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ABSTRACT The availability of AlphaFold2 has led to great excitement in the scientific
community - particularly among drug hunters - due to the ability of the algorithm to predict protein

structures with high accuracy. However, beyond globally accurate protein structure prediction, it


https://doi.org/10.1101/2022.08.16.504122
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504122; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

remains to be determined whether ligand binding sites are predicted with sufficient accuracy in
these structures to be useful in supporting computationally driven drug discovery programs. We
explored this question by performing free energy perturbation (FEP) calculations on a set of well-
studied protein-ligand complexes, where AlphaFold2 predictions were performed by removing all
templates with >30% identity to the target protein from the training set. We observed that in most
cases, the AAG values for ligand transformations calculated with FEP, using these prospective
AlphaFold2 structures, were comparable in accuracy to the corresponding calculations previously
carried out using X-ray structures. We conclude that under the right circumstances, AlphaFold2
modeled structures are accurate enough to be used by physics-based methods such as FEP, in

typical lead optimization stages of a drug discovery program.

Introduction

Despite progress in structural biology, including the advent of novel cryo-EM methods!,
experimental structures remain unsolved for a large portion of druggable targets in the human
genome?. During the past year, however, new developments in deep learning approaches have
revolutionized the world of structural biology. For the first time, drug discovery projects can
leverage the use of structural data in cases where experimentally resolved structures (or those of
very close homologs) are not available. This is made possible by the pioneering work from
DeepMind, who recently developed and released the AlphaFold2 (AF2) code’. The AF2
methodology, along with similar techniques?, has shown unprecedented results when predicting
structures from sequence alone, leading to a dramatic increase in accuracy, and potentially
widening the domain of applicability of structure-based design. In these methods, models are built

by using physics-based and knowledge-based energy functions, combined with evolutionary
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information (at a pair representation level) enabling spatial and evolutionary relationships. This
has enabled genome wide application of structure prediction, resulting, for example, in the

availability of a structural database for the human proteome®.

Following the open-source release of the AF2 code, several studies have modified the original
algorithm and have attempted to determine the applicability of deep learning methods to a range
of structural problems, including the identification and characterization of protein-protein
interactions®’- the prediction of protein-peptide complexes®, and the modeling of conformational
transitions for drug receptors’. Beyond global structural and fold prediction, there is an obvious
need to determine whether structures predicted with AF2 (or related methods) are sufficiently
accurate for use in in silico screening or hit-to-lead modeling, especially in situations where there
is limited structural information available (i.e., no availability of close structural or sequence
homologs). Besides this, given that AF2 relies on an exhaustive and elaborate training process, it
is important to understand the effects of the presence of closely related homologs of query

sequences in the original training sets on the conformations of the resulting models.

In parallel, in the last few years we have witnessed important advances in computational
chemistry methods which, together with the dramatic exponential growth in computational power,
have led to an increased application of structure-based design in drug discovery projects. Physics-
based computational approaches are now routinely used to predict a range of properties, from
potency to solubility, at various stages of the drug discovery pipeline, including lead identification
and lead optimization'?. In particular, recent advances in force fields and sampling algorithms have

now made it possible to use free energy methods to calculate relative affinities of compounds for
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proteins with accuracies of < ~1.0 kcal/mol!!, which starts to approach the experimental accuracy
of most biochemical and biophysical assays for protein-ligand interactions'?. The increased
accuracy of computational methodologies indicates that the domain of applicability of structure-
based approaches is now largely limited by the availability of a high-resolution structure of a

ligand-protein complex.

It remains an open question whether AF2 models for novel protein folds (meaning structure for
which no close structural homologs are available) are accurate enough for physics-based prediction
methods, including computational approaches such as virtual screening and free energy
calculations that require understanding of the details of the protein — ligand complex. To address
this, we assessed whether a physics-based method for predicting compound potency (Free Energy
Perturbation, or FEP) can be successfully used in combination with ab-initio models developed
using AF2. We have applied a best-in-class implementation of FEP (Schrédinger’s FEP+') to a
series of AF2 modeled targets (details in methods section), where its accuracy has already been
demonstrated when applied to crystal structures'!'4!1516 making a direct assessment of the relative
performance of these AF2 models possible. In addition, we performed this experiment by
simulating a scenario where no template structures with high sequence identity (>30%) were

available for developing accurate homology models.

To this end, we have developed a custom version of AF2 where we systematically removed
template structures and homologous sequences from the database, aiming at reproducing a
situation where traditional homology model techniques have been shown to fail, for example in

blinded prospective tests such as CASP!-18. Our results demonstrate that in a realistic prospective
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scenario, with only homologs of less than 30% sequence identity available, AF2 is capable of
accurately providing structural models and, more importantly, can be used to predict relative
changes in ligand affinities with an accuracy that is statistically comparable to those obtained using

crystal structures.

Results

Dataset selection

In order to test whether AF2 models were suitable as starting points for running state-of-the-art
Free Energy Perturbation calculations, we tried to reproduce affinity predictions previously
obtained in benchmarks using the Schrodinger implementation of FEP (FEP+!%). We assembled a
number of datasets that were part of these prior FEP+ benchmarks (see Table 1), including 8 targets
studied in the original description of the method!!, two targets obtained from a benchmark
dedicated to fragments'+, two targets studied from a study of application of FEP G-protein-coupled

receptors’, and two targets from a publication describing application to selectivity studies!®.

AF2 customization

AF2 employs both structural templates as well as Multiple Sequence Alignments (MSA) in order
to predict structures. In our custom version of AF2 we systematically removed all template
structures and sequences above 30% sequence identity from the database used to build these
models. This ensured that our benchmark reflects a prospective application of AF2 in a drug
discovery project: namely a situation where no high-quality homology model building would be

possible due to the lack of availability of a high-sequence identity template.
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To perform this realistic benchmark, we performed extensive customization of the AF2 code, as
described in detail in Methods. Briefly, the new version is now capable of removing either
structural templates, or sequences, or both, from the AF2 database, based on a user-defined
sequence identity threshold (see Figure 1). Models are then created taking into consideration only

structures and sequences below this identity threshold.
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Figure 1. Overview of the customized AF2 pipeline. Sections framed in orange are customizations

v

with respect to the original AF2 workflow. The model uses evolutionary related protein sequences
and amino acid residue pairs (Feature Extraction) to iteratively pass the information to an end-to-
end transformer-based neural network (AlphaFold Model Inference), in order to generate a 3D

structure.

Table 1 shows three examples where we analyzed the effect on model accuracy of systematically
removing sequences (AFs) or templates (AFr) or both (AFsr) above different identity thresholds
from the AF2 database. Thus, in the first column, AFsr reflects the experiment where both
sequences and templates were removed above the identity threshold. AFs reflects the scenario
where only sequences below a given identity threshold are included in the MSA. In the AFr
column, the MSA is not filtered, while the template structures are culled based on identity.

Interestingly, we see some significant fluctuations which, a priori, might seem counterintuitive.
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For example in Thrombin, when going from high to low identity filters, we observe an
improvement in prediction accuracy when removing structural templates of high sequence identity.
The reason for this effect is that these high identity templates (e.g. 6C2W) present an ordered alpha
helical structure in the active site (see Figure S1), which corresponds to a disordered loop in 2ZFF
(the structure used in the original FEP+ study!' and used as a reference for RMSD calculations
here).

The fine tuning between templates and MSA network weights is the result of extensive deep
learning training, and not easy to rationalize. A case in point is the low binding site RMSDs in
CDK2 when removing structural templates or sequences above 30%, compared to the higher
RMSD when high sequence identity templates are used. In this regard AF2 has the impressive
ability to create low RMSD models based solely on sequence evolutionary data, even when
removing basically all structural templates. Similarly, when reducing the depth of the MSA
(second column, 5% identity threshold), AF2 is able to produce models with low RMSD values
when depending exclusively on structural templates. This scenario would be equivalent to
developing a model using state-of-the-art homology modeling algorithms. In our three examples,
i tis only when both sequences and structures are culled from the database beyond 5% sequence
identity (or 10% in some cases) that it becomes impossible to produce high-quality models.
Overall, however, the performance of the algorithm when using only limited data is remarkable.
AF2 is an extremely robust predictor, capable of extracting structural information from low-

identity templates and sequences to create highly accurate models.

Table 1. Global and binding site Ca-atom RMSD of models produced with AF2, aligned with the

reference PDB. The binding site includes all residues within 5A from the ligand in the reference
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PDB. AFr removes only the template structures. AFs removes only homologous sequences. AFsr
removes all homologous templates and sequences beyond a sequence identity threshold. Each
result is the average of three independent simulations. We also provide the MSA depth which is

used when removing sequences in AFs and AFsr.

System Identity AFr AFs AFst MSA
}()RDeg threos/hold Depth
) (%0) Global BS Global BS Global BS
100 256 2.40 252 2.40 274 256 16669
Thrombin 70 138 0.45 2.65 2.44 1.36 0.34 16452
(2ZFF)
30 139 0.43 2.65 247 275 0.35 14169
20 137 0.42 281 253 281 1.85 12613
10 139 0.45 2.84 258 771 1.69 3726
5 1.57 0.45 273 261 31.71 16.29 89
100 3.58 2.64 3.65 2.64 3.71 261 11468
CDK2
(HIQ) 70 3.58 259 3.84 2.65 3.65 2.68 10844
30 3.66 0.80 227 2.42 4.05 2.61 9141
20 3.62 0.64 238 0.70 2.35 0.82 5190
10 3.66 0.64 3.62 0.57 22.96 9.70 38
5 446 277 424 254 20.84 15.05 1
PTPIB 100 037 0.92 036 0.92 038 0.94 4467
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(2QBS) 70 1.09 0.97 0.36 0.92 136 0.99 3793
30 0.76 0.38 0.40 1.03 0.97 0.91 6897
20 111 0.34 0.51 1.14 1.44 1.02 3028
10 0.89 0.29 0.60 1.50 2.76 1.94 222
5 1.01 0.91 0.63 1.62 17.14 14.03 3

Structural Model Accuracy

For developing models for the FEP+ benchmark, we chose an identity threshold of 30% to
remove sequences and templates from the database. The resulting accuracy of all the models
generated with this custom AF2 implementation (henceforth named AF2;) is described in Table
2. We captured the accuracy of the model using a variety of metrics, including: 1) global RMSD
of the model with respect to the crystal structure used in the original FEP benchmarks; 2) binding-
site RMSD with respect to the crystal structure; and 3) RMSD of the ligand modeled into the apo
AF2;, structures (see Methods for description on how ligand poses in AF2;, structures were

determined).

Overall the accuracy of the AF2;, structures is excellent. All global RMSD values (calculated
using all residues visible in the original crystal structures) are below 2.85A, and 75% of the models
have RMSD values below 2A. Given the dependence of FEP calculations on accurate description
of the protein-ligand interactions, a more relevant RMSD value for our benchmarking purposes is
binding site RMSD. Here too the values are excellent across the board, with all values below 1 54A
and 50% of all models below 1A. In addition, all except for one model are classified as highly

reliable, as evidenced by confidence scores (PLDDT) that range between 70 and 90. Together,
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these results suggested to us that FEP+ calculations using these models would have a high

likelihood of success.

Table 2. RMSD values of models produced with AF2;, models, aligned with the reference crystal
structure. Global and binding site RMSD values were calculated with Ca-atoms only. The binding
site includes all residues within 5A from the ligand in the reference structure. Ligand RMSD values
were calculated for all heavy atoms, following an alignment of the binding site residues. The

PLDDT score reflects a confidence measurement in the accuracy of the structure, as reported by

the AF2 algorithm.

AF2

Target Reference structure | Global RMSD [ Binding Site RMSD | Ligand RMSD confidence

score (PLDDT)

A2A 4ELY 2.09 0.56 2.18 (0.46%) 86.91
B1AR 37ZPQ 1.01 0.56 0.84 73.86
BACE 4DJW 1.92 1.20 1.14 83.67
CDK2 1H1Q 3.66 0.80 0.61 88.45
CDK9 4BCI 1.64 1.33 1.16 86.61
HSP90 3FT8 0.88 1.24 1.48 83.32
ERK2 5K41 1.47 1.22 0.71 90.03
JAK2 3E64 0.98 1.20 0.66 86.88
JNK1 2GMX 1.40 0.74 0.90 81.46

10
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MCLI1 4HW3 1.12 1.20 1.14 65.07
P38 3FLY 2.85 1.54 0.88 88.97
PTP1B 20BS 0.76 0.38 0.85 79.96
Thrombin 2ZFF 1.53 0.44 0.35 83.86
Tyk2 4GIH 1.14 0.65 0.46 81.93

Moreover, we measured the RMSD of the ligand in our AF2;, structure compared to the crystal
structure pose. The superimposed complexes are shown in Figure 2. With one exception, all RMSD
values are below 1.4A. The one exception is the A2A receptor, which has an RMSD of 2.18A.
However, this includes a flexible part of the molecule that rearranges in response to a clash with a
side-chain residue. If only the rigid core of the molecule is considered the RMSD drops to 0.46A.

Similar observations regarding the prediction of this ligand have been made previously'.

11


https://doi.org/10.1101/2022.08.16.504122
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504122; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(

m

R

R4

-

Figure 2. Superposition of AF2;, models (green) on corresponding crystal structures (magenta).
Refer to Table 2 for a description of the accuracy of these models compared to the crystal

structures.

We also attempted a comparison of the accuracy of AF2;, models to those produced with current
state-of-the-art homology modeling methods using low sequence identity templates (>30%). In all
cases a single template approach was used, selecting the template with the highest identity used by
AF2;,(within a maximum identity of 30%, see Table S1 for an overview of sequence and template
IDs used in the homology modeling exercise). Table 3 shows the global and binding site RMSD
values obtained by three different (and widely used) homology modeling methods: Prime?*?!,
iTasser”? and SwissModel*. The superpositions of the resulting models on the reference crystal
structures are shown in supplementary figure S2. In the vast majority of cases AF2;, models were

superior to those created with the homology modeling methods.

12
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Table 3. Comparison of RMSD values of all models - obtained with three different homology
modeling programs and AF25, aligned with the reference crystal structure. Global all-atom RMSD

(All), Co. carbon RMSD (CA) and Ca binding site RMSD values (BS) are reported in A.

Prime [-Tasser SwissModel AF23
System
All CA BS All CA BS All CA BS All CA BS
A2A 1042 10.09 10.5 2.76 2.22 0.40 | 14.15 13.60 3.65 234  2.09 0.56

BIAR 4.30 3.51 2.05 | 4.07 3.36 1.88 | 434  3.81 2.06 1.39  1.01 0.56

BACE 6.65 6.04 221 9.64 9.12 261 | 565 494 2.6l 223 190 1.20

CDK2 7.15 6.53 251 6.12 5.81 1.65 | 7.68 7.35 1.87 | 4.08 3.66 0.80

CDK9 6.35 547 120 | 2.26 1.59 1.32 | 5.63 4.88 1.19 | 2.18 1.64 133

ERK2 1299 1259 247 | 1532 1485 1.09 | 792 740 1.22 1.89 147 1.22

HSP90 20.77 20.15 14.1 9.13 9.04 1.38 | 8.04 7.6l 2.83 1.32 088 1.24

JAK2 7.10 7.07  1.06 | 1342 1356 20.8 | 546  5.01 6.50 1.60 098 1.20

JNK1 13.25 12,61 095 | 11.30 1071  0.95 | 8.23 779 094 | 204 140 0.74

MCLI 3.99 3.03 227 | 445 4.19 1.55 | 4.63 445 1.68 1.67 1.12 1.20

P38 1390 13.44 541 | 11.66 1127 128 | 7.35 639 242 | 322 285 154

PTP1B 8.01 7.41 1.60 | 5.25 4.56 1.78 | 2.80  2.00 1.53 1.37  0.75 0.38

Thrombi
N 7.23 6.59 4.26 5.56 4.84 3.02 4.67 3.79 4.35 1.63 1.53 044
Tyk2 7.00 6.45 0.86 3.49 2.85 1.18 5.38 4.90 0.83 1.66 1.13 0.65

13
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It is important to point out that we did not include an explicit docking step in the preparation of
the input for the FEP calculations. Rather, we simply translated the ligand coordinates from the
crystal structure into the model based on superposition, followed by a brief optimization step using

Prime?.

FEP results

The original FEP+ benchmark study used between 11 and 42 ligands per target, resulting in a
total number of perturbations between 16 and 71''. Due to limited computational capacity, we did
not attempt to reproduce the entire dataset obtained in the original work. Rather, for each of the
targets in the original FEP+ benchmark studies, we selected a representative subset of
perturbations to reproduce using the AF2;, structures (between 7 and 18). In order to ensure a fair
comparison, we made sure that within our chosen subset the mean unsigned error (MUE) of the
predicted AAG between pairs of compounds was similar to the MUE of the entire dataset. In other
words, the selected perturbations included those that were predicted with very high accuracy using
FEP+, as well as perturbations for which significant errors were reported. In addition, we
calculated correlations between experimental and calculated AG values by calculating additional

edges in the subset maps, in order to obtain cycle-closure corrected results.

The aggregated results of the FEP+ benchmark are reported in Table 4. Detailed results are
available in Supplementary table S2 to S5. In general, the accuracy of FEP+ calculations
performed using AF2;, models, in terms of MUE, is not statistically different from the error

obtained with crystal structures. The average error across all targets using AF2;, models is 1.04

14
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kcal/mol, compared to 1.01 kcal/mol for crystal structures. The same general trend holds true for
targets reported in the original FEP paper (MUE of 0.90 kcal/mol for AF2;, models compared to
0.97 kcal/mol for crystal structures), for fragment datasets (MUE of 0.93 kcal/mol for AF2;,
models compared to 1.35 kcal/mol for crystal structures), and for GPCRs (MUE of 1.22 kcal/mol
for AF2;, models compared to 0.90 kcal/mol for crystal structures). In the case of selectivity
studies instead of MUEs compound affinities were reported, making a direct comparison difficult.
However, the MUE values calculated for the subset of compounds tested (1.32 kcal/mol) here are
similar to the average values reported for the full dataset (1.05 kcal/mol), suggesting that here too
AF2;,models perform similarly to crystal structures. Since the identity of the maps calculated here
is different from those reported in the original benchmarks, a direct comparison on R? values is not
possible. However, in 11 out of 16 cases the observed R? falls within the range of expected R?
values for FEP-predicted binding affinities and experimental results with assumed RMSEs of 1.1
kcal/mol, demonstrating the utility of these results for rank ordering compounds based on predicted

affinities.

Table 4. Summary of FEP results. All MUE values (in kcal/mol) were calculated from the
individual perturbations as reported in the supplementary information of the Wang!' and
Lenselink!® studies. Results for individual perturbations in the Steinbrecher'* study were provided
by the authors upon request. MUE values for the specificity set (indicated with an asterix) were
only available for the entire dataset in the original FEP+ benchmark. R? values for results obtained
here were calculated using the subset map (column 4), while R? values for results obtained with
crystal structures were calculated using maps of the entire dataset. Expected R? values between

FEP-predicted binding affinities and experimental results (R* expected predicted) and expected
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correlation coefficient between two experimental measurements of binding affinities (R? expected

experimental), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding affinities

and experimental data, respectively, are also shown!!. The three CDK?2 datasets involve different

chemical series, one (a) obtained from Wang et al !' and two (b and c¢) from Albanese et al.'®

FEP+ crystal

Tarcet structure FSEEZH(EZS@] FEP+ AF23  FEP+ AF2;0R?>  R?expected R? expected  Reference
& accuracy accuracy (MUE) observed experimental predicted Dataset
(MUE) observed
BACE 0.86 0.61 1.13 0.20 0.39+0.19 0.20+0.18
CDK2 (a) 0.98 0.23 1.01 0.53 0.78+0.09 0.55+0.17
JNK1 0.94 0.72 0.95 0.39 0.57+0.16 0.31+0.20
Generic
MCLI 1.69 0.60 0.79 0.47 0.59+0.16 0.33+0.20 Drug
Targets,
P38 1.02 0.43 0.83 0.68 0.66+0.16 0.40+0.23 Vlvag% le;
al.,
PTPIB 0.73 0.64 0.70 0.41 0.53+0.17 0.29+0.19
Thrombin 0.89 0.50 1.27 0.40 0.29+0.21 0.17+0.18
Tyk2 0.72 0.79 0.60 0.76 0.77+0.10 0.53+0.19
A2A 0.68 0.61 1.00 0.06 0.67+0.15 0.42+0.22
GPCRs,
Lenselink
etal, 2016
BIAR 1.16 0.15 0.99 0.31 0.53+0.19 0.30+0.21
CDK2 (b) 0.88* NR 1.46 0.57 0.91+0.07 0.77+0.17
Specificit
CDK9 1.71%* NR 1.45 0.38 0.84+0.12 0.64+0.24 Y,
Albanese
et al, 2020
CDK2 (c) 0.76* NR 0.81 0.00 0.47+0.28 0.32+0.28
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ERK2 0.83* NR 1.54 030 0.800.15 0.5840.27
HSP90 1.78 0.60 0.90 0.71 0.45+0.21 0.25:021  Fragment
S’
Steinbrec
her et al,
JAK2 0.91 0.64 0.96 0.39 0.57+0.16 0.3140.20 2015

Finally, Figure 3 shows the correlation of predicted AG against experimental AG for all 16
series. Most compounds are predicted within 1 kcal/mol of their experimental affinity (102 out of

138), and all but three compounds are predicted within 2 kcal/mol of the experimental affinity.
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Figure 3. Predicted AG obtained with FEP+ plotted against experimental AG, for all 16 compound
series studied here. Most of the predicted values for the 138 ligands fall within <1.0 kcal/mol of
the experimental results (blue diagonal lines) and all but three compounds are predicted within 2.0

kcal/mol of the predicted affinity (red diagonal lines).

Discussion

There is an urgent interest in determining the potential of deep learning protein structure

predictions techniques in solving practical problems in chemistry and biology. One obvious
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domain of applicability is the discovery and optimization of novel small molecule therapeutics,
where the availability of accurate target structures continues to seriously hinder drug discovery
projects. AF2 (and other related techniques) could drastically impact this situation. To address this,
we have tested how AF2-predicted models could substitute crystal structures using a gold standard
affinity prediction method, FEP+. To this end, we designed a study where we reproduced a
representative group of calculations from the original FEP+ benchmark studies!!'#13-1¢. Moreover,
in order to mimic a realistic prospective scenario, we limited AF data sources (both structural
templates and sequences) to an identity threshold of 30%, a value previously considered to be the
‘twilight” zone of homology modeling accuracy?®. This identity threshold has consistently been

shown to provide mid- to low-quality structures in blind CASP competitions®.

The quality of the AF2;, predictions of all targets included can be considered high, as reflected
by the high value of the confidence scores (see reported PLDDT values in Table 2). Indeed, global
and binding site RMSD values are within the range observed when comparing different structures

for the same target.

We systematically assessed the effects of imposing a sequence identity threshold on the data fed
into the AF2 algorithm, in three different targets. As expected, in the control situation where all
structural templates and sequences similar to the target of interest are removed (using a 5% identity
threshold), only low-quality models are produced. This indicates that the recognition of structures
is not deeply coded within the deep learning model, a concern since all three structures were used
for the training of the model. In more realistic scenarios, i.e., the presence in the database of

structural templates with up to 30% identity, and/or a large number of sequences available for the
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MSA, AF2 performs extraordinarily well. Still, accuracy values can fluctuate in manners that are
quite unpredictable in response to removing parts of the data from the algorithm. This effect has
already been pointed out by the AF2 authors in their original manuscript, where they advise not to
remove any data source from consideration®. Indeed, a detailed explanation of the effects of
changes in the structural templates and/or sequence database on model quality remains difficult,
and a more comprehensive benchmark is warranted. We would recommend, however, that as an
estimator of the model quality, it is useful to assess the RMSD among the top structural templates
selected by AF2. In cases where this RMSD is high the availability of a large MSA might be
preferred to that of high-identity structural templates. In this sense, we observed that the potential
of using MSA data alone is in most cases enough to exceed the accuracy levels of models produced
by other homology modeling software. While all data produced here was obtained without any
user intervention, and as such it is likely that model quality can be improved through customization
of sequence alignment and model building parameters, there is clearly a large gap between AF2

and the methods compared to here (as seen already in the recent CASP competitions?’).

While further studies regarding the ability of AF2 to produce high quality models in cases where
no good structural templates are available are needed, the main goal of this study was to assess the
utility of such models to support computationally driven lead-optimization, for example using
FEP. The results obtained here comprehensively show that - in the limit of the ability to predict
ligand binding modes given an apo structure - AF2;,derived models are just as reliable as crystal
structures in terms of predictive accuracy. The MUE of the individual perturbations for
calculations done with AF2;,are comparable with those done with crystal structures, and in many

cases the R? values obtained for cycle-closed maps exceed or are similar to the expected values for
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well-behaving FEP calculations. This suggests that the application of FEP in prospective discovery
projects will depend less on the availability of experimentally derived structures, and more on the
intrinsic limitations of the method, including the accuracy of the forcefield, the ability to sample

relevant conformational states, and the accurate treatment of different charged states?.

Given the fact that we omitted a docking stage into our computational workflow, and relied on
superposition to generate protein-ligand complexes, the results obtained here present an upper limit
of what can be achieved in terms of FEP calculations, reflecting situations where the ligand pose
can be predicted with high accuracy. In many cases (e.g., kinases) specific recognition motifs can
be identified in the ligand (e.g., the hinge binding part of the compound) and using these criteria
the ligand can often be placed into the binding site unambiguously. In other cases, uncertainty in
the docking step has the potential to significantly affect any downstream FEP calculations. Here,
next generation docking tools for the purpose of pose predictions can ensure reliable starting
conformations for FEP calculations®*<°. In addition, FEP calculations using multiple starting
structures can be used to validate docking studies. However, while an in-depth assessment of the
utility of AF2;, structures for docking calculations is warranted, it is beyond the scope of this

current work.

It is possible that the high accuracy of the current calculations is partially due to improvements
to the FEP+ algorithm since the initial publication of the method in 2015, including the use of a
different ensemble (LVT as opposed to NPT). Indeed, it is likely that the improved quality of the
currently used forcefield®! and ensemble would lead to a small but significant improvement in

calculations using crystal structures as well. To test this hypothesis, we carried out FEP
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calculations with the current version of the software, for two targets where the AF2;, models
outperformed the original crystal structure-based calculations by the largest degree (targets MCL1
and P38). Indeed, with the latest version of the method the MUE was significantly reduced (MCL1
from 1.69 kcal/mol to 1.05 kcal/mol and P38 from 1.02 kcal/mol to 0.67 kcal/mol). Results are
presented in Supplementary Table S6. Despite this effect of the improved algorithm, it can be
concluded that in general the quality of the results of using deep learning derived models is very
close to what can be expected to be obtained using crystal structures, using the currently available
implementation of FEP+. These advances have the potential to dramatically increase the domain

of application for FEP in prospective drug discovery settings.

Methods

Dataset: A total of 14 targets were selected for use in this FEP benchmark. This included eight
pharmaceutically relevant targets studied in the original FEP+ benchmark!!, two target sets
previously studied for specificity prediction!®, two targets previously studied in a fragment
benchmark'4, and two targets previously studied in a GPCR-specific benchmark'>. PDBs used to

model the targets in those studies are shown in Table S1.

AlphaFold?2 customization: AF2 makes use of a data pipeline in its prediction algorithm. During
the first stage, the algorithm identifies homologues of a query sequence and makes use of Hidden
Markov Models methods to construct a multiple sequence alignment (MSA). This MSA is used to
derive evolutionary information of the target protein. To generate the MSA the current protocol

searches multiple databases: BFD3223, Mgnify** and Uniref90%. MSAs outputs are de-duplicated
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and combined and used to feed the neural network. In a second stage, the Uniref90 multiple
sequence alignment is used to find structural templates to feed into the neural network. The top 20
of these templates are selected and then AF2 picks the top four, sorted by the expected number of

correctly aligned residues (the “sum_probs” feature generated by HHSearch).

At present, structural templates (from the PDB70 database) can be filtered out only by PDB
release date. This limitation makes it difficult to anticipate how AF2 would behave in those cases
where very little data is available (i.e., no high-identity homolog templates and sequences for a
protein of interest). To overcome these restrictions, we modified the AF2 code to filter data by
identity threshold but without altering its original workflow, enabling the user to restrict the data
that AF2 can use from each database. Data restriction was accomplished by modification of the
multiple sequence alignments features. Before stacking the genetic search outputs, we computed
the identity of each hit and excluded those with a higher identity than the desired threshold.
Moreover, we applied this strategy at different levels: i) by removing both templates and restricting
the MSA by filtering all databases; ii) by only reducing the size of the MSA by filtering BFD,

MGnify, and Uniref90 databases; iii) by only removing templates through filtering PDB70.

Modeling of reference ligand: The ligand was introduced into the apo AF2;, model by aligning
the model with the crystal structure used for original FEP calculations, and through introduction
of the aligned ligand pose through superposition. In some cases this resulted in significant clashes
between the ligand and the protein. Optimization of the resulting protein ligand complex using

Maestro’s Refine Protein Ligand complex utility?* (run using default settings) was able to resolve
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these clashes, but in some cases resulted in significant deviation of the ligand with respect to the

crystal structure (see Table 2).

Homology modeling: We used three widely employed homology modeling methods to compare
with AF2;,: Prime?*?!, [-Taser*? and Swiss Model Server®. In each case provided only a single
structural template along with the target sequence. For each system, we inspected the templates
used in AF2;,and chose the one with the highest identity (within the identity threshold of 30%). If
more than one template had a maximum identity percentage, the one with higher sum_probs was
chosen since this is the metric used by AF2 to rank sequences in the MSA. Templates used for
each model are shown in the supporting Information. For the sake of reproducibility, all programs

were run using default parameters.

Prime®*?! is a suite of programs for protein structure prediction. The Homology Modeling
workflow consists of template identification, alignment, and model building. ClustalW was used
to perform the alignment of the template and input sequence. The loops of the models were built

using knowledge-based methods.

I-TASSER (Iterative Threading ASSEmbly Refinement) is a hierarchical approach to protein
structure prediction and structure-based function annotation??. The I-TASSER Server was ranked
as the No 1 server for protein structure prediction in recent community-wide CASP experiments
(https://predictioncenter.org). To build the homology models both the fasta sequence extracted
from the UniProt database and a template PDB ID was provided. We selected the model with

higher C-score among the 5 models to compute RMSD against the crystal.

24


https://doi.org/10.1101/2022.08.16.504122
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.16.504122; this version posted August 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Swiss Model?* is a fully automated and widely used protein structure homology-modeling server.
To generate the homology model, we provided the UniProt ID of the target protein and the AF2

best template PDB (removing HETATMS and chains different to the ones specified in Table S1).

Ligand datasets: For each of these targets the ligands used in the FEP+ benchmarks were
downloaded from Chembl*¢, or when not available sketched by hand using Maestro*’. Affinity
values were obtained from Supporting Information in the original FEP+ publications. Ligands
were introduced into the binding site by flexible alignment with the optimized reference ligand in
the AF2;, model, using Maestro’s ligand alignment function. In some cases it was necessary to

manually rotate aromatic rings and reposition R-groups to avoid steric overlap with the protein.

Perturbation selection: For each target ten perturbations were selected for evaluation with FEP+.
We carefully chose these to include perturbations with low and high error in the original
benchmarks. For example, the MUE of the perturbations selected (as previously reported by Wang
et al. 2015'") was 0.97 kcal/mol, compared to 0.92 kcal/mol for the entire dataset. The results of

all calculated perturbations are provided as Supplementary Information.

FEP+ calculations: Calculations were run using the 2021-4 version of FEP+!!. Default settings
were used, which includes 12 lambda windows, 5ns sampling time per lambda with replica
exchange, , the uVT ensemble, and use of the OPLS4 forcefield®'. Force field parameters were

calculated where required using the Force Field builder tool in Maestro*’
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