

1 The ELF3 transcription factor is associated with an epithelial 2 phenotype and represses epithelial-mesenchymal transition

3
4 Running title: ELF3 as a putative MET-inducing factor
5
6

7 Ayalur Raghu Subbalakshmi^{1#}, Sarthak Sahoo^{1#}, Prakruthi Manjunatha², Shaurya Goyal³,
8 Vignesh A Kasiviswanathan⁴, Yeshwanth M¹, Soundharya R⁵, Isabelle McMullen⁶,
9 Jason A. Somarelli^{6,7*}, Mohit Kumar Jolly^{1*}

10 ¹ Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012,
11 India

12 ² Department of Medical Electronics, M S Ramaiah Institute of Technology, Bangalore 560054,
13 India

14 ³ Department of Humanities and Social Sciences, Faculty of Sciences, Indian Institute of
15 Technology, Kharagpur 721302, India

16 ⁴ Department of Biotechnology, JSS Science and Technology University, Mysore 570006, India

17 ⁵ Department of Biotechnology, National Institute of Technology Warangal, 506004, India

18 ⁶ Department of Medicine, Duke University, Durham, NC 27708, USA

19 ⁷ Duke Cancer Institute, Duke University, Durham, NC 27708, USA

20 * Authors to whom correspondence should be addressed:

21 jason.somarelli@duke.edu (J.A.S), mkjolly@iisc.ac.in (M.K.J)

22 # These authors contributed equally.

23 **Abstract**

24 Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial,
25 mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the
26 process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are
27 well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET)
28 and stabilise hybrid E/M phenotypes are less well understood. Here, we analyse multiple publicly-
29 available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is
30 strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-
31 based mathematical modelling, we also show that ELF3 inhibits the progression of EMT,
32 suggesting ELF3 may be able to counteract EMT induction, including in the presence of EMT-
33 inducing factors, such as WT1. Our model predicts that the MET induction capacity of ELF3 is
34 stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels
35 correlates with worse patient survival in a subset of solid tumor types, suggesting cell-of-origin or
36 lineage specificity in the prognostic capacity of ELF3.

37 Keywords: ELF3, phenotypic plasticity, mathematical modeling, epithelial-mesenchymal transition
38 (EMT); Mesenchymal–Epithelial Transition (MET)

49 **Introduction**

50

51 Phenotypic plasticity – the ability of cancer cells to reversibly change their phenotypes to adapt to
52 changing environments – is crucial for cancer cell survival. It is a hallmark of metastasizing cancer
53 cells that enables them to alter their cell-cell adhesion and migration traits, evade the immune
54 system, and resist targeted therapies (Celià-Terrassa and Kang, 2016; Gupta *et al.*, 2019). Given
55 the importance of phenotypic plasticity as a critical regulator of metastasis and therapy resistance,
56 there is a crucial need to decode the dynamics of phenotypic plasticity in cancer.

57

58 Epithelial-mesenchymal transition (EMT) and its reverse - mesenchymal-epithelial transition (MET)
59 – constitute a key axis of phenotypic plasticity, through bidirectional transitions between epithelial,
60 mesenchymal, and one or more hybrid epithelial/mesenchymal (E/M) phenotype(s) (Pastushenko
61 and Blanpain, 2019; Tripathi *et al.*, 2020). Once tacitly assumed to be a binary process, now EMT
62 is conceptualized as a spectrum of cell states, with many manifestations of the highly plastic and
63 heterogeneous hybrid E/M phenotypes (Pastushenko *et al.*, 2018; Cook and Vanderhyden, 2020;
64 Lourenco *et al.*, 2020; Deshmukh *et al.*, 2021). Many EMT-inducing transcription factors (EMT-
65 TFs), such as ZEB1/2, SNAI1/2, and TWIST have been well-characterised (Peinado *et al.*, 2007;
66 Taube *et al.*, 2010; Drápela *et al.*, 2020), but TFs that can stabilize hybrid E/M phenotypes or
67 induce MET are less well characterized. Most of the MET-TFs identified to date – e.g. GRHL1/2,
68 OVOL1/2 and KLF4 – induce MET by forming mutually inhibitory feedback loops with EMT-TFs
69 (Xiang *et al.*, 2012, 2017; Roca *et al.*, 2013; Somarelli *et al.*, 2016; Fujimoto *et al.*, 2019; Watanabe
70 *et al.*, 2019; Yang *et al.*, 2019; Subbalakshmi *et al.*, 2022a). Similarly, while time-course
71 transcriptomic bulk and single-cell data on EMT has been now extensively collected, the dynamics
72 of MET remains less well-studied (Zhang *et al.*, 2014; Celià-Terrassa *et al.*, 2018; Karacosta *et al.*,
73 2019; Stylianou *et al.*, 2019; Cook and Vanderhyden, 2020). Given the proposed roles of MET in
74 metastatic colonization and therapeutic response, a better understanding of MET and its regulators
75 is needed.

76

77 Among the potential candidate transcription factors that may promote MET, the transcription factor
78 E74-like factor 3 (ELF3) belongs to the E26 transformation-specific (ETS) family of transcription
79 factors. It is strongly expressed in epithelial tissues, such as the digestive tract, bladder, and lungs,
80 where it plays key roles in differentiation and homeostasis (Suzuki *et al.*, 2021). It has also been
81 shown to inhibit EMT in multiple cancer types. For instance, in bladder cancer cells, overexpression
82 of ELF3 reduced invasion and expression of mesenchymal markers (Gondkar *et al.*, 2019).
83 Similarly, ELF3 correlated with an epithelial phenotype in ovarian cancer cells, and its
84 overexpression in SKOV3 cells reduced invasion and led to a downregulation of mesenchymal
85 markers and an increase in epithelial markers (Yeung *et al.*, 2017), reminiscent of observations
86 made in lung cancer cells (Lou *et al.*, 2018). In colorectal cancer, knockdown of ELF3 in HCT116
87 cells induced ZEB1 upregulation. ELF3 expression was found to antagonize ZEB1 expression by
88 inhibiting the Wnt and RAS oncogenic signalling pathways (Liu *et al.*, 2019). Consistent reports in
89 non-transformed mouse mammary gland epithelial cell line (NMuMG) showed that ELF3 correlated
90 strongly with E-cadherin (*Cdh1*) expression and led to activation of *Grhl3* (Sengez *et al.*, 2019),
91 thereby playing an important role as gatekeeper of an epithelial lineage. Together, these studies
92 suggest that ELF3 may be a putative MET-TF.

93

94 At a molecular level, ELF3 is inhibited by both the SNAI family members SNAI1 (SNAIL) and SNAI2
95 (SLUG) (Lyons *et al.*, 2008; Li *et al.*, 2021a), both of which can induce EMT to varying degrees
96 (Bolós *et al.*, 2003; Subbalakshmi *et al.*, 2022b). ELF3, in turn, can repress upregulation of ZEB1/2
97 by ETS1 in breast cancer (Sinh *et al.*, 2017), head and neck squamous carcinoma (Sakamoto *et
98 al.*, 2021) and in normal bile duct epithelial cells (Suzuki *et al.*, 2021). ESE1 and ETS1 are

99 dominantly present in luminal and basal-like subtypes of breast cancer cells, and reciprocally
100 regulate each other, thus impacting the EMT status of these cells (Sinh *et al.*, 2017). Moreover,
101 similar to ZEB1 (Jolly *et al.*, 2018), ELF3 can self-activate (Li *et al.*, 2021b).

102
103 Here, we utilize the experimental observations discussed above, along with multiple transcriptomic
104 data sets to develop a mechanism-based mathematical model to delineate the impact of ELF3 on
105 epithelial-mesenchymal plasticity. Our model predicts that ELF3 can delay or prevent the onset of
106 EMT; consequently, its overexpression can induce a partial or complete MET. Analysis of publicly-
107 available *in vitro* transcriptomics data, including that from the Cancer Cell Line Encyclopedia
108 (CCLE), and The Cancer Genome Atlas (TCGA) revealed that ELF3 is negatively correlated with
109 mesenchymal factors and positively correlated with epithelial factors. Further, analysis of time-
110 course transcriptomic data shows that ELF3 levels decrease upon EMT induction, which further
111 supports the hypothesis that ELF3 acts as a putative MET-TF. Finally, ELF3 levels are associated
112 with cancer patient survival in a lineage- and cancer-specific manner, highlighting the clinical
113 relevance of ELF3 in specific cancer types.

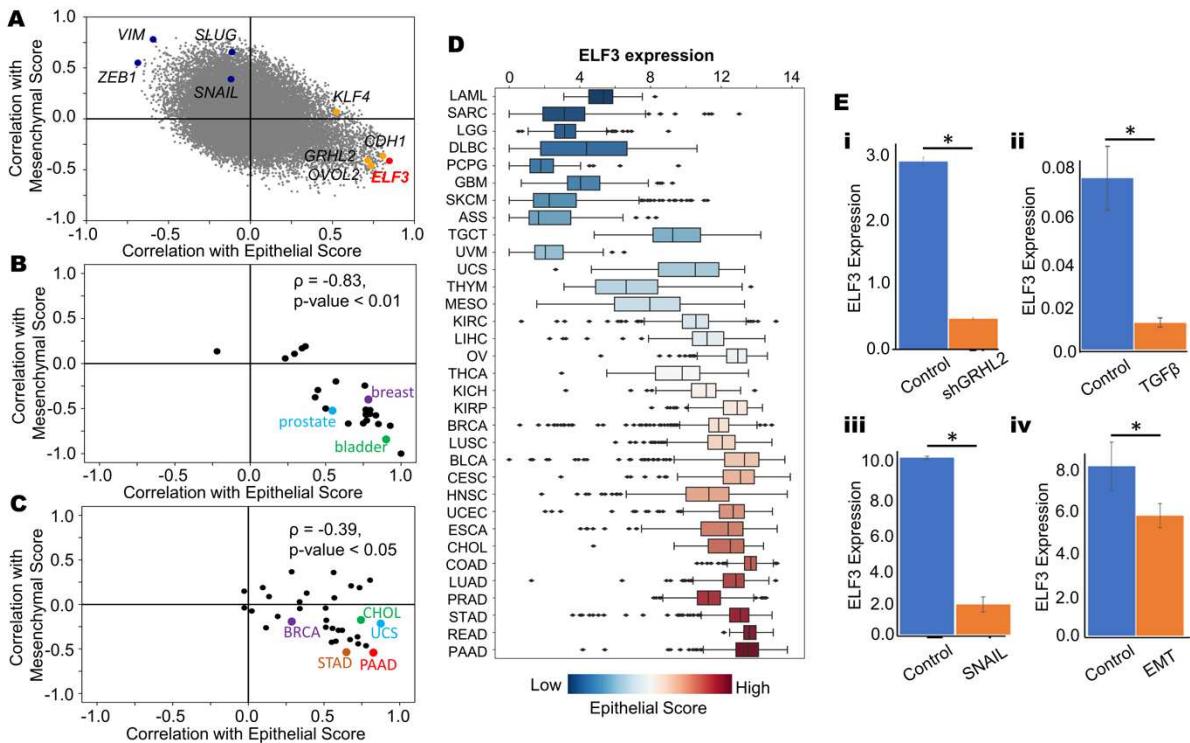
114
115

116 **Results**

117

118 **ELF3 is associated with an epithelial phenotype**

119


120 We first investigated the association between ELF3 expression levels and both epithelial and
121 mesenchymal programs across cancer cell lines. In the CCLE cohort, we quantified the correlation
122 coefficient for each individual gene with epithelial and mesenchymal scores using single-sample
123 gene expression enrichment (ssGSEA) (Tan *et al.*, 2014) (**Fig 1A**). As expected, the mesenchymal
124 genes VIM, ZEB1, SNAI1 and SNAI2 were positively correlated with mesenchymal ssGSEA scores
125 and negatively correlated with epithelial scores. Conversely, the canonical epithelial genes CDH1,
126 GRHL2 and OVOL2 showed a strong positive correlation with ssGSEA-based epithelial scores
127 and negative correlation with ssGSEA-based mesenchymal scores. ELF3 was present among the
128 epithelial factors (**Fig 1A**), reminiscent of its previously-reported positive correlation with *Cdh1* and
129 negative correlation with *Vim* (Sengez *et al.*, 2019; Watanabe *et al.*, 2019). Next, we examined the
130 correlation of ELF3 with these scores in the CCLE cohort in a cancer type-specific manner (**Fig**
131 **1B**). We observed that in a majority of cancer types, including breast cancer, prostate cancer and
132 bladder cancer, ELF3 correlated positively with epithelial scores and negatively with mesenchymal
133 scores. These trends were consistent in TCGA cancer types as well (**Fig 1C**), further suggesting
134 that ELF3 correlates with an epithelial phenotype.

135

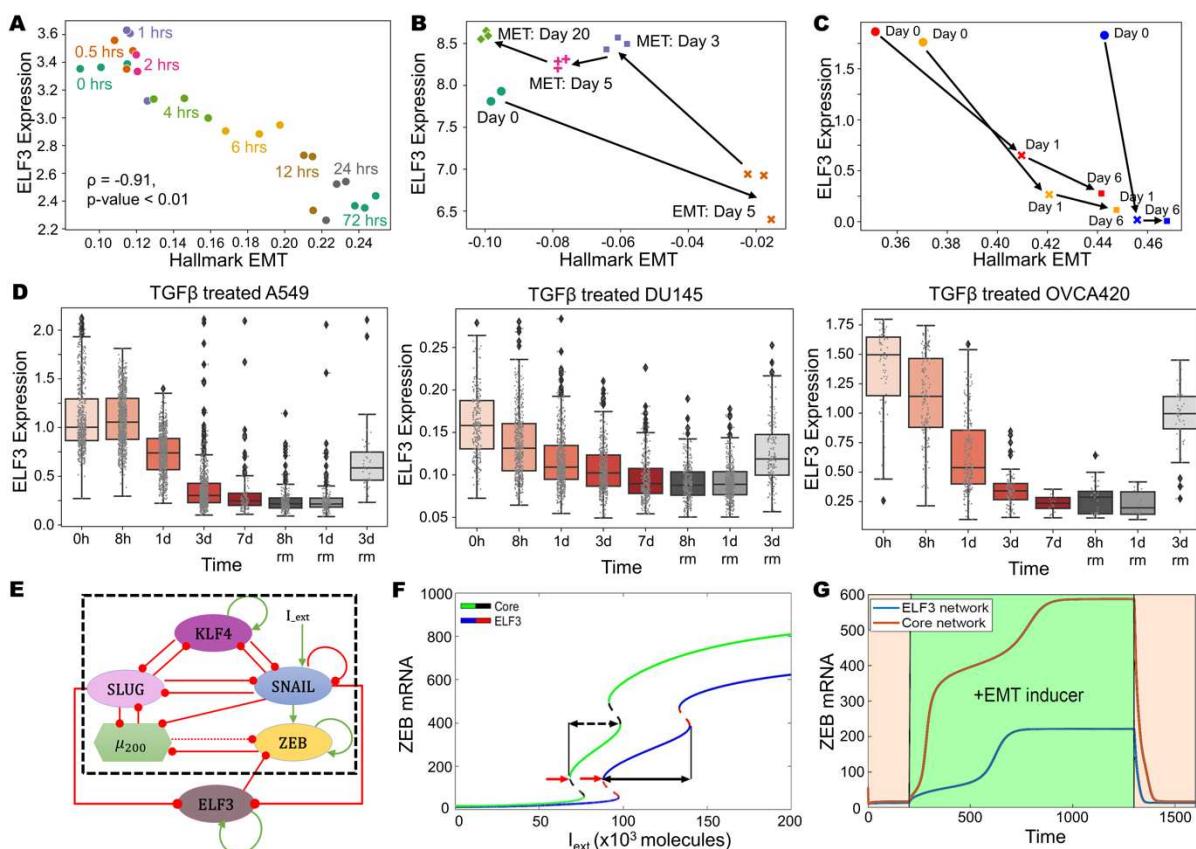
136 We next tabulated ELF3 expression levels with respect to the median epithelial ssGSEA scores in
137 a given cancer type. We observed that an increase in ELF3 expression levels was concordant with
138 that in the corresponding median epithelial scores (**Fig 1D**). Conversely, a decrease in ELF3 levels
139 coincided with increase in EMT scores (**Fig S1A**), thereby highlighting that ELF3 expression levels
140 are higher in epithelial cancer types (PAAD: pancreatic adenocarcinoma, STAD: stomach
141 adenocarcinoma, READ: rectum adenocarcinoma, PRAD: prostate adenocarcinoma, LUAD: lung
142 adenocarcinoma) when compared to mesenchymally-derived cancer types (SARC: sarcoma,
143 LGG: low grade glioma, GBM: glioblastoma) (**Fig 1D**). We next compared the methylation status
144 of ELF3 in comparison to TCGA samples. We observed that the methylation status of ELF3
145 correlated negatively with its expression, and the methylation was usually higher in mesenchymal
146 cancer types (**Fig S1B**). Together, these analyses suggest that ELF3 strongly correlates with an
147 epithelial state across cancers.

148

149 Next, we asked whether ELF3 levels are downregulated during EMT, using publicly- available
150 transcriptomics datasets. We first examined changes in ELF3 expression levels in response to
151 silencing of GRHL2 in OVCA4209 cells (GSE118407) which led to induction of EMT (Chung *et al.*,
152 2019) and reduction in ELF3 levels (**Fig 1E, i**). Similarly, in TGF β -induced EMT in airway epithelial
153 cells (Tian *et al.*, 2015) ELF3 levels were downregulated (**Fig 1E, ii**; GSE61220). Consistent trends
154 were observed in MCF-7 cells that were forced to undergo EMT by the overexpression of SNAIL
155 (McGrail *et al.*, 2015) (GSE58252; **Fig 1E,iii**), and in mouse mammary EpRas cells undergoing a
156 TGF β -driven EMT (GSE59922; **Fig 1E, iv**) (Johansson *et al.*, 2015). Together, these observations
157 indicate that downregulation of ELF3 is a consistent marker of EMT.

158

159 **Figure 1: ELF3 correlates with an epithelial phenotype.** **A)** Scatterplot showing the correlation
160 coefficients of individual genes with epithelial and mesenchymal scores across the CCLE cohort.
161 Mesenchymal genes VIM, ZEB1, SNAI1 and SNAI2 are represented in blue and epithelial genes
162 GRHL2, OVOL2, KLF4 and CDH1 are represented in orange. ELF3 is represented in red. **B)** Tissue
163 specific correlations of ELF3 with epithelial and mesenchymal scores in the CCLE cohort when grouped
164 by tissue of origin. **C)** Correlations of ELF3 with epithelial and mesenchymal scores across different
165 TCGA cancer types. **D)** Boxplot showing ELF3 expression levels across different cancer types in TCGA.
166 Cancer types are ordered by increasing median epithelial scores. **E)** Changes in ELF3 expression
167 during EMT and/or MET induction across GEO datasets. *i*) GSE118407 *ii*) GSE61220 *iii*) GSE58252
168 *iv*) GSE59922. *: $p < 0.05$ (Students' t -test).


169

170 ELF3 is inhibited during EMT induction and can prevent EMT

171 We next investigated temporal changes in ELF3 expression levels in time-course transcriptomic
172 datasets. A549 lung adenocarcinoma cells treated with TGF β to undergo EMT (GSE17708; **Fig**
173 **2A**) (Sartor *et al.*, 2009) showed a progressive decrease in ELF3 levels at later time-points of
174 induction. ELF3 expression was also strongly negatively correlated with the enrichment of the

175 Hallmark EMT signature ($r = -0.91$, $p < 0.001$). Next, we interrogated ELF3 levels in LNCaP
 176 prostate cancer cells along the EMT trajectory upon SNAIL induction and a subsequent MET over
 177 20 days after withdrawal of SNAIL induction (Stylianou *et al.*, 2019). ELF3 levels were reduced
 178 during EMT progression and re-expressed during MET induction (GSE80042; **Fig 2B**). SNAIL- and
 179 TGF β -induced EMT in MCF10A breast epithelial (Comaills *et al.*, 2016) also led to reduction in
 180 ELF3, irrespective of the mode of EMT induction (GSE89152; **Fig 2C**). We also analysed ELF3
 181 expression in single-cell RNA-seq data in samples treated with TGF β for a period of seven days
 182 to undergo EMT followed by three days of recovery for cells to undergo MET (Cook and
 183 Vanderhyden, 2020). Across multiple cell lines – A549 (left), DU145 (center) and OVCA420 (right)
 184 – ELF3 expression levels are inhibited with the onset of EMT, but a recovery in ELF3 expression
 185 is observed as they undergo MET (GSE147405, **Fig 2D**). Together, these analyses suggest that
 186 ELF3 is inhibited in a reversible manner during induction of EMT across multiple contexts.

187

188
 189

190 **Figure 2: Analysis of ELF3 levels during induction of EMT and/or MET. A)** Scatterplot of ssGSEA
 191 scores for the “Hallmark EMT” pathway with ELF3 expression levels at different time points of EMT
 192 induction (GSE17708). Spearman’s correlation coefficient and corresponding p -value is given. **B)**
 193 Scatterplot and trajectory of samples in terms of ssGSEA scores of Hallmark EMT with ELF3 expression
 194 in EMT induction via SNAIL over expression (5 days) and subsequent induction of MET over a 20-day
 195 period (GSE80042). **C)** Same as B) but for treatment with TGF β (red, orange profiles) and SNAIL
 196 induction (blue profile) over a 6-day time period (GSE89152). **D)** Single-cell data of ELF3 levels in TGF β
 197 treated A549 (left), DU145 (center) and OVCA420 (right) over a 7 day period (EMT) followed by TGF β
 198 withdrawal (MET) for the next 3 days (GSE147405). **E)** Schematic representation of ELF3 coupled with
 199 an EMT regulatory network (dotted rectangle) consisting of miR-200, ZEB1, SNAI1, SLUG and KLF4.
 200 Green arrows denote activation, and red bars indicate inhibition. Solid arrows represent transcriptional

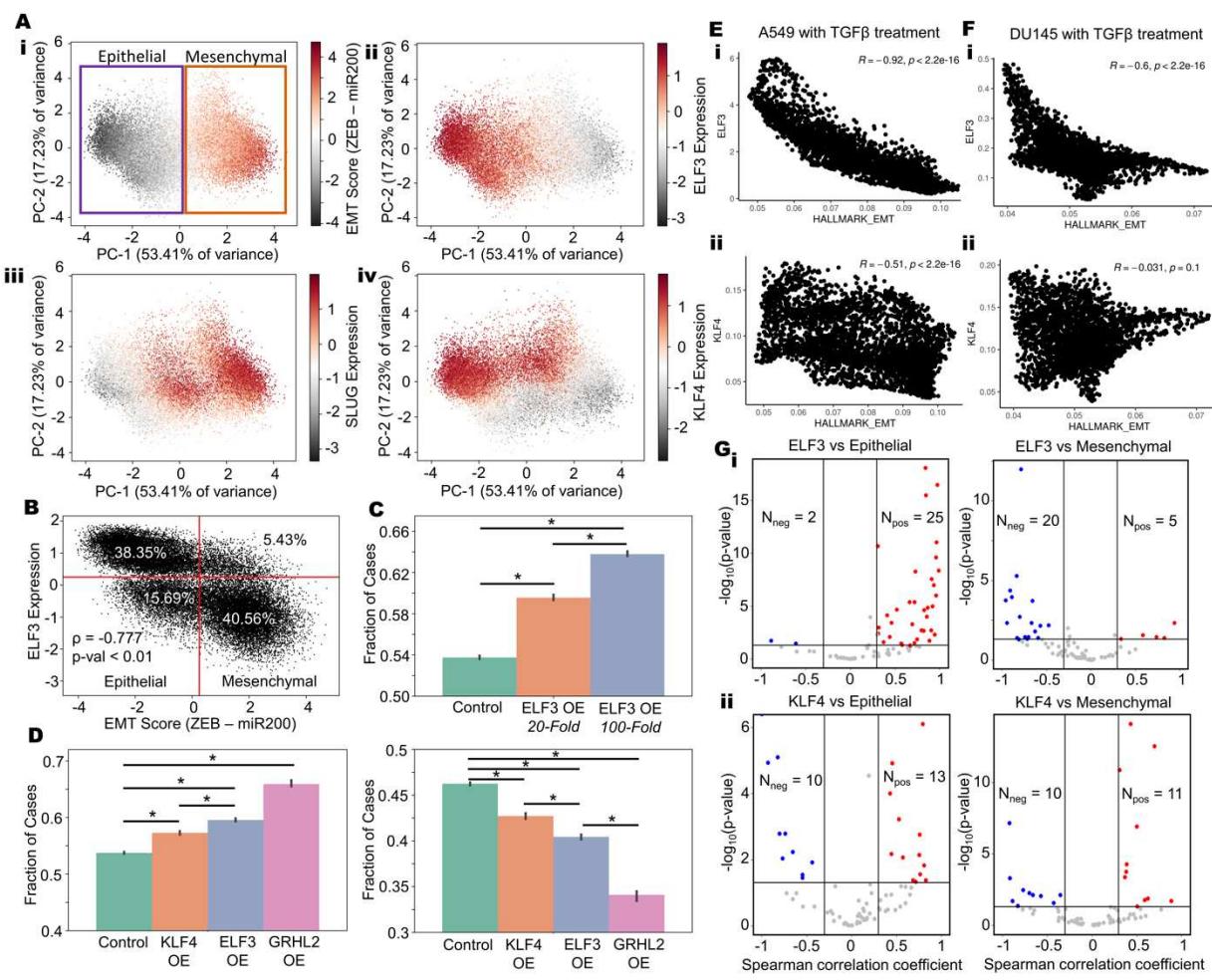
201 regulation; dotted lines represent microRNA-mediated regulation. **F**) Bifurcation diagrams for ZEB1/2
202 mRNA levels in response to an external signal (I_{ext}) levels for the coupled EMT-ELF3 circuit (solid
203 blue and dotted red curve) and the core EMT circuit (solid green and dotted black curve). Black arrows
204 indicate the region of the hybrid E/M state and red arrows indicate a switch from an epithelial phenotype.
205 **G**) Temporal dynamics of ZEB1/2 mRNA levels in a cell starting in an epithelial phenotype when
206 exposed to a high level of an external EMT signal ($I_{ext} = 100,000$ molecules) (green-shaded region)
207 for the circuits shown in panel E.

208
209 Next, we examined the role of ELF3 in modulating EMT dynamics. We analyzed the interaction
210 dynamics between ELF3 and a core EMT regulatory circuit (denoted by black dotted rectangle in
211 **Fig 2E**) comprised of five core factors: three EMT-inducing transcription factors (EMT-TFs) -
212 ZEB1/2, SNAIL, and SLUG - and two EMT-inhibiting factors: the microRNA miR-200 family
213 (Gregory *et al.*, 2008) and KLF4, a transcription factor that correlates with the epithelial phenotype
214 (Yori *et al.*, 2010; Subbalakshmi *et al.*, 2021). First, we plotted a bifurcation diagram to track the
215 levels of ZEB1/2 mRNA (as a readout of EMT phenotype) in response to an external EMT-inducing
216 signal I_{ext} (**Fig 2F**). With an increase in I_{ext} levels, cells switched from an epithelial state (low
217 levels of ZEB1/2 mRNA) to a hybrid E/M phenotype (moderate levels of ZEB1/2 mRNA) and,
218 finally, to a mesenchymal state (high levels of ZEB1/2 mRNA). In the absence of ELF3 (curve with
219 green solid line and black dashed line), the switch from an epithelial to mesenchymal phenotype
220 occurred at a much lower strength of I_{ext} than when compared to the network that contained
221 ELF3 (curve with blue solid line and red dashed line) (indicated using red arrows) (**Fig 2F**). In
222 addition, in the presence of ELF3, the region of I_{ext} for which the hybrid E/M state existed was
223 larger when compared to the core network (dotted black arrows), indicating that ELF3 can stabilize
224 a hybrid E/M state.

225
226 We further mapped the temporal response for a fixed value of I_{ext} signal. We noted a transition
227 from an epithelial state first to a hybrid E/M state and then to a mesenchymal state in response to
228 I_{ext} . However, in the presence of ELF3, this transition was more gradual and relatively slower as
229 compared to the absence of ELF3 (blue curve vs. red curve in **Fig 2G**). Consistently, the steady-
230 state value of ZEB1/2 mRNA levels seen in the presence of ELF3 was relatively lower, due to
231 ELF3-mediated inhibition of ZEB1/2. This trend can also be corroborated by reduced ZEB1/2 levels
232 in the bifurcation diagram (blue curve lies below green curve at all values of I_{ext} in **Fig 2F**).
233

234 We next estimated the extent to which ELF3 impacted EMT dynamics depending on the strength
235 of its interactions with the EMT circuit. When the strength of repression of ZEB1/2 mRNA by ELF3
236 was reduced, we observed an expansion of the {M} region (a mesenchymal phenotype)
237 accompanied by a shrinking of the {E} (only epithelial) and {H} (only hybrid E/M) regions (**Fig S2A**).
238 Conversely, when the strength of ELF3 self-activation was increased or the repression of SLUG
239 on ELF3 was decreased, it resulted in expansion of the {E} and {H} regions and a reduction of the
240 {M} region (**Fig S2B-C**). No major qualitative changes were observed in network dynamics in the
241 above-mentioned cases. To further evaluate the impact of other kinetic parameters on our model
242 predictions, we performed sensitivity analysis by varying the numerical values of the input kinetic
243 parameters by $\pm 10\%$ one by one and captured the changes in the range of the I_{ext} values for the
244 existence of the hybrid E/M state in the bifurcation diagram. Except for a few parameters, most of
245 which did not influence the interactions of ELF3 with the core EMT circuit (except threshold value
246 of ZEB1/2 repression), this change did not extend beyond 5-10% (**Fig S2D**). Importantly, an
247 approximately 35% percent decrease in the region of hybrid E/M phenotypes was estimated when
248 ELF3 was not considered in the network. Overall, this analysis indicates that the behaviour of ELF3
249 in its ability to delay or prevent EMT induction is robust to small parametric variations.
250

251 **ELF3 is predicted to act as an MET inducer**


252

253 To further determine the role of ELF3 in EMT dynamics, we expanded the network to incorporate
254 GRHL2, a potent MET-TF that forms a mutually inhibitory loop with ZEB1 and can activate ELF3
255 (Chung *et al.*, 2016; Farris *et al.*, 2016; Jolly *et al.*, 2016; Mooney *et al.*, 2017) (**Fig S3A**). We
256 simulated the dynamics of this network across an ensemble of parameter values and initial
257 conditions, through RACIPE (Huang *et al.*, 2018) and collated all the steady states obtained. In
258 this ensemble of steady states, both ELF3 values and EMT scores (= ZEB1 – miR-200) showed a
259 bimodal distribution (**Fig S3B**). Principal Component Analysis (PCA) reveals two clusters along
260 the PC1 (which explains 53.41% variance), one of which has low EMT scores and high ELF3, while
261 the other has high EMT scores and low ELF3 levels (**Fig 3A, i-ii**). These results suggest that
262 across the parameter sets considered (each of which can be thought of as representing an
263 individual cell in a heterogeneous population), this network can recapitulate E-M heterogeneity.
264 Projecting SLUG levels on the PCA plot revealed that SLUG expression was higher in
265 mesenchymal and hybrid E/M phenotypes (**Fig 3A, iii**). This trend is in concordance with earlier
266 experimental observations that associate SLUG with varying degrees of EMT (Wels *et al.*, 2011;
267 Sterneck *et al.*, 2020; Subbalakshmi *et al.*, 2022b). Finally, we projected the levels of GRHL2, miR-
268 200, ZEB1 and KLF4 individually on the PCA plot. While GRHL2 expression largely mimicked that
269 of miR-200 or ELF3, ZEB1 expression resembled that of an EMT score (**Fig S3C**). However, KLF4
270 patterns did not completely overlap with other epithelial factors, GRHL2 and ELF3; KLF4 was also
271 high in hybrid E/M phenotypes. This difference indicates a stronger concordance between GRHL2
272 and ELF3 in associating with an epithelial state (**Fig 3A, iv**). A similar difference was also observed
273 in the CCLE cohort scatter plots for the correlation of individual genes with epithelial and
274 mesenchymal scores, where GRHL2 and ELF3 behaved similarly as potential inhibitors of EMT,
275 but KLF4 did not show any significant association with mesenchymal score (**Fig 1A**).
276

277 Based on these observations, we used the bimodally-distributed and inversely-correlated EMT
278 scores and ELF3 expression levels to quantify the *in silico* population distribution of epithelial and
279 mesenchymal phenotypes. For the network shown here, approximately 54% of cells can be
280 classified as epithelial while 46% cells can be binned as mesenchymal (**Fig 3B**). Amongst this
281 population, approximately 71% of the epithelial cells had high levels of ELF3 while only 12% of
282 mesenchymal cells were high in ELF3 expression. This clearly demonstrates that high ELF3
283 expression is predominantly associated with an epithelial phenotype. Next, we determined the
284 effect of ELF3 overexpression on the system by simulations where we overexpressed ELF3 by 20-
285 fold or by 100-fold. These results showed a dose-dependent and statistically reliable increase in
286 the proportion of cells exhibiting an epithelial state (**Fig 3C**), supporting the notion that ELF3 is an
287 MET inducer. We next compared the MET-inducing capabilities of ELF3 with that of GRHL2 and
288 KLF4 (**Fig 3D**). GRHL2 overexpression resulted in the highest epithelial fraction and the lowest
289 mesenchymal fraction. Following GRHL2, ELF3 was found to be the next most potent inducer,
290 followed by KLF4 as the weakest MET inducer.
291

292 To further interrogate this trend, we compared the correlation of ELF3 and KLF4 scores with
293 epithelial (= miR-200 + GRHL2) and mesenchymal (= ZEB + SNAIL + SLUG) factors individually,
294 based on our simulation data. Again, ELF3 showed stronger correlations as compared to KLF4
295 (**Fig S3D-E**). These *in silico* trends were also recapitulated in single-cell RNA-seq data for A549
296 and DU145 with TGF β treatment (Cook and Vanderhyden, 2020) where ELF3 shows stronger
297 trends compared to KLF4 in terms of its correlation with “Hallmark EMT” scores (A549: $r = -0.92$
298 for ELF3 vs. $r = -0.51$ for KLF4; DU145: $r = -0.6$ for ELF3 vs. $r = -0.03$ for KLF4) and with 76-gene
299 signature (76GS)-based scoring of EMT in which higher values indicate an epithelial behavior
300 (Chakraborty *et al.*, 2020) (A549: $r = 0.92$ for ELF3 vs. $r = 0.45$ for KLF4; DU145: $r = 0.48$ for ELF3

301 vs. $r = 0.21$ for KLF4) (Fig 3E-F, S4A-B). Finally, in a meta-analysis across multiple transcriptomic
 302 datasets belonging to breast cancer, ovarian cancer and bladder cancer (Table S1), we
 303 investigated the correlation of ELF3, GRHL2 and KLF4 with epithelial and mesenchymal gene sets.
 304 Among the 27 datasets in breast cancer where ELF3 correlated significantly ($p < 0.05$, $r > 0.3$ or r
 305 < -0.3) with the epithelial signature, the correlation was positive in 25 datasets. Conversely, among
 306 25 breast cancer datasets where ELF3 correlated significantly with the mesenchymal signature,
 307 the correlation was negative in 20 datasets (Fig 3G). While GRHL2 showed similar trends as to
 308 ELF3, KLF4, on the other hand, did not show such strong trends, across the three cancer types
 309 investigated here (Fig 3G, S4C-D). Together, these results propose ELF3 as a putative MET-
 310 inducer, albeit with potentially weaker MET-inducing capacity than GRHL2.
 311

312
 313
 314 **Figure 3: ELF3 as a MET inducer.** **A)** PCA scatter plot of all steady states of RACIPE colored by (i)
 315 EMT score (= ZEB – miR200), ii) SLUG levels iii) ELF3 levels and iv) KLF4 levels. **B)** Scatterplot of
 316 EMT scores and ELF3 levels across steady state solutions obtained from RACIPE. Red lines indicate
 317 the position of minima in the bimodal distributions of EMT scores and ELF3 levels. Spearman correlation
 318 coefficient and p-value are mentioned. **C)** Fraction of steady state solutions resulting in Epithelial
 319 phenotype in control, 20-fold and 100-fold over expression of ELF3. * represents a statistically
 320 significant difference in the fraction of cases in the epithelial phenotype (Students' t-test; $p < 0.05$). **D)**
 321 Fraction of steady state solutions resulting in the Epithelial (left panel) and Mesenchymal (right panel)
 322 phenotypes in control, 20-fold over expression of ELF3, GRHL2 and KLF4. *represents a statistically
 323 significant difference (Students' t-test; $p < 0.05$). **E)** Correlation of ELF3 and KLF4 with Hallmark EMT
 324 ssgSEA scores for single-cell RNA-seq data of A549 cells treated with TGF β . Spearman's' correlation
 325 coefficient values are mentioned (GSE147405). **F)** Same as E) but for DU145. **G)** Volcano plots showing

326 correlation of *ELF3* and *KLF4* levels with ssGSEA epithelial and mesenchymal scores in a meta-
327 analysis of breast cancer datasets. Each dot represents a dataset. $R < -0.3$, $p < 0.05$ or $R > 0.3$, $p <$
328 0.05 are counted as statistically significant cases. N_{neg} denotes number of datasets for which a negative
329 correlation (blue dots) is observed, N_{pos} denotes number of datasets for which a positive correlation
330 (red dots) is observed between the two corresponding expression levels or ssGSEA scores.

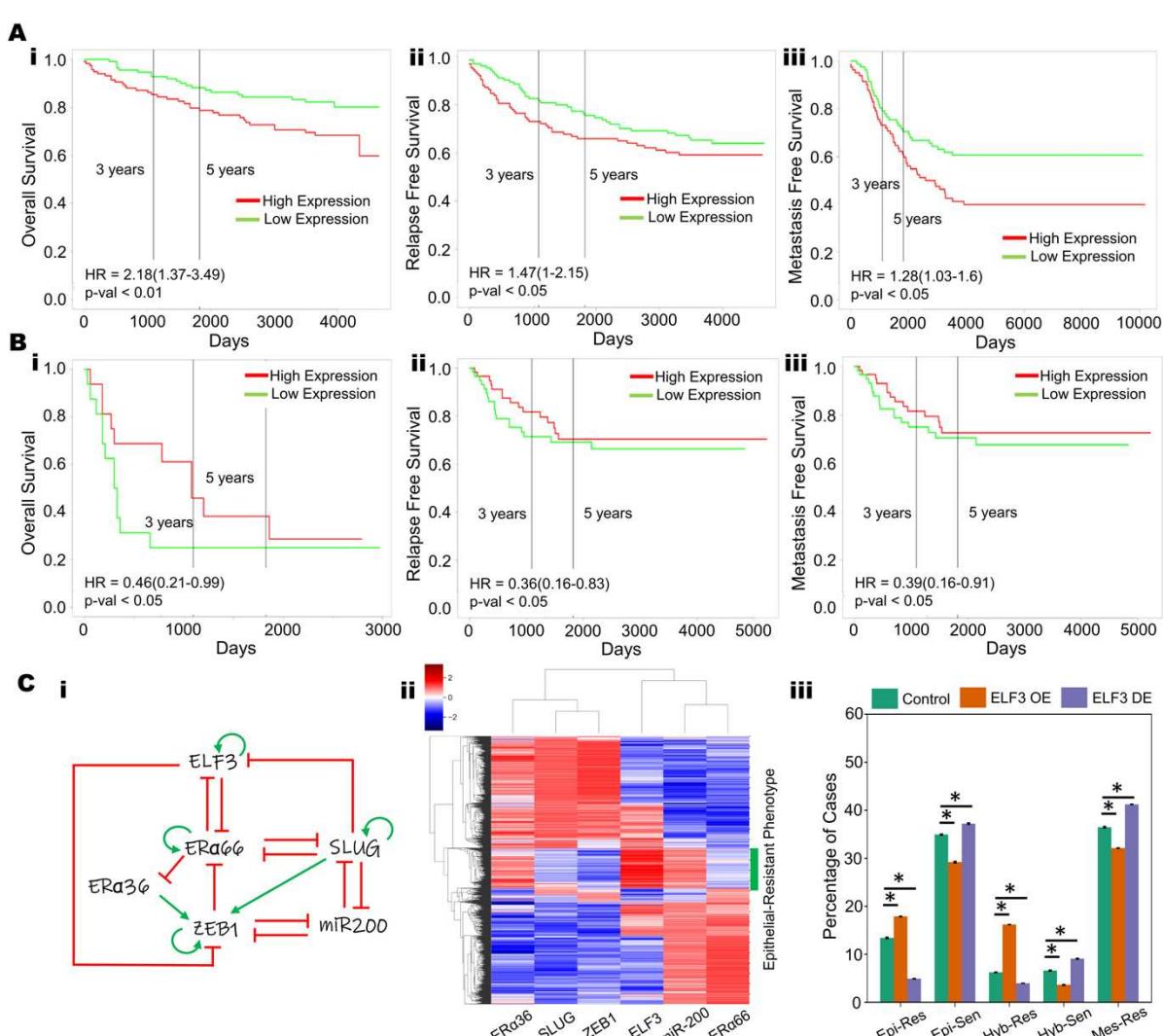
331

332

333 Correlation of *ELF3* with patient survival

334

335 The role of *ELF3* as a regulator of epithelial plasticity led us to query whether *ELF3* is associated
336 with clinical outcomes in cancer. To do this, we analyzed a series of gene expression data sets
337 across solid tumors. In breast cancer, high *ELF3* levels correlated with worse patient outcomes in
338 terms of overall survival, relapse-free survival and metastasis-free survival (**Fig 4A, S5A-C**)
339 (GSE3494, GSE9893, GSE4922, GSE65308 and GSE48408), reminiscent of observations that
340 *ELF3* can act as an independent prognostic marker for poor survival in hormone receptor positive
341 (ER α +, PR+) HER2+ breast cancer patients (Kar and Gutierrez-Hartmann, 2017; Kar *et al.*, 2020).
342 Similar trends have been observed in prostate cancer (Longoni *et al.*, 2013) and non-small cell
343 lung cancer (Wang *et al.*, 2018a). However, the trend was reversed in colorectal cancer, where
344 high *ELF3* levels correlated with better patient prognosis in terms of overall survival, relapse-free
345 survival and metastasis-free survival (GSE16125, GSE39582, GSE28814 and GSE28722) (**Fig**
346 **4B, S5D-F**), similar to reports in ovarian (Yeung *et al.*, 2017) and bladder cancer (Gondkar *et al.*,
347 2019). Thus, *ELF3* appears to associate with patient survival in a cancer-specific manner.


348

349 To gain further insights into this context-specific behavior, we focused on ER+ (estrogen receptor
350 positive) breast cancer. Earlier work, including ours, has shown that in ER+ breast cancer, EMT
351 and tamoxifen resistance can promote each other (Hiscox *et al.*, 2006; Tian and Schiemann, 2017;
352 Wang *et al.*, 2019; Sahoo *et al.*, 2021). With this in mind, we investigated how *ELF3* may influence
353 the EMT-tamoxifen resistance interaction. Our mechanism-based model for coupling EMT factors
354 (miR-200, ZEB, SLUG) with two isoforms of ER (ER α 66 and ER α 36) had predicted that while the
355 predominant phenotypes are either epithelial/tamoxifen-sensitive or mesenchymal/tamoxifen-
356 resistant, there are also other states that can be observed, including epithelial/tamoxifen-resistant,
357 hybrid (E/M)/tamoxifen-resistant and hybrid(E/M)/tamoxifen-sensitive (Sahoo *et al.*, 2021). Thus,
358 we incorporated experimentally-identified connections of *ELF3* with ER α 66 and ER α 36 into our
359 coupled EMT-*ELF3* network and simulated the dynamics of this ER+ breast cancer-specific
360 network using RACIPE (Huang *et al.*, 2018). In the ER+ breast cancer context, *ELF3* can repress
361 the transcriptional function of ER α 66 (Gajulapalli *et al.*, 2016), similar to the role of its family
362 member *ELF5*, which can suppress ER α 66 and its downstream targets, thus mediating tamoxifen
363 resistance in luminal breast cancer cells (Kalyuga *et al.*, 2012). Conversely, *ELF3* is known to be
364 inhibited by ER α 66 in MCF7 and ZR-75.1 cells (Cicatiello *et al.*, 2010), thereby potentially forming
365 a mutually inhibitory loop (**Fig 4C, i**).

366

367 Simulation of this gene regulatory network (**Fig 4C, ii**) using RACIPE suggests that it can enable
368 an epithelial-like, tamoxifen-sensitive state characterized by high levels of miR-200 and ER α 66;
369 low levels of SLUG, ZEB1 and ER α 36 and a mesenchymal-like, tamoxifen-resistant state
370 characterized by low levels of miR-200 and ER α 66; high levels of SLUG, ZEB1 and ER α 36. We
371 also observed that a subset of the epithelial cluster, with high expression of miR-200 and ZEB1 is
372 associated with high expression of *ELF3*, which is consistent with the role of *ELF3* in promoting an
373 epithelial-like phenotype. However, this cluster had a significantly lower expression of ER α 66 and
374 a higher expression of ER α 36 (**Fig 4C, ii**). As ER α 66 is the target of anti-estrogen drugs, such as
375 tamoxifen, the loss or downregulation of ER α 66 is often associated with a more resistant

376 phenotype. Conversely, upregulation ER α 36 is associated with a tamoxifen-resistant phenotype
 377 (Wang *et al.*, 2018b). The association of ELF3 with this epithelial phenotype that also exhibits a
 378 more resistant phenotype may be one of the key contributing factors that explain the relationship
 379 between ELF3 and worse survival in breast cancer. To further substantiate the role of ELF3, we
 380 mimicked ELF3 overexpression *in silico* and found that it increased the frequency of an epithelial/
 381 tamoxifen-resistant phenotype comprised of high levels of miR-200 and ER α 36 and low levels of
 382 ZEB1 and ER α 66, while that of epithelial/tamoxifen-sensitive phenotype decreased. Conversely,
 383 downregulating ELF3 showed opposite trends (Fig 4C, iii). While additional experimental data
 384 supporting this hypothesis is needed to validate the importance of these relationships in tamoxifen
 385 resistance, the observed upregulation of another ETS family member, ELF5, in tamoxifen-resistant
 386 MCF7 cells (Kalyuga *et al.*, 2012; Fitzgerald *et al.*, 2016) and tamoxifen-resistant brain metastases
 387 (Piggin *et al.*, 2020), as well as differential expression of ELF3 in tamoxifen-treated vs. control
 388 groups (Gielen *et al.*, 2005), lends credence to this hypothesis.
 389
 390

391
 392
 393 **Fig 4: Cancer type-specific correlation of ELF3 with patient survival. A)** Higher ELF3 levels
 394 correlate with worse patient outcomes in breast cancer samples (i) overall survival (GSE3494), ii)
 395 relapse-free survival (GSE4922), and iii) metastasis-free survival (GSE48408) **B)** In colorectal cancer
 396 samples, ELF3 levels correlate with worse patient outcomes: i) overall survival (GSE16125), ii) relapse-
 397 free survival (GSE28814), and iii) metastasis-free survival (GSE28814), showing lower. **C** i) A gene

398 regulatory network coupling *ELF3* with the EMT core network (*miR-200*, *ZEB1*, *SLUG*) and Estrogen
399 Receptor isoforms (*ER α 66*, *ER α 36*) in the context of ER+ breast cancer. Red hammers represent
400 inhibitory links and green arrows represent activation links; ii) Heatmap of steady state solutions upon
401 simulation of the GRN in i); iii) Percentage of steady state solutions resulting in each of the phenotype
402 pairs: Epithelial and Resistant (Epi-Res), Epithelial and Sensitive (Epi-Sen), Hybrid and Resistant (Hyb-
403 Res), Hybrid and Sensitive (Hyb-Sen), and Mesenchymal and Resistant (Mes-Res) in control, 20-fold
404 up or downregulation of *ELF3*; * represents a statistically significant difference in the fraction of cases
405 that end up in the epithelial phenotype (Students t-test; p -val < 0.05).

406

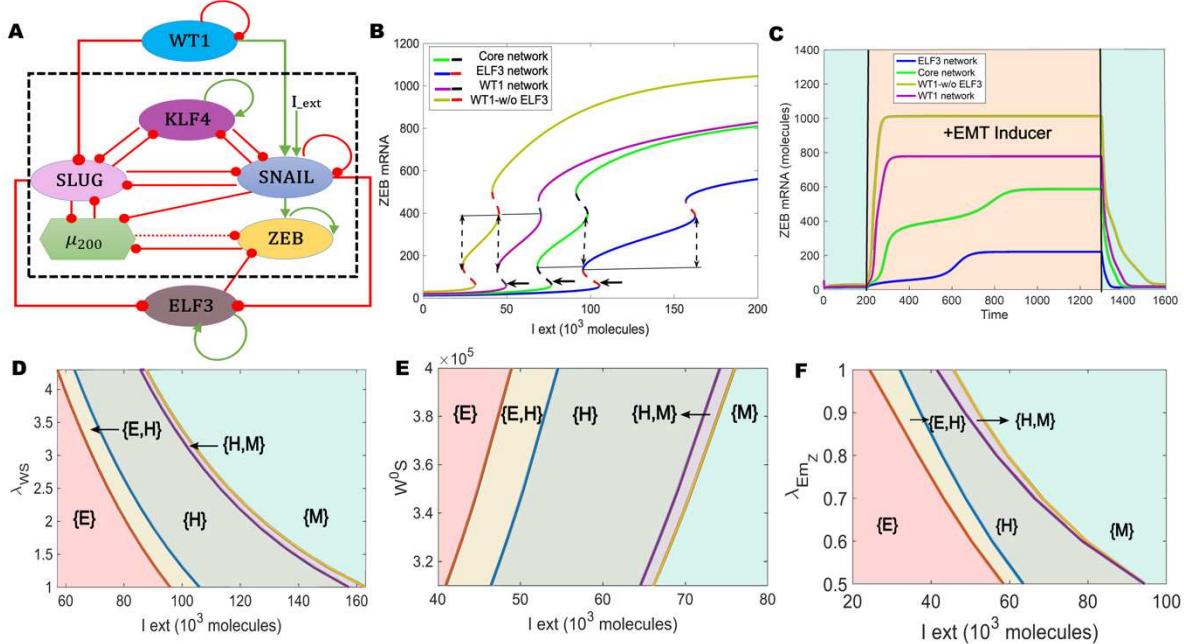
407

408 **ELF3 can inhibit EMT that is mediated by factors such as WT1**

409

410 Given the proposed role of *ELF3* in safeguarding an epithelial phenotype, we analysed whether
411 *ELF3* can prevent EMT induction when an additional factor is added to the abovementioned
412 regulatory network. As an example of an additional EMT inducing factor, we focused on Wilms
413 Tumour (WT1). WT1 was found to transcriptionally repress *Cdh1* and activate *Snail* in epicardial
414 cells, where its knockdown reduced the frequency of cardio-vascular progenitor cells and its
415 derivatives (Martínez-Estrada *et al.*, 2010). Similarly, in NSCLC (non-small cell lung cancer) and
416 prostate cancer, WT1 inhibits *Cdh1* and promotes invasion (Brett *et al.*, 2013; Wu *et al.*, 2013).
417 WT1 levels were found to be higher in cancer cells relative to cancer-adjacent, non-tumor tissue,
418 while CDH1 levels were lower in the cancer cells as compared to the cancer-adjacent tissue (Wu
419 *et al.*, 2013; Han *et al.*, 2020). Similarly, in breast cancer, WT1-positive tumors were found to be
420 more mesenchymal, and overexpression of WT1 in breast epithelial cells, HBL100, led to
421 upregulation of mesenchymal markers, such as Vimentin (*Vim*) and Tenascin C (*Tnc*) (Artibani *et*
422 *al.*, 2017). Together, these observations highlight WT1 as a potent EMT-inducer.

423


424 At a molecular level, WT1 is self-inhibitory (Reddy *et al.*, 1995), while promoting the expression of
425 SNAIL (Martínez-Estrada *et al.*, 2010) and inhibiting the expression of SLUG (Takeichi *et al.*,
426 2013). Based on these experimental data, we expanded our network model to incorporate these
427 interactions (**Fig 5A**). Next, we calculated the bifurcation diagram of ZEB1/2 mRNA levels in
428 response to an external EMT-inducing signal I_{ext} , for four different circuits: core network (no
429 *ELF3*, no WT1: WT1-/ELF3-), core network + *ELF3* (WT-/ELF3+), core network + *ELF3* + WT1
430 (WT1+/ELF3+), core network + WT1 (WT+/ELF3-) (**Fig 5B**). The first two bifurcation diagrams
431 (WT-/ELF3-, WT-/ELF3+ – shown in green solid and black dotted curve, and blue solid and red
432 dotted curve respectively) are the same as we calculated earlier (**Fig 2D**), showing that the
433 presence of *ELF3* required more I_{ext} to force cells out of an epithelial phenotype. In scenarios of
434 WT1-/ELF3+ (blue solid and red dashed curve), and WT1-/ELF3- (solid green and black dashed
435 curve), the switch from an epithelial to mesenchymal phenotype occurred at a much higher
436 strength of I_{ext} than when compared to the network which contained WT1, either in presence
437 (solid purple and black dashed curve) or absence (solid yellow with red dashed curve) of *ELF3*
438 (WT1+/ELF3-, WT1+/ELF3+) (**Fig 6B**). Further, in the presence of WT1 (indicated by solid black
439 arrow), the region of I_{ext} for which the hybrid E/M state existed shrunk when compared to the
440 network containing *ELF3* but not WT1 (indicated by dotted black arrow), further indicating that
441 *ELF3* can inhibit WT1-induced EMT.

442

443 We next mapped the temporal responses of these four circuits for a fixed value of I_{ext} signal.
444 Among these four circuits, we found steady-state values of ZEB1/2 mRNA levels to be at a
445 minimum in the presence of *ELF3* and absence of WT1, and to be at a maximum in the presence
446 of WT1 and absence of *ELF3* (**Fig 5C**), thus supporting the ability of *ELF3* to inhibit WT1-driven
447 EMT. We next asked how specific interactions influence the ability of *ELF3* to impact EMT

448 dynamics. Increasing the strength of WT1-induced SNAIL activation – by either increasing the
 449 corresponding fold-change parameter (**Fig 5D**) or by reducing the threshold levels of WT1 needed
 450 to activate SNAIL (**Fig 5E**) – the region corresponding to a mesenchymal phenotype {M} expanded
 451 while that corresponding to an epithelial phenotype {E} decreased. These trends indicate that a
 452 stronger activation of SNAIL by WT1 can counteract the role of ELF3 as an EMT inhibitor.
 453 Conversely, an increase in the strength of ELF3-mediated ZEB1/2 inhibition leads to an expansion
 454 of the {E} region (only epithelial phenotype) accompanied by a shrinking of the {M} (only
 455 mesenchymal) and {H} (only hybrid E/M) regions (**Fig 5F**). Thus, ELF3 and WT1 can have opposite
 456 roles in enabling EMT progression.
 457

458 Given the mutually-antagonistic relationship between WT1 and ELF3 in mediating EMT, we asked
 459 whether these factors demonstrated inverse trends in clinical data and correlated with patient
 460 outcomes. In breast cancer data sets, high WT1 levels correlated with improved relapse-free
 461 survival and overall survival (**Fig S6A-B**, GSE9893). However, this trend was reversed in other
 462 cancer types in which high WT1 associated with worse patient outcomes - colorectal cancer
 463 (relapse free survival: **Fig S6C-D**; GSE17536, GSE14333), lung cancer (overall survival: **Fig S6E-F**,
 464 GSE50081, GSE3141; relapse free survival: **Fig S6G**, GSE31210), ovarian cancer (overall
 465 survival: **Fig S6H**, GSE73614) and pancreatic cancer (overall survival: **Fig S6I**, TCGA-PAAD).
 466 Thus, in breast cancer, higher ELF3 or lower WT1 levels associated with worse outcomes, while
 467 in colorectal and ovarian cancer, lower ELF3 or higher WT1 levels had worse prognosis,
 468 reminiscent of the antagonistic role of ELF3 and WT1 in mediating phenotypic plasticity.
 469
 470

471
 472 **Figure 5: ELF3 can inhibit induction of EMT by WT1.** **A)** Schematic representation of the ELF3
 473 network coupled with WT1. Green arrows denote activation, red bars indicate inhibition. **B)** Bifurcation
 474 diagrams for ZEB1/2 mRNA levels in response to an external signal (I_{ext}) levels for the coupled WT1
 475 coupled ELF3 network (solid pink and dotted black curve), WT1 coupled with the core EMT circuit (no
 476 ELF3) (solid yellow and dotted red curve), EMT–ELF3 circuit (solid blue and dotted red curve) and core
 477 EMT circuit (solid green and dotted black curve). Solid lines indicate the region of the hybrid state;
 478 arrows indicate the switch from epithelial phenotype. **C)** Temporal dynamics of ZEB1/2 mRNA levels in
 479 a cell starting in an epithelial phenotype when exposed to a high level of an external EMT signal (I_{ext}
 480 = 100,000 molecules) (orange-shaded region) for WT1 coupled with the ELF3 network (pink curve),

481 *WT1 coupled with the core EMT circuit (no ELF3) (yellow curve), EMT-ELF3 circuit (blue curve) and*
482 *core EMT circuit (no ELF3; no WT1: green curve). D) Phase diagrams for WT1 coupled with an ELF3*
483 *network driven by an external signal (I_{ext}) for varying strength of activation from WT1 to SNAIL. E)*
484 *Same as D, but for varying threshold levels along of WT1 to activate SNAIL. F) Same as D, but for*
485 *varying strength of inhibition of ZEB by ELF3. In D-F, different coloured regions show varied phases*
486 *(combination of co-existing phenotypes).*

487

488

489

490 Discussion

491

492 We propose ELF3 as a putative MET-TF, based on transcriptomic data analysis showcasing a
493 strong association of ELF3 with an epithelial phenotype and its reversible reduction during EMT,
494 as well as predictions from mechanism-based mathematical model for a network containing many
495 core EMT/MET factors. These observations are in concordance with experimental data showing
496 that silencing of ELF3 in NMuMG cells led to retention of a mesenchymal phenotype even when
497 TGF β was withdrawn, resulting in impaired MET (Sengez *et al.*, 2019). Similarly, knockdown of
498 ELF3 in biliary tract cancer cells resulted in upregulation of mesenchymal markers such as ZEB1/2,
499 VIM and TWIST1 accompanied by the downregulation of KRT19 (Suzuki *et al.*, 2021). Conversely,
500 ELF3 over-expression in SKOV3 cells led to an inhibition of EMT (Yeung *et al.*, 2017). Further, in
501 gastric cancer, an antagonistic relation between ZEB1 and ELF3 was observed through their
502 downstream targets, such as IRF6 (Li *et al.*, 2019). In circulating tumor cells and in patient tumor
503 biopsies, too (Liu *et al.*, 2019; Balcik-Ercin *et al.*, 2021), expression levels of ELF3 and ZEB1 were
504 anti-correlated. Thus, similar to ELF5 (Chakrabarti *et al.*, 2012; Wu *et al.*, 2015; Yao *et al.*, 2015),
505 ELF3 may serve as an epithelial gatekeeper.

506

507 Besides being a potential epithelial gatekeeper, ELF3 is also involved in maintaining cancer cell
508 stemness. In high-grade serous ovarian cancer (HGSOC), ELF3 forms a positive feedback loop
509 with LGR4, which is involved in stem-cell renewal. Knockdown of ELF3 reduced tumorsphere
510 formation (Wang *et al.*, 2020). However, in bladder urothelial carcinoma, overexpressing ELF3
511 repressed tumor-sphere formation despite antagonizing EMT (Na *et al.*, 2022). Hence, the
512 interplay between ELF3, EMT and stemness appears to be context-specific, reminiscent of recent
513 observations associating various stages of EMT with enhanced tumor-initiation potential in many
514 cancer types (Pastushenko *et al.*, 2018; Kröger *et al.*, 2019; Pasani *et al.*, 2021; Brown *et al.*,
515 2022). Such context-specific associations may underlie lineage-restricted roles of ELF3 as a tumor
516 suppressor or an oncogene, depending on cancer cell lineage and/or differentiation status (Enfield
517 *et al.*, 2019).

518

519 In addition to stemness, the role of ELF3 in conferring therapy resistance has been investigated.
520 ELF3 has been reported to be upregulated in NSCLC cells resistant to the PARP inhibitor, olaparib
521 (Wang *et al.*, 2021). Further, in NSCLC cells, treatment with auranofin reduced ELF3 levels and
522 induced cell death (Lee *et al.*, 2021). Similarly, ELF3 overexpression in ovarian cancer cells
523 reduced their sensitivity to cisplatin (Liu *et al.*, 2021). Future investigations should interrogate the
524 coupled dynamics of ELF3, EMT and resistance to specific therapies, similar to our observations
525 that ELF3 is associated with an epithelial and tamoxifen-resistant cell-state.

526

527 Our analysis also revealed that while ELF3 may show stronger association with an epithelial state
528 when compared with KLF4, but its effects in inducing MET were found to be weaker than GRHL2.
529 GRHL2 is a pioneering transcription factor that can bind to closed chromatin and initiate its opening
530 (Chen *et al.*, 2018; Balsalobre and Drouin, 2022). Although our mechanism-based mathematical

model does not incorporate epigenetic interactions, the ability of GRHL2 to influence chromatin-level reprogramming further elevates its potency as a strong MET inducer (Chung *et al.*, 2019). GRHL2 has also been reported to be lineage-specific driver of reprogrammed estrogen signaling and an enabler of endocrine resistance in ER+ breast cancer (Cocce *et al.*, 2019; Kumegawa *et al.*, 2022). While GRHL2 overexpression was sufficient to induce MET in mesenchymal MDA-MB-231 breast cancer cells, it failed to do so in RD sarcoma cells (Somarelli *et al.*, 2016). Further analysis of EMT/MET inducing transcription factors should thus consider tissue lineage as a crucial axis, because of varying potency of these factors in facilitating lineage-restricted phenotypic plasticity.

540

541

542

Materials and Methods

544

Mathematical modeling

546

547 A system of coupled ordinary differential equations were employed to understand the dynamics of
 548 the ELF3 coupled EMT circuit comprising of miR-200, SNAIL, ZEB, SLUG and KLF4 (**Fig 2E**). The
 549 following generic chemical rate equation describes the level of a protein, mRNA or micro-RNA (X):

551 where g_x represents the basal rate of production, transcriptional/translational/post-translational
 552 regulations is represented by the terms multiplied by g_x . – one or more shifted Hills function
 553 ($H^S(A, A_0, n, \lambda)$) that describe the interactions among the species in the system. The degradation
 554 of species (X) is assumed to follow first-order kinetics and thus defined by the term $k_x X$.

555

556 The complete set of equations and parameters are presented in the Supplementary Material.
557 Bifurcation diagrams were drawn in MATLAB (MathWorks Inc.) using the continuation software
558 package MATCONT (Dhooge *et al.*, 2008).

559

RACIPE (random network simulation)

561

562 Random Circuit Perturbation (RACIPE) is a simulation framework that extensively explore the
 563 possible multistable properties of a given gene regulatory network (Huang *et al.*, 2017). Based on
 564 the gene regulatory network topology, x coupled ordinary differential equations (ODEs) are
 565 simulated to obtain the multistable properties of the gene regulatory network (x is the number of
 566 nodes/genes in the network). The parameters for the set of coupled ordinary differential equations
 567 are sampled randomly from pre-defined ranges that ensures a robust sampling of a large
 568 parameter space that can represent the overall dynamical properties of the gene regulatory
 569 network. The program samples 10000 sets of parameters and for each parameter set, RACIPE
 570 initialises the system with a random set of initial conditions ($n = 100$) for each node in the network.
 571 The parameterised set of ODEs are then solved using the Eulers method to obtain one or many
 572 steady states that represent the attractors that are enabled by each parameter set. The steady
 573 state expression values are then z-normalised for principal component analysis (PCA) and
 574 hierarchical clustering analysis. The perturbation analysis was done by performing RACIPE
 575 analysis on a gene regulatory network by either over expressing (OE) or down expressing (DE) a
 576 specified node by x -fold (i.e. the production rate of that particular gene is increase by x -folds and
 577 the steady state values are computed for the set of coupled ODEs). The Z-score normalisation of
 578 these perturbation data was done with respect to the control case where none of the production
 579 rates were altered. The proportion of phenotypes in each case were then computed over three
 580 replicates of in-silico perturbations to assess for statistical significance.

581

582 **Gene expression datasets**

583 Gene expression datasets were downloaded using the GEOquery R Bioconductor package (Davis
584 and Meltzer, 2007). The datasets were pre-processed for each sample and gene-wise expression
585 data was obtained from probe-wise expression matrix using R (version 4.0.0). To calculate the
586 Epithelial and/or the mesenchymal scores for bulk RNA seq data, we used the ssGSEA
587 functionality to estimate the activity of either the epithelial and/or the mesenchymal set of genes
588 for each sample in the corresponding datasets. The epithelial and mesenchymal gene lists were
589 obtained from (Tan *et al.*, 2014). The Hallmark EMT gene set was obtained from MSigDB (Liberzon
590 *et al.*, 2011). For the single cell RNA seq dataset, GSE147405 (Cook and Vanderhyden, 2020),
591 imputation of gene expression values was performed using MAGIC (van Dijk *et al.*, 2018) before
592 plotting the expression levels of ELF3, KLF4 and GRHL2. Imputed values were also used to
593 calculate the activity of the gene signatures such as the Hallmark EMT signature using AUCCell
594 (Aibar *et al.*, 2017). We computed the Spearman correlation coefficients and used corresponding
595 p-values to gauge the strength of correlations for all correlation analysis. For statistical comparison
596 between discrete groups, we used a two-tailed Student's t-test under the assumption of unequal
597 variances and computed significance.

598

599 **Kaplan-Meier analysis**

600 Kaplan-Meier analysis for respective datasets was performed using ProgGene (Goswami and
601 Nakshatri, 2014). The number of samples showing high and low expression levels of ELF3 and
602 WT1 are indicated in the SI table.

603

604

605

606

607

608

609

610 **Author Contributions** MKJ conceptualized research; MKJ and JAS supervised research; ARS,
611 SS, PM, SG, VAK, YM, SR and IM performed research and analyzed data. All authors contributed
612 to writing and review of the manuscript.

613

614

615 **Conflict of Interest** The authors declare no conflict of interest.

616

617 **Funding**

618 This work was supported by Ramanujan Fellowship (SB/S2/RJN-049/2018) awarded to MKJ by
619 Science and Engineering Research Board (SERB), Department of Science and Technology (DST),
620 Government of India. JAS is supported by the Department of Defense (W81XWH-18-1-0189) and
621 NCI 1R01CA233585-03. SS was awarded Prime Ministers' Research Fellowship (PMRF) by
622 Government of India.

623

624

625

626

627

628

629

630

631

632 References

633

634 Aibar, S et al. (2017). SCENIC: Single-cell regulatory network inference and clustering. *Nat Methods*
635 14, 1083–1086.

636 Artibani, M et al. (2017). WT1 expression in breast cancer disrupts the epithelial/mesenchymal
637 balance of tumour cells and correlates with the metabolic response to docetaxel. *Sci Rep* 7, 45255.

638 Balcik-Ercin, P, Cayrefourcq, L, Soundararajan, R, Mani, SA, and Alix-Panabières, C (2021).
639 Epithelial-to-mesenchymal plasticity in circulating tumor cell lines sequentially derived from a patient
640 with colorectal cancer. *Cancers (Basel)* 13, 5408.

641 Balsalobre, A, and Drouin, J (2022). Pioneer factors as master regulators of the epigenome and cell
642 fate. *Nat Rev Mol Cell Biol* 23, 449–464.

643 Bolós, V, Peinado, H, Pérez-Moreno, M a, Fraga, MF, Esteller, M, and Cano, A (2003). The
644 transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal
645 transitions: a comparison with Snail and E47 repressors. *J Cell Sci* 116, 499–511.

646 Brett, A, Pandey, S, and Fraizer, G (2013). The Wilms' tumor gene (WT1) regulates E-cadherin
647 expression and migration of prostate cancer cells. *Mol Cancer* 12, 2013.

648 Brown, M, Abdollahi, B, and Wilkins, O (2022). Phenotypic heterogeneity driven by plasticity of the
649 intermediate EMT state governs disease progression and metastasis in breast cancer. *Sci Adv* 8,
650 eabj8002.

651 Celià-Terrassa, T et al. (2018). Hysteresis control of epithelial-mesenchymal transition dynamics
652 conveys a distinct program with enhanced metastatic ability. *Nat Commun* 9, 5005.

653 Celià-Terrassa, T, and Kang, Y (2016). Distinctive properties of metastasis- initiating cells. *Genes Dev*
654 30, 892–908.

655 Chakrabarti, R et al. (2012). Elf5 inhibits the epithelial-mesenchymal transition in mammary gland
656 development and breast cancer metastasis by transcriptionally repressing Snail2. *Nat Cell Biol* 14,
657 1212–1222.

658 Chakraborty, P, George, JT, Tripathi, S, Levine, H, and Jolly, MK (2020). Comparative Study of
659 Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. *Front
660 Bioeng Biotechnol* 8, 220.

661 Chen, AF, Liu, AJ, Krishnakumar, R, Freimer, JW, DeVeale, B, and Blelloch, R (2018). GRHL2-
662 Dependent Enhancer Switching Maintains a Pluripotent Stem Cell Transcriptional Subnetwork after
663 Exit from Naive Pluripotency. *Cell Stem Cell* 23, 226–238.

664 Chung, VY et al. (2016). GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer
665 through transcriptional regulation and histone modification. *Sci Rep* 6, 1–15.

666 Chung, VY, Tan, TZ, Ye, J, Huang, R-L, Lai, H-C, Kappei, D, Wollmann, H, Guccione, E, and Huang,
667 RY-J (2019). The role of GRHL2 and epigenetic remodeling in epithelial–mesenchymal plasticity in
668 ovarian cancer cells. *Commun Biol* 2, 272.

669 Cicatiello, L et al. (2010). Estrogen receptor α controls a gene network in luminal-like breast cancer
670 cells comprising multiple transcription factors and microRNAs. *Am J Pathol* 176, 2113–2130.

671 Cocce, KJ et al. (2019). The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to
672 Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. *Cell Rep* 29, 889–
673 903.e10.

674 Comaills, V et al. (2016). Genomic Instability Is Induced by Persistent Proliferation of Cells
675 Undergoing Epithelial-to- Mesenchymal Transition. *Cell Rep* 17, 2632–2647.

676 Cook, DP, and Vanderhyden, BC (2020). Context specificity of the EMT transcriptional response. *Nat
677 Commun* 11, 2142.

678 Davis, S, and Meltzer, PS (2007). GEOquery: A bridge between the Gene Expression Omnibus
679 (GEO) and BioConductor. *Bioinformatics* 23, 1846–1847.

680 Deshmukh, AP et al. (2021). Identification of EMT signaling cross-talk and gene regulatory networks
681 by single-cell RNA sequencing. *Proc Natl Acad Sci U S A* 118, e2102050118.

682 Dhooge, A, Govaerts, W, Kuznetsov, YA, Meijer, HGE, and Sautois, B (2008). New features of the
683 software MatCont for bifurcation analysis of dynamical systems. *Math Comput Model Dyn Syst* 14,
684 147–175.

685 van Dijk, D et al. (2018). Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.
686 *Cell* 174, 716-729.e27.

687 Drápela, S, Bouchal, J, Jolly, MK, and Culig, Z (2020). ZEB1 : A Critical Regulator of Cell Plasticity ,
688 DNA Damage Response , and Therapy Resistance. *Front Mol Biosci* 7, 36.

689 Enfield, KSS et al. (2019). Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene
690 in lung adenocarcinoma. *Nat Commun* 10, 5438.

691 Farris, JC, Pifer, PM, Zheng, L, Gottlieb, E, Denvir, J, and Frisch, SM (2016). Grainyhead-like 2
692 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: Effects
693 on anoikis. *Mol Cancer Res* 14, 528–538.

694 Fitzgerald, LM, Browne, EP, Christie, KD, Punsha, EC, Simmons, LO, Williams, KE, Pentecost, BT,
695 Jawale, R, Otis, CN, and Arcaro, KF (2016). ELF5 and DOK7 regulation in anti-estrogen treated cells
696 and tumors. *Cancer Cell Int* 16, 8.

697 Fujimoto, S, Hayashi, R, Hara, S, Sasamoto, Y, Harrington, J, Tsujikawa, M, and Nishida, K (2019).
698 KLF4 prevents epithelial to mesenchymal transition in human corneal epithelial cells via endogenous
699 TGF- β 2 suppression. *Regen Ther* 11, 249–257.

700 Gajulapalli, VNR, Samantrapudi, VSK, Pulaganti, M, Khumukcham, SS, Malisetty, VL, Guruprasad, L,
701 Chitta, SK, and Manavathi, B (2016). A transcriptional repressive role for epithelial-specific ETS factor
702 ELF3 on oestrogen receptor alpha in breast cancer cells. *Biochem J* 473, 1047–1061.

703 Gielen, SCJP, Kühne, LCM, Ewing, PC, Blok, LJ, and Burger, CW (2005). Tamoxifen treatment for
704 breast cancer enforces a distinct gene-expression profile on the human endometrium: An exploratory
705 study. *Endocr Relat Cancer* 12, 1037–1049.

706 Gondkar, K, Patel, K, Krishnappa, S, Patil, A, Nair, B, Sundaram, GM, Zea, TT, and Kumar, P (2019).
707 E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition
708 in bladder carcinoma. *Cancer Biomarkers* 25, 223–232.

709 Goswami, CP, and Nakshatri, H (2014). PROGgeneV2 : enhancements on the existing database.
710 *BMC Cancer* 14.

711 Gregory, PA, Bert, AG, Paterson, EL, Barry, SC, Tsykin, A, Farshid, G, Vadas, M a, Khew-Goodall, Y,
712 and Goodall, GJ (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal
713 transition by targeting ZEB1 and SIP1. *Nat Cell Biol* 10, 593–601.

714 Gupta, PB, Pastushenko, I, Skibinski, A, Blanpain, C, and Kuperwasser, C (2019). Phenotypic
715 Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. *Cell Stem Cell*.

716 Han, Y, Song, C, Zhang, T, Zhou, Q, Zhang, X, Wang, J, Xu, B, Zhang, X, Liu, X, and Ying, X (2020).
717 Wilms' tumor 1 (WT1) promotes ovarian cancer progression by regulating E-cadherin and ERK1/2
718 signaling. *Cell Cycle* 19, 2662–2675.

719 Hiscox, S, Jiang, WG, Obermeier, K, Taylor, K, Morgan, L, Burmi, R, Barrow, D, and Nicholson, RI
720 (2006). Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of
721 β -catenin phosphorylation. *Int J Cancer* 118, 290–301.

722 Huang, B, Jia, D, Feng, J, Levine, H, Onuchic, JN, and Lu, M (2018). RACIPE: a computational tool
723 for modeling gene regulatory circuits using randomization. *BMC Syst Biol* 12, 74.

724 Huang, B, Lu, M, Jia, D, Ben-Jacob, E, Levine, H, and Onuchic, JN (2017). Interrogating the
725 topological robustness of gene regulatory circuits by randomization. *PLoS Comput Biol* 13, e1005456.

726 Johansson, J, Tabor, V, Wikell, A, Jalkanen, S, and Fuxe, J (2015). TGF- β 1-Induced Epithelial-
727 Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. *Front
728 Oncol* 5, 3.

729 Jolly, MK, Preca, B-T, Tripathi, SC, Jia, D, George, JT, Hanash, SM, Brabertz, T, Stemmler, MP,
730 Maurer, J, and Levine, H (2018). Interconnected feedback loops among ESRP1, HAS2, and CD44
731 regulate epithelial-mesenchymal plasticity in cancer. *APL Bioeng* 2, 031908.

732 Jolly, MK, Tripathi, SC, Jia, D, Mooney, SM, Celiktas, M, Hanash, SM, Mani, SA, Pienta, KJ, Ben-
733 Jacob, E, and Levine, H (2016). Stability of the hybrid epithelial/mesenchymal phenotype. *Oncotarget*
734 7, 27067–27084.

735 Kalyuga, M et al. (2012). ELF5 Suppresses Estrogen Sensitivity and Underpins the Acquisition of
736 Antiestrogen Resistance in Luminal Breast Cancer. *PLoS Biol* 10, e1001461.

737 Kar, A, and Gutierrez-Hartmann, A (2017). ESE-1/ELF3 mRNA expression associates with poor
738 survival outcomes in HER2+ breast cancer patients and is critical for tumorigenesis in HER2+ breast
739 cancer cells. *Oncotarget* 8, 69622–69640.

740 Kar, A, Koto, K, Walker, D, Trudeau, T, Edgerton, S, Thor, A, and Gutierrez-Hartmann, A (2020). ETS
741 transcription factor ESE-1/Elf3 is an independent prognostic factor of survival in HR+HER2+ breast
742 cancer patients. *Breast Cancer Res Treat* 182, 601–612.

743 Karacosta, LG, Anchang, B, Ignatiadis, N, Kimmey, SC, Benson, JA, Shrager, JB, Tibshirani, R,
744 Bendall, SC, and Plevritis, SK (2019). Mapping Lung Cancer Epithelial-Mesenchymal Transition
745 States and Trajectories with Single-Cell Resolution. *Nat Commun* 10, 5587.

746 Kröger, C et al. (2019). Acquisition of a hybrid E / M state is essential for tumorigenicity of basal
747 breast cancer cells. *Proc Natl Acad Sci U S A* 116, 7353–7362.

748 Kumegawa, K et al. (2022). GRHL2 motif is associated with intratumor heterogeneity of cis-regulatory
749 elements in luminal breast cancer. *Npj Breast Cancer* 8, 70.

750 Lee, J-S, Choi, YE, Kim, S, Han, J-Y, and Goh, S-H (2021). ELF3 Is a Target That Promotes

751 Therapeutic Efficiency in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer
752 Cells via Inhibiting PKC ζ . *Int J Mol Sci* 22, 12287.

753 Li, D, Chen, Z, Xu, M, Zhang, X, Chen, Z, Huang, P, Huang, C, and Qin, S (2021a). The SNAI2-ELF3-
754 AS1 Feedback Loop Drives Gastric Cancer Metastasis and Regulates ELF3 Expression At
755 Transcriptional and Post-Transcriptional Levels. ResearchSquare, 880315.

756 Li, D, Cheng, P, Wang, J, Qiu, X, Zhang, X, Xu, L, Liu, Y, and Qin, S (2019). IRF6 is directly regulated
757 by ZEB1 and ELF3, and predicts a favorable prognosis in gastric cancer. *Front Oncol* 9, 220.

758 Li, Q, Meissner, TB, Wang, F, Du, Z, Ma, S, Kshirsagar, S, Tilburgs, T, Buenrostro, JD, Uesugi, M,
759 and Strominger, JL (2021b). ELF3 activated by a superenhancer and an autoregulatory feedback loop
760 is required for high-level HLA-C expression on extravillous trophoblasts. *Proc Natl Acad Sci U S A*
761 118, e2025512118.

762 Liberzon, A, Subramanian, A, Pinchback, R, Thorvaldsdóttir, H, Tamayo, P, and Mesirov, JP (2011).
763 Molecular signatures database (MSigDB) 3.0. *Bioinformatics* 27, 1739–1740.

764 Liu, D et al. (2019). ELF3 is an antagonist of oncogenic-signalling-induced expression of EMT-TF
765 ZEB1. *Cancer Biol Ther* 20, 90–100.

766 Liu, Y, Wang, S, Zhou, R, Li, W, and Zhang, G (2021). Overexpression of E74-like transformation-
767 specific transcription factor 3 promotes cellular proliferation and predicts poor prognosis in ovarian
768 cancer. *Oncol Lett* 22, 710.

769 Longoni, N et al. (2013). ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop
770 that constitutively activates NF- κ B and drives prostate cancer progression. *Cancer Res* 73, 4533–
771 4547.

772 Lou, Z, Lee, BS, Ha, T, Xu, Y, Kim, HJ, Kim, CH, and Lee, SH (2018). ESE-1 suppresses the growth,
773 invasion and migration of human NSCLC cells and tumor formation in vivo. *Oncol Rep* 40, 1734–
774 1742.

775 Lourenco, AR et al. (2020). Differential contributions of pre- And post-EMT tumor cells in breast
776 cancer metastasis. *Cancer Res* 80, 163–169.

777 Lyons, JG, Patel, V, Roue, NC, Fok, SY, Soon, LL, Halliday, GM, and Gutkind, JS (2008). Snail up-
778 regulates pro-inflammatory mediators and inhibits differentiation in oral keratinocytes. *Cancer Res* 68,
779 4525–4530.

780 Martínez-Estrada, OM et al. (2010). Wt1 is required for cardiovascular progenitor cell formation
781 through transcriptional control of Snail and E-cadherin. *Nat Genet* 42, 89–93.

782 McGrail, DJ, Mezencev, R, Kieu, QMN, McDonald, JF, and Dawson, MR (2015). SNAIL-induced
783 epithelial-to-mesenchymal transition produces concerted biophysical changes from altered
784 cytoskeletal gene expression. *FASEB J* 29, 1280–1289.

785 Mooney, SM, Talebian, V, Jolly, MK, Jia, D, Gromala, M, Levine, H, and McConkey, BJ (2017). The
786 GRHL2/ZEB Feedback Loop—A Key Axis in the Regulation of EMT in Breast Cancer. *J Cell Biochem*
787 118, 2559–2570.

788 Na, L, Wang, Z, Bai, Y, Sun, Y, Dong, D, Wang, W, and Zhao, C (2022). WNT7B represses epithelial-
789 mesenchymal transition and stem-like properties in bladder urothelial carcinoma. *Biochim Biophys
790 Acta - Mol Basis Dis* 1868, 166271.

791 Pasani, S, Sahoo, S, and Jolly, MK (2021). Hybrid E/M phenotype(s) and stemness: a mechanistic
792 connection embedded in network topology. *J Clin Med* 10, 60.

793 Pastushenko, I et al. (2018). Identification of the tumour transition states occurring during EMT.
794 *Nature* 556, 463–468.

795 Pastushenko, I, and Blanpain, C (2019). EMT Transition States during Tumor Progression and
796 Metastasis. *Trends Cell Biol* 29, 212–226.

797 Peinado, H, Olmeda, D, and Cano, A (2007). Snail, Zeb and bHLH factors in tumour progression: an
798 alliance against the epithelial phenotype? *Nat Rev Cancer* 7, 415–428.

799 Pigglin, CL et al. (2020). ELF5 modulates the estrogen receptor cistrome in breast cancer. *PLoS
800 Genet* 16, e1008531.

801 Reddy, JC, Morris, JC, Wang, J, English, MA, Haber, DA, Shi, Y, and Licht, JD (1995). WT1-mediated
802 transcriptional activation is inhibited by dominant negative mutant proteins. *J Biol Chem* 270, 10878–
803 10884.

804 Roca, H et al. (2013). Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to
805 Epithelial Transition in Human Cancer. *PLoS One* 8, e76773.

806 Sahoo, S, Mishra, A, Kaur, H, Hari, K, Muralidharan, S, Mandal, S, and Jolly, MK (2021). A
807 mechanistic model captures the emergence and implications of non-genetic heterogeneity and
808 reversible drug resistance in ER+ breast cancer cells. *Nat Cancer* 3, zcab027.

809 Sakamoto, K et al. (2021). EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB
810 expression. *Oncogenesis* 10, 26.

811 Sartor, MA et al. (2009). ConceptGen: A gene set enrichment and gene set relation mapping tool.
812 *Bioinformatics* 26, 456–463.

813 Sengez, B, Aygün, I, Shehwana, H, Toyran, N, Tercan Avci, S, Konu, O, Stemmler, MP, and Alotaibi,
814 H (2019). The Transcription Factor Elf3 Is Essential for a Successful Mesenchymal to Epithelial
815 Transition. *Cells* 8, 858.

816 Sinh, ND, Endo, K, Miyazawa, K, and Saitoh, M (2017). Ets1 and ESE1 reciprocally regulate
817 expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. *Cancer Sci* 108,
818 952–960.

819 Somarelli, JA et al. (2016). Mesenchymal–epithelial transition in sarcomas is controlled by the
820 combinatorial expression of miR-200s and GRHL2. *Mol Cell Biol* 36, 2503–2513.

821 Sterneck, E, Poria, DK, and Balamurugan, K (2020). Slug and E-Cadherin: Stealth Accomplices?
822 *Front Mol Biosci* 7, 138.

823 Stylianou, N et al. (2019). A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer
824 associated with clinical outcome. *Oncogene* 38, 913–934.

825 Subbalakshmi, AR, Ashraf, B, and Jolly, MK (2022a). Biophysical and Biochemical Attributes of
826 Hybrid Epithelial/Mesenchymal Phenotypes. *Phys Biol* 19, 025001.

827 Subbalakshmi, AR, Sahoo, S, Biswas, K, and Jolly, MK (2022b). A computational systems biology
828 approach identifies SLUG as a mediator of partial Epithelial–Mesenchymal Transition (EMT). *Cells*
829 *Tissues Organs* 211, 105–118.

830 Subbalakshmi, AR, Sahoo, S, McMullen, I, Saxena, AN, Venugopal, SK, Somarelli, JA, and Jolly, MK
831 (2021). KLF4 Induces Mesenchymal–Epithelial Transition (MET) by Suppressing Multiple EMT-
832 Inducing Transcription Factors. *Cancers (Basel)* 13, 5135.

833 Suzuki, M et al. (2021). E74-Like Factor 3 Is a Key Regulator of Epithelial Integrity and Immune
834 Response Genes in Biliary Tract Cancer. *Cancer Res* 81, 489–500.

835 Takeichi, M, Nimura, K, Mori, M, Nakagami, H, and Kaneda, Y (2013). The Transcription Factors
836 Tbx18 and Wt1 Control the Epicardial Epithelial–Mesenchymal Transition through Bi-Directional
837 Regulation of Slug in Murine Primary Epicardial Cells. *PLoS One* 8, e57829.

838 Tan, TZ, Miow, QH, Miki, Y, Noda, T, Mori, S, Huang, RY, and Thiery, JP (2014). Epithelial–
839 mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug
840 responses of cancer patients. *EMBO Mol Med* 6, 1279–1293.

841 Taube, JH et al. (2010). Core epithelial-to-mesenchymal transition interactome gene-expression
842 signature is associated with claudin-low and metaplastic breast cancer subtypes. *Proc Natl Acad Sci
843 U S A*.

844 Tian, B et al. (2015). Analysis of the TGF β -induced program in primary airway epithelial cells shows
845 essential role of NF- κ B/RelA signaling network in type II epithelial mesenchymal transition. *BMC
846 Genomics* 16, 529.

847 Tian, M, and Schiemann, WP (2017). TGF- β stimulation of EMT programs elicits non-genomic ER- α
848 activity and anti-estrogen resistance in breast cancer cells. *J Cancer Metastasis Treat* 3, 150.

849 Tripathi, S, Levine, H, and Jolly, MK (2020). The Physics of Cellular Decision-Making during
850 Epithelial–Mesenchymal Transition. *Annu Rev Biophys* 49, 1–18.

851 Wang, H, Yu, Z, Huo, S, Chen, Z, Ou, Z, Mai, J, Ding, S, and Zhang, J (2018a). Overexpression of
852 ELF3 facilitates cell growth and metastasis through PI3K/Akt and ERK signaling pathways in non-
853 small cell lung cancer. *Int J Biochem Cell Biol* 94, 98–106.

854 Wang, Q et al. (2018b). Tamoxifen enhances stemness and promotes metastasis of ER α + breast
855 cancer by upregulating ALDH1A1 in cancer cells. *Cell Res* 28, 336–358.

856 Wang, Q, Guo, M, and Hong, X (2019). Induced Tamoxifen Resistance is Mediated by Increased
857 Methylation of E-Cadherin in Estrogen Receptor-Expressing Breast Cancer Cells. *Sci Rep* 9, 14140.

858 Wang, Y, Zuo, M, Jin, H, Lai, M, Luo, J, and Cheng, Z (2021). Inhibition of ELF3 confers synthetic
859 lethality of PARP inhibitor in non-small cell lung cancer. *J Recept Signal Transduct Res* 41, 304–311.

860 Wang, Z, Yin, P, Sun, Y, Na, L, Gao, J, Wang, W, and Zhao, C (2020). LGR4 maintains HGSOC cell
861 epithelial phenotype and stem-like traits. *Gynecol Oncol* 159, 839–849.

862 Watanabe, K, Liu, Y, Noguchi, S, Murray, M, Chang, JC, Kishima, M, Nishimura, H, Hashimoto, K,
863 Minoda, A, and Suzuki, H (2019). OVOL2 induces mesenchymal-to-epithelial transition in fibroblasts
864 and enhances cell-state reprogramming towards epithelial lineages. *Sci Rep*.

865 Wels, C, Joshi, S, Koefinger, P, Bergler, H, and Schaider, H (2011). Transcriptional activation of
866 ZEB1 by Slug leads to cooperative regulation of the epithelial–mesenchymal transition-like phenotype
867 in melanoma. *J Invest Dermatol* 131, 1877–1885.

868 Wu, B, Cao, X, Liang, X, Zhang, X, Zhang, W, Sun, G, and Wang, D (2015). Epigenetic regulation of
869 Elf5 is associated with epithelial–mesenchymal transition in urothelial cancer. *PLoS One* 10,
870 e0117510.

871 Wu, C, Zhu, W, Qian, J, He, S, Wu, C, Chen, Y, and Shu, Y (2013). WT1 promotes invasion of
872 NSCLC via suppression of CDH1. *J Thorac Oncol* 8, 1163–1169.

873 Xiang, J, Fu, X, Ran, W, and Wang, Z (2017). Grhl2 reduces invasion and migration through inhibition
874 of TGF β -induced EMT in gastric cancer. *Oncogenesis* 6, e284.

875 Xiang, X, Deng, Z, Zhuang, X, Ju, S, Mu, J, Jiang, H, Zhang, L, Yan, J, Miller, D, and Zhang, HG
876 (2012). Grhl2 Determines the Epithelial Phenotype of Breast Cancers and Promotes Tumor
877 Progression. *PLoS One* 7, e50781.

878 Yang, Z, Wu, D, Chen, Y, Min, Z, and Quan, Y (2019). GRHL2 inhibits colorectal cancer progression
879 and metastasis via oppressing epithelial-mesenchymal transition. *Cancer Biol Ther* 20, 1195–1205.

880 Yao, B, Zhao, J, Li, Y, Li, H, Hu, Z, Pan, P, Zhang, Y, Du, E, Liu, R, and Xu, Y (2015). Elf5 inhibits
881 TGF- β -driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation.
882 *Prostate* 75, 872–882.

883 Yeung, T-L, Leung, CS, Wong, K-K, Gutierrez-Hartmann, A, Kwong, J, Gershenson, DM, and Mok,
884 SC (2017). ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells.
885 *Oncotarget* 8, 16951–16963.

886 Yori, JL, Johnson, E, Zhou, G, Jain, MK, and Keri, RA (2010). Krüppel-like factor 4 inhibits epithelial-
887 to-mesenchymal transition through regulation of E-cadherin gene expression. *J Biol Chem* 285,
888 16854–16863.

889 Zhang, J, Tian, X-J, Zhang, H, Teng, Y, Li, R, Bai, F, Elankumaran, S, and Xing, J (2014). TGF- β -
890 induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple
891 feedback loops. *Sci Signal* 7, ra91.

892