  from the same subjects). Because baboons in Amboseli experience less heterogeneity in their
457  environments and diets than humans[42, 43], we expected they would exhibit greater

458  consistency in microbial correlations than either human cohort. Note that we compared each host
459  cohort’s universality at the family/order/class level because thistaxonomic level offered the

460  greatest comparative power (10.1% of families/orders/classes overlap between the cohorts

461  compared to just 3.1% of generaand no ASVSs).

462 Contrary to our expectations, we find comparable evidence of universality in baboons
463  and the DIABIMMUNE infant/toddler cohort, but weak universality in Johnson et al. (Figs. 6A-
464  6D). Bacterial familiesin the DIABIMMUNE cohort yielded universality scores slightly higher
465  than those observed in Amboseli (25th percentile=0.132, median=0.206, 75th percentile=0.316
466 for DIABIMMUNE; 25th percentile=0.088, median=0.150, 75th percentile=0.234 for

467  Amboseli), driven by relationships between families that were stronger on average than those
468  estimated for baboons (median DIABIMMUNE family-family correlation strength=0.270;

469 median Amboseli family-family correlation strength=0.181). The high level of consistency

470  between both infants/toddlers and baboonsin one wild population is surprising and may point to
471  the similar sampling intervals for these cohorts. Both cohorts were sampled approximately

472  monthly, while Johnson et al.’ s subjects were sampled daily [17, 48]. Median correlation

473  strengths and universality scores for the Johnson et a. [34] cohort were substantially lower

474  (median correlation=0.099; 25th percentile universality=0.050, median=0.076, 75th

475  percentile=0.111) than the DIABIMMUNE cohort or the baboons.

476 Despite considerable differences in the hosts, time scales, and designs of these studies, all
477  three data sets exhibited a positive correlation between correlation strength and sign consistency
478  for family pairs (Fig. 6C). This correlation was strongest in the Ambosdli baboons (Spearman’s
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479  r=0.844; p<0.0001); weaker in the DIABIMMUNE cohort (r=0.686; p<0.0001) and weakest in
480 Johnson et al. [34] (r=0.644; p<0.0001). Further, the observation that the most universal family-
481  family associations skew positive in baboons was replicated in the infant data set, but not in
482  Johnson et al. [34]. All of the top 1% and top 2.5% most universal family pairs (6 of 6 and 16 of
483 16 pairs, respectively) are positively associated in the DIABIMMUNE cohort, compared to 86%
484  and 71% of these pairsin the Amboseli baboons.

485 Finally, we examined the relationship between universality scores for family pairs that
486  overlapped between Amboseli and DIABIMMUNE (n=45 pairs), and between Ambosdli and
487  Johnson et al. [34] (Fig. 6D; n=21 pairs; only 10 family pairs overlapped between all three data
488  sets). For these overlapping pairs, scoresin the Amboseli data predicted scores for the same
489  family-family pair in the DIABIMMUNE data set (r=0.449, p=0.023). The association between
490 scoresinthe Amboseli data and the Johnson et al. data was negative, but not statistically

491  significant (r=-0.222, p=0.071).
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Figure 6. Patterns of universality in baboons are recapitulated in the DIABIMMUNE
study. Following Fig. 2A, Panels (A), (B), and (C) show the Pearson’s correlation coefficients
of CLR abundances between all pairs of families (x-axis) in two time series data sets from
human subjects: (A) the Amboseli baboons, (B) the DIABIMMUNE cohort, consisting of 15
infants/toddlers sampled monthly over 3 yearsin Russian Karelia [44], and (C) the diet study of
Johnson et al. [34], including 34 adults sampled daily over 17 days. Following Figs. 3A and B,
panel (D) shows the median correlation strength of each family pair’s correlation coefficient
across hosts as a function of the consistency in direction of that pair’s correlation across hosts
(i.e., the proportion of hosts that shared the mgority correlation sign, positive or negative).
Median correlation strength islow overall in Johnson et al. (median=0.099), whereas the
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504 Amboseli baboon and DIABIMMUNE infant/toddler cohorts show similar relationships between
505 median correlation strength and the proportion shared correlation sign across hosts (Spearman’sr
506 in Ambosdli=0.844; Spearman’srin DIABIMMUNE=0.686). (E) Universality scoresfor

507  overlapping family pairs from the infant/toddler subjects of the DIABIMMUNE study and

508 baboonsinthe Amboseli study are significantly correlated (r=0.449, p=0.0226). Panel D shows
509 universality scoresfor overlapping gut bacterial family pairsin the Amboseli baboon and

510 DIABIMMUNE infant/toddler data sets (black outlines), as well as the Amboseli and Johnson et
511 al. datasets (gray outlines) on opposing axes. Color represents the taxonomic identities of the
512  family pairs.

513

514

515 Discussion

516 Do different hosts have different microbiome “ecologies’? Answering this question is

517  essential for predicting gut microbiome community assembly and dynamics, and for

518 understanding the degree to which the species interactions that govern these processes are shared
519 across hosts. Here, we overcome the constraints of previous cross-sectional analyses by

520 measuring bacterial correlations directly from longitudinal, multi-host microbiome time series.
521  Our results provide independent confirmation for prior studies that tested for universal gut

522  microbial relationships viadissimilarity overlap analyses (DOA; [10, 18-20, 36]). We confirm
523 that bacterial correlation patterns are largely shared across hosts in the same population, as

524  opposed to idiosyncratic to individual hosts, and that hosts with the most similar bacterial

525  correlation patterns are those with the most similar baseline microbiome compositions—a core
526  assumption of DOA. Because prior analyses of these microbiome time series find that each

527  baboon exhibits a highly personalized microbiome composition and dynamics [42], our findings
528  suggest that such compositional personalization, which is aso common in humans[22-26, 31-
529  35], cannot be easily explained by personalized microbiome ecologies. Further, in terms of

530 microbiome therapeutics, our results suggest that widely applicable microbiome interventions
531 may be more attainable than personalized microbiome compositions would suggest.

532 By measuring bacterial correlations in multiple hosts, we were also able, for the first

533 time, to pinpoint which pairs of bacterial taxa exhibit the most consistent relationships across
534  hosts. Surprisingly, we found that the most universal bacterial pairs are almost always positively
535 (asopposed to negatively) correlated. Positive bacterial interactions have been the subject of
536  recent controversy [9, 15, 49]. Ecological theory predictsthat strong positive interactions should
537 berarein natural communities because species interdependencies can hamper community

538 assembly and stability [14, 17]. Thistheory is supported by experiments that directly measure the
539 effects of one bacterial species on another’s growth [50-53] (but see [49]). Our results suggest
540 that positive bacterial correlations are indeed uncommon in intact, unmanipulated microbiomes:
541  significant positive relationships made up just 8.8% of all of the pairwise correlations we

542  observed. However, when they occur, they often contain taxathat belong to the same bacterial
543 familiesor are otherwise phylogenetically close, suggesting they may be members of the same
544  ecological guild and respond similarly to shared resources and other environmental drivers. This
545  pattern may partly explain the abundance of positively associated Lachnospiraceae pairsin our
546  data, afamily in which positive, within-family interactions are known to contribute to

547  hydrolyzing starch and other complex carbohydrates, and ultimately the regulation of short chain
548 fatty acids (SCFAS) [54-56].
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These observations—that bacterial correlation patterns are largely consistent across hosts,
and that the most consistent correlations are typically positive—were also apparent in one human
data set, despite differences in study design, host age, and time scale. Specifically, both the
Amboseli baboons and the DIABIMMUNE infant/toddler cohort from Russia[44] exhibit
comparable levels of universality. This outcome was surprising, given that baboons are expected
to experience less heterogeneity in their environments and diets than human children from birth
to age three years—even if those infants are from the same population (Russian Karelia). We
also found that the most universal bacterial familiesin baboons tended to be highly universal in
human infants/toddlers. Hence, some bacterial families may exhibit consistent microbial
relationships within hosts, across host populations, and across host species. Finally, arecent,
independent study also identified cons stent bacterial correlation patterns across four different
populations of human hosts [9]. While this study lacked resolution at the level of individual
hosts, it did identify a highly conserved network of positively associated and closely related
microbes similar to those we identify in Fig. 3. The authors speculate that these conserved
associations may indicate strong partner fidelity or obligate partnerships.

We did, however, fail to detect universality in a second human data set reported in
Johnson et al. [34], in which subjects were sampled daily, rather than weekly or monthly. The
lack of universality in Johnson et al. [34] may be due to this difference in sampling time scale,
especially if daily abundances and correlations are noisier than covariances modeled over the
longer time scales in our study. In support, many fewer of the microbial correlations were
stronger than random chance in Johnson et al. as compared to the baboons or children in the
DIABIMMUNE cohort. The subjectsin Johnson et al. [34] also consumed substantially different
diets from each other, perhaps more so than the children in the DIABIMMUNE cohort, and this
inter-host differencein diet may reduce the universality of microbial correlations.

In terms of understanding microbiome ecology, an essential caveat to our findingsisthat
the correlation patterns we observed could reflect either direct or indirect relationships, or
uncontrolled environmental gradients, and they cannot be mapped directly to standard categories
of pairwise ecological interactions, such as mutualism, commensalism, amensalism, exploitation,
or competition. Experimental approaches that directly measure the effects of one species on
another’s growth in vitro are better suited to characterizing these relationships [49-53]. However,
even then, caution is required because a microbe' s community and environmental context can
have important consequences for its metabolism, functional capacities, and relationships with
other microbes. We surmise that most of the correlation patterns we observed are not attributable
to environmental gradients because our signature of universality persisted, even when we
accounted for diet, oscillating seasonal drivers, and microbial synchrony between hosts. Hence,
some of correlations we observed may derive from microbial interactions themselves, rather than
shared environmental drivers creating shared dynamics.

Our finding that correlations between gut microbial taxa are largely consistent across
hosts isimportant, considering that many studies find highly personalized gut microbial
compositions and single-taxon dynamics [27-29]. Personalized compositions and dynamicsin
the gut microbiome are commonly attributed to horizontal gene transfer and functional
redundancy, which may lead some bacteria to perform different functions and exhibit different
environmental responses in different hosts. Our results suggest these processes do not
substantially alter pairwise microbial associationsin the gut, at least for highly prevalent taxa at
thelevel of ASVsand above, and on the time scales in our study (on the order of weeks and
months). Because ASV's encompass multiple species and strains, reflecting the functional

18


https://doi.org/10.1101/2022.08.20.504530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.20.504530; this version posted August 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

505 diversity of thesetaxa, their dynamics may be somewhat buffered against idiosyncrasies driven
596 by horizontal gene transfer and functional redundancy, which affect single strains more strongly
597  than whole species or genera. If so, personalized gut microbial compositions may emerge instead
598 from personalized assembly processes [57, 58], the fact that most microbial relationships are
599  weak, and the effects of rare, host-specific taxa (which were necessarily excluded from our

600 analyses). A logical next step would be to confirm the stability of the microbial correlations we
601  observed using culture-based approaches, which will help reveal the stability of these

602 correlationsin vitro and whether they can be attributed to direct effects of one microbe on

603  another’s growth.

604

605 Methods

606  Study population and microbiome profiles

607 The baboon hosts in this study were members of the Amboseli baboon population, which

608 has been studied by the Amboseli Baboon Research Project since 1971 [41]. The microbiome
609 compositional profiles are derived from V4 16S rRNA gene amplicon sequencing data that were
610 previously analyzed in [42, 43]. Our analyses use 5,534 of these profiles from 56 especially well-
611 sampled baboons, collected over a 13.3-year span between 2000 to 2013 (Fig. 1B). Each baboon
612  host in this data set was sampled at least 75 times (mean number of samples=99; range=75 to
613 181 samples; median number of days between samples within hosts=20 days; 25th percentile=7
614  days, 75th percentile =49 days). DNA was extracted from each sample using the MoBio and
615 QIAGEN PowerSoil kit with a bead-beating step. All samples were sequenced on an lllumina
616 HiSeq 2500, with amedian read count of 48,827 reads per sample across all 5,534 samples

617 (range=982 to 459,315 reads per sample). Further details of sample collection, DNA extraction,
618 and sequencing can be found in [42, 43].

619
620 Filtering of low-abundance taxa
621 Data sets of per-sample taxonomic counts were produced at each of three taxonomic

622 levels, from finest to coarsest: ASV, taxonomic assignments finer than phyla, but above the

623 genuslevel (e.g., class, order, family), and phylum. At the intermediate and coarsest levels, taxa
624  were agglomerated using phyloseq’s tax_glom() function [59] such that all sequence variants
625  sharing taxonomic identity at that level were collapsed into a single taxon (e.g. family

626  Bifidobacteraceae).

627 To reduce sparsity in the data set, remove 16S sequences that could represent gene

628 duplications, and focus only on taxathat were prevalent in all 56 hosts, we further filtered as
629 follows: (1) in each of the three taxonomically defined data sets (i.e. ASV, taxa assigned to

630 family/order/class, and phylum), we identified taxa present in a minimum of 20% of each host’s
631 samples; (2) if agiven ASV was >99% genetically similar to another ASV we removed the |east
632  abundant of the pair to minimize the risk of including duplicate 16S rRNA gene copies from the
633 sametaxa[47]; and (3) counts associated with all other taxa were combined into a dummy

634  category, hereafter referred to as” other.” The “other” category therefore includes a combination
635 of rare and host-specific gut microbes. This category was retained in the data set (although not
636 analyzed directly) because “other” counts still inform the precision of the observed relative

637  abundancesin our model. Characteristics of the filtered data at each taxonomic level are

638 providedin Tables S1-S3.

639

640
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641 Modeing log-ratio dynamics

642 Estimates of taxon-taxon covariance were obtained from the basset model of the “fido”
643 packagein R [46]. Datafor each host took theform of aD x N count matrix, where D givesthe
644 number of taxaand N the number of samples collected for a given host. The following model
645 wasfit to each host’s count matrix (Y) whereY; represents the counts associated with asingle

646 sample:
647

Y; ~ Multinomial(r;)

m; = ALR™'(n;)
N ~ Normal(A, Z,1)

A ~ GP(O[X], %, T[X])

Y ~ inv-Wishart(Z, v)
648
649 The observed relative abundances are considered to be drawn from a multinomial

650 digribution parameterized by a set of proportions (rr) which have an analogous representation in
651 theadditive log-ratio. The dynamics of these log-ratio abundances (1) are described by what

652  amountsto a state space model in the 3" and 4™ lines of the specification above, where a

653  Gaussian process models the evolution of a“latent” state. The matrix ¥ captures covariation in
654  log-ratio abundances (the D rows of the observed count matrix). Sample-sample covariation

655 arising from nearness in time (autocorrelation) is modeled by the kernel matrix I'. Both the

656 kernel matrix and the expected baseline log-ratio abundances (0) are parameterized by a set of
657 time-varying covariates X which included the day of sampling (where the date of first sampleis
658 defined as zero) and the first three principal components of diet composition, calculated

659 following [42, 43] asthediet all juveniles and females living in the host’s social group in the 30
660 days prior to sample collection. All group members consume highly similar diets asthey travel in
661 atogether across the habitat, encountering the same resources at the same time [42, 43]. These
662 dataare collected viarandom-order behavioral observations collected two to four times per week
663 on adult females and juvenilesin each social group. Parameterization of the kernel matrix is

664  further described in the Supplement.

665 Posterior inference on this model is performed as described in [46] and yields estimates
666 of the distributions of parameters necessary to reconstruct trgjectories for all log-ratio taxa across
667 sampling time. In particular, we extract the posterior estimates of one such parameter, X, the

668 covariance of additive log-ratio (ALR) taxa, from the fitted models for each host. We convert
669 these covariance matrices over ALR taxato the centered log-ratio (CLR) form (asimple linear
670 transformation of the matrix). We then normalize estimated CLR covariance matrices to Pearson
671 correlation matricesin R using the built-in cov2cor() function.

672
673 Calculating universality scoresfor taxon-taxon pairs
674 We devised a universality score for each pair of taxaintended to capture the strength and

675 consistency of taxon-taxon correlations across hosts. The mgjority direction is negative

676 otherwise. This scoreidentifiesthe sign of the taxon-taxon correlation (positive or negative) that
677 ismost common across the 56 hosts (i.e., occursin >50% of the 56 hosts in the data set). The
678 direction of thissign isthe “majority correlation sign.”

679 For apair of taxa i, let n;"" be the number of hosts with CLR correlation over pair i with
680 the mgority correlation sign for that pair and let n be the total number of hosts. Let R be the
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681  subset of estimated CLR correlations for pair i across hosts with the majority sign. The
682  universality score u; for that taxon-taxon pair isthen given by

683
™
u; = ‘T x median(R)
684
685 This score is the product of the median CLR correlation across hosts and the proportion

686  of hosts with the mgority correlation sign, and is bounded between 0 and 1. Scores near 1

687 indicate strong universality and near-zero scores indicate weak universality. Strong universality
688 can only be achieved by taxon-taxon correlations that are both large in magnitude and highly
689  concordant across hosts.

690
691 Defining a cutoff for significant bacterial correlationsand universality scores
692 We identified correlations stronger than expected under random simulations using

693  permutations of the data set to define empirical null distributions (Fig. S4A). Specifically, we
694  permuted the data by randomly shuffling taxon identity within each sample 10 times for each of
695 the 56 hosts. This procedure maintained relative abundance patterns within a sample but

696  scrambled the covariance patterns of relative abundances. The distributions of ASV-level CLR
697 correlationsin the original and permuted data are shown in Fig. S4A. We identified “significant”
698 correlations as those below FDR < 0.05 (Benjamini-Hochberg), testing against the permuted
699 data

700 We applied an analogous permutation test to derive anull distribution for taxon-taxon
701 universality scores. In asingle iteration of this permutation procedure, rows and columns of the
702  observed taxon-taxon correlation matrix for each host were shuffled, maintaining the distribution
703  over observed correlations at the host level but randomizing the identity of taxon pairs across
704 hosts. This procedure was repeated 100 times and universality scores were calculated from each
705  of these shuffled data sets to give a pseudo-null distribution of universality scores. The observed
706  and null distributions of universality scores at the ASV level are shown in Fig. $4B. We used
707  thisempirical null distribution to identify universality scores significantly greater than expected
708 (FDR <0.05).

709

710 Estimating theratio of population-level to host-level contributions to observed taxon-taxon
711  corréation patterns

712 We used simulations to estimate the degree of shared “signal” between hosts in terms of
713  taxon-taxon correlations. Each host’s “observed correlations’ were defined as the basset

714  estimated maximum a posteriori (MAP) estimates of centered log-ratio ASV correlations for that
715  host. We computed the mean correlations across the population using the function estcov() from
716  the shapes package in R [60] and estimated a host-specific contribution to the observed

717  correlations as the residual difference between per-host observed and these mean correlations.
718 Thatis,

719
observed host correlations = mean population correlations + host residual
720
721 For each host, we simulated a hypothetical set of composite taxon-taxon correlations as a
722  convex combination of mean and host residual:
723
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composite correlations = (1 — a) X mean population correlations + a X host residual
724
725 A cartoon example of this procedureis givenin Fig. S7A. For example, one such
726  simulated set of taxon-taxon correlations might constitute a mixture of 90% host contribution
727  and 10% shared population-level "signal” (¢=0.9). Alternatively, a small host-level contribution
728  might have 0=0.1.
729 For each host, we iterated over increasing proportions of host-level contribution (from
730 0% to 100%), generating Ssmulated composite correlation matrices according to the formula
731  above. We compared these simulated patterns to those observed for the same host, reasoning that
732  simulated correlation matrices that minimize the distance between the observed correlation
733  matrices and the simulated mixtures provide the best description of the underlying true mixture.
734
735 Estimating synchrony
736 Seasonal autoregressive models were fit independently to each CLR-transformed ASV
737  with arima() in R, using covariate matrices which included per-host intercepts and an oscillating
738  periodic trend to mimic wet-dry season oscillation. For each ASV, all hosts' samples were
739 combined into asingle series, yielding per-ASV models of CLR dynamics. This procedureis
740 detailed in the Supplemental Methods. Residuals were extracted from these fitted models as
741  seasonally “de-trended” dataand CLR correlation matrices across ASV pairs were estimated
742  directly from these adjusted data using cov() in R (Fig. S9).
743 “Synchrony” was estimated by sampling aligned microbiome compositional profiles
744 across hosts. Weidentified all samples collected from pairs of hosts within 1 calendar day. For
745  ingtance, a sample collected from host FO1 on 2011-03-14 could pair with a sample from M04 on
746  2011-03-15. For all possible pairs of hosts, we selected one such aligned pair of samples,
747  yielding 1540 joint observations of gut microbiome composition. For each such paired sample,
748  one host was arbitrarily designated as host A and the other as host B. The “synchrony” of agiven
749  taxon was estimated as the correlation of ataxon’s model-inferred log-ratio abundance across the
750  set of samples from hosts labeled A and the set of samples from hosts labeled B. The cartoon in
751  Fig. S10illustrates this sample pairing.

752
753  Enrichment analyses
754 We performed enrichment analyses for bacterial families and family pairsin several

755  settings. In each case we computed the frequency of ASV's belonging to a given family, or of
756  pairsbelonging to afamily pair, on asubset of the data. These were compared to the overall

757  frequencies of ASV's belonging to those families or pairs.

758 To determine the enrichment of families and family pairsin the most universal ASV pairs
759 (Fig. 3E and 3F), we calculated the frequencies of ASV families and pairs in the top 2.5% of
760 pairs by universality scores. Significant enrichment of families or pairs was identified using a
761 one-sided Fisher's Exact Test. Multiple test correction was applied as a Benjamini-Hochberg

762  adjustment to observed p-values.

763 Phylogenetic distances between ASV sequences were calculated with the dist.ml function
764  inthe“phangorn” packagein R [61] using default settings for amino acid substitution rates. In
765 Fig. 4C and 4D, low phylogenetic distance/high median correlation strength pairs were

766 identified asthose with phylogenetic distances of less than 0.2 and median correlation strengths
767  of greater than 0.5. Again, significance of these was evaluated against overall frequencies of the
768 samefamiliesand pairs.

22


https://doi.org/10.1101/2022.08.20.504530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.20.504530; this version posted August 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

769 To determine enrichment of low synchrony/high universality or of high synchrony/high
770  universality families and pairs (shown in Fig. S12A and 12B), we defined the low

771  synchrony/high universality cohort asthose ASV pairs with synchrony estimates of less than 0.3
772  and universality estimates greater than 0.4. We defined the high synchrony/high universality

773  cohort asthose ASV pairs with synchrony greater than 0.3 and universality greater than 0.4. The
774  freguency of these subsets was evaluated against the overall frequencies of the same families and

775  pars.

776

777  Evaluating explanatory factors

778 Variation in taxon-taxon correlation patterns explained by kinship and baseline

779  composition. To evaluate a possible explanatory effect of distances in terms of kinship or
780 basdline gut bacterial composition on distances in terms of taxon-taxon correlation patterns, we
781  applied Mantedl tests. However, because population structure can lead to anticonservative p-
782  values[62], we aso developed a second simulation-based procedure for evaluating the
783  dignificance of baseline composition, using a permutation procedure of our own design. Firstly,
784  baseline composition for each host was estimated by transforming all of a given host’s samples
785  tothe centered log-ratio representation after adding a small fraction (0.5) to remove zeros. The
786  vector of per-taxon averages of these CLR values was used asthat host’s “basdlineg” CLR
787  composition. The Euclidean distances between hosts in terms of these per-host baselines were
788  compared against distances in terms of correlation patterns to give an r* value.
789 In the case of the customized permutation test, this observed result was evaluated against
790 apseudo-null distribution computed in the following way. The identity of each taxon in the
791  baseline composition was shuffled for each host independently. Euclidean distances across these
792  shuffled baselines were computed and an r? value calculated for these distances against the
793  observed distances computed from taxon-taxon correlation patterns. This procedure was repeated
794 1000 times to give a distribution of “random” r? values we used as an empirical null.
795 Variation in taxon-taxon correlation patterns explained by sex and social group. To test
796  whether host sex or socia group membership predicted similarity in terms of correlation
797  patterns, we used an ANOV A-like strategy. We calculated the F-statistic, aratio of between- to
798  within-group variation, on the observed correlation patterns (strictly, the vectorized CLR taxon-
799  taxon correlation matrices; Z in the equation below) and segmented samples into groups defined
800 Dby ether sex or social group. The F-statistic was calculated as
801

between-group variation Kz, -2)3?/K—-1

—— — - —
within-group variation §<=1 Zjél(zij _ Zl) /(N —K)

802

803 and significance was evaluated via an F-distribution parameterized by the appropriate degrees of

804 freedom. Here K represents the number of groups (e.g. two, in the case of sex) and N, the total

805 number of hosts. The matrix Z, consists of the mean taxon-taxon correlations for group i and Z,

806 the population mean correlations.

807
808 Comparison to microbiome time seriesfrom human populations
809 We compared our findings to those generated from two human data sets: the

810 DIABIMMUNE project’sinfant/toddler cohort from Russian Karelia[44] and the adult diet-
811 microbiome association study of Johnson et al. [34]. In both cases, count tables were obtained
812 from the project’s public website and subject identity and sampling schedules were availablein
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the associated metadata. WWe compared each host cohort’ s universality at the family/order/class
level because thistaxonomic level offered the greatest comparative power (10.1% of
families/orders/classes overlap between the cohorts compared to just 3.1% of genera and no
ASVs). The basset model from the “fido” R package [46] was fit to each subject’ s data set using
model settings analogous to those employed on the Amboseli baboon series: first, only taxa with
non-zero countsin at least 20% of all subjects’ series were retained; second, Gaussian process
kernel bandwidth settings were chosen in such away as to encode an expectation of minimum
autocorrelation between samples at adistance in time of 90 days. We extracted centered log-ratio
estimates of taxa at the family level in the same manner as described previously for the Amboseli
data set.
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