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ABSTRACT The availability of AlphaFold2 has led to great excitement in the scientific 

community - particularly among drug hunters - due to the ability of the algorithm to predict protein 

structures with high accuracy. However, beyond globally accurate protein structure prediction, it 
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remains to be determined whether ligand binding sites are predicted with sufficient accuracy in 

these structures to be useful in supporting computationally driven drug discovery programs. We 

explored this question by performing free energy perturbation (FEP) calculations on a set of well-

studied protein-ligand complexes, where AlphaFold2 predictions were performed by removing all 

templates with >30% identity to the target protein from the training set. We observed that in most 

cases, the &&G values for ligand transformations calculated with FEP, using these prospective 

AlphaFold2 structures, were comparable in accuracy to the corresponding calculations previously 

carried out using X-ray structures. We conclude that under the right circumstances, AlphaFold2 

modeled structures are accurate enough to be used by physics-based methods such as FEP, in 

typical lead optimization stages of a drug discovery program. 

Introduction 

 

Despite progress in structural biology, including the advent of novel cryo-EM methods1, 

experimental structures remain unsolved for a large portion of druggable targets in the human 

genome2.  During the past year, however, new developments in deep learning approaches have 

revolutionized the world of structural biology.  For the first time, drug discovery projects can 

leverage the use of structural data in cases where experimentally resolved structures (or those of 

very close homologs) are not available. This is made possible by the pioneering work from 

DeepMind, who recently developed and released the AlphaFold2 (AF2) code3. The AF2 

methodology, along with similar techniques4, has shown unprecedented results when predicting 

structures from sequence alone, leading to a dramatic increase in accuracy, and potentially 

widening the domain of applicability of structure-based design. In these methods, models are built 

by using physics-based and knowledge-based energy functions, combined with evolutionary 
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information (at a pair representation level) enabling spatial and evolutionary relationships. This 

has enabled genome wide application of structure prediction, resulting, for example, in the 

availability of a structural database for the human proteome5.   

 

Following the open-source release of the AF2 code, several studies have modified the original 

algorithm and have attempted to determine the applicability of deep learning methods to a range 

of structural problems, including the identification and characterization of protein-protein 

interactions6,7, the prediction of protein-peptide complexes8, and the modeling of conformational 

transitions for drug receptors9. Beyond global structural and fold prediction, there is an obvious 

need to determine whether structures predicted with AF2 (or related methods) are sufficiently 

accurate for use in in silico screening or hit-to-lead modeling, especially in situations where there 

is limited structural information available (i.e., no availability of close structural or sequence 

homologs). Besides this, given that AF2 relies on an exhaustive and elaborate training process, it 

is important to understand the effects of the presence of closely related homologs of query 

sequences in the original training sets on the conformations of the resulting models.   

 

In parallel, in the last few years we have witnessed important advances in computational 

chemistry methods which, together with the dramatic exponential growth in computational power, 

have led to an increased application of structure-based design in drug discovery projects. Physics-

based computational approaches are now routinely used to predict a range of properties, from 

potency to solubility, at various stages of the drug discovery pipeline, including lead identification 

and lead optimization10. In particular, recent advances in force fields and sampling algorithms have 

now made it possible to use free energy methods to calculate relative affinities of compounds for 
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proteins with accuracies of < ~1.0 kcal/mol11, which starts to approach the experimental accuracy 

of most biochemical and biophysical assays for protein-ligand interactions12. The increased 

accuracy of computational methodologies indicates that the domain of applicability of structure-

based approaches is now largely limited by the availability of a high-resolution structure of a 

ligand-protein complex.  

  

It remains an open question whether AF2 models for novel protein folds (meaning structure for 

which no close structural homologs are available) are accurate enough for physics-based prediction 

methods, including computational approaches such as virtual screening and free energy 

calculations that require understanding of the details of the protein – ligand complex. To address 

this, we assessed whether a physics-based method for predicting compound potency (Free Energy 

Perturbation, or FEP) can be successfully used in combination with ab-initio models developed 

using AF2. We have applied a best-in-class implementation of FEP (Schrödinger’s FEP+13) to a 

series of AF2 modeled targets (details in methods section), where its accuracy has already been 

demonstrated when applied to crystal structures11,14,15,16, making a direct assessment of the relative 

performance of these AF2 models possible. In addition, we performed this experiment by 

simulating a scenario where no template structures with high sequence identity (>30%) were 

available for developing accurate homology models.  

 

To this end, we have developed a custom version of AF2 where we systematically removed 

template structures and homologous sequences from the database, aiming at reproducing a 

situation where traditional homology model techniques have been shown to fail, for example in 

blinded prospective tests such as CASP17,18. Our results demonstrate that in a realistic prospective 
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scenario, with only homologs of less than 30% sequence identity available, AF2 is capable of 

accurately providing structural models and, more importantly, can be used to predict relative 

changes in ligand affinities with an accuracy that is statistically comparable to those obtained using 

crystal structures. 

 

Results 

  

Dataset selection 

In order to test whether AF2 models were suitable as starting points for running state-of-the-art 

Free Energy Perturbation calculations, we tried to reproduce affinity predictions previously 

obtained in benchmarks using the Schrödinger implementation of FEP (FEP+13). We assembled a 

number of datasets that were part of these prior FEP+ benchmarks (see Table 1), including 8 targets 

studied in the original description of the method11, two targets obtained from a benchmark 

dedicated to fragments14, two targets studied from a study of application of FEP G-protein-coupled 

receptors15, and two targets from a publication describing application to selectivity studies16. 

  

AF2 customization 

AF2 employs both structural templates as well as Multiple Sequence Alignments (MSA) in order 

to predict structures. In our custom version of AF2 we systematically removed all template 

structures and sequences above 30% sequence identity from the database used to build these 

models. This ensured that our benchmark reflects a prospective application of AF2 in a drug 

discovery project: namely a situation where no high-quality homology model building would be 

possible due to the lack of availability of a high-sequence identity template.  
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To perform this realistic benchmark, we performed extensive customization of the AF2 code, as 

described in detail in Methods. Briefly, the new version is now capable of removing either 

structural templates, or sequences, or both, from the AF2 database, based on a user-defined 

sequence identity threshold (see Figure 1). Models are then created taking into consideration only 

structures and sequences below this identity threshold.  

 

Figure 1. Overview of the customized AF2 pipeline. Sections framed in orange are customizations 

with respect to the original AF2 workflow.  The model uses evolutionary related protein sequences 

and amino acid residue pairs (Feature Extraction) to iteratively pass the information to an end-to-

end transformer-based neural network (AlphaFold Model Inference), in order to generate a 3D 

structure. 

Table 1 shows three examples where we analyzed the effect on model accuracy of systematically 

removing sequences (AFS) or templates (AFT) or both (AFST) above different identity thresholds 

from the AF2 database. Thus, in the first column, AFST reflects the experiment where both 

sequences and templates were removed above the identity threshold. AFS reflects the scenario 

where only sequences below a given identity threshold are included in the MSA. In the AFT 

column, the MSA is not filtered, while the template structures are culled based on identity. 

Interestingly, we see some significant fluctuations which, a priori, might seem counterintuitive. 
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For example in Thrombin, when going from high to low identity filters, we observe an 

improvement in prediction accuracy when removing structural templates of high sequence identity. 

The reason for this effect is that these high identity templates (e.g. 6C2W) present an ordered alpha 

helical structure in the active site (see Figure S1), which corresponds to a disordered loop in 2ZFF 

(the structure used in the original FEP+ study11 and used as a reference for RMSD calculations 

here).  

The fine tuning between templates and MSA network weights is the result of extensive deep 

learning training, and not easy to rationalize. A case in point is the low binding site RMSDs in 

CDK2 when removing structural templates or sequences above 30%, compared to the higher 

RMSD when high sequence identity templates are used. In this regard AF2 has the impressive 

ability to create low RMSD models based solely on sequence evolutionary data, even when 

removing basically all structural templates. Similarly, when reducing the depth of the MSA 

(second column, 5% identity threshold), AF2 is able to produce models with low RMSD values 

when depending exclusively on structural templates. This scenario would be equivalent to 

developing a model using state-of-the-art homology modeling algorithms. In our three examples, 

i     t is only when both sequences and structures are culled from the database beyond 5% sequence 

identity (or 10% in some cases) that it becomes impossible to produce high-quality models. 

Overall, however, the performance of the algorithm when using only limited data is remarkable. 

AF2 is an extremely robust predictor, capable of extracting structural information from low-

identity templates and sequences to create highly accurate models.       

 

Table 1. Global and binding site C³-atom RMSD of models produced with AF2, aligned with the 

reference PDB. The binding site includes all residues within 5Å from the ligand in the reference 
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PDB. AFT removes only the template structures. AFS removes only homologous sequences. AFST 

removes all homologous templates and sequences beyond a sequence identity threshold. Each 

result is the average of three independent simulations. We also provide the MSA depth which is 

used when removing sequences in AFS and AFST. 

System 

(Ref. 

PDB) 

Identity 

threshold 

(%) 

AFT      AFS AFST      

MSA 

Depth 
     Global     BS           Global BS Global      BS      

Thrombin 

(2ZFF) 

100 2.56      2.40      2.52 2.40 2.74      2.56      16669 

70 1.38      0.45      2.65 2.44 1.36      0.34      16452 

30 1.39      0.43      2.65 2.47 2.75      0.35      14169 

     20 1.37 0.42 2.81 2.53 2.81 1.85 12613 

 10 1.39 0.45 2.84 2.58 7.71 1.69 3726 

 5 1.57      0.45      2.73 2.61 31.71      16.29      89 

         

CDK2 
(1H1Q) 

100 3.58      2.64      3.65 2.64 3.71      2.61      11468 

70 3.58      2.59      3.84 2.65 3.65      2.68      10844 

30 3.66      0.80      2.27 2.42 4.05      2.61      9141 

 20 
3.62 

0.64 2.38 0.70 
2.35 

0.82 5190 

 10 3.66 0.64 3.62 0.57 22.96 9.70 38 

 5 4.46      2.77      4.24 2.54 20.84      15.05      1 

         

PTP1B 100 0.37      0.92      0.36 0.92 0.38      0.94      4467 
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(2QBS) 
70 1.09      0.97      0.36 0.92 1.36      0.99      3793 

30 0.76      0.38      0.40 1.03 0.97      0.91      6897 

 20 1.11 0.34 0.51 1.14 
1.44 

1.02 3028 

 10 0.89 0.29 0.60 1.50 2.76 1.94 222 

 5 1.01      0.91      0.63 1.62 17.14      14.03      3 

 

Structural Model Accuracy 

For developing models for the FEP+ benchmark, we chose an identity threshold of 30% to 

remove sequences and templates from the database. The resulting accuracy of all the models 

generated with this custom AF2 implementation (henceforth named AF230) is described in Table 

2. We captured the accuracy of the model using a variety of metrics, including: 1) global RMSD 

of the model with respect to the crystal structure used in the original FEP benchmarks; 2) binding-

site RMSD with respect to the crystal structure; and 3) RMSD of the ligand modeled into the apo 

AF230 structures (see Methods for description on how ligand poses in AF230 structures were 

determined). 

  

Overall the accuracy of the AF230 structures is excellent. All global RMSD values (calculated 

using all residues visible in the original crystal structures) are below 2.85Å, and 75% of the models 

have RMSD values below 2Å. Given the dependence of FEP calculations on accurate description 

of the protein-ligand interactions, a more relevant RMSD value for our benchmarking purposes is 

binding site RMSD. Here too the values are excellent across the board, with all values below 1.54Å 

and 50% of all models below 1Å. In addition, all except for one model are classified as highly 

reliable, as evidenced by confidence scores (PLDDT) that range between 70 and 90. Together, 
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these results suggested to us that FEP+ calculations using these models would have a high 

likelihood of success.  

 

Table 2. RMSD values of models produced with AF230 models, aligned with the reference crystal 

structure. Global and binding site RMSD values were calculated with C³-atoms only. The binding 

site includes all residues within 5Å from the ligand in the reference structure. Ligand RMSD values 

were calculated for all heavy atoms, following an alignment of the binding site residues. The 

PLDDT score reflects a confidence measurement in the accuracy of the structure, as reported by 

the AF2 algorithm.  

Target Reference structure Global RMSD Binding Site RMSD Ligand RMSD 

AF2 

confidence 
score (PLDDT) 

A2A 4EIY 2.09      0.56 2.18 (0.46*) 86.91 

B1AR 3ZPQ 1.01      0.56      0.84 73.86 

BACE 4DJW 1.92 1.20 1.14 83.67 

CDK2 1H1Q 3.66 0.80 0.61 88.45 

CDK9 4BCI 1.64 1.33 1.16 86.61 

HSP90 3FT8 0.88 1.24 1.48 83.32 

ERK2 5K4I 1.47      1.22      0.71 90.03 

JAK2 3E64 0.98 1.20 0.66 86.88 

JNK1 2GMX 1.40 0.74 0.90 81.46 
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MCL1 4HW3 1.12 1.20 1.14 65.07 

P38 3FLY 2.85 1.54 0.88 88.97 

PTP1B 2QBS 0.76 0.38 0.85 79.96 

Thrombin 2ZFF 1.53 0.44 0.35 83.86 

Tyk2 4GIH 1.14 0.65 0.46 81.93 

 

Moreover, we measured the RMSD of the ligand in our AF230 structure compared to the crystal 

structure pose. The superimposed complexes are shown in Figure 2. With one exception, all RMSD 

values are below 1.4Å. The one exception is the A2A receptor, which has an RMSD of 2.18Å. 

However, this includes a flexible part of the molecule that rearranges in response to a clash with a 

side-chain residue. If only the rigid core of the molecule is considered the RMSD drops to 0.46Å. 

Similar observations regarding the prediction of this ligand have been made previously19. 
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Figure 2. Superposition of AF230 models (green) on corresponding crystal structures (magenta). 

Refer to Table 2 for a description of the accuracy of these models compared to the crystal 

structures.  

 

We also attempted a comparison of the accuracy of AF230 models to those produced with current 

state-of-the-art homology modeling methods using low sequence identity templates (>30%). In all 

cases a single template approach was used, selecting the template with the highest identity used by 

AF230 (within a maximum identity of 30%, see Table S1 for an overview of sequence and template 

IDs used in the homology modeling exercise). Table 3 shows the global and binding site RMSD 

values obtained by three different (and widely used) homology modeling methods: Prime20,21, 

iTasser22 and SwissModel23. The superpositions of the resulting models on the reference crystal 

structures are shown in supplementary figure S2. In the vast majority of cases AF230 models were 

superior to those created with the homology modeling methods.  
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Table 3. Comparison of RMSD values of all models - obtained with three different homology 

modeling programs and AF230, aligned with the reference crystal structure. Global all-atom RMSD 

(All), C³ carbon RMSD (CA) and C³ binding site RMSD values (BS) are reported in Å.  

System 

Prime I-Tasser SwissModel AF230 

All CA BS All CA BS All CA BS All CA BS 

A2A 10.42     10.09     10.5     2.76      2.22      0.40     14.15     13.60     3.65     2.34 2.09 0.56 

B1AR 4.30      3.51      2.05     4.07      3.36      1.88     4.34     3.81     2.06     1.39     1.01     0.56     

BACE 6.65 6.04 2.21 9.64 9.12 2.61 5.65 4.94 2.61 2.23 1.90 1.20 

CDK2 7.15 6.53 2.51 6.12 5.81 1.65 7.68 7.35 1.87 4.08  3.66 0.80 

CDK9 6.35 5.47 1.20 2.26 1.59 1.32 5.63 4.88 1.19 2.18 1.64 1.33 

ERK2 12.99     12.59     2.47     15.32 14.85     1.09     7.92     7.40     1.22     1.89 1.47     1.22     

HSP90 20.77 20.15 14.1 9.13 9.04 1.38 8.04 7.61 2.83 1.32 0.88 1.24 

JAK2 7.10 7.07 1.06 13.42 13.56 20.8 5.46 5.01 6.50 1.60 0.98 1.20 

JNK1 13.25 12.61 0.95 11.30 10.71 0.95 8.23 7.79 0.94 2.04 1.40 0.74 

MCL1 3.99 3.03 2.27 4.45 4.19 1.55 4.63 4.45 1.68 1.67 1.12 1.20 

P38 13.90 13.44 5.41 11.66 11.27 1.28 7.35 6.39 2.42 3.22 2.85 1.54 

PTP1B 8.01 7.41 1.60 5.25 4.56 1.78 2.80 2.00 1.53 1.37 0.75 0.38 

Thrombi

n 
7.23 6.59 4.26 5.56 4.84 3.02 4.67 3.79 4.35 1.63 1.53 0.44 

Tyk2 7.00 6.45 0.86 3.49 2.85 1.18 5.38 4.90 0.83 1.66 1.13 0.65 
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It is important to point out that we did not include an explicit docking step in the preparation of 

the input for the FEP calculations. Rather, we simply translated the ligand coordinates from the 

crystal structure into the model based on superposition, followed by a brief optimization step using 

Prime24.   

 

FEP results 

 The original FEP+ benchmark study used between 11 and 42 ligands per target, resulting in a 

total number of perturbations between 16 and 7111. Due to limited computational capacity, we did 

not attempt to reproduce the entire dataset obtained in the original work. Rather, for each of the 

targets in the original FEP+ benchmark studies, we selected a representative subset of 

perturbations to reproduce using the AF230 structures (between 7 and 18). In order to ensure a fair 

comparison, we made sure that within our chosen subset the mean unsigned error (MUE) of the 

predicted ��G between pairs of compounds was similar to the MUE of the entire dataset. In other 

words, the selected perturbations included those that were predicted with very high accuracy using 

FEP+, as well as perturbations for which significant errors were reported. In addition, we 

calculated correlations between experimental and calculated �G values by calculating additional 

edges in the subset maps, in order to obtain cycle-closure corrected results.  

  

The aggregated results of the FEP+ benchmark are reported in Table 4. Detailed results are 

available in Supplementary table S2 to S5.  In general, the accuracy of FEP+ calculations 

performed using AF230 models, in terms of MUE, is not statistically different from the error 

obtained with crystal structures. The average error across all targets using AF230 models is 1.04 
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kcal/mol, compared to 1.01 kcal/mol for crystal structures. The same general trend holds true for 

targets reported in the original FEP paper (MUE of 0.90 kcal/mol for AF230 models compared to 

0.97 kcal/mol for crystal structures), for fragment datasets (MUE of 0.93 kcal/mol for AF230 

models compared to 1.35 kcal/mol for crystal structures), and for GPCRs (MUE of 1.22 kcal/mol 

for AF230 models compared to 0.90 kcal/mol for crystal structures).  In the case of selectivity 

studies instead of MUEs compound affinities were reported, making a direct comparison difficult. 

However, the MUE values calculated for the subset of compounds tested (1.32 kcal/mol) here are 

similar to the average values reported for the full dataset (1.05 kcal/mol), suggesting that here too 

AF230 models perform similarly to crystal structures. Since the identity of the maps calculated here 

is different from those reported in the original benchmarks, a direct comparison on R2 values is not 

possible. However, in 11 out of 16 cases the observed R2 falls within the range of expected R2 

values for FEP-predicted binding affinities and experimental results with assumed RMSEs of 1.1 

kcal/mol, demonstrating the utility of these results for rank ordering compounds based on predicted 

affinities.  

 

Table 4. Summary of FEP results. All MUE values (in kcal/mol) were calculated from the 

individual perturbations as reported in the supplementary information of the Wang11 and 

Lenselink15 studies. Results for individual perturbations in the Steinbrecher14 study were provided 

by the authors upon request. MUE values for the specificity set (indicated with an asterix) were 

only available for the entire dataset in the original FEP+ benchmark. R2 values for results obtained 

here were calculated using the subset map (column 4), while R2 values for results obtained with 

crystal structures were calculated using maps of the entire dataset. Expected R2 values between 

FEP-predicted binding affinities and experimental results (R2 expected predicted) and expected 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.16.504122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504122
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

correlation coefficient between two experimental measurements of binding affinities (R2 expected 

experimental), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding affinities 

and experimental data, respectively, are also shown11. The three CDK2 datasets involve different 

chemical series, one (a) obtained from Wang et al 11 and two (b and c) from Albanese et al.16 

Target 

FEP+ crystal 
structure 
accuracy 
(MUE) 

FEP+ crystal 

structure R2 
observed 

FEP+ AF230 
accuracy (MUE) 

FEP+ AF230 R2 
observed 

R2 expected 
experimental 

R2 expected 
predicted 

Reference 
Dataset 

BACE 0.86 0.61 1.13 0.20 0.39±0.19 0.20±0.18 

Generic 
Drug 

Targets, 
Wang et 
al., 2015 

CDK2 (a) 0.98 0.23 1.01 0.53 0.78±0.09 0.55±0.17 

JNK1 0.94 0.72 0.95 0.39 0.57±0.16 0.31±0.20 

MCL1 1.69 0.60 0.79 0.47 0.59±0.16 0.33±0.20 

P38 1.02 0.43 0.83 0.68 0.66±0.16 0.40±0.23 

PTP1B 0.73 0.64 0.70 0.41 0.53±0.17 0.29±0.19 

Thrombin 0.89 0.50 1.27 0.40 0.29±0.21 0.17±0.18 

Tyk2 0.72 0.79 0.60 0.76 0.77±0.10 0.53±0.19 

A2A 0.68 0.61 1.00 0.06 0.67±0.15 0.42±0.22 

GPCRs, 
Lenselink 
et al, 2016 

B1AR 1.16 0.15 0.99 0.31 0.53±0.19 0.30±0.21 

CDK2 (b) 0.88* NR 1.46 0.57 0.91±0.07 0.77±0.17 

Specificit

y, 
Albanese 
et al, 2020 

CDK9 1.71* NR 1.45 0.38 0.84±0.12 0.64±0.24 

CDK2 (c) 0.76* NR 0.81 0.00 0.47±0.28 0.32±0.28 
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ERK2 0.83* NR 1.54 0.30 0.80±0.15 0.58±0.27 

HSP90 1.78 0.60 0.90 0.71 0.45±0.21 0.25±0.21 Fragment
s, 

Steinbrec
her et al, 

2015 
JAK2 0.91 0.64 0.96 0.39 0.57±0.16 0.31±0.20 

     Finally, Figure 3 shows the correlation of predicted �G against experimental �G for all 16 

series. Most compounds are predicted within 1 kcal/mol of their experimental affinity (102 out of 

138), and all but three compounds are predicted within 2 kcal/mol of the experimental affinity.  
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Figure 3. Predicted �G obtained with FEP+ plotted against experimental �G, for all 16 compound 

series studied here. Most of the predicted values for the 138 ligands fall within <1.0 kcal/mol of 

the experimental results (blue diagonal lines) and all but three compounds are predicted within 2.0 

kcal/mol of the predicted affinity (red diagonal lines). 

 

Discussion 

There is an urgent interest in determining the potential of deep learning protein structure 

predictions techniques in solving practical problems in chemistry and biology. One obvious 
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domain of applicability is the discovery and optimization of novel small molecule therapeutics, 

where the availability of accurate target structures continues to seriously hinder drug discovery 

projects. AF2 (and other related techniques) could drastically impact this situation. To address this, 

we have tested how AF2-predicted models could substitute crystal structures using a gold standard 

affinity prediction method, FEP+. To this end, we designed a study where we reproduced a 

representative group of calculations from the original FEP+ benchmark studies11,14,15,16. Moreover, 

in order to mimic a realistic prospective scenario, we limited AF data sources (both structural 

templates and sequences) to an identity threshold of 30%, a value previously considered to be the 

‘twilight’ zone of homology modeling accuracy25. This identity threshold has consistently been 

shown to provide mid- to low-quality structures in blind CASP competitions26.   

 

The quality of the AF230 predictions of all targets included can be considered high, as reflected 

by the high value of the confidence scores (see reported PLDDT values in Table 2). Indeed, global 

and binding site RMSD values are within the range observed when comparing different structures 

for the same target.  

 

We systematically assessed the effects of imposing a sequence identity threshold on the data fed 

into the AF2 algorithm, in three different targets. As expected, in the control situation where all 

structural templates and sequences similar to the target of interest are removed (using a 5% identity 

threshold), only low-quality models are produced. This indicates that the recognition of structures 

is not deeply coded within the deep learning model, a concern since all three structures were used 

for the training of the model. In more realistic scenarios, i.e., the presence in the database of 

structural templates with up to 30% identity, and/or a large number of sequences available for the 
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MSA, AF2 performs extraordinarily well. Still, accuracy values can fluctuate in manners that are 

quite unpredictable in response to removing parts of the data from the algorithm. This effect has 

already been pointed out by the AF2 authors in their original manuscript, where they advise not to 

remove any data source from consideration3. Indeed, a detailed explanation of the effects of 

changes in the structural templates and/or sequence database on model quality remains difficult, 

and a more comprehensive benchmark is warranted. We would recommend, however, that as an 

estimator of the model quality, it is useful to assess the RMSD among the top structural templates 

selected by AF2. In cases where this RMSD is high the availability of a large MSA might be 

preferred to that of high-identity structural templates. In this sense, we observed that the potential 

of using MSA data alone is in most cases enough to exceed the accuracy levels of models produced 

by other homology modeling software. While all data produced here was obtained without any 

user intervention, and as such it is likely that model quality can be improved through customization 

of sequence alignment and model building parameters, there is clearly a large gap between AF2 

and the methods compared to here (as seen already in the recent CASP competitions27). 

 

While further studies regarding the ability of AF2 to produce high quality models in cases where 

no good structural templates are available are needed, the main goal of this study was to assess the 

utility of such models to support computationally driven lead-optimization, for example using 

FEP. The results obtained here comprehensively show that - in the limit of the ability to predict 

ligand binding modes given an apo structure - AF230 derived models are just as reliable as crystal 

structures in terms of predictive accuracy. The MUE of the individual perturbations for 

calculations done with AF230 are comparable with those done with crystal structures, and in many 

cases the R2 values obtained for cycle-closed maps exceed or are similar to the expected values for 
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well-behaving FEP calculations. This suggests that the application of FEP in prospective discovery 

projects will depend less on the availability of experimentally derived structures, and more on the 

intrinsic limitations of the method, including the accuracy of the forcefield, the ability to sample 

relevant conformational states, and the accurate treatment of different charged states28.           

 

Given the fact that we omitted a docking stage into our computational workflow, and relied on 

superposition to generate protein-ligand complexes, the results obtained here present an upper limit 

of what can be achieved in terms of FEP calculations, reflecting situations where the ligand pose 

can be predicted with high accuracy. In many cases (e.g., kinases) specific recognition motifs can 

be identified in the ligand (e.g., the hinge binding part of the compound) and using these criteria 

the ligand can often be placed into the binding site unambiguously. In other cases, uncertainty in 

the docking step has the potential to significantly affect any downstream FEP calculations. Here, 

next generation docking tools for the purpose of pose predictions can ensure reliable starting 

conformations for FEP calculations29,30. In addition, FEP calculations using multiple starting 

structures can be used to validate docking studies. However, while an in-depth assessment of the 

utility of AF230 structures for docking calculations is warranted, it is beyond the scope of this 

current work. 

 

It is possible that the high accuracy of the current calculations is partially due to improvements 

to the FEP+ algorithm since the initial publication of the method in 2015, including the use of a 

different ensemble (¿VT as opposed to NPT). Indeed, it is likely that the improved quality of the 

currently used forcefield31 and ensemble would lead to a small but significant improvement in 

calculations using crystal structures as well. To test this hypothesis, we carried out FEP 
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calculations with the current version of the software, for two targets where the AF230 models 

outperformed the original crystal structure-based calculations by the largest degree (targets MCL1 

and P38). Indeed, with the latest version of the method the MUE was significantly reduced (MCL1 

from 1.69 kcal/mol to 1.05 kcal/mol and P38 from 1.02 kcal/mol to 0.67 kcal/mol). Results are 

presented in Supplementary Table S6.  Despite this effect of the improved algorithm, it can be 

concluded that in general the quality of the results of using deep learning derived models is very 

close to what can be expected to be obtained using crystal structures, using the currently available 

implementation of FEP+. These advances have the potential to dramatically increase the domain 

of application for FEP in prospective drug discovery settings. 

 

Methods 

  

Dataset: A total of 14 targets were selected for use in this FEP benchmark. This included eight 

pharmaceutically relevant targets studied in the original FEP+ benchmark11, two target sets 

previously studied for specificity prediction16, two targets previously studied in a fragment 

benchmark14, and two targets previously studied in a GPCR-specific benchmark15. PDBs used to 

model the targets in those studies are shown in Table S1. 

  

AlphaFold2 customization: AF2 makes use of a data pipeline in its prediction algorithm. During 

the first stage, the algorithm identifies homologues of a query sequence and makes use of Hidden 

Markov Models methods to construct a multiple sequence alignment (MSA). This MSA is used to 

derive evolutionary information of the target protein. To generate the MSA the current protocol 

searches multiple databases: BFD32,33, Mgnify34 and Uniref9035. MSAs outputs are de-duplicated 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.16.504122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504122
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

and combined and used to feed the neural network. In a second stage, the Uniref90 multiple 

sequence alignment is used to find structural templates to feed into the neural network. The top 20 

of these templates are selected and then AF2 picks the top four, sorted by the expected number of 

correctly aligned residues (the “sum_probs” feature generated by HHSearch). 

 

At present, structural templates (from the PDB70 database) can be filtered out only by PDB 

release date. This limitation makes it difficult to anticipate how AF2 would behave in those cases 

where very little data is available (i.e., no high-identity homolog templates and sequences for a 

protein of interest). To overcome these restrictions, we modified the AF2 code to filter data by 

identity threshold but without altering its original workflow, enabling the user to restrict the data 

that AF2 can use from each database.  Data restriction was accomplished by modification of the 

multiple sequence alignments features. Before stacking the genetic search outputs, we computed 

the identity of each hit and excluded those with a higher identity than the desired threshold. 

Moreover, we applied this strategy at different levels: i) by removing both templates and restricting 

the MSA by filtering all databases; ii) by only reducing the size of the MSA by filtering BFD, 

MGnify, and Uniref90 databases; iii) by only removing templates through filtering PDB70. 

  

Modeling of reference ligand: The ligand was introduced into the apo AF230 model by aligning 

the model with the crystal structure used for original FEP calculations, and through introduction 

of the aligned ligand pose through superposition. In some cases this resulted in significant clashes 

between the ligand and the protein. Optimization of the resulting protein ligand complex using 

Maestro’s Refine Protein Ligand complex utility24 (run using default settings) was able to resolve 
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these clashes, but in some cases resulted in significant deviation of the ligand with respect to the 

crystal structure (see Table 2). 

 

Homology modeling: We used three widely employed homology modeling methods to compare 

with AF230: Prime20,21, I-Taser22 and Swiss Model Server23. In each case provided only a single 

structural template along with the target sequence. For each system, we inspected the templates 

used in AF230 and chose the one with the highest identity (within the identity threshold of 30%). If 

more than one template had a maximum identity percentage, the one with higher sum_probs was 

chosen since this is the metric used by AF2 to rank sequences in the MSA. Templates used for 

each model are shown in the supporting Information. For the sake of reproducibility, all programs 

were run using default parameters.  

 

Prime20,21 is a suite of programs for protein structure prediction. The Homology Modeling 

workflow consists of template identification, alignment, and model building. ClustalW was used 

to perform the alignment of the template and input sequence. The loops of the models were built 

using knowledge-based methods. 

 

I-TASSER (Iterative Threading ASSEmbly Refinement) is a hierarchical approach to protein 

structure prediction and structure-based function annotation22. The I-TASSER Server was ranked 

as the No 1 server for protein structure prediction in recent community-wide CASP experiments 

(https://predictioncenter.org). To build the homology models both the fasta sequence extracted 

from the UniProt database and a template PDB ID was provided. We selected the model with 

higher C-score among the 5 models to compute RMSD against the crystal. 
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Swiss Model23 is a fully automated and widely used protein structure homology-modeling server. 

To generate the homology model, we provided the UniProt ID of the target protein and the AF2 

best template PDB (removing HETATMS and chains different to the ones specified in Table S1). 

  

Ligand datasets:  For each of these targets the ligands used in the FEP+ benchmarks were 

downloaded from Chembl36, or when not available sketched by hand using Maestro37. Affinity 

values were obtained from Supporting Information in the original FEP+ publications. Ligands 

were introduced into the binding site by flexible alignment with the optimized reference ligand in 

the AF230 model, using Maestro’s ligand alignment function. In some cases it was necessary to 

manually rotate aromatic rings and reposition R-groups to avoid steric overlap with the protein. 

  

Perturbation selection: For each target ten perturbations were selected for evaluation with FEP+. 

We carefully chose these to include perturbations with low and high error in the original 

benchmarks. For example, the MUE of the perturbations selected (as previously reported by Wang 

et al. 201511) was 0.97 kcal/mol, compared to 0.92 kcal/mol for the entire dataset. The results of 

all calculated perturbations are provided as Supplementary Information. 

  

FEP+ calculations: Calculations were run using the 2021-4 version of FEP+11. Default settings 

were used, which includes 12 lambda windows, 5ns sampling time per lambda with replica 

exchange, , the ¿VT ensemble, and use of the OPLS4 forcefield31. Force field parameters were 

calculated where required using the Force Field builder tool in Maestro37     . 
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CODE AVAILABILITY 

Our custom AlphaFold implementation to remove sequences and/or templates has been 

published on GitHub under Apache License 2.0: https://github.com/hemahecodes/alphafold. 
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