

1 Universal gut microbial relationships in the gut microbiome of wild baboons

2
3 **Authors:** Kimberly E. Roche¹, Johannes R. Björk^{2,3,4}, Mauna R. Dasari^{4,5}, Laura Grieneisen^{6,7},
4 David Jansen⁴, Trevor J. Gould⁶, Laurence R. Gesquiere⁸, Luis B. Barreiro^{9,10,11}, Susan C.
5 Alberts^{8,12,13}, Ran Blekhman^{6,14}, Jack A. Gilbert¹⁵, Jenny Tung^{8,12,13,16}, Sayan Mukherjee^{1,17,18,19},
6 Elizabeth A. Archie⁴

7
8 **Affiliations:**

9 ¹ Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA

10 ² University of Groningen and University Medical Center Groningen, Department of
11 Gastroenterology and Hepatology, Groningen, The Netherlands

12 ³ University of Groningen and University Medical Center Groningen, Department of Genetics,
13 Groningen, The Netherlands

14 ⁴ Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA

15 ⁵ Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

16 ⁶ Department of Genetics, Cell Biology, and Development, University of Minnesota,
17 Minneapolis, MN, USA

18 ⁷ Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, BC,
19 Canada

20 ⁸ Department of Biology, Duke University, Durham, NC, USA

21 ⁹ Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL,
22 USA.

23 ¹⁰ Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL,
24 USA.

25 ¹¹ Committee on Immunology, University of Chicago, Chicago, IL, USA.

26 ¹² Department of Evolutionary Anthropology, Duke University, Durham, NC, USA

27 ¹³ Duke University Population Research Institute, Duke University, Durham, NC, USA

28 ¹⁴ Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN,
29 USA

30 ¹⁵ Department of Pediatrics and the Scripps Institution of Oceanography, University of
31 California, San Diego, San Diego, CA, USA

32 ¹⁶ Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary
33 Anthropology, 04103 Leipzig, Germany

34 ¹⁷ Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics &
35 Biostatistics, Duke University, Durham, NC, USA

36 ¹⁸ Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig
37 Germany

38 ¹⁹ Max Plank Institute for Mathematics in the Natural Sciences, Leipzig, Germany

39
40 * Correspondence to: earchie@nd.edu

41 **Abstract**

42 Ecological relationships between bacteria mediate the services that gut microbiomes provide to
43 their hosts. Knowing the overall direction and strength of these relationships within hosts, and
44 their generalizability across hosts, is essential to learn how microbial ecology scales up to affect
45 microbiome assembly, dynamics, and host health. Here we gain insight into these patterns by
46 inferring thousands of correlations in bacterial abundance between pairs of gut microbiome taxa
47 from extensive time series data (5,534 microbiome profiles from 56 wild baboon hosts over a 13-
48 year period). We model these time series using a statistically robust, multinomial logistic-normal
49 modeling framework and test the degree to which bacterial abundance correlations are consistent
50 across hosts (i.e., “universal”) or individualized to each host. We also compare these patterns to
51 two publicly available human data sets. We find that baboon gut microbial relationships are
52 largely universal: correlation patterns within each baboon host reflect a mixture of idiosyncratic
53 and shared patterns, but the shared pattern dominates by almost 2-fold. Surprisingly, the
54 strongest and most consistently correlated bacterial pairs across hosts were overwhelmingly
55 positively correlated and typically belonged to the same family—a 3-fold enrichment compared
56 to pairs drawn from the data set as a whole. The bias towards universal, positive bacterial
57 correlations was also apparent in monthly samples from human infants, and bacterial families
58 that had universal relationships in baboons also tended to be universal in human infants.
59 Together, our results advance our understanding of the relationships that shape gut microbial
60 ecosystems, with implications for microbiome personalization, community assembly and
61 stability, and the feasibility of microbiome interventions to improve host health.

62 **Introduction**

63 Mammalian gut microbiomes are highly diverse, dynamic communities whose members
64 exhibit the full spectrum of ecological relationships, from strong mutualisms like syntrophy and
65 cross-feeding, to competition, parasitism, and predation [1-4]. These relationships mediate a
66 variety of biological processes that have powerful effects on host health and fitness, including
67 the metabolism of complex carbohydrates and toxins, and the synthesis of physiologically
68 important compounds, like short-chain fatty acids, neurotransmitters, and vitamins [1-8]. Despite
69 their importance, major gaps remain in our understanding of microbial relationships in the gut
70 microbiome [1, 9, 10]. We typically do not know if the abundance of one microbe consistently
71 predicts the abundance of other microbes in the same host community, nor do we understand
72 whether these correlative relationships are consistent in strength or direction across hosts ([10-
73 13]).

74 Knowing the overall direction and strength of these correlative relationships is important,
75 not only because they partly reflect the ecological relationships that mediate gut microbial
76 processes, but also because overall correlation patterns can affect gut microbiome assembly,
77 stability, and productivity [14, 15]. For instance, sets of microbes that exhibit strong, positive
78 relationships within hosts sometimes represent networks of cooperating taxa that promote each
79 other’s growth [5, 9, 16]. In turn, these strong, mutualistic interdependencies can create an
80 ecological house of cards where microbes rise and fall together, hampering community assembly
81 and stability [14, 17]. In addition, understanding the degree to which correlative relationships
82 between microbes are the same or different in different hosts can shed light on whether hosts
83 share similar, underlying microbial ecologies [9, 10, 18-20]. Filling this knowledge gap has
84 consequences for the generalizability of microbiome assembly processes, stability, and the

86 ecosystem services that emerge from microbiome dynamics to affect host health [9, 10, 12, 14,
87 17, 21].

88 To date, there are several reasons to think that correlative relationships in the gut
89 microbiome will not be consistent across hosts and will instead be individualized to each host.
90 For instance, several common community and evolutionary processes—such as horizontal gene
91 transfer, genotype by environment interactions, and priority effects—can lead microbiome taxa
92 to fill different ecological roles in different hosts [3, 22-26]. Further, some microbes can adopt
93 context-dependent metabolisms and ecological roles depending on their microbial neighbors or
94 other aspects of the environment—all phenomena that could lead to personalized interspecies
95 relationships in gut microbiota [27-30]. Finally, the common observation that gut microbial
96 community compositions (i.e., the presence and abundance of taxa) are highly individualized is
97 sometimes proposed to arise from host-specific microbial ecologies and relationships [22-26, 31-
98 35].

99 However, to date, the handful of studies that have tested the generalizability of gut
100 microbial relationships across hosts suggest that these relationships are not highly individualized
101 and are instead largely consistent (i.e., “universal”) across hosts (**Fig. 1A**; [10, 18-20, 36]). For
102 instance, Bashan et al. [10] inferred “universal” gut microbial relationships in the human gut
103 microbiome by applying dissimilarity-overlap analysis (DOA) to cross-sectional samples from
104 several human data sets. DOA infers universal microbial relationships by testing whether pairs of
105 hosts who share many of the same microbiome taxa also tend to have similar abundances of
106 those taxa [10, 18-20, 36]. This approach relies on the assumption that, when two communities
107 share many of the same species and have similar abundances of those species, they do so because
108 of a shared, underlying set of between-species abundance relationships [10, 36]. While many
109 studies using this approach find evidence that microbial relationships are “universal” [10, 18-20],
110 DOA’s assumptions have been questioned because some conditions can lead to the spurious
111 detection of universality, including environmental gradients, the strength of stochastic processes,
112 and the presence of many non-interactive species [10, 36, 37].

113 An obvious alternative is to measure microbial correlations directly from microbiome
114 time series collected from several hosts [9, 38]. Unlike DOA, this approach should be able to
115 pinpoint which microbiome taxa exhibit the most and least consistent relationships across hosts.
116 However, measuring microbial correlations from longitudinal, multi-host microbiome time series
117 has its own challenges: time series with adequately dense sampling are rare, and most such data
118 sets exhibit temporal autocorrelation and irregular sampling [38]. Further, the most common, and
119 still most feasible, way to collect microbiome community data—via high-throughput
120 sequencing—generates noisy count data that usually can only be interpreted in terms of relative
121 (not absolute) abundances [39, 40].

122 To overcome these hurdles, here we combine extensive time-series data on the stool-
123 associated microbiota with a multinomial logistic-normal modeling framework (**Fig. 1**; n=5,534
124 samples from 56 baboons; 75 to 181 samples per baboon across 6 to 13.3 years, between 2000
125 and 2013; [41-43]). This framework uses 16S rRNA sequencing count data to learn a smoothly
126 evolving Gaussian process. The baboon hosts were the subject of long-term research on
127 individually recognized animals by the Amboseli Baboon Research Project in Kenya, which has
128 been studying baboon ecology and behavior in the Amboseli ecosystem since 1971 [41]. The
129 baboons range over the same habitat and experience similar diets and sources of microbial
130 colonization, facilitating inference about the consistency of microbial correlations across hosts
131 (**Fig. S1**; [42, 43]). Our modeling approach accounts for variation attributable to seasonal

132 changes in the animals' diets, proportionality in the count data, and irregularity in sampling to
133 produce per-individual, per-taxon trajectories of log-ratio abundances that we used to estimate
134 pairwise microbial correlations within each host.

135 We pursued four main objectives. First, we characterized the overall sign and strength of
136 pairwise correlations in bacterial abundance within each host. Second, we tested the degree to
137 which these correlation patterns are systematically consistent across hosts or individualized by
138 host (**Fig. 1A**). Third, we identified taxonomic, phylogenetic, environmental, and host-related
139 predictors of the direction and universality of bacterial correlations. Finally, we tested the
140 generalizability of our findings by comparing the patterns of universality in our data set to two
141 microbiome time series from humans [34, 44].

142 Our predictions for these analyses were influenced by ideas from community and
143 microbial ecology. First, because strong interdependencies can hamper community assembly and
144 destabilize community dynamics [14, 15, 17], we expected that most microbial correlations
145 would be weak with few strong positive relationships between microbes. Second, consistent with
146 studies that used DOA, we expected that microbial relationships would be more consistent across
147 hosts than individualized (see **Fig. 1A** for a visualization of this prediction). This result would
148 suggest that personalized microbiota—their compositions and dynamics—do not arise from host-
149 specific microbiome ecologies [10, 18-20]. Third, because closely related gut bacteria may have
150 similar functional properties, we expected to observe many positive correlations between those
151 that are close phylogenetic relatives. Alternatively, competitive exclusion may lead closely
152 related taxa to exhibit neutral or negative relationships. Fourth, because the environments
153 experienced by baboons in Amboseli are far more uniform than those experienced by typical
154 human study subjects [42, 43], we expected that the signature of “universality” in baboons would
155 be stronger than that observed in humans. We discuss the implications of these patterns for
156 individual microbiome community assembly and dynamics, and for understanding how
157 microbiome communities are structured across hosts—a key requirement for successful
158 intervention to improve host health [10, 11, 45].

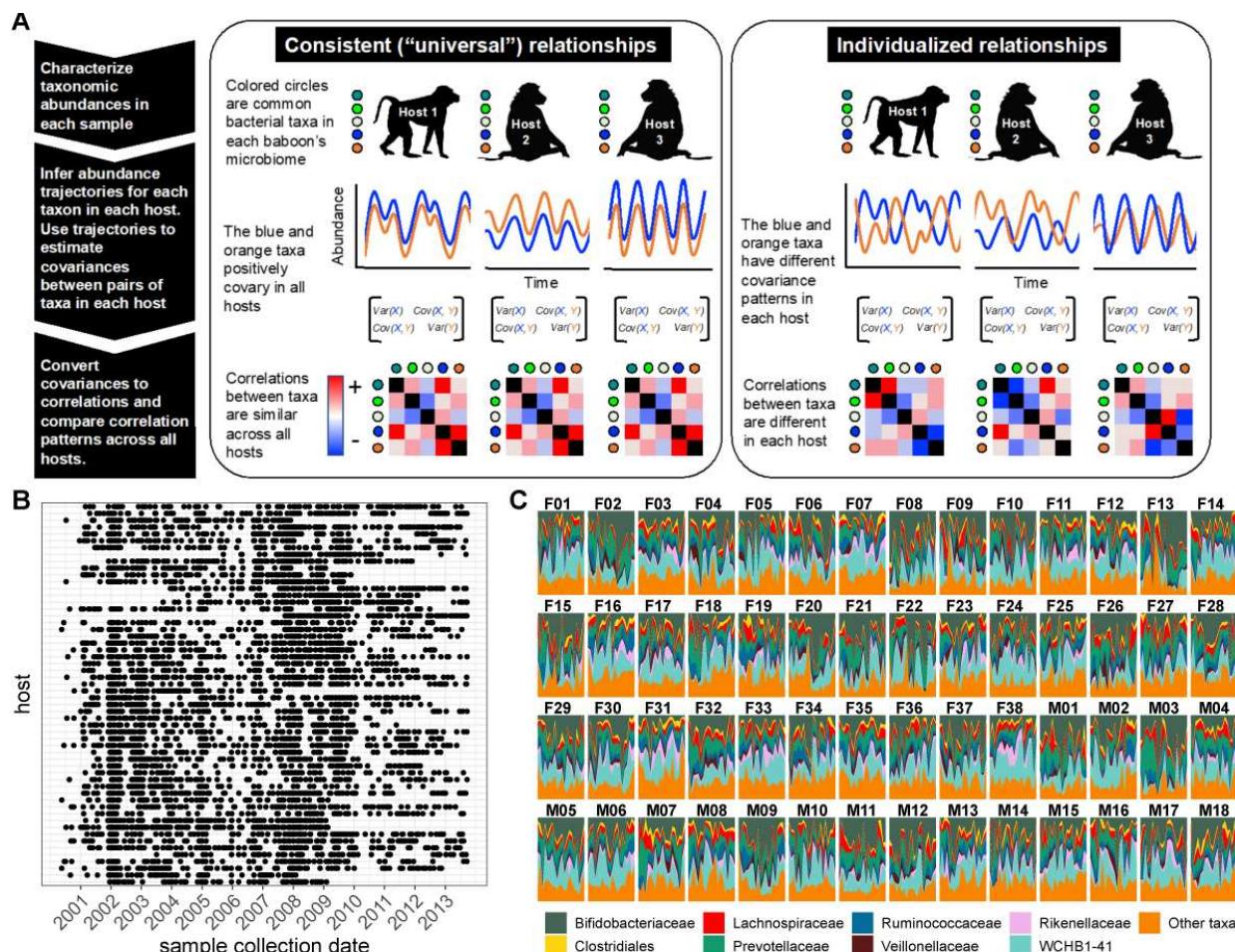


Figure 1. Testing the generalizability of gut microbial correlations across hosts. (A) Schematic illustrating our approach for testing the degree to which gut microbial abundance correlations are consistent (i.e., “universal” [10]) across different baboon hosts. The left-hand set of images show our expectations for consistent correlation patterns; the right-hand images show our expectation for individualized correlation patterns. Colored circles next to each baboon represent prevalent microbial taxa found in at least 20% of samples in each host (and excluding putative duplicate 16S gene copies; see methods). In each host, we inferred centered log-ratio (CLR) abundance trajectories for these taxa using a multinomial-logistic normal modeling approach implemented in the R package ‘fido’ [46]. Cartoons of two such trajectories for the orange and blue taxa are below each baboon. We used these trajectories to infer covariances between each pair of taxa in all baboons (represented by covariance matrices). We then converted these covariances to Pearson’s correlations and compared bacterial correlation patterns across all hosts, shown as heat maps (red cells are positively correlated taxa; blue cells reflect negatively correlated taxa). **(B)** Irregular time series of fecal samples used to infer microbial CLR abundance trajectories in 56 baboon hosts (n=5,534 total samples; 75-181 samples per baboon across 6 to 13.3 years). Each point represents a fecal sample collected from a known individual baboon (y-axis) on a given date (x-axis). Samples from the same baboon were collected a median of 20 days apart (range=0 to 723 days; 25th percentile=7 days, 75th percentile =49 days). **(C)** Relative abundances of the 8 most prevalent gut bacterial orders and

179 families over time (x-axis) for all 56 hosts (samples from females are labeled with an F; male
180 samples with an M). Microbiota were somewhat individualized to each host (**Fig. S2**; [42, 43]).
181
182

183 Results

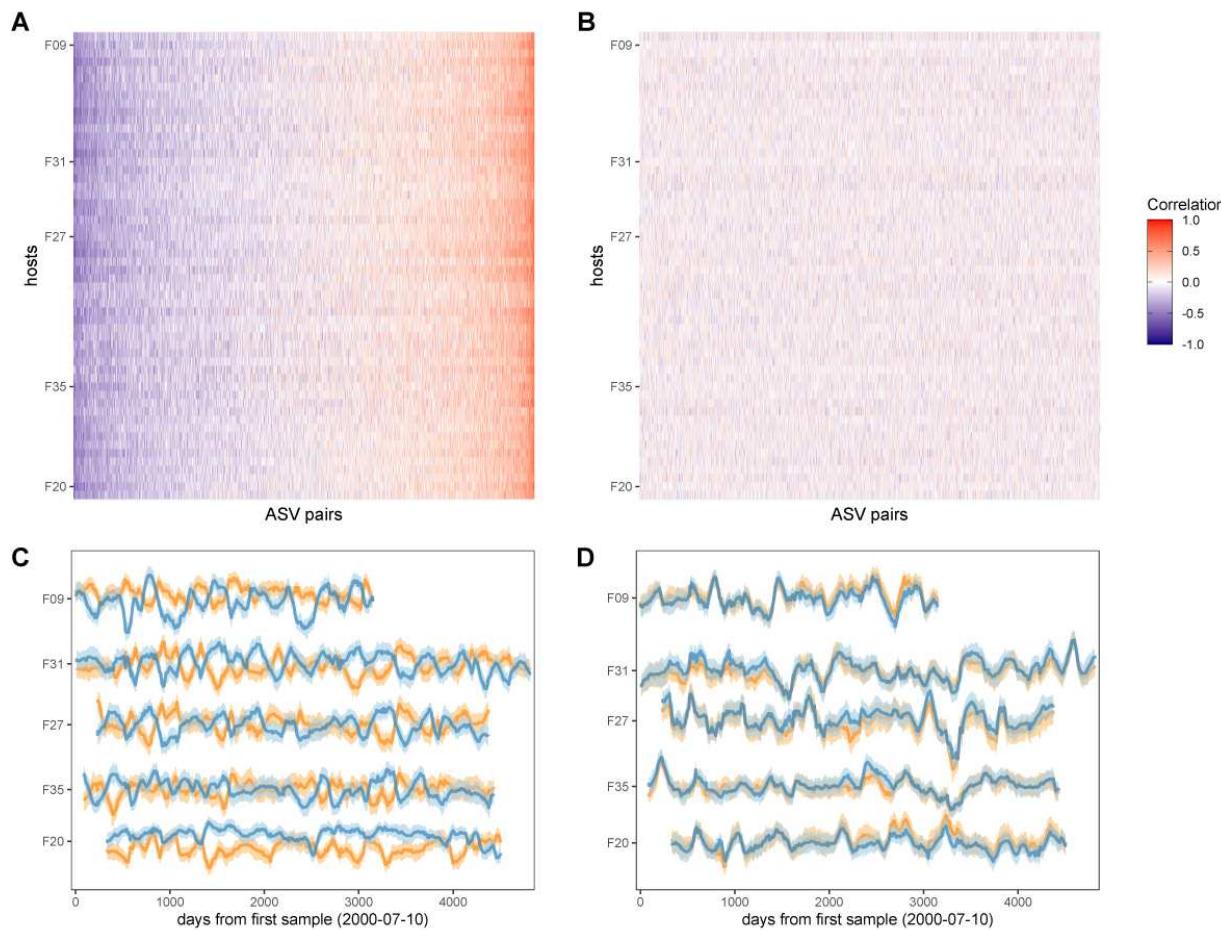
184 Most bacterial correlations within individuals are weak and negative

185 We began by characterizing the overall sign, strength, and significance of pairwise
186 correlations in bacterial abundance within each host. To do so, we applied the approach outlined
187 in **Fig. 1A** to stool-associated time series from 56 baboons (**Fig. 1B**) and calculated Pearson's
188 correlations between all possible pairs of bacterial taxa for three taxonomic partitions of the data.
189 These partitions were: (1) all pairs of CLR-transformed amplicon sequence variants (ASVs)
190 found in >20% of samples in each host and were unlikely to represent a duplicate 16S rRNA
191 gene copy ([47]; see Methods; n=125 ASVs; **Fig. 2A**; **Table S1**); (2) all pairs of bacterial phyla
192 found in >20% of samples in each host (n=12 phyla; **Table S2**; **Fig. S3**); and (3) all pairs of taxa
193 agglomerated to the most granular possible family, order, or class found in >20% of samples in
194 each host (n=37 taxa; **Table S3**; **Fig. S3**). We assessed the false discovery rate for each
195 correlation with a threshold for significance of $FDR \leq 0.05$, by comparing the nominal p-values
196 for each observed correlation to an empirical permutation-based null, obtained by shuffling
197 taxonomic identities within microbiome samples 10 times for each host and re-calculating the
198 Pearson correlation p-values obtained from the permutations (**Fig. 2B**). We also confirmed that
199 the resulting correlation patterns were insensitive to several modeling choices and were not
200 primarily driven by seasonal shifts in microbiome composition (see results below and the
201 Supplement).

202 Consistent with the expectation that most bacterial correlations in the gut microbiome are
203 weak [14, 17], only 17% of ASV-ASV correlations in the heat map in **Fig. 2A** were stronger than
204 expected by chance ($FDR \leq 0.05$; **Fig. S4A**; 20% of phylum-phylum; 21% of family/order/class
205 correlations; **Fig. S3**). The strongest negatively correlated pair in **Fig. 2A** included two ASVs in
206 the family Lachnospiraceae that had a median correlation of -0.562 (+/- 0.118 s.d.) across all
207 baboon hosts (**Fig. 2C**; ASV25 and ASV107; **Tables S1** and **S4**). The strongest positively
208 correlated pair of ASVs included two members of the genus *Prevotella* that had a median
209 correlation of 0.801 (+/- 0.053 s.d.) across all baboons (**Fig. 2D**; ASV2 and ASV3; **Tables S1**
210 and **S4**). While these two ASVs were assigned to the same genus, their V4 16S DNA sequence
211 identity was 97.6%, indicating they are probably not duplicate 16S gene copies in the same taxa
212 [47] (**Table S4**).

213 In support of the idea that positive bacterial interdependencies are rare [14, 15, 17], only
214 8.8% of ASV pairs were significantly positively correlated within hosts over time, and the
215 overall bacterial correlation patterns were slightly skewed towards negative relationships—
216 especially for relationships between bacterial phyla. For instance, at the ASV-level, the median
217 correlation coefficient in **Fig. 2A** was -0.016, and 53% of these correlations were negative
218 (binomial test $p < 0.0001$). For family/order/class-level taxa, 55% of all correlations in were
219 negative (**Figs. S3A** and **S4A**; median family/order/class-level correlation=-0.031; binomial test
220 $p < 0.0001$). Correlations between phyla exhibited the strongest negative skew, with 64% of
221 phyla-phyla correlations having a negative sign (**Figs. S3B** and **S4A**; median phyla-level
222 correlation=-0.092; binomial test $p < 0.0001$). This bias towards negative relationships may
223 reflect the fact that different phyla exhibit substantial differences in metabolism and lifestyle and
224 likely respond to distinct environmental drivers.

225



226
227

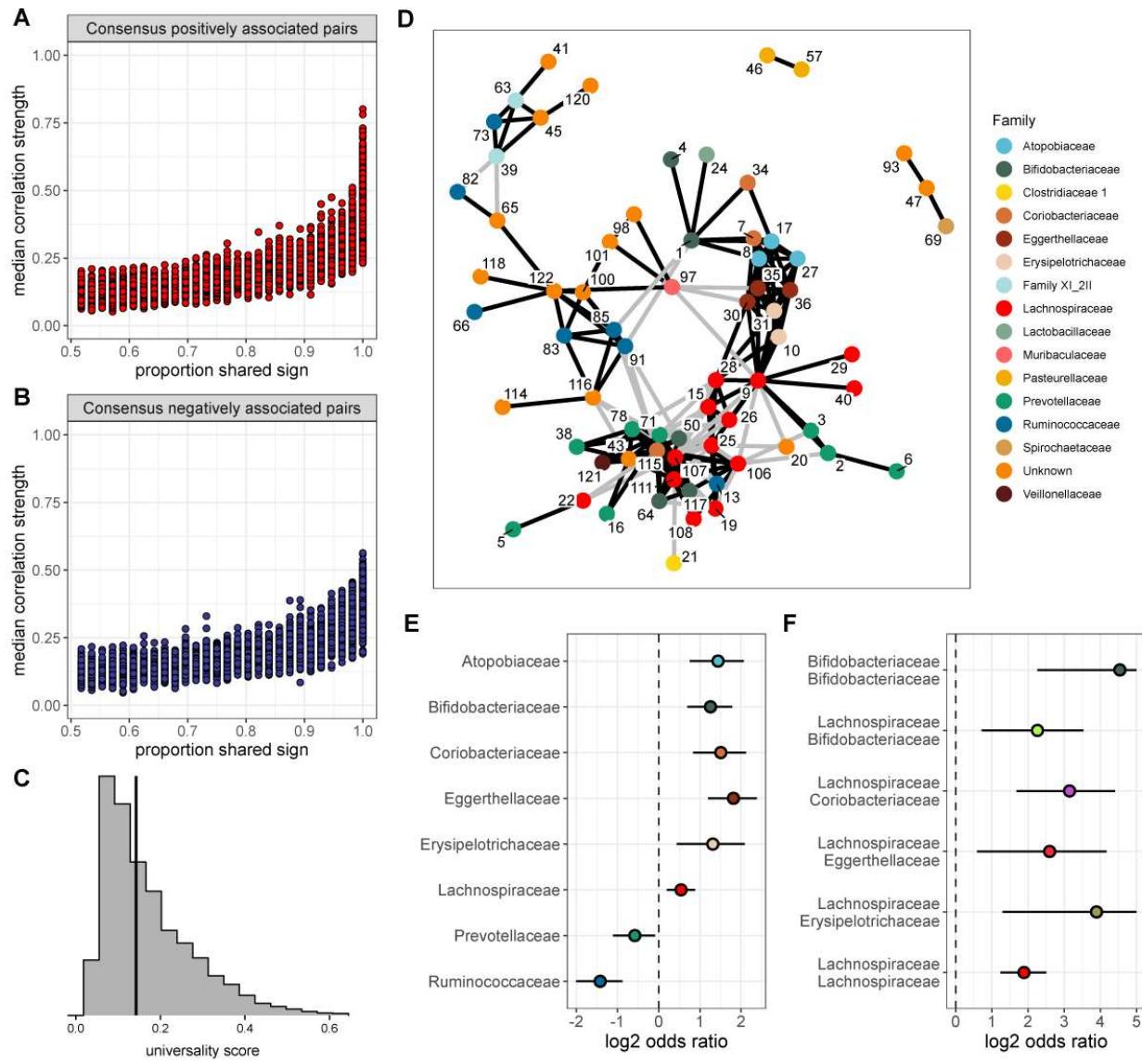
228 **Figure 2. Bacterial correlation patterns across hosts.** The heat map in panel (A) shows
229 Pearson's correlation coefficients of CLR abundances between all pairs of ASVs (x-axis) in each
230 of the 56 baboon hosts (y-axis). Each pair of ASVs is represented on the x-axis, including all
231 pairwise combinations of 125 ASVs resulting in 7,750 ASV-ASV pairs in each host (434,000
232 total correlations across all 56 hosts). Columns are ordered by the mean correlation coefficient
233 between ASV-ASV pairs, from negative (blue) to positive (red). (B) Pairwise correlations
234 generated from random permutations of the data. Taxonomic identities were shuffled within
235 samples and pairwise ASV-ASV correlations were estimated to produce a null model of ASV-
236 ASV correlation patterns within and between hosts. Column order is the same as in Panel A.
237 Panels (C) and (D) show example trajectories of CLR abundances for two pairs of ASVs in the
238 same five hosts. Panel (C) shows a strongly negatively correlated pair (median r across all
239 hosts=-0.562; two ASVs in family Lachnospiraceae: ASV25 (orange) and ASV107 (blue);
240 **Tables S1 and S4**) and panel (D) shows one strongly positively correlated pair (median r across
241 all hosts=0.801; two ASVs in the genus Prevotella 9; ASV2 (orange) and ASV3 (blue); **Tables**
242 **S1 and S4**).

243 **Within-host bacterial correlation patterns are largely consistent across baboons**

244 Next, we tested the degree to which within-host ASV-ASV correlations were consistent
245 across hosts. We began by plotting the absolute value of each ASV pair's median Pearson's
246 correlation coefficient as a function of the consistency of their correlation sign (positive or
247 negative) across the 56 hosts (**Figs. 3A and 3B**). These plots provide two main insights into the
248 consistency of bacterial associations. First, in support of the idea that ASVs do not exhibit vastly
249 different correlative relationships in different hosts, no ASV pairs were both strongly and
250 inconsistently correlated across hosts (**Figs. 3A and 3B; Fig. S5A**). Instead, the ASV pairs that
251 had inconsistent correlation signs across hosts always had weak and often non-significant median
252 absolute correlation coefficients within hosts (**Figs. 3A and 3B**). Second, the pairs with the most
253 consistent sign agreement across hosts also exhibited the largest median absolute correlation
254 coefficients across hosts (**Figs. 3A and 3B**; Spearman's $r=0.844$, $p<0.0001$). Hence, pairs of
255 ASVs that have the strongest relationships, and are therefore likely to play the most important
256 roles in structuring gut microbiome dynamics, also tend to have the most consistent relationships
257 in different hosts. Indeed, for the sets of positively or negatively correlated ASV-pairs that
258 showed universal agreement in the sign of their correlation across all hosts (i.e., where $x=1$ in
259 **Figs. 3A and 3B**), the median correlation coefficient is 0.398, compared to 0.113 for those with
260 no sign consistency ($x=0.5$ in **Figs. 3A and 3B**). Note, that the correlation strength for a given
261 pair of ASVs was only weakly predicted by bacterial abundance. When both members of the pair
262 were relatively abundant, pairs tended to exhibit stronger median correlations ($r=0.012$,
263 $p<0.0001$; **Fig. S6**). However, while this effect is significant, it explained <1% of the variance in
264 median correlation strength.

265 Visual inspection of the patterns in **Figs. 2A, 3A, and 3B** indicate that ASV-ASV
266 correlations are largely consistent across baboons, as opposed to individualized to each baboon.
267 To explicitly quantify the relative strength of shared versus individualized signatures in the heat
268 map in **Fig. 2A**, we calculated the population mean pattern for the ASV-ASV correlation matrix,
269 m . For each host, we then estimated the residual difference, e , between that individual's observed
270 ASV-ASV correlation matrix, y , and the population mean matrix: $y - m$ (see **Fig. S7A** for a
271 cartoon example). We reasoned that the observed correlation matrix for each host can be
272 approximated by a mixture of contributions from the population mean matrix m and the host-
273 specific residual matrix e . To identify the optimal mixture for each host (i.e., the mixture of
274 consistent vs. individualized correlation patterns that best explained the observed data), we
275 titrated the contribution (i.e., weight) of e from 0% to 100% (and correspondingly, the
276 contribution of m from 100% to 0%) and identified the value that minimized the Frobenius
277 distance between the simulated combination and the observed correlation matrix, y .

278 In support of prior observations of "universality" [10, 18-20], we found that, across hosts,
279 the optimal mixture involved contributions from the shared correlation structure (i.e., m) of
280 between 50% and 70% (median 65%) and a host-level contribution (i.e., from e) of between 50%
281 and 30% (median 35%). Hence, population-level signatures contributed almost twice the weight
282 as host-level signatures (a median population:host ratio of 1.86:1; **Fig. S7B**). As a result, ASV-
283 level relationships tend to be more consistent across hosts than host-specific.



284
285

286 **Figure 3. None of the ASV pairs were strongly and inconsistently correlated across hosts,**
 287 **and the strongest and most consistently correlated ASVs are typically positively correlated.**
 288 Plots in (A) and (B) show the median correlation strength for each ASV-ASV pair across all 56
 289 hosts as a function of the consistency in direction of that pair's correlation across hosts,
 290 measured as the proportion of hosts that shared the majority correlation sign (positive or
 291 negative; ASV pairs that were positively correlated in half of the 56 hosts have a consistency of
 292 0.5; ASV pairs that were positively [or negatively] correlated in all hosts have a consistency of
 293 1.0). Panel (A) presents this relationship for consensus positively correlated features and panel
 294 (B) shows consensus negatively correlated features. The Spearman correlation between median
 295 association strength and the proportion of shared sign for all correlated features is 0.844 ($p <$
 296 0.0001). Multiplying the two axes in either panel (A) or (B) creates a “universality score”, whose
 297 distribution is shown in panel (C). This score reflects the strength and consistency of pairwise
 298 microbial correlations across hosts and ranges from 0 to 1, where a score of 1 indicates ASV-
 299 ASV pairs with perfect correlations of the same sign in all hosts. A vertical line indicates the

300 minimum significant universality score. **(D)** Correlation networks for the top 2.5% most strongly
301 and consistently correlated ASV pairs across hosts (i.e., the top 2.5% highest universality scores;
302 pairs with rank 1-194 in **Table S4**). Network edges are colored by the consensus sign of the
303 correlation between that pair (black for pairs where most hosts had a positive correlation; gray
304 for pairs where most hosts had a negative correlation). Node labels indicate the ASV identity in
305 **Table S1** and colors represent bacterial families. **(E)** Significantly enriched bacterial families in
306 the network in panel D (Fisher's Exact Test $p < 0.01$ all, FDR ≤ 0.05 ; see **Table S5** enrichment
307 statistics for all families). **(F)** Significantly enriched same-family pairings in the network in panel
308 D (**Table S5**). Note that for visualization, the estimated log₂ odds ratio intervals have been
309 truncated at 5; full estimates are given in **Table S5**.
310
311

312 **The most consistent ASV-level correlations are positive and between phylogenetically 313 related taxa**

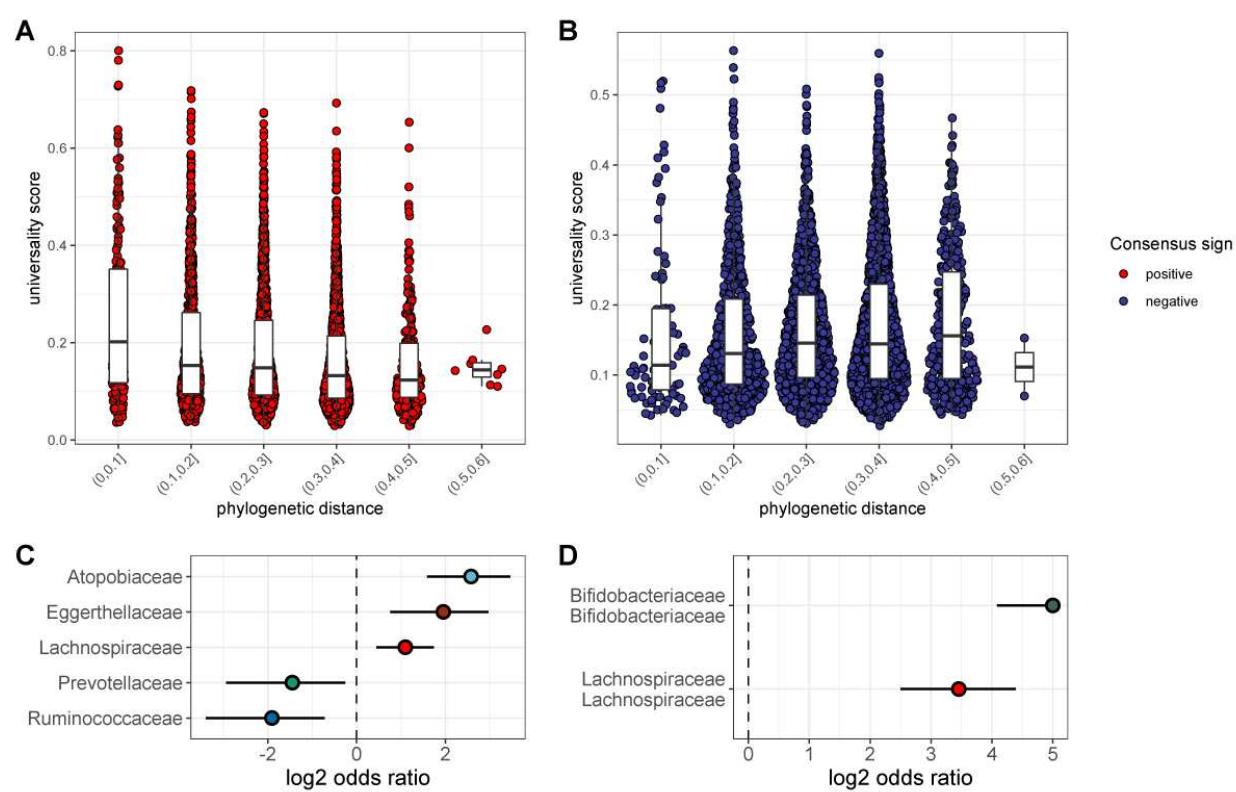
314 One advantage of our approach, compared to dissimilarity overlap analyses [10], is we
315 can identify the bacterial pairs that exhibit the most consistent relationships across hosts. Hence,
316 we next conducted several analyses to understand why some pairs of ASVs exhibit more
317 consistent correlation patterns across hosts than others. To do so, we created a “universality”
318 score that could be calculated for each ASV pair. The score multiplies the pair’s median
319 correlation coefficient across hosts (y-axis of **Fig. 3A, 3B**) with its correlation consistency across
320 hosts (i.e., proportion of shared sign; x-axis of **Fig. 3A, 3B**). The resulting scores range from 0 to
321 1, where a score of 1 equates to perfect “universality” (i.e., all hosts have a correlation
322 coefficient of 1 or all hosts have a correlation coefficient of -1). Applying this score to all pairs
323 of ASVs reveals a right-skewed distribution, reflecting the fact that most bacterial correlations
324 are weak, with inconsistent sign directions across hosts (**Fig. 3C; Fig. S4B**). However, 49% of
325 these scores were higher than expected by chance (permutation test; FDR ≤ 0.05 ; **Fig. 3C; Fig.**
326 **S4B**), reflecting a signal of universality in our data.

327 Interestingly, the ASV-pairs with the highest universality scores almost always exhibited
328 net positive correlations across hosts, as opposed to net negative relationships, suggesting that
329 the most universal relationships occur between pairs of ASVs that respond similarly to shared
330 drivers or facilitate each other’s growth. For example, among the ASV pairs in the top 1% of
331 universality scores (n=78 pairs), 96.2% exhibited net positive correlations across all hosts, while
332 only 5.6% (3 of 78 pairs) exhibited net negative correlations (**Table S4**). In the top 2.5% most
333 universal ASV pairs (n=194), 78.4% had net positive correlations across all hosts (**Table S4**).
334

335 To visualize these highly consistent positive correlations, we plotted bacterial co-
336 abundance networks connecting the top 2.5% most universal ASV pairs (**Fig. 3C**). A handful of
337 ASVs were highly connected within this network. The most connected ASV was ASV107
338 (family Lachnospiraceae; **Table S1; Table S4**), which was connected to 20 other ASVs. Ten
339 other ASVs were connected to more than 10 other ASVs, including six other members of
340 Lachnospiraceae (ASV9, ASV25, ASV30, ASV106, ASV107, and ASV111), two members of
341 Coriobacteriaceae (ASV115 in the family Coriobacteriaceae and ASV30 in the genus *Slackia*), one
342 member of Bifidobacteriaceae (ASV50), and one member of Prevotellaceae (ASV71). The ASVs
343 involved in these top 2.5% pairs were enriched for the families Atopobiaceae,
344 Bifidobacteriaceae, Coriobacteriaceae, Eggerthellaceae, Erysipelotrichaceae, and
Lachnospiraceae (**Fig. 3E; Table S5**; all Fisher’s Exact Test p -values < 0.01 ; FDR ≤ 0.05).

345 The network in **Fig. 3D** revealed clusters of positive connections, often between ASVs
 346 assigned to the same family (**Fig. 3F**). In fact, same-family pairs were enriched by >3-fold in the
 347 2.5% most universal taxon pairs (52 pairs observed vs. 19 expected, $p < 0.0001$). The cluster of
 348 interconnected red nodes in **Fig. 3D** represents members of Lachnospiraceae, and
 349 Lachnospiraceae-Lachnospiraceae pairings were 3.7 times more common in this network than
 350 overall (30 pairs observed vs. 9 pairs expected **Fig. 3F**). Bifidobacteriaceae also tended to exhibit
 351 within-family ASV pairings (**Fig. 3F**).

352 The observation that the most consistent correlations often occur among ASVs in the
 353 same family raises another question: does the phylogenetic distance between a pair predict the
 354 nature of their relationship? In support of the idea that closely related ASVs respond similarly to
 355 the environment or facilitate each other's growth, we found a significant relationship between the
 356 universality score of a given pair of ASVs and their phylogenetic distance (Pearson's r for
 357 positively correlated pairs = -0.213; $p < 0.0001$; **Fig. 4A**). In contrast, negatively correlated ASV
 358 pairs exhibited a weak positive relationship between phylogenetic distance and universality such
 359 that closely related taxa tended to be less universal than more distantly related taxa (Pearson's
 360 $r=0.049$; $p=0.004$; **Fig. 4B**). In other words, the strongest and most consistently *negatively*
 361 correlated taxa tend to be only distantly related. Positively correlated, closely related pairs were
 362 often members of the families Atopobiaceae, Eggerthellaceae, and Lachnospiraceae, especially
 363 pairs where both members belonged to the family Lachnospiraceae (**Fig. 4C-D; Table S6**).
 364



365
 366 **Figure 4. The most consistent ASV-level correlations are positive and often between close**
 367 **evolutionary relatives.** Pairwise universality scores are plotted as a function of phylogenetic
 368 distance between the ASV-ASV pair for consensus positively correlated pairs in red (**A**) and
 369 negatively correlated pairs in blue (**B**). Phylogenetic distance (x-axis) is binned into 0.1
 370 increments; each point represents a given ASV pair, and box plots represent the median and

371 interquartile ranges for a given interval of phylogenetic distance. Phylogenetic distance is
372 negatively correlated with universality score in positive pairs (Pearson's correlation for
373 positively associated ASV pairs=-0.213, p-value < 0.0001), and positively correlated with
374 universality score in negatively associated pairs (Pearson's correlation for negatively associated
375 ASV pairs=0.049, p = 0.004). Panel (C) shows families for the ASV pairs enriched in the closest
376 related (distance < 0.2) and highly universal (score > 0.5) pairs. Panel (D) shows enriched
377 family-family pairings for the same subset of closely related and highly universal ASV pairs in
378 panel C. Note that for visualization, the estimated log2 odds ratio intervals have been truncated
379 at 5, which excludes 5 pairs with high uncertainty in the odds ratio; full estimates are given in
380 **Table S6**.

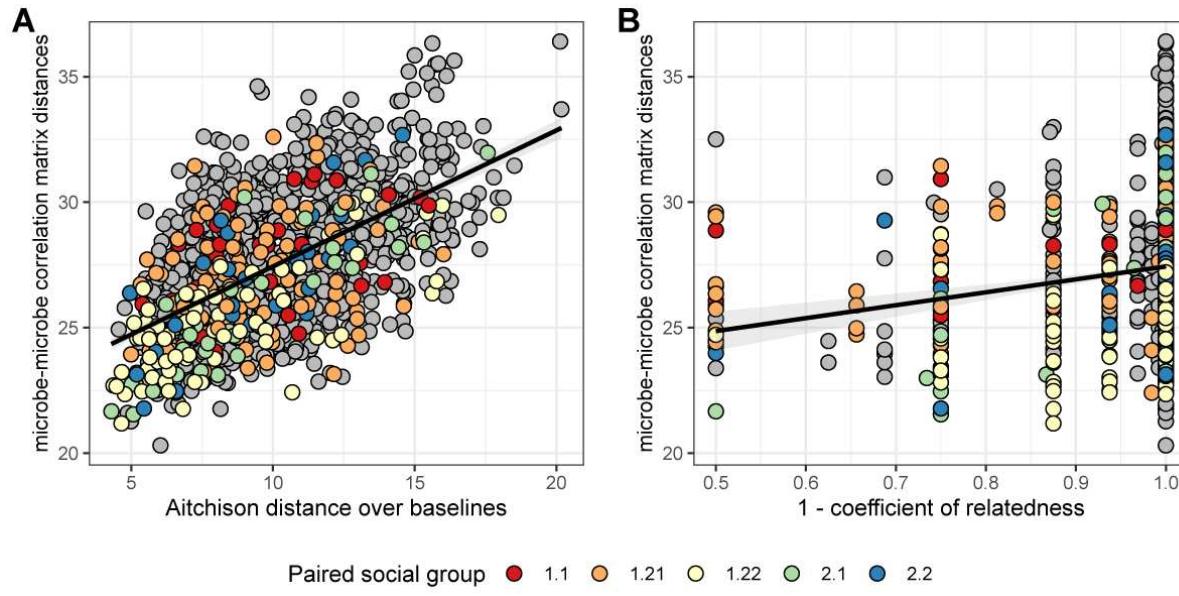
381

382

383 **Genetic relatives, and hosts with similar microbiome compositions, have more similar** 384 **bacterial correlation patterns**

385 We next asked whether host-level variables, including sex, social group membership,
386 genetic relationships, and baseline gut microbiome composition predict host differences in
387 patterns of bacterial correlation. Consistent with prior research [10], the strongest predictor of
388 distance in bacterial correlation patterns was distance in terms of baseline microbiome
389 composition. Indeed, a Mantel test correlating compositional distance of average microbial
390 profiles (as Aitchison distances between the per-host mean of centered log-ratio-transformed
391 samples) with distance in microbial correlation patterns between hosts (via Frobenius distance)
392 revealed that 34% of the variation in correlation patterns was explained by baseline microbiome
393 community composition (Mantel: $r^2=0.343$; p=0.001; **Fig. 5A; Table S7**).

394 Consistent with prior research in our population, which finds widespread heritability of
395 the abundance of individual gut microbiome taxa [43], we also found a weak but significant
396 relationship between host genetic distance and the distance in microbial correlation patterns
397 between hosts. Hosts who were more distantly related based on a multigenerational pedigree
398 have slightly less similar ASV-level correlation matrices, as measured by Frobenius distance
399 (**Fig. 5B; Table S7**; $r^2=0.025$; Mantel p-value=0.001). We found no evidence that members of
400 the same social group or sex exhibit especially similar microbial correlation patterns (social
401 group: F=1.994; p=0.106; sex: F=1.784; p=0.187; **Table S7**).



402
403

404 **Figure 5. Baboons with more similar bacterial correlation patterns are more likely to have**
405 **more similar baseline microbiome compositions and are more likely to be genetic relatives.**
406 In panel (A) each point is a pair of hosts; the y-axis shows the similarity of these hosts' bacterial
407 correlation patterns (via Frobenius distance) as a function of their microbiome compositional
408 similarity (via Aitchison distance; Mantel: $r^2=0.343$; $p=0.001$). Colors show samples from pairs
409 of baboons living in the same social group and grey dots are pairs of animals living in different
410 social groups; there is no detectable effect of social group on correlation pattern similarity. Panel
411 (B) shows the same Frobenius distances as a function of host genetic dissimilarity (1 – the
412 coefficient of genetic relatedness between hosts; $R^2=0.025$; p -value Mantel test 0.001). Colors
413 reflect pairs of hosts living in the same social group, as in panel A.

414
415

416 Universality in Amboseli is not solely explained by seasonality or synchrony

417 Without experiments, we cannot disentangle whether our observed bacterial correlations
418 are due to ecological interactions between bacterial species (e.g., mutualisms, direct or indirect
419 competition etc.) or to shared responses to environmental gradients. While our modeling
420 approach accounts for seasonal changes in the first three principal components of the baboons'
421 diets, to identify other potential effects of season we re-estimated the ASV-ASV correlation
422 matrix after removing an oscillating seasonal trend from the observed log-ratio abundance for
423 each ASV (Fig. S8). Removing this trend had little effect on the ASV-ASV correlation matrix;
424 the variance explained by the seasonal oscillation is small for all ASVs (median 1.1%,
425 minimum=0%, maximum=6%) and the between-ASV correlation estimates were almost
426 identical to those derived from our original model (Pearson's $r=0.979$, $p<0.0001$; Fig. S8C). We
427 also tested whether pairs of ASVs with especially consistent between-host correlation patterns
428 tend to show large seasonal changes in CLR abundance. To do so, we focused on 13 families that
429 exhibit significant seasonal changes in CLR abundance, based on a previous analysis of the same
430 data set [42]. While ASV pairs in which one member belongs to one of these significantly
431 "seasonal" families are slightly more universal, this effect is small (difference of 0.026,
432 $p<0.0001$ vs. pairs where 0 or 1 partner were "seasonal"; Fig. S9).

433 Because the high level of universality we observed was not well explained by season, we
434 also tested whether universality is explained by synchronized dynamics. We reasoned that if one
435 member of an ASV pair shows highly synchronized dynamics across different hosts, and the
436 other member is also strongly synchronized across hosts, then universality could be an inevitable
437 outcome of each member of the pair's strong synchrony. We quantified synchrony as the degree
438 to which the observed dynamics of a single, focal ASV are consistent across hosts, such that high
439 synchrony (near 1) implies that the timing and direction of shifts in log-ratio ASV abundance are
440 identical across hosts in the population (see Methods; **Fig. S10**). Estimates of synchrony ranged
441 from 0.019 to 0.477 (median=0.196). Interestingly, ASVs in the 13 “seasonal” families are not
442 more likely to have high synchrony than other families (ANOVA, $p=0.358$; **Fig. S11**). However,
443 the average synchrony of an ASV-ASV pair did predict that pair's universality score ($r=0.264$,
444 $p<0.0001$): ASV pairs that are more synchronous on average are also more likely to show
445 consistent correlations across hosts. These high synchrony, high universality pairs are highly
446 enriched for Bifidobacteriaceae-Bifidobacteriaceae and Lachnospiraceae-Lachnospiraceae
447 family pairs (**Fig. S12**).
448

449 **Baboon microbiomes are not substantially more “universal” than human microbiomes**

450 Finally, to investigate the generalizability and applicability of our observations in
451 baboons, we turned to two publicly available gut microbial time-series data sets: daily samples
452 from 34 adults over a 17-day span (483 total samples; hereafter “Johnson et al.” [34]), and the
453 DIABIMMUNE cohort that consists of 285 samples, collected monthly over 3 years, from 15
454 infants and toddlers living in Russian Karelia ([44]; at the time of writing, these cohorts were the
455 only publicly available data sets we could find that included large numbers of repeated samples
456 from the same subjects). Because baboons in Amboseli experience less heterogeneity in their
457 environments and diets than humans [42, 43], we expected they would exhibit greater
458 consistency in microbial correlations than either human cohort. Note that we compared each host
459 cohort's universality at the family/order/class level because this taxonomic level offered the
460 greatest comparative power (10.1% of families/orders/classes overlap between the cohorts
461 compared to just 3.1% of genera and no ASVs).

462 Contrary to our expectations, we find comparable evidence of universality in baboons
463 and the DIABIMMUNE infant/toddler cohort, but weak universality in Johnson et al. (**Figs. 6A-**
464 **6D**). Bacterial families in the DIABIMMUNE cohort yielded universality scores slightly higher
465 than those observed in Amboseli (25th percentile=0.132, median=0.206, 75th percentile=0.316
466 for DIABIMMUNE; 25th percentile=0.088, median=0.150, 75th percentile=0.234 for
467 Amboseli), driven by relationships between families that were stronger on average than those
468 estimated for baboons (median DIABIMMUNE family-family correlation strength=0.270;
469 median Amboseli family-family correlation strength=0.181). The high level of consistency
470 between both infants/toddlers and baboons in one wild population is surprising and may point to
471 the similar sampling intervals for these cohorts. Both cohorts were sampled approximately
472 monthly, while Johnson et al.'s subjects were sampled daily [17, 48]. Median correlation
473 strengths and universality scores for the Johnson et al. [34] cohort were substantially lower
474 (median correlation=0.099; 25th percentile universality=0.050, median=0.076, 75th
475 percentile=0.111) than the DIABIMMUNE cohort or the baboons.

476 Despite considerable differences in the hosts, time scales, and designs of these studies, all
477 three data sets exhibited a positive correlation between correlation strength and sign consistency
478 for family pairs (**Fig. 6C**). This correlation was strongest in the Amboseli baboons (Spearman's

479 r=0.844; p<0.0001); weaker in the DIABIMMUNE cohort (r=0.686; p<0.0001) and weakest in
480 Johnson et al. [34] (r=0.644; p<0.0001). Further, the observation that the most universal family-
481 family associations skew positive in baboons was replicated in the infant data set, but not in
482 Johnson et al. [34]. All of the top 1% and top 2.5% most universal family pairs (6 of 6 and 16 of
483 16 pairs, respectively) are positively associated in the DIABIMMUNE cohort, compared to 86%
484 and 71% of these pairs in the Amboseli baboons.

485 Finally, we examined the relationship between universality scores for family pairs that
486 overlapped between Amboseli and DIABIMMUNE (n=45 pairs), and between Amboseli and
487 Johnson et al. [34] (**Fig. 6D**; n=21 pairs; only 10 family pairs overlapped between all three data
488 sets). For these overlapping pairs, scores in the Amboseli data predicted scores for the same
489 family-family pair in the DIABIMMUNE data set (r=0.449, p=0.023). The association between
490 scores in the Amboseli data and the Johnson et al. data was negative, but not statistically
491 significant (r=-0.222, p=0.071).

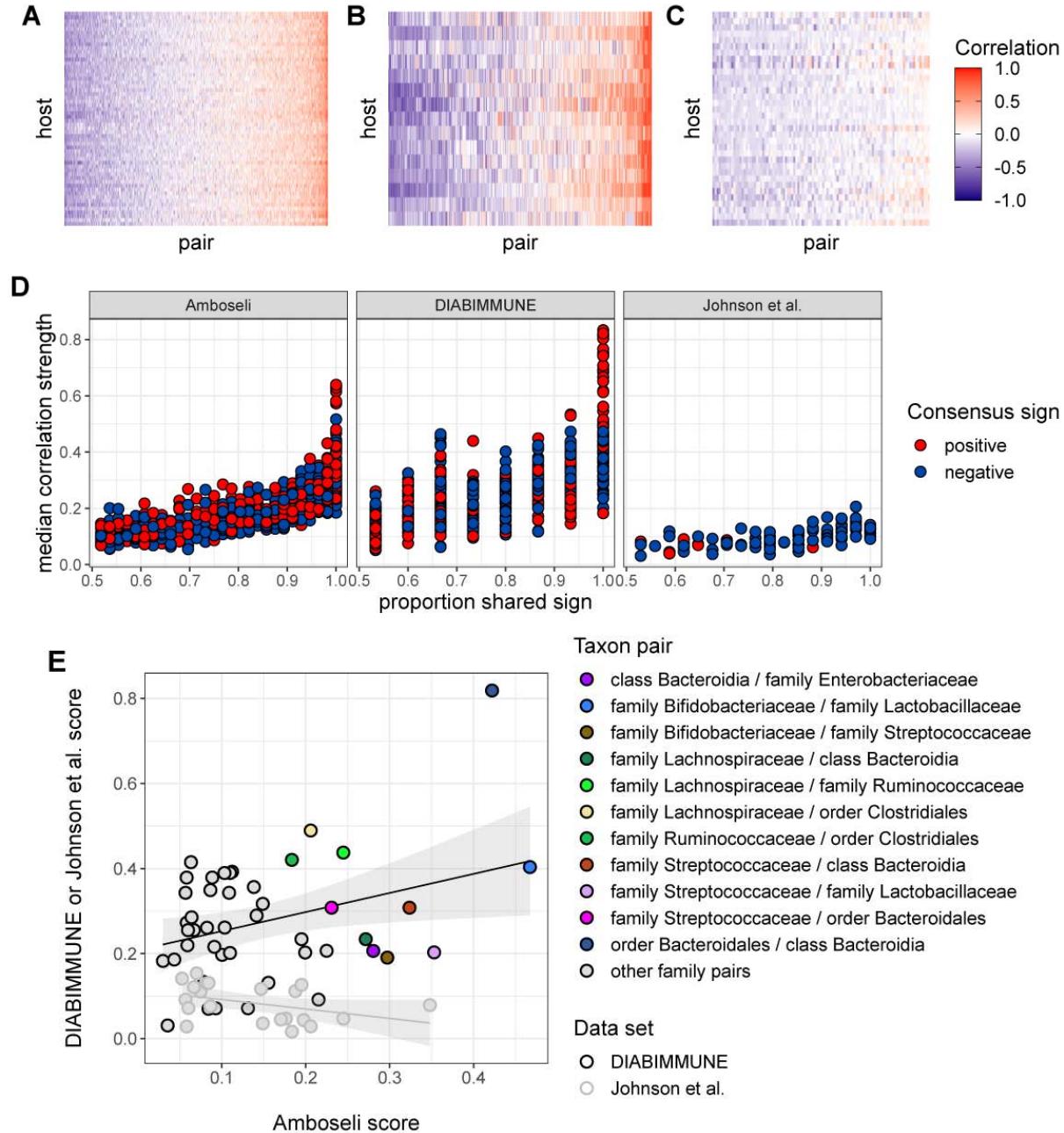


Figure 6. Patterns of universality in baboons are recapitulated in the DIABIMMUNE study. Following **Fig. 2A**, Panels (A), (B), and (C) show the Pearson's correlation coefficients of CLR abundances between all pairs of families (x-axis) in two time series data sets from human subjects: (A) the Amboseli baboons, (B) the DIABIMMUNE cohort, consisting of 15 infants/toddlers sampled monthly over 3 years in Russian Karelia [44], and (C) the diet study of Johnson et al. [34], including 34 adults sampled daily over 17 days. Following **Figs. 3A and B**, panel (D) shows the median correlation strength of each family pair's correlation coefficient across hosts as a function of the consistency in direction of that pair's correlation across hosts (i.e., the proportion of hosts that shared the majority correlation sign, positive or negative). Median correlation strength is low overall in Johnson et al. (median=0.099), whereas the

504 Amboseli baboon and DIABIMMUNE infant/toddler cohorts show similar relationships between
505 median correlation strength and the proportion shared correlation sign across hosts (Spearman's r
506 in Amboseli=0.844; Spearman's r in DIABIMMUNE=0.686). (E) Universality scores for
507 overlapping family pairs from the infant/toddler subjects of the DIABIMMUNE study and
508 baboons in the Amboseli study are significantly correlated ($r=0.449$, $p=0.0226$). Panel D shows
509 universality scores for overlapping gut bacterial family pairs in the Amboseli baboon and
510 DIABIMMUNE infant/toddler data sets (black outlines), as well as the Amboseli and Johnson et
511 al. data sets (gray outlines) on opposing axes. Color represents the taxonomic identities of the
512 family pairs.

513

514

515 Discussion

516 Do different hosts have different microbiome “ecologies”? Answering this question is
517 essential for predicting gut microbiome community assembly and dynamics, and for
518 understanding the degree to which the species interactions that govern these processes are shared
519 across hosts. Here, we overcome the constraints of previous cross-sectional analyses by
520 measuring bacterial correlations directly from longitudinal, multi-host microbiome time series.
521 Our results provide independent confirmation for prior studies that tested for universal gut
522 microbial relationships via dissimilarity overlap analyses (DOA; [10, 18-20, 36]). We confirm
523 that bacterial correlation patterns are largely shared across hosts in the same population, as
524 opposed to idiosyncratic to individual hosts, and that hosts with the most similar bacterial
525 correlation patterns are those with the most similar baseline microbiome compositions—a core
526 assumption of DOA. Because prior analyses of these microbiome time series find that each
527 baboon exhibits a highly personalized microbiome composition and dynamics [42], our findings
528 suggest that such compositional personalization, which is also common in humans [22-26, 31-
529 35], cannot be easily explained by personalized microbiome ecologies. Further, in terms of
530 microbiome therapeutics, our results suggest that widely applicable microbiome interventions
531 may be more attainable than personalized microbiome compositions would suggest.

532 By measuring bacterial correlations in multiple hosts, we were also able, for the first
533 time, to pinpoint which pairs of bacterial taxa exhibit the most consistent relationships across
534 hosts. Surprisingly, we found that the most universal bacterial pairs are almost always positively
535 (as opposed to negatively) correlated. Positive bacterial interactions have been the subject of
536 recent controversy [9, 15, 49]. Ecological theory predicts that strong positive interactions should
537 be rare in natural communities because species interdependencies can hamper community
538 assembly and stability [14, 17]. This theory is supported by experiments that directly measure the
539 effects of one bacterial species on another's growth [50-53] (but see [49]). Our results suggest
540 that positive bacterial correlations are indeed uncommon in intact, unmanipulated microbiomes:
541 significant positive relationships made up just 8.8% of all of the pairwise correlations we
542 observed. However, when they occur, they often contain taxa that belong to the same bacterial
543 families or are otherwise phylogenetically close, suggesting they may be members of the same
544 ecological guild and respond similarly to shared resources and other environmental drivers. This
545 pattern may partly explain the abundance of positively associated Lachnospiraceae pairs in our
546 data, a family in which positive, within-family interactions are known to contribute to
547 hydrolyzing starch and other complex carbohydrates, and ultimately the regulation of short chain
548 fatty acids (SCFAs) [54-56].

549 These observations—that bacterial correlation patterns are largely consistent across hosts,
550 and that the most consistent correlations are typically positive—were also apparent in one human
551 data set, despite differences in study design, host age, and time scale. Specifically, both the
552 Amboseli baboons and the DIABIMMUNE infant/toddler cohort from Russia [44] exhibit
553 comparable levels of universality. This outcome was surprising, given that baboons are expected
554 to experience less heterogeneity in their environments and diets than human children from birth
555 to age three years—even if those infants are from the same population (Russian Karelia). We
556 also found that the most universal bacterial families in baboons tended to be highly universal in
557 human infants/toddlers. Hence, some bacterial families may exhibit consistent microbial
558 relationships within hosts, across host populations, and across host species. Finally, a recent,
559 independent study also identified consistent bacterial correlation patterns across four different
560 populations of human hosts [9]. While this study lacked resolution at the level of individual
561 hosts, it did identify a highly conserved network of positively associated and closely related
562 microbes similar to those we identify in **Fig. 3**. The authors speculate that these conserved
563 associations may indicate strong partner fidelity or obligate partnerships.

564 We did, however, fail to detect universality in a second human data set reported in
565 Johnson et al. [34], in which subjects were sampled daily, rather than weekly or monthly. The
566 lack of universality in Johnson et al. [34] may be due to this difference in sampling time scale,
567 especially if daily abundances and correlations are noisier than covariances modeled over the
568 longer time scales in our study. In support, many fewer of the microbial correlations were
569 stronger than random chance in Johnson et al. as compared to the baboons or children in the
570 DIABIMMUNE cohort. The subjects in Johnson et al. [34] also consumed substantially different
571 diets from each other, perhaps more so than the children in the DIABIMMUNE cohort, and this
572 inter-host difference in diet may reduce the universality of microbial correlations.

573 In terms of understanding microbiome ecology, an essential caveat to our findings is that
574 the correlation patterns we observed could reflect either direct or indirect relationships, or
575 uncontrolled environmental gradients, and they cannot be mapped directly to standard categories
576 of pairwise ecological interactions, such as mutualism, commensalism, amensalism, exploitation,
577 or competition. Experimental approaches that directly measure the effects of one species on
578 another's growth *in vitro* are better suited to characterizing these relationships [49-53]. However,
579 even then, caution is required because a microbe's community and environmental context can
580 have important consequences for its metabolism, functional capacities, and relationships with
581 other microbes. We surmise that most of the correlation patterns we observed are not attributable
582 to environmental gradients because our signature of universality persisted, even when we
583 accounted for diet, oscillating seasonal drivers, and microbial synchrony between hosts. Hence,
584 some of correlations we observed may derive from microbial interactions themselves, rather than
585 shared environmental drivers creating shared dynamics.

586 Our finding that correlations between gut microbial taxa are largely consistent across
587 hosts is important, considering that many studies find highly personalized gut microbial
588 compositions and single-taxon dynamics [27-29]. Personalized compositions and dynamics in
589 the gut microbiome are commonly attributed to horizontal gene transfer and functional
590 redundancy, which may lead some bacteria to perform different functions and exhibit different
591 environmental responses in different hosts. Our results suggest these processes do not
592 substantially alter pairwise microbial associations in the gut, at least for highly prevalent taxa at
593 the level of ASVs and above, and on the time scales in our study (on the order of weeks and
594 months). Because ASVs encompass multiple species and strains, reflecting the functional

595 diversity of these taxa, their dynamics may be somewhat buffered against idiosyncrasies driven
596 by horizontal gene transfer and functional redundancy, which affect single strains more strongly
597 than whole species or genera. If so, personalized gut microbial compositions may emerge instead
598 from personalized assembly processes [57, 58], the fact that most microbial relationships are
599 weak, and the effects of rare, host-specific taxa (which were necessarily excluded from our
600 analyses). A logical next step would be to confirm the stability of the microbial correlations we
601 observed using culture-based approaches, which will help reveal the stability of these
602 correlations in vitro and whether they can be attributed to direct effects of one microbe on
603 another's growth.

604

605 Methods

606 Study population and microbiome profiles

607 The baboon hosts in this study were members of the Amboseli baboon population, which
608 has been studied by the Amboseli Baboon Research Project since 1971 [41]. The microbiome
609 compositional profiles are derived from V4 16S rRNA gene amplicon sequencing data that were
610 previously analyzed in [42, 43]. Our analyses use 5,534 of these profiles from 56 especially well-
611 sampled baboons, collected over a 13.3-year span between 2000 to 2013 (**Fig. 1B**). Each baboon
612 host in this data set was sampled at least 75 times (mean number of samples=99; range=75 to
613 181 samples; median number of days between samples=20 days; 25th percentile=7
614 days, 75th percentile =49 days). DNA was extracted from each sample using the MoBio and
615 QIAGEN PowerSoil kit with a bead-beating step. All samples were sequenced on an Illumina
616 HiSeq 2500, with a median read count of 48,827 reads per sample across all 5,534 samples
617 (range=982 to 459,315 reads per sample). Further details of sample collection, DNA extraction,
618 and sequencing can be found in [42, 43].

619

620 Filtering of low-abundance taxa

621 Data sets of per-sample taxonomic counts were produced at each of three taxonomic
622 levels, from finest to coarsest: ASV, taxonomic assignments finer than phyla, but above the
623 genus level (e.g., class, order, family), and phylum. At the intermediate and coarsest levels, taxa
624 were agglomerated using phyloseq's tax_glom() function [59] such that all sequence variants
625 sharing taxonomic identity at that level were collapsed into a single taxon (e.g. family
626 Bifidobacteraceae).

627 To reduce sparsity in the data set, remove 16S sequences that could represent gene
628 duplications, and focus only on taxa that were prevalent in all 56 hosts, we further filtered as
629 follows: (1) in each of the three taxonomically defined data sets (i.e. ASV, taxa assigned to
630 family/order/class, and phylum), we identified taxa present in a minimum of 20% of each host's
631 samples; (2) if a given ASV was >99% genetically similar to another ASV we removed the least
632 abundant of the pair to minimize the risk of including duplicate 16S rRNA gene copies from the
633 same taxa [47]; and (3) counts associated with all other taxa were combined into a dummy
634 category, hereafter referred to as "other." The "other" category therefore includes a combination
635 of rare and host-specific gut microbes. This category was retained in the data set (although not
636 analyzed directly) because "other" counts still inform the precision of the observed relative
637 abundances in our model. Characteristics of the filtered data at each taxonomic level are
638 provided in **Tables S1-S3**.

639

640

641 **Modeling log-ratio dynamics**

642 Estimates of taxon-taxon covariance were obtained from the *basset* model of the “fido”
643 package in R [46]. Data for each host took the form of a $D \times N$ count matrix, where D gives the
644 number of taxa and N the number of samples collected for a given host. The following model
645 was fit to each host’s count matrix (Y) where Y_i represents the counts associated with a single
646 sample:

647

$$\begin{aligned} Y_i &\sim \text{Multinomial}(\pi_i) \\ \pi_i &= \text{ALR}^{-1}(\eta_i) \\ \eta &\sim \text{Normal}(\Lambda, \Sigma, I) \\ \Lambda &\sim \text{GP}(\Theta[X], \Sigma, \Gamma[X]) \\ \Sigma &\sim \text{inv-Wishart}(\Xi, v) \end{aligned}$$

648

649 The observed relative abundances are considered to be drawn from a multinomial
650 distribution parameterized by a set of proportions (π) which have an analogous representation in
651 the additive log-ratio. The dynamics of these log-ratio abundances (η) are described by what
652 amounts to a state space model in the 3rd and 4th lines of the specification above, where a
653 Gaussian process models the evolution of a “latent” state. The matrix Σ captures covariation in
654 log-ratio abundances (the D rows of the observed count matrix). Sample-sample covariation
655 arising from nearness in time (autocorrelation) is modeled by the kernel matrix Γ . Both the
656 kernel matrix and the expected baseline log-ratio abundances (Θ) are parameterized by a set of
657 time-varying covariates X which included the day of sampling (where the date of first sample is
658 defined as zero) and the first three principal components of diet composition, calculated
659 following [42, 43] as the diet all juveniles and females living in the host’s social group in the 30
660 days prior to sample collection. All group members consume highly similar diets as they travel in
661 a together across the habitat, encountering the same resources at the same time [42, 43]. These
662 data are collected via random-order behavioral observations collected two to four times per week
663 on adult females and juveniles in each social group. Parameterization of the kernel matrix is
664 further described in the Supplement.

665 Posterior inference on this model is performed as described in [46] and yields estimates
666 of the distributions of parameters necessary to reconstruct trajectories for all log-ratio taxa across
667 sampling time. In particular, we extract the posterior estimates of one such parameter, Σ , the
668 covariance of additive log-ratio (ALR) taxa, from the fitted models for each host. We convert
669 these covariance matrices over ALR taxa to the centered log-ratio (CLR) form (a simple linear
670 transformation of the matrix). We then normalize estimated CLR covariance matrices to Pearson
671 correlation matrices in R using the built-in cov2cor() function.

672

673 **Calculating universality scores for taxon-taxon pairs**

674 We devised a universality score for each pair of taxa intended to capture the strength and
675 consistency of taxon-taxon correlations across hosts. The majority direction is negative
676 otherwise. This score identifies the sign of the taxon-taxon correlation (positive or negative) that
677 is most common across the 56 hosts (i.e., occurs in >50% of the 56 hosts in the data set). The
678 direction of this sign is the “majority correlation sign.”

679 For a pair of taxa i , let n_i^{maj} be the number of hosts with CLR correlation over pair i with
680 the majority correlation sign for that pair and let n be the total number of hosts. Let R be the

681 subset of estimated CLR correlations for pair i across hosts with the majority sign. The
682 universality score u_i for that taxon-taxon pair is then given by
683

$$u_i = \frac{n_i^{\text{maj}}}{n} \times \text{median}(R)$$

684
685 This score is the product of the median CLR correlation across hosts and the proportion
686 of hosts with the majority correlation sign, and is bounded between 0 and 1. Scores near 1
687 indicate strong universality and near-zero scores indicate weak universality. Strong universality
688 can only be achieved by taxon-taxon correlations that are both large in magnitude and highly
689 concordant across hosts.

690
691 **Defining a cutoff for significant bacterial correlations and universality scores**

692 We identified correlations stronger than expected under random simulations using
693 permutations of the data set to define empirical null distributions (**Fig. S4A**). Specifically, we
694 permuted the data by randomly shuffling taxon identity within each sample 10 times for each of
695 the 56 hosts. This procedure maintained relative abundance patterns within a sample but
696 scrambled the covariance patterns of relative abundances. The distributions of ASV-level CLR
697 correlations in the original and permuted data are shown in **Fig. S4A**. We identified “significant”
698 correlations as those below $\text{FDR} \leq 0.05$ (Benjamini-Hochberg), testing against the permuted
699 data.

700 We applied an analogous permutation test to derive a null distribution for taxon-taxon
701 universality scores. In a single iteration of this permutation procedure, rows and columns of the
702 observed taxon-taxon correlation matrix for each host were shuffled, maintaining the distribution
703 over observed correlations at the host level but randomizing the identity of taxon pairs across
704 hosts. This procedure was repeated 100 times and universality scores were calculated from each
705 of these shuffled data sets to give a pseudo-null distribution of universality scores. The observed
706 and null distributions of universality scores at the ASV level are shown in **Fig. S4B**. We used
707 this empirical null distribution to identify universality scores significantly greater than expected
708 ($\text{FDR} \leq 0.05$).

709
710 **Estimating the ratio of population-level to host-level contributions to observed taxon-taxon**
711 **correlation patterns**

712 We used simulations to estimate the degree of shared “signal” between hosts in terms of
713 taxon-taxon correlations. Each host’s “observed correlations” were defined as the *basset*
714 estimated maximum a posteriori (MAP) estimates of centered log-ratio ASV correlations for that
715 host. We computed the *mean* correlations across the population using the function `estcov()` from
716 the `shapes` package in R [60] and estimated a host-specific contribution to the observed
717 correlations as the residual *difference* between per-host observed and these mean correlations.
718 That is,

719
$$\text{observed host correlations} = \text{mean population correlations} + \text{host residual}$$

720
721 For each host, we simulated a hypothetical set of composite taxon-taxon correlations as a
722 convex combination of mean and host residual:
723

composite correlations = $(1 - \alpha) \times \text{mean population correlations} + \alpha \times \text{host residual}$

A cartoon example of this procedure is given in **Fig. S7A**. For example, one such simulated set of taxon-taxon correlations might constitute a mixture of 90% host contribution and 10% shared population-level "signal" ($\alpha=0.9$). Alternatively, a small host-level contribution might have $\alpha=0.1$.

For each host, we iterated over increasing proportions of host-level contribution (from 0% to 100%), generating simulated composite correlation matrices according to the formula above. We compared these simulated patterns to those observed for the same host, reasoning that simulated correlation matrices that minimize the distance between the observed correlation matrices and the simulated mixtures provide the best description of the underlying true mixture.

735 Estimating synchrony

736 Seasonal autoregressive models were fit independently to each CLR-transformed ASV
737 with arima() in R, using covariate matrices which included per-host intercepts and an oscillating
738 periodic trend to mimic wet-dry season oscillation. For each ASV, all hosts' samples were
739 combined into a single series, yielding per-ASV models of CLR dynamics. This procedure is
740 detailed in the Supplemental Methods. Residuals were extracted from these fitted models as
741 seasonally "de-trended" data and CLR correlation matrices across ASV pairs were estimated
742 directly from these adjusted data using cov() in R (**Fig. S9**).

743 "Synchrony" was estimated by sampling aligned microbiome compositional profiles
744 across hosts. We identified all samples collected from pairs of hosts within 1 calendar day. For
745 instance, a sample collected from host F01 on 2011-03-14 could pair with a sample from M04 on
746 2011-03-15. For all possible pairs of hosts, we selected one such aligned pair of samples,
747 yielding 1540 joint observations of gut microbiome composition. For each such paired sample,
748 one host was arbitrarily designated as host A and the other as host B. The "synchrony" of a given
749 taxon was estimated as the correlation of a taxon's model-inferred log-ratio abundance across the
750 set of samples from hosts labeled A and the set of samples from hosts labeled B. The cartoon in
751 **Fig. S10** illustrates this sample pairing.

752 Enrichment analyses

753 We performed enrichment analyses for bacterial families and family pairs in several
754 settings. In each case we computed the frequency of ASVs belonging to a given family, or of
755 pairs belonging to a family pair, on a subset of the data. These were compared to the overall
756 frequencies of ASVs belonging to those families or pairs.

757 To determine the enrichment of families and family pairs in the most universal ASV pairs
758 (**Fig. 3E and 3F**), we calculated the frequencies of ASV families and pairs in the top 2.5% of
759 pairs by universality scores. Significant enrichment of families or pairs was identified using a
760 one-sided Fisher's Exact Test. Multiple test correction was applied as a Benjamini-Hochberg
761 adjustment to observed p-values.

762 Phylogenetic distances between ASV sequences were calculated with the dist.ml function
763 in the "phangorn" package in R [61] using default settings for amino acid substitution rates. In
764 **Fig. 4C and 4D**, low phylogenetic distance/high median correlation strength pairs were
765 identified as those with phylogenetic distances of less than 0.2 and median correlation strengths
766 of greater than 0.5. Again, significance of these was evaluated against overall frequencies of the
767 same families and pairs.

769 To determine enrichment of low synchrony/high universality or of high synchrony/high
770 universality families and pairs (shown in **Fig. S12A and 12B**), we defined the low
771 synchrony/high universality cohort as those ASV pairs with synchrony estimates of less than 0.3
772 and universality estimates greater than 0.4. We defined the high synchrony/high universality
773 cohort as those ASV pairs with synchrony greater than 0.3 and universality greater than 0.4. The
774 frequency of these subsets was evaluated against the overall frequencies of the same families and
775 pairs.

776

777 **Evaluating explanatory factors**

778 *Variation in taxon-taxon correlation patterns explained by kinship and baseline*
779 *composition.* To evaluate a possible explanatory effect of distances in terms of kinship or
780 baseline gut bacterial composition on distances in terms of taxon-taxon correlation patterns, we
781 applied Mantel tests. However, because population structure can lead to anticonservative p-
782 values [62], we also developed a second simulation-based procedure for evaluating the
783 significance of baseline composition, using a permutation procedure of our own design. Firstly,
784 baseline composition for each host was estimated by transforming all of a given host's samples
785 to the centered log-ratio representation after adding a small fraction (0.5) to remove zeros. The
786 vector of per-taxon averages of these CLR values was used as that host's "baseline" CLR
787 composition. The Euclidean distances between hosts in terms of these per-host baselines were
788 compared against distances in terms of correlation patterns to give an r^2 value.

789 In the case of the customized permutation test, this observed result was evaluated against
790 a pseudo-null distribution computed in the following way. The identity of each taxon in the
791 baseline composition was shuffled for each host independently. Euclidean distances across these
792 shuffled baselines were computed and an r^2 value calculated for these distances against the
793 observed distances computed from taxon-taxon correlation patterns. This procedure was repeated
794 1000 times to give a distribution of "random" r^2 values we used as an empirical null.

795 *Variation in taxon-taxon correlation patterns explained by sex and social group.* To test
796 whether host sex or social group membership predicted similarity in terms of correlation
797 patterns, we used an ANOVA-like strategy. We calculated the F-statistic, a ratio of between- to
798 within-group variation, on the observed correlation patterns (strictly, the vectorized CLR taxon-
799 taxon correlation matrices; Z in the equation below) and segmented samples into groups defined
800 by either sex or social group. The F-statistic was calculated as

$$801 F = \frac{\text{between-group variation}}{\text{within-group variation}} = \frac{\sum_{i=1}^K n_i (\bar{Z}_i - \bar{Z})^2 / K - 1}{\sum_{i=1}^K \sum_{j=1}^{n_i} (Z_{ij} - \bar{Z}_i)^2 / (N - K)}$$

802 and significance was evaluated via an F-distribution parameterized by the appropriate degrees of
803 freedom. Here K represents the number of groups (e.g. two, in the case of sex) and N , the total
804 number of hosts. The matrix \bar{Z}_i consists of the mean taxon-taxon correlations for group i and \bar{Z} ,
805 the population mean correlations.

806

807 **Comparison to microbiome time series from human populations**

808 We compared our findings to those generated from two human data sets: the
809 DIABIMMUNE project's infant/toddler cohort from Russian Karelia [44] and the adult diet-
810 microbiome association study of Johnson et al. [34]. In both cases, count tables were obtained
811 from the project's public website and subject identity and sampling schedules were available in

813 the associated metadata. We compared each host cohort's universality at the family/order/class
814 level because this taxonomic level offered the greatest comparative power (10.1% of
815 families/orders/classes overlap between the cohorts compared to just 3.1% of genera and no
816 ASVs). The *basset* model from the "fido" R package [46] was fit to each subject's data set using
817 model settings analogous to those employed on the Amboseli baboon series: first, only taxa with
818 non-zero counts in at least 20% of all subjects' series were retained; second, Gaussian process
819 kernel bandwidth settings were chosen in such a way as to encode an expectation of minimum
820 autocorrelation between samples at a distance in time of 90 days. We extracted centered log-ratio
821 estimates of taxa at the family level in the same manner as described previously for the Amboseli
822 data set.

823

824 **Acknowledgements**

825 We thank Jeanne Altmann for her essential role in stewarding the Amboseli Baboon
826 Project, and in collecting and maintaining the fecal samples used in this manuscript. We thank
827 the Kenya Wildlife Service, the National Council for Science, Technology, and Innovation, and
828 the National Environment Management Authority for permission to conduct research and collect
829 biological samples in Kenya. We also thank the University of Nairobi, Institute of Primate
830 Research, National Museums of Kenya, the Amboseli-Longido pastoralist communities, the
831 Enduimet Wildlife Management Area, Ker & Downey Safaris, Air Kenya, and Safarilink for
832 their cooperation and assistance in the field. We thank Karl Pinc for managing and designing the
833 database. We also thank Tawni Voyles, Anne Dumaine, Yingying Zhang, Meghana Rao, Tauras
834 Vilgalys, Amanda Lea, Noah Snyder-Mackler, Paul Durst, Jay Zussman, Garrett Chavez, and
835 Reena Debray for contributing to fecal sample processing. Complete acknowledgments for the
836 ABRP can be found online at <https://amboselibaboons.nd.edu/acknowledgements/>.

837 **Funding:** This work was supported by the National Science Foundation and the National
838 Institutes of Health, especially NSF Rules of Life Award DEB 1840223 (EAA, JAG), the
839 National Institute on Aging for R01 AG071684 (EAA), R21 AG055777 (EAA, RB), NIH R01
840 AG053330 (EAA), and NIH R35 GM128716 (RB). We also thank the Duke University
841 Population Research Institute P2C-HD065563 (pilot to JT), the University of Notre Dame's Eck
842 Institute for Global Health (EAA), and the Notre Dame Environmental Change Initiative (EAA).
843 Since 2000, long-term data collection in Amboseli has been supported by NSF and NIH,
844 including IOS 1456832 (SCA), IOS 1053461 (EAA), DEB 1405308 (JT), IOS 0919200 (SCA),
845 DEB 0846286 (SCA), DEB 0846532 (SCA), IBN 0322781 (SCA), IBN 0322613 (SCA), BCS
846 0323553 (SCA), BCS 0323596 (SCA), P01AG031719 (SCA), R21AG049936 (JT, SCA),
847 R03AG045459 (JT, SCA), R01AG034513 (SCA), R01HD088558 (JT), and P30AG024361
848 (SCA). We also thank Duke University, Princeton University, the University of Notre Dame, the
849 Chicago Zoological Society, the Max Planck Institute for Demographic Research, the L.S.B.
850 Leakey Foundation and the National Geographic Society for support at various times over the
851 years.

852

853 **Data and code availability**

854 16S rRNA gene sequences are available on EBI-ENA (project 590 ERP119849) and Qiita
855 (study 12949). Analyzed data and code is available on GitHub at:
856 <https://github.com/kimberlyroche/rulesoflife>

857

858

859 **References**

- 860 1. Faust K, Raes J. Microbial interactions: from networks to models. *Nature Reviews Microbiology*.
861 2012;10(8):538-50. doi: 10.1038/nrmicro2832. PubMed PMID: 22796884.
- 862 2. Foster KR, Bell T. Competition, Not Cooperation, Dominates Interactions among Culturable
863 Microbial Species. *Current Biology*. 2012;22(19):1845-50. doi: 10.1016/j.cub.2012.08.005. PubMed
864 PMID: WOS:000309792900031.
- 865 3. Dolinsek J, Goldschmidt F, Johnson DR. Synthetic microbial ecology and the dynamic interplay
866 between microbial genotypes. *Fems Microbiology Reviews*. 2016;40(6):961-79. doi:
867 10.1093/femsre/fuw024. PubMed PMID: WOS:000387995000010.
- 868 4. Seth EC, Taga ME. Nutrient cross-feeding in the microbial world. *Front Microbiol*. 2014;5:350. Epub
869 20140708. doi: 10.3389/fmicb.2014.00350. PubMed PMID: 25071756; PubMed Central PMCID:
870 PMCPMC4086397.
- 871 5. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human
872 intestine. *Science*. 2005;307(5717):1915-20. doi: Doi 10.1126/Science.1104816. PubMed PMID:
873 ISI:000227957300045.
- 874 6. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions
875 shape host fitness. *Proc Natl Acad Sci U S A*. 2018. doi: 10.1073/pnas.1809349115. PubMed PMID:
876 30510004.
- 877 7. Pontrelli S, Szabo R, Pollak S, Schwartzman J, Ledezma-Tejeida D, Cordero OX, et al. Metabolic
878 cross-feeding structures the assembly of polysaccharide degrading communities. *Sci Adv*.
879 2022;8(8):eabk3076. Epub 20220223. doi: 10.1126/sciadv.abk3076. PubMed PMID: 35196097;
880 PubMed Central PMCID: PMCPMC8865766.
- 881 8. Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a modulator of gut microbial ecology. *Cell
882 Metab*. 2014;20(5):769-78. doi: 10.1016/j.cmet.2014.10.002. PubMed PMID: 25440056; PubMed
883 Central PMCID: PMCPMC4260394.
- 884 9. Loftus M, Hassouneh SA, Yooseph S. Bacterial associations in the healthy human gut microbiome
885 across populations. *Sci Rep*. 2021;11(1):2828. Epub 20210202. doi: 10.1038/s41598-021-82449-0.
886 PubMed PMID: 33531651; PubMed Central PMCID: PMCPMC7854710.
- 887 10. Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human
888 microbial dynamics. *Nature*. 2016;534(7606):259-62. doi: 10.1038/nature18301. PubMed PMID:
889 27279224; PubMed Central PMCID: PMCPMC4902290.
- 890 11. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial ecology:
891 building predictive understanding of community function and dynamics. *ISME Journal*.
892 2016;10(11):2557-68. doi: 10.1038/ismej.2016.45. PubMed PMID: 27022995.
- 893 12. Cao HT, Gibson TE, Bashan A, Liu YY. Inferring human microbial dynamics from temporal
894 metagenomics data: Pitfalls and lessons. *Bioessays*. 2017;39(2):1600188. doi:
895 10.1002/bies.201600188. PubMed PMID: 28000336.
- 896 13. Faust K, Raes J. Host-microbe interaction: Rules of the game for microbiota. *Nature*.
897 2016;534(7606):182-3. doi: 10.1038/534182a. PubMed PMID: 27279206.
- 898 14. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and
899 stability. *Science*. 2015;350(6261):663-6. doi: 10.1126/science.aad2602. PubMed PMID: 26542567.
- 900 15. Palmer JD, Foster KR. Bacterial species rarely work together. *Science*. 2022;376(6593):581-2. Epub
901 20220505. doi: 10.1126/science.abn5093. PubMed PMID: 35511986.
- 902 16. Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome
903 in human health and diseases. *Genome Med*. 2021;13(1):22. Epub 2021/02/11. doi: 10.1186/s13073-
904 021-00840-y. PubMed PMID: 33563315; PubMed Central PMCID: PMCPMC7874449.
- 905 17. Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR. Ecological rules for the assembly of microbiome
906 communities. *PLoS Biol*. 2021;19(2):e3001116. Epub 20210219. doi: 10.1371/journal.pbio.3001116.
907 PubMed PMID: 33606675; PubMed Central PMCID: PMCPMC7946185.
- 908 18. Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, et al. Fungal community assembly
909 in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. *Nat*

910 Commun. 2020;11(1):34. Epub 2020/01/09. doi: 10.1038/s41467-019-13913-9. PubMed PMID:
911 319111594; PubMed Central PMCID: PMCPMC6946711.

912 19. Vila JCC, Liu YY, Sanchez A. Dissimilarity-Overlap analysis of replicate enrichment communities.
913 ISME J. 2020;14(10):2505-13. Epub 2020/06/18. doi: 10.1038/s41396-020-0702-7. PubMed PMID:
914 32555503; PubMed Central PMCID: PMCPMC7490387.

915 20. San-Juan-Vergara H, Zurek E, Ajami NJ, Mogollon C, Pena M, Portnoy I, et al. A Lachnospiraceae-
916 dominated bacterial signature in the fecal microbiota of HIV-infected individuals from Colombia,
917 South America. Sci Rep. 2018;8(1):4479. Epub 2018/03/14. doi: 10.1038/s41598-018-22629-7.
918 PubMed PMID: 29540734; PubMed Central PMCID: PMCPMC5852036.

919 21. Gonze D, Coyte KZ, Lahti L, Faust K. Microbial communities as dynamical systems. Current
920 Opinion in Microbiology. 2018;44:41-9. doi: 10.1016/j.mib.2018.07.004. PubMed PMID:
921 WOS:000447581000007.

922 22. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJM, et al. Identifying
923 personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences.
924 2015;112(22):E2930-E8. doi: 10.1073/pnas.1423854112. PubMed PMID: WOS:000355832200014.

925 23. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term
926 stability of the human gut microbiota. Science. 2013;341(6141):1237439. Epub 2013/07/06. doi:
927 10.1126/science.1237439. PubMed PMID: 23828941; PubMed Central PMCID: PMC3791589.

928 24. Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP, Wells RS, et al. Marine mammals
929 harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun. 2016;7:10516.
930 Epub 2016/02/03. doi: 10.1038/ncomms10516. PubMed PMID: 26839246; PubMed Central PMCID:
931 PMCPMC4742810.

932 25. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving
933 pictures of the human microbiome. Genome Biology. 2011;12(5):R50. doi: Artn R50
934 Doi 10.1186/Gb-2011-12-5-R50. PubMed PMID: ISI:000295732700014.

935 26. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation
936 in human body habitats across space and time. Science. 2009;326(5960):1694-7. doi: Doi
937 10.1126/science.1177486. PubMed PMID: ISI:000272839000053.

938 27. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, et al. Function and functional
939 redundancy in microbial systems. Nat Ecol Evol. 2018;2(6):936-43. Epub 2018/04/18. doi:
940 10.1038/s41559-018-0519-1. PubMed PMID: 29662222.

941 28. Rainey PB, Quistad SD. Toward a dynamical understanding of microbial communities. Philos Trans
942 R Soc Lond B Biol Sci. 2020;375(1798):20190248. Epub 2020/03/24. doi: 10.1098/rstb.2019.0248.
943 PubMed PMID: 32200735; PubMed Central PMCID: PMCPMC7133524.

944 29. Martiny JB, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic
945 perspective. Science. 2015;350(6261):aac9323. doi: 10.1126/science.aac9323. PubMed PMID:
946 26542581.

947 30. Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in
948 microbiome assembly. Nat Rev Microbiol. 2022;20(2):109-21. Epub 2021/08/27. doi: 10.1038/s41579-
949 021-00604-w. PubMed PMID: 34453137.

950 31. Risely A, Wilhelm K, Clutton-Brock T, Manser MB, Sommer S. Diurnal oscillations in gut bacterial
951 load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat Commun.
952 2021;12(1):6017. Epub 2021/10/14. doi: 10.1038/s41467-021-26298-5. PubMed PMID: 34650048;
953 PubMed Central PMCID: PMCPMC8516918.

954 32. Kolodny O, Weinberg M, Reshef L, Harten L, Hefetz A, Gophna U, et al. Coordinated change at the
955 colony level in fruit bat fur microbiomes through time. Nature Ecology & Evolution. 2019;3(1):116-
956 24. doi: 10.1038/s41559-018-0731-z. PubMed PMID: WOS:000453767000021.

957 33. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, et al. Temporal variability is
958 a personalized feature of the human microbiome. Genome Biology. 2014;15(12):531. doi: ARTN 531
959 10.1186/s13059-014-0531-y. PubMed PMID: WOS:000346609500011.

960 34. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily
961 Sampling Reveals Personalized Diet-Microbiome Associations in Humans. *Cell Host & Microbe*.
962 2019;25(6):789-802. Epub 2019/06/14. doi: 10.1016/j.chom.2019.05.005. PubMed PMID: 31194939.

963 35. Smits SA, Marcabal A, Higginbottom S, Sonnenburg JL, Kashyap PC. Individualized Responses of
964 Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. *mSystems*. 2016.

965 36. Kalyuzhny M, Shnerb NM. Dissimilarity-overlap analysis of community dynamics: Opportunities
966 and pitfalls. *Methods in Ecology and Evolution*. 2017;8:1764-73.

967 37. Marsland R, 3rd, Cui W, Mehta P. A minimal model for microbial biodiversity can reproduce
968 experimentally observed ecological patterns. *Sci Rep*. 2020;10(1):3308. Epub 2020/02/24. doi:
969 10.1038/s41598-020-60130-2. PubMed PMID: 32094388; PubMed Central PMCID:
970 PMCPMC7039880.

971 38. Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis:
972 unraveling microbial community dynamics. *Current Opinion in Microbiology*. 2015;25:56-66. doi:
973 10.1016/j.mib.2015.04.004. PubMed PMID: 26005845.

974 39. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional:
975 and this is not optional. *Front Microbiol*. 2017;8:2224. Epub 2017/12/01. doi:
976 10.3389/fmicb.2017.02224. PubMed PMID: 29187837; PubMed Central PMCID:
977 PMCPMC5695134.

978 40. Quinn TP, Richarsson MF, Lovell D, Crowley TM. *propri*: An R-package for Identifying
979 Proportionally Abundant Features Using Compositional Data Analysis *Scientific Reports*.
980 2017;7:16252.

981 41. Alberts SC, Altmann J. The Amboseli Baboon Research Project: Themes of continuity and change.
982 In: Kappeler P, Watts DP, editors. *Long-term field studies of primates*: Springer Verlag; 2012. p. 261-
983 87.

984 42. Björk J, Dasari M, Grieneisen L, Gould TJ, Grenier JC, Yotova V, et al. Synchrony and
985 idiosyncrasy in the gut microbiome of wild primates. *Nature Ecology & Evolution*. 2022;6:955-64.
986 doi: <https://www.biorxiv.org/content/10.1101/2021.11.24.469913v1>.

987 43. Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier JC, Yotova V, et al. Gut microbiome
988 heritability is near-universal but environmentally contingent. *Science*. 2021;373:181-6.

989 44. Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in
990 Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. *Cell*. 2016;165(4):842-
991 53. Epub 2016/04/28. doi: 10.1016/j.cell.2016.04.007. PubMed PMID: 27133167; PubMed Central
992 PMCID: PMCPMC4950857.

993 45. Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, et al. Emerging Priorities
994 for Microbiome Research. *Front Microbiol*. 2020;11:136. Epub 2020/03/07. doi:
995 10.3389/fmicb.2020.00136. PubMed PMID: 32140140; PubMed Central PMCID:
996 PMCPMC7042322.

997 46. Silverman JD, Roche K, Holmes ZC, David LA, Mukherjee S. Bayesian Multinomial Logistic
998 Normal Models through Marginally Latent Matrix-T Processes. *Journal of Machine Learning
999 Research*. 2022;23:1-42.

1000 47. Vetrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its
1001 consequences for bacterial community analyses. *PLoS One*. 2013;8(2):e57923. Epub 2013/02/27. doi:
1002 10.1371/journal.pone.0057923. PubMed PMID: 23460914; PubMed Central PMCID:
1003 PMCPMC3583900.

1004 48. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut
1005 microbiome. *Nat Commun*. 2019;10(1):512. Epub 2019/02/03. doi: 10.1038/s41467-019-08377-w.
1006 PubMed PMID: 30710083; PubMed Central PMCID: PMCPMC6358638.

1007 49. Kehe J, Ortiz A, Kulesa A, Gore J, Blainey PC, Friedman J. Positive interactions are common among
1008 culturable bacteria. *Science Advances*. 2021;45:eabi7159.

1009 50. Weiss AS, Burrichter AG, Durai Raj AC, von Stempel A, Meng C, Kleigrewe K, et al. In vitro
1010 interaction network of a synthetic gut bacterial community. *ISME J*. 2022;16(4):1095-109. Epub

1011 20211202. doi: 10.1038/s41396-021-01153-z. PubMed PMID: 34857933; PubMed Central PMCID: 1012 PMCPMC8941000.

1013 51. Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community 1014 assembly in the *C. elegans* intestine. *ISME J.* 2021;15(7):2131-45. Epub 20210215. doi: 1015 10.1038/s41396-021-00910-4. PubMed PMID: 33589765; PubMed Central PMCID: 1016 PMCPMC8245486.

1017 52. Carlstrom CI, Field CM, Bortfeld-Miller M, Muller B, Sunagawa S, Vorholt JA. Synthetic microbiota 1018 reveal priority effects and keystone strains in the *Arabidopsis* phyllosphere. *Nat Ecol Evol.* 1019 2019;3(10):1445-54. Epub 20190926. doi: 10.1038/s41559-019-0994-z. PubMed PMID: 31558832; 1020 PubMed Central PMCID: PMCPMC6774761.

1021 53. Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, et al. Deciphering microbial 1022 interactions in synthetic human gut microbiome communities. *Mol Syst Biol.* 2018;14(6):e8157. 1023 Epub 20180621. doi: 10.15252/msb.20178157. PubMed PMID: 29930200; PubMed Central PMCID: 1024 PMCPMC6011841.

1025 54. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a 1026 family of digestive tract-associated bacteria. *Genome Biol Evol.* 2014;6(3):703-13. doi: 1027 10.1093/gbe/evu050. PubMed PMID: 24625961; PubMed Central PMCID: PMCPMC3971600.

1028 55. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The Controversial Role 1029 of Human Gut Lachnospiraceae. *Microorganisms.* 2020;8(4). Epub 20200415. doi: 1030 10.3390/microorganisms8040573. PubMed PMID: 32326636; PubMed Central PMCID: 1031 PMCPMC7232163.

1032 56. Stackebrandt E. The Family Lachnospiraceae. *The Prokaryotes.* 2014.

1033 57. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological 1034 theory toward an understanding of the human microbiome. *Science.* 2012;336(6086):1255-62. Epub 1035 2012/06/08. doi: science.1224203 [pii] 10.1126/science.1224203. PubMed PMID: 22674335.

1037 58. Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. *Annual 1038 Review of Microbiology.* 2011;65:411-29. Epub 2011/06/21. doi: 10.1146/annurev-micro-090110- 1039 102830. PubMed PMID: 21682646.

1040 59. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics 1041 of microbiome census data. *PLoS One.* 2013;8(4):e61217. Epub 20130422. doi: 1042 10.1371/journal.pone.0061217. PubMed PMID: 23630581; PubMed Central PMCID: 1043 PMCPMC3632530.

1044 60. Yaqing Chen [aut c], Alvaro Gajardo [aut], Jianing Fan [aut], Zhong Q, Dubey P, Han K, et al. frechet: 1045 Statistical Analysis for Random Objects and Non-Euclidean Data. Available: <https://CRANR-project.org/package=frechet>. 2020.

1047 61. Schliep KP. phangorn: phylogenetic analysis in R. *Bioinformatics.* 2011;27(4):592-3. Epub 1048 20101217. doi: 10.1093/bioinformatics/btq706. PubMed PMID: 21169378; PubMed Central PMCID: 1049 PMCPMC3035803.

1050 62. Guillot G, Rousset F. Dismantling the Mantel tests. In: Harmon L, editor. *Methods in Ecology and* 1051 *Evolution.* 42013. p. 336–44.

1052