

1 Evasion of Neutralizing Antibody Response by the SARS-CoV-2 BA.2.75 Variant

2
3 Panke Qu^{1,2,#}, John P. Evans^{1,2,3,#}, Yi-Min Zheng^{1,2}, Claire Carlin⁴, Linda J. Saif^{5,6,7},
4 Eugene M. Oltz⁸, Kai Xu^{1,2}, Richard J. Gumina^{4,9,10}, and Shan-Lu Liu^{1,2,7,8*}

5
6 ¹Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA

7 ²Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA

8 ³Molecular, Cellular, and Developmental Biology Program, The Ohio State University,
9 Columbus, OH 43210, USA

10 ⁴Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State
11 University, Columbus, OH 43210, USA

12 ⁵Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food,
13 Agricultural and Environmental Sciences, The Ohio
14 State University, Wooster, OH 44691, USA

15 ⁶Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State
16 University, Wooster, OH 44691, USA

17 ⁷Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State
18 University, Columbus, OH 43210, USA

19 ⁸Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
20 43210, USA

21 ⁹Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner
22 Medical Center, Columbus, OH 43210, USA

23 ¹⁰Department of Physiology and Cell Biology, College of Medicine, The Ohio State University
24 Wexner Medical Center, Columbus, OH
25 43210, USA

26
27 #Authors contributed equally to this work

28 *Corresponding Author: liu.6244@osu.edu

29
30

31 **Abstract**

32 The newly emerged BA.2.75 SARS-CoV-2 variant exhibits an alarming 9 additional
33 mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here we examine the
34 neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as
35 well as the molecular basis underlying functional changes in the S protein. Notably, BA.2.75
36 exhibits enhanced neutralization resistance over BA.2, but less than the BA.4/5 variant. The
37 G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to
38 neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces
39 BA.2.75 neutralization resistance. The mutational impact is consistent with their locations in
40 common neutralizing antibody epitopes. Further, the BA.2.75 variant shows enhanced cell-cell
41 fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural
42 modeling revealed a new receptor contact introduced by N460K, supporting a mechanism of
43 potentiated receptor utilization and syncytia formation.

44

45 **Introduction**

46 Emergence of the Omicron variant of SARS coronavirus 2 (SARS-CoV-2) in late 2021
47 sparked an unprecedented wave of coronavirus disease 2019 (COVID-19) cases and exhibited
48 robust evasion of vaccine- and infection-induced immunity (Gruell et al., 2022; Hoffmann et al.,
49 2022). More recently, several subvariants of Omicron have been identified, which have driven
50 subsequent waves of infection. The BA.1 subvariant, responsible for the initial Omicron wave,
51 was replaced by BA.2, which displayed slightly enhanced transmissibility and resistance to BA.1-
52 induced sera (Centers for Disease Control and Prevention, 2022; Evans et al., 2022; Yamasoba
53 et al., 2022b). BA.2 then evolved into several progeny subvariants, including the BA.2.12.1 variant,
54 which subsequently became predominant (Centers for Disease Control and Prevention, 2022).
55 Remarkably, the BA.4 and BA.5 variants, which bear identical spike (S) proteins and evolved from
56 BA.2, are currently dominant in the world, including in the US (Centers for Disease Control and
57 Prevention, 2022). BA.4 and BA.5 bear an L452R mutation that is primarily responsible for further
58 enhanced neutralizing antibody resistance (Qu et al., 2022; Tuekprakhon et al., 2022). Recently,
59 another distinct BA.2-derived subvariant, BA.2.75, has been identified. BA.2.75 is increasing in
60 prevalence in southeast Asia and has been detected globally (Callaway, 2022). Notably, BA.2.75
61 bears 9 key S mutations including K147E, W152R, F157L, I210V, G257S, D339H, G446S, and
62 N460K, as well as an R493Q reversion mutation (World Health Organization, 2022) (**Fig. 1A**).
63 These mutations, particularly those in the receptor binding domain (RBD), have generated
64 concern over further immune escape.

65 Here we characterize the BA.2.75 S protein by examining its sensitivity to neutralizing
66 antibodies from mRNA-vaccinated and/or boosted health care workers (HCWs), as well as from
67 Omicron-wave-hospitalized COVID-19 patients. In addition, we examine BA.2.75 infectivity, S
68 processing, and fusogenicity. Mutational analysis revealed the N460K as a key driver of enhanced
69 fusogenicity, while the G446S and N460K mutations were primarily responsible for reduced
70 neutralization sensitivity of BA.2.75 compared to BA.2. Moreover, we find that the R493Q

71 reversion mutation enhances the neutralization sensitivity of BA.2.75. These findings inform our
72 understanding of SARS-CoV-2 evolution and will aid in addressing the ongoing threat of emerging
73 SARS-CoV-2 variants.

74

75 **Results**

76 *BA.2.75 exhibits enhanced neutralization resistance over BA.2.*

77 We first sought to characterize sensitivity to vaccine-induced immunity of the BA.2.75
78 variant. Utilizing our previously reported pseudotyped lentivirus assay (Zeng et al., 2020), we
79 examined neutralizing antibody (nAb) titers for 15 Ohio State University Wexner Medical Center
80 health care workers (HCWs) in serum samples collected 3-4 weeks after vaccination with a
81 second dose of Moderna mRNA-1273 ($n = 7$) or Pfizer/BioNTech BNT162b2 ($n = 8$) vaccine, and
82 1-12 weeks after vaccination with a homologous booster dose (see STAR Methods). Patient sera
83 were examined for nAb titers against lentivirus pseudotyped with S from ancestral SARS-CoV-2
84 S bearing only the D614G mutation, as well as S from BA.1, BA.2, BA.2.12.1, BA.4/5, and BA.2.75
85 (Fig. 1A). All S constructs were functional and produced comparably infectious lentivirus
86 pseudotypes (Fig. 1B).

87 Notably, all Omicron sublineages, including BA.2.75, exhibited strong resistance to 2-
88 dose-induced immunity compared to D614G ($p < 0.0001$), with only 1-2 HCW samples exhibiting
89 50% neutralization titers (NT_{50}) above the limit of quantification ($NT_{50} = 80$) (Fig. 1C). In contrast,
90 administration of a booster dose recovered the neutralizing antibody response against all Omicron
91 subvariants (Fig. 1D, Fig. S1A-H). In serum from the boosted individuals, BA.2.75 exhibited 4.8-
92 fold ($p < 0.0001$) lower neutralization than D614G, with somewhat stronger neutralization
93 resistance than BA.2 and BA.2.12.1, which were neutralized 3.6-fold ($p < 0.01$) and 3.5-fold ($p <$
94 0.001) less efficiently than D614G, respectively (Fig. 1D). However, BA.2.75 showed higher
95 neutralization sensitivity than BA.4/5, which had 9.7-fold ($p < 0.001$) lower neutralization than
96 D614G (Fig. 1D).

97 We also examined the neutralizing antibody response in a cohort of non-ICU COVID-19
98 patients (n = 30) hospitalized at the Ohio State University Wexner Medical Center during the
99 Omicron-wave of the pandemic. These patient samples were collected between early February
100 and early March of 2022, representing a BA.1 dominant period in Ohio. Overall, the nAb titers of
101 the Omicron-wave patients were much lower than those of boosted HCWs, and BA.2.75 exhibited
102 neutralization resistance modestly higher than BA.2 (by 44.0%, p > 0.05) but much lower than
103 BA.4/5 (3.8-fold; p < 0.001) relative to D614G (Fig. 1E; Fig. S1I). This cohort of Omicron-wave
104 patients included 14 unvaccinated patients, 8 patients vaccinated with 2 doses of Moderna
105 mRNA-1273 (n = 4) or Pfizer/BioNTech BNT162b2 (n = 4), and 8 patients vaccinated and boosted
106 with Pfizer/BioNTech BNT162b2. We found that, while BA.2.75 was neutralized comparably to
107 BA.2 and D614G for unvaccinated patients, BA.2.75 was neutralized 2.3-fold less efficiently than
108 D614G in 2-dose vaccinated patients (p > 0.05) and 4.9-fold less efficiently for 3-dose vaccinated
109 patients (p < 0.01), respectively (Fig. 1F). The boosted HCWs with breakthrough infection
110 exhibited higher nAb titers overall (Fig. 1F), as would be expected.

111

112 *BA.2.75 neutralization is modulated by G446S, N460K, and R493Q mutations.*

113 To understand the determinants of BA.2.75 neutralization resistance, we examined all
114 nine point mutations in the BA.2 background, as well as nine corresponding reversion mutations
115 in the background of BA.2.75. None of these single mutations substantially impacted lentiviral
116 pseudotype infectivity (Fig. 2A-B). We then examined the neutralization sensitivity of these
117 mutants to sera from 9 HCWs collected 1-12 weeks after homologous booster vaccination with
118 Moderna mRNA-1273 (n = 2) or Pfizer/BioNTech BNT162b2 (n = 7). When the G446S mutation
119 was introduced to BA.2, a slight but significant reduction in sensitivity to 3-dose mRNA vaccine-
120 induced nAbs was observed (42.7%, p < 0.01), which was comparable to BA.2.75 (Fig. 2C).
121 Introduction of a S446G reversion mutation into BA.2.75 enhanced neutralization sensitivity by
122 31.4%, albeit the change was not statistically significant (p = 0.055) (Fig. 2D). Interestingly,

123 introduction of a R493Q mutation into BA.2 increased neutralization sensitivity by 35.8% ($p >$
124 0.05), while introduction of the Q493R reversion mutation into BA.2.75 reduced neutralization
125 sensitivity by 45.1% ($p > 0.05$) (Fig. 2C-D). Of note, the N460K mutation also substantially
126 increased neutralization resistance of BA.2 by 33.0% ($p > 0.05$), whereas the K460N reversion
127 mutation in BA.2.75 was 77.4% ($p = 0.069$) more neutralization sensitive (Fig. 2C-D). Thus, the
128 G446S and N460K mutations in BA.2.75 are largely responsible for its enhanced neutralization
129 resistance, while the R493Q reversion mutation in BA.2.75 at least partially restores neutralizing
130 epitopes found in the prototype SARS-CoV-2, which were otherwise abolished in BA.2.

131

132 *BA.2.75 exhibits enhanced syncytia formation and S processing compared to BA.2.*

133 We next sought to characterize key features of the BA.2.75 S protein, including the ability
134 to mediate cell-cell fusion. HEK293T-ACE2 cells were transfected to express GFP and variant
135 SARS-CoV-2 S proteins. As previously reported (Zeng et al., 2021), all Omicron sublineages
136 exhibited reduced fusogenicity compared to the ancestral D614G S (Fig. 3A-B). However,
137 BA.2.75 exhibited enhanced syncytia formation compared to BA.2, with mean syncytia size 2.0-
138 fold higher than BA.2 ($p < 0.0001$) (Fig. 3A-B; Fig. S2A); this was despite similar surface
139 expression, as examined by flow cytometry (Fig. 3C-D).

140 To determine if the enhanced fusogenicity phenotype might be related to alterations in
141 processing of S protein, we examined cell lysates from the pseudotyped lentivirus producer. As
142 shown in Figure 3E, BA.2.75 spike exhibited enhanced processing, as reflected in the ratio of S1
143 or S2 subunit to full length S ratio, which was ~30-40% higher than BA.2. Consistent with its
144 enhanced fusion, BA.4/5 showed the highest S processing among omicron variants (Fig. 3A-B
145 and E; Fig. S2A).

146

147 *Enhanced syncytia formation and processing of BA.2.75 is determined by the N460K mutation.*

148 We further characterized the impact of BA.2.75-defining mutations on S fusogenicity and
149 processing. Introduction of the N460K mutation into the BA.2 S drastically enhanced cell-cell
150 fusion, with mean syncytia size 3.8-fold ($p < 0.0001$) higher than BA.2 (Fig. 4A-B; Fig. S2B).
151 Conversely, introduction of the K460N reversion mutation into BA.2.75 significantly reduced cell-
152 cell fusion, with mean syncytia size 4.3-fold ($p < 0.0001$) lower than BA.2.75 (Fig. 4C-D; Fig. S2C).
153 We found that F157L and G257S in the BA.2 background, as well as the R152W reversion mutant
154 in the BA.2.75 background, also exhibited modestly altered fusion activity (Fig. 4A-D). Importantly,
155 the differences in membrane fusion between these mutants were not due to the surface
156 expression level of S, as examined by flow cytometry (Fig. 4E-F; Fig. S2D-E). Consistent with
157 enhanced fusion activity, introduction of the N460K mutation into the BA.2 S protein enhanced
158 processing of S into the S1 and S2 subunits, as reflected in a S1/S ratio 40% higher than in BA.2
159 (Fig. 4G); a similar 70% increase in S2/S ratio was also observed (Fig. 4G). Conversely,
160 introduction of a K460N reversion mutation into BA.2.75 reduced S protein processing by 20%
161 (Fig. 4H). Thus, the N460K mutation in BA.2.75 enhances S processing, consistent with increased
162 fusogenicity.

163

164 *Structural modeling*

165 To understand how BA.2.75 mutations contribute to functional changes, we created
166 models of BA.2.75 spike protein and its complex with the ACE2 receptor using homology
167 modeling (Fig. 4I). The G446S mutation does not appear to alter main chain interactions with the
168 Q42 receptor residue; however, this mutation could reduce backbone flexibility, thus potentially
169 stabilizing the specific interaction with ACE2, as well as spike integrity. The R493Q mutation
170 would abolish a strong salt-bridge interaction with the E35 residue on the ACE2 receptor, which
171 could reduce receptor binding affinity; however, this effect may be offset by the formation two new
172 hydrogen bonds between the Q493 residue on spike and residues E35 and K31 on ACE2. Finally,
173 N460K forms a new hydrogen bond with the glycan-N90 on ACE2 through an elongated side

174 chain that reaches out to the alpha-1,3 mannose molecule on the N-linked glycan of the receptor
175 residue N90, and this would likely enhance receptor binding affinity of BA.2.75.

176

177 **Discussion**

178 The BA.2.75 subvariant is the latest in a series of Omicron variants to be identified.
179 BA.2.75 has an alarming nine additional S mutations compared with BA.2, and preliminary reports
180 suggest a slight growth advantage (Callaway, 2022; World Health Organization, 2022). These
181 features portend that BA.2.75 could potentially overtake the BA.4/5 subvariants as the dominant
182 circulating strain. Given this concern, it is critical to examine key features and novel phenotypes
183 of BA.2.75, especially in its S protein. In this study, we show that BA.2.75 exhibits an increased
184 neutralization resistance compared to ancestral BA.2, but has significantly lower neutralization
185 resistance than BA.4/5 for 3-dose mRNA vaccinated HCWs as well as for hospitalized Omicron-
186 wave patients. Critically, we demonstrate that the G446S and N460K mutations in the S protein
187 of BA.2.75 underlie its enhanced neutralization resistance, while the R493Q mutation in BA.2.75,
188 which is a reversion mutation, sensitizes it to neutralization. These findings could reflect the
189 emergence of compensatory mutations to improve S function while maintaining neutralization
190 resistance. Notably, the G446S mutation occurs in an epitope bound by class III neutralizing
191 antibodies, rather than class II neutralizing antibodies that target the epitope of the R493Q
192 mutation (Greaney et al., 2021). Structural analysis suggests that the side chain addition by
193 G446S creates a steric clash with the CDR region of class III neutralizing antibodies, thus
194 potentially hampering their recognition (Liu et al., 2022; Wang et al., 2022a). Hence, the exchange
195 of these mutations may alter the susceptibility of BA.2.75 to class II and class III nAbs.

196 We further demonstrate that BA.2.75 exhibits enhanced S-mediated cell-cell fusion
197 compared to BA.2, albeit to a lesser extent than BA.4/5. This enhanced triggering of BA.2.75 S-
198 mediated fusion may reflect improved receptor utilization that is not present in earlier Omicron
199 subvariants, consistent with several recent preprints (Cao et al., 2022; Saito et al., 2022; Wang

200 et al., 2022a). Critically, we find that the N460K mutation present in BA.2.75 is essential for the
201 enhanced fusion phenotype. This may relate to enhanced processing of N460K-containing S in
202 virus producing cells, which would prime more cell surface-associated S for membrane fusion.
203 While structural modeling did not provide an immediate explanation, the N460K mutation might
204 enhance receptor utilization through a hydrogen bond with the receptor glycan N90. However, it
205 is worth noting that this glycan interaction is mediated by a terminal mannose molecule, so it may
206 not be easily observed in conditions of protein overexpression where glycosylation is often
207 insufficient. G446S, on the other hand, may reduce the flexibility of loop 440-450, potentially
208 enhancing overall spike thermostability, which likely decreases S processing efficiency.
209 Furthermore, G446 is not well resolved in many apo spike structures, in line with its flexible local
210 conformation. A more stable backbone loop conformation produced by the G446S mutation may
211 reduce the energy cost for receptor engagement through hydrogen bond formation with Q42.
212 Lastly, the loss of a strong salt-bridge interaction by the R493Q mutation is offset by the addition
213 of two potential hydrogen bonds to the adjacent receptor residues, which could explain its
214 modestly decreased fusion efficiency and processing. The contributions of these key residues to
215 BA.2.75 replication kinetics in physiologically relevant human lung and airway epithelial cells
216 needs to be carefully investigated. Further characterization of emerging SARS-CoV-2 variants will
217 continue to aid our understanding of key features of SARS-CoV-2 evolution, spike biology, and
218 immune evasion. Continued analysis of emerging variants also will improve ongoing public health
219 responses and any potential reformulation of SARS-CoV-2 mRNA vaccine boosters.

220 Limitations of this study include a relatively small sample size for the boosted health care
221 workers and the utilization of pseudotyped lentivirus for the neutralization assay rather than an
222 authentic virus assay. However, our results for neutralization resistance are in accordance with
223 several recent preprints (Cao et al., 2022; Gruell et al., 2022; Saito et al., 2022; Sheward et al.,
224 2022; Wang et al., 2022b; Xie et al., 2022; Yamasoba et al., 2022a). Additionally, the lentiviral
225 pseudotype neutralization assay has been previously validated by assays with authentic SARS-

226 CoV-2 (Zeng et al., 2020), and confirmed by numerous laboratories in the field. Future studies
227 will focus on the biology and replication characteristics of BA.2.75 using variants isolated from
228 human COVID patients.

229

230 **Author Contributions**

231 S.-L.L. conceived and directed the project. P.Q. performed most of the experiments. J.P.E.
232 assisted in experiments and contributed data processing and analyses. C.C. and R.J.G. provided
233 clinical samples. P.Q., J.P.E., and S.-L.L. wrote the paper. K.X. performed homology modeling.
234 Y.-M.Z, L.J.S., E.M.O. and K.X. provided insightful discussion and revision of the manuscript.

235

236 **Acknowledgements**

237 We thank the NIH AIDS Reagent Program and BEI Resources for providing important reagents
238 for this work and Xue Zou for assistance. We also thank the Clinical Research Center/Center for
239 Clinical Research Management of The Ohio State University Wexner Medical Center and The
240 Ohio State University College of Medicine in Columbus, Ohio, specifically Francesca Madiai, Dina
241 McGowan, Breona Edwards, Evan Long, and Trina Wemlinger, for logistics, collection and
242 processing of samples. In addition, we thank Sarah Karow, Madison So, Preston So, Daniela
243 Farkas, and Finny Johns in the clinical trials team of The Ohio State University for sample
244 collection and other supports.

245

246 **Funding**

247 This work was supported by a fund provided by an anonymous private donor to OSU. S.-L.L.,
248 R.J.G., L.J.S. and E.M.O. were supported by the National Cancer Institute of the NIH under award
249 no. U54CA260582. The content is solely the responsibility of the authors and does not necessarily
250 represent the official views of the National Institutes of Health. J.P.E. was supported by Glenn
251 Barber Fellowship from the Ohio State University College of Veterinary Medicine. R.J.G. was

252 additionally supported by the Robert J. Anthony Fund for Cardiovascular Research and the JB
253 Cardiovascular Research Fund, and L.J.S. was partially supported by NIH R01 HD095881. K.X.
254 was supported by Path to K Grant through the Ohio State University Center for Clinical &
255 Translational Science.

256

257 **Declaration of Interests**

258 The authors declare no competing interests.

259

260 **Figure Legends:**

261 **Figure 1: BA.2.75 exhibits strong neutralization resistance to 2-dose and 3-dose mRNA**
262 **vaccinee sera and Omicron wave patient sera.** **(A)** Schematic of BA.2-derived SARS-CoV-2
263 variants with mutations relative to the BA.2 background indicated. Highlighted are the S1 and S2
264 subunits, N-terminal domain (NTD), receptor binding domain (RBD), fusion peptide (FP), and
265 transmembrane domain (TM). **(B)** Infectivity of pseudotyped lentivirus bearing S protein from
266 SARS-CoV-2 variants of study; bars represent means \pm standard error. **(C-D)** Neutralizing
267 antibody titers against lentivirus pseudotyped with S from individual SARS-CoV-2 variants for 15
268 health care workers for sera collected 3-4 weeks after second mRNA vaccination (C) or 1-12
269 weeks after homologous mRNA booster vaccination (D). **(E)** Neutralizing antibody titers for sera
270 collected from 30 COVID-19 patients hospitalized during the BA.1 pandemic wave. **(F)**
271 Neutralizing antibody titers against hospitalized BA.1 wave patients are divided by vaccination
272 status. (C-F) Dots indicate individual patient samples; bars represent geometric means with 95%
273 confidence intervals; significance relative to D614G was determined by one-way repeated
274 measures ANOVA with Bonferroni multiplicity correction. P-values are displayed as *p < 0.05, **p
275 < 0.01, ***p < 0.001, ****p < 0.0001, and ns for not significant.

276

277 **Figure 2: The G446S, N460K, and R493Q mutations modulate BA.2.75 neutralization**
278 **sensitivity.** (A) Relative infectivity of lentivirus pseudotyped with BA.2 S with single mutations
279 from BA.2.75 lineage defining mutations; bars represent means \pm standard error. (B) Relative
280 infectivity of lentivirus pseudotyped with BA.2.75 S with single reversion mutations to remove
281 BA.2.75 lineage defining mutations; bars represent means \pm standard error. (C-D) Neutralizing
282 antibody titers against lentivirus pseudotyped with S from BA.2 with single mutations from BA.2.75
283 lineage-defining mutations (C) or BA.2.75 with single reversion mutations from BA.2.75 lineage-
284 defining mutations (D) for sera collected from 9 health care workers 1-12 weeks after homologous
285 mRNA booster vaccination. Dots indicate individual patient samples; bars represent geometric
286 means with 95% confidence intervals; significance relative to D614G was determined by one-way
287 repeated measures ANOVA with Bonferroni multiplicity correction. P-values are displayed as **p
288 < 0.01 , and ns for not significant.

289
290 **Figure 3: BA.2.75 exhibits enhanced cell-cell fusion and S processing.** (A) Fluorescence
291 images displaying syncytia formation are presented for HEK293T-ACE2 cells 48 hr after co-
292 transfection with a GFP expression construct and SARS-CoV-2 variant S proteins. (B)
293 Quantification of syncytia formation in panel (A) displays the mean syncytia size; bars represent
294 means \pm standard error, with significance relative to D614G determined by one-way ANOVA with
295 Bonferroni multiplicity correction. (C) Histogram displays of the surface staining of HEK293T cells
296 expressing S proteins, which were detected by an anti-S1 antibody (T62). (D) Quantification of
297 relative surface expression as shown in (C); bars represent means \pm standard error. (E)
298 Pseudotyped lentivirus producer cell lysate was assessed for processing of S by probing with
299 anti-S1 (T62), anti-S2, anti-HIV-1 Gag (anti-p24), and anti-GAPDH. Band intensities were
300 quantified in ImageJ and the ratio of S1/S or S2/S is displayed relative to the S1/S or S2/S ratio
301 of BA.2. P-values are displayed as ***p < 0.0001 .

302

303 **Figure 4: The N460K mutation determines enhanced cell-cell fusion and S processing of**
304 **BA.2.75. (A)** Fluorescence images displaying syncytia formation are presented for HEK293T-
305 ACE2 cells 48 hr after co-transfection with a GFP expression construct and BA.2 single mutant S
306 proteins. **(B)** Quantification of syncytia formation in panel (A) displays the mean syncytia size;
307 bars represent means \pm standard error, with significance relative to D614G determined by one-
308 way ANOVA with Bonferroni multiplicity correction. **(C)** Fluorescence images displaying syncytia
309 formation are presented for HEK293T-ACE2 cells 48-hrs after co-transfection with a GFP
310 expression construct and BA.2.75 single reversion mutant S proteins. **(D)** Quantification of
311 syncytia formation in panel (C) displays the mean syncytia size; bars represent means \pm standard
312 error, with significance relative to D614G determined by one-way ANOVA with Bonferroni
313 multiplicity correction. **(E-F)** Quantification of relative S surface expression in transfected
314 HEK293T cells for BA.2 single mutants (E) or BA.2.75 reversion mutants (F), as examined by flow
315 cytometry; bars represent means \pm standard error. **(G)** Pseudotyped lentivirus producer cell lysate
316 was assessed for processing of S from BA.2 single mutants by probing with anti-S1 (T62), anti-
317 S2, anti-HIV-1 p24, and anti-GAPDH. Band intensities were quantified in ImageJ and the ratios
318 of S1/S and S2/S are displayed relative to the S1/S and S2/S ratios of BA.2. **(H)** Pseudotyped
319 lentivirus producer cell lysate was assessed for processing of S from BA.2.75 reversion mutants
320 by probing with anti-S1, anti-S2, anti-HIV-1 p24, and anti-GAPDH. Band intensities were
321 quantified in ImageJ and the ratios of S1/S and S2/S are displayed relative to the S1/S and S2/S
322 ratios of BA.2.75. **(I)** Structural modelling of Omicron BA.2.75 spike protein viewed as a ribbon.
323 Mutations of BA.2.75 specific mutants are highlighted by red spheres. The RBD of the cyan spike
324 protomer is in an “up” conformation. Upper inset: The mutation G446S reduces the backbone
325 flexibility and possibly stabilizes the hydrogen bond between its carbonyl group and the residue
326 Q42 on ACE2 receptor (green); the mutation R493Q abolishes the salt-bridge interaction with the
327 E35 on ACE2 receptor and potentially forms two hydrogen bonds with E35 and K31. Lower inset:
328 the mutation N460K enables formation of a hydrogen bond with the glycan-N90 on ACE2 receptor

329 (green). In all cases, p-values are displayed as * $p < 0.05$, ** $p < 0.01$, **** $p < 0.0001$, and ns for
330 not significant.

331

332 **Figure S1: Neutralization of Omicron subvariants by vaccinee and COVID-19 patient sera, related to Figure 1. (A-F)** Comparison of the neutralizing antibody titers in HCWs between 2-dose and 3-dose booster mRNA vaccination against the D614G (A), BA.1 (B), BA.2 (C), BA.2.12.1 (D), BA.4/5 (E), and BA.2.75 (F) variants. Lines connect samples from the same HCW, the dotted lines represent the limit of quantification ($NT_{50} = 80$), and significance was determined by paired, two-tailed Student's t test with Welch's correction. **(G-I)** Heatmaps display the nAb titers for HCWs 3-4 weeks after second mRNA vaccine dose (G), 1-12 weeks after mRNA vaccine booster dose (H), and for hospitalized Omicron wave COVID-19 patients (I). HCWs are indicated as 'M' for 338 Moderna mRNA-1273 vaccinated or 'P' for Pfizer/BioNTech BNT162b2 vaccinated, and Omicron 339 wave patients are indicated as 'U' for unvaccinated, 'V' for 2-dose vaccinated, and 'B' for 340 vaccinated and boosted. P-values are represented as ** $p < 0.01$ and **** $p < 0.0001$.

343

344 **Figure S2: Syncytia formation and cell surface expression of Omicron subvariants, as well as BA.2- and BA.2.75-derived single mutants, related to Figures 3 and 4. (A-C)** Fluorescence 345 images displaying syncytia formation are presented for HEK293T-ACE2 cells 24 hr after co- 346 transfection with a GFP expression construct and SARS-CoV-2 variant S proteins (A), BA.2 single 347 mutants S proteins (B), or BA.2.75 single reversion mutant S proteins (C). **(D-E)** Histograms of 348 surface staining with anti-S1 antibody of HEK293T cells expressing S proteins from BA.2 with 349 single mutations from BA.2.75 lineage defining mutations (D) and from BA.2.75 with single 350 reversion mutations from BA.2.75 lineage defining mutations (E).

352

353 **STAR Methods**

354 **RESOURCE AVAILABILITY**

355 *Lead Contact*
356 Further information and requests for resources and reagents should be directed to the lead
357 contact, Dr. Shan-Lu Liu (liu.6244@osu.edu).

358

359 *Materials Availability*

360 Plasmids generated in this study are available upon request made to the lead contact.

361

362 *Data and Code Availability*

363 • NT₅₀ values and de-identified patient information will be deposited to the National Cancer
364 Institute SeroNet Coordinating Center. Additionally, NT₅₀ values and de-identified patient
365 information reported in this paper will be shared by the lead contact upon request.
366 • This paper does not report original code.
367 • Any additional information required to reanalyze the data reported in this paper is available
368 from the lead contact upon request.

369

370 EXPERIMENTAL MODEL AND SUBJECT DETAILS

371 *Patient Information*

372 Sera were collected from the Ohio State University Wexner Medical Center health care
373 workers (HCWs) under approved IRB protocols (2020H0228 and 2020H0527). Demographic
374 information was self-reported and all subjects provided informed consent. Sera from 15 HCWs
375 were collected 3-4 weeks after vaccination with a second dose of Moderna mRNA-1273 (n = 7)
376 or Pfizer/BioNTech BNT162b2 (n = 8) vaccine, and 1-12 weeks after vaccination with a
377 homologous booster dose. These HCWs ranged in age from 32 to 56 years (median 37 years)
378 and included 6 female and 9 male HCWs. Analysis by age and gender could not be performed
379 due to low sample number.

380 Sera were collected from patients 30 hospitalized for COVID-19 at the Ohio State
381 University Wexner Medical Center under an approved IRB protocol (2020H0527). Sera were
382 collected between early February and early March of 2022, during the Omicron wave in Ohio.
383 Patients included 14 unvaccinated patients, 8 patients vaccinated with 2 doses of Moderna
384 mRNA-1273 (n = 4) or Pfizer/BioNTech BNT162b2 (n = 4), and 8 patients vaccinated and boosted
385 with Pfizer/BioNTech BNT162b2. This cohort included 11 female and 19 male patients. Patients
386 ranged in age from 28 to 78 years (median 62 years).

387

388 *Cell Lines and Maintenance*

389 HEK293T (ATCC CRL-11268, RRID: CVCL_1926) and HEK293T-ACE2 (BEI NR-52511,
390 RRID: CVCL_A7UK) cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM)
391 (Cibco, 11965-092) supplemented with 10% Fetal Bovine Serum (Sigma, F1051) and 1%
392 penicillin/streptomycin (HyCline, SV30010). Cells were maintained at 5% CO₂ and 37°C.

393

394 **METHOD DETAILS**

395 *Plasmids*

396 Pseudotyped lentivirus was produced using a pNL4-3-inGluc lentivirus vector comprised
397 of a ΔEnv HIV-1 backbone bearing a *Gaussia* luciferase reporter gene driven by a CMV promoter
398 (Goerke et al., 2008; Zeng et al., 2020). SARS-CoV-2 S constructs bearing N- and C-terminal
399 Flag tags were synthesized and cloned into a pcDNA3.1 vector by GenScript (Piscataway, NJ)
400 by Kpn I and BamH I restriction enzyme cloning.

401

402 *Pseudotyped lentivirus production and infectivity*

403 Pseudotyped lentivirus was produced by transfecting HEK293T cells with pNL4-3-inGluc
404 and S construct in a 2:1 ratio using polyethylenimine transfection. Pseudotyped lentivirus was
405 collected at 48 hr and 72 hr after transfection. Collections were pooled and used to infect

406 HEK293T-ACE2 cells to assess pseudotyped lentivirus infectivity. 48 hr and 72 hr after infection,
407 infected cell culture media was assessed for *Gaussia* luciferase activity by combining 20 μ L of
408 media with 20 μ L of *Gaussia* luciferase substrate (0.1 M Tris pH 7.4, 0.3 M sodium ascorbate, 10
409 μ M coelenterazine). Luminescence was then immediately measured by a BioTek Cytation5 plate
410 reader using BioTek Gen5 Microplate Reader and Imager Software (Winooski, VT).

411

412 *Lentivirus neutralization assay*

413 Pseudotyped lentivirus neutralization assays were performed as previously described
414 (Zeng et al., 2020). Patient or HCW sera were 4-fold serially diluted in complete DMEM and
415 pseudotyped lentivirus was added to neutralize for 1 hr (final dilutions: 1:80, 1:320, 1:1280, 1:5120,
416 1:20480, and no serum control). The pseudotyped lentivirus/sera mixtures were then transferred
417 to HEK293T-ACE2 cells for infection. Then 48 hr and 72 hr after infection, infected cell media was
418 assayed for *Gaussia* luciferase activity by combining 20 μ L of cell culture media with 20 μ L of
419 *Gaussia* luciferase substrate. Luminescence was read immediately by a BioTek Cytation5 plate
420 reader using BioTek Gen5 Microplate Reader and Imager Software (Winooski, VT). NT₅₀ values
421 were determined by least-squares-fit, non-linear regression in GraphPad Prism 9 (San Diego,
422 CA).

423

424 *Spike surface expression*

425 HEK293T cells used to produce pseudotyped lentivirus were singularized by incubation in
426 phosphate buffer saline (PBS) with 5 mM ethylenediaminetetraacetic acid (EDTA) at 37°C for 5
427 min and fixed 72 hr after transfection by incubation in 3.7% formaldehyde in PBS for 10 min. Cells
428 were then stained with rabbit anti-S1 primary antibody (Sino Biological, 40150-T62) and anti-
429 rabbit-IgG-FITC secondary antibody (Sigma, F9887). Samples were analyzed by a Life
430 Technologies Attune NxT flow cytometer and data was processed using FlowJo v7.6.5 (Ashland,
431 OR).

432

433 *Syncytia formation*

434 HEK293T-ACE2 cells were transfected with SARS-CoV-2 S constructs and a GFP
435 expression construct. Cells were then imaged at 4x magnification 24 hr and 48 hr after transfection
436 with a Leica DMi8 confocal microscope. Syncytia size was quantified using Leica Applications
437 Suit X (Wetzlar, Germany) image analysis software. Three images were taken per sample with
438 representative images being displayed.

439

440 *Spike processing and incorporation*

441 Pseudotyped lentivirus producing HEK293T cells were lysed by incubating in RIPA lysis
442 buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1mM EDTA, Nonidet P-40, 0.1% sodium dodecyl sulfate
443 (SDS)) supplemented with protease inhibitor (Sigma, P8340) on ice for 30 min. Cell debris was
444 pelleted and cell lysate was dissolved in 5x SDS-PAGE Laemmli buffer (312.5 mM Tris-HCl pH
445 6.8, 10% SDS, 25% glycerol, 0.5% Bromophenol blue, 10% β -mercaptoethanol). Pseudotyped
446 lentivirus was purified by ultracentrifugation through a 20% sucrose cushion at 28,000 rpm and
447 4°C using a Beckman L-80 ultracentrifuge with TW-41 rotor. Pelleted pseudotyped lentivirus was
448 resuspended in 1x SDS-PAGE Laemmli buffer. Cell lysate and purified virus were run on a 10%
449 acrylamide SDS-PAGE gel and were transferred to a PVDF membrane. Membranes were blotted
450 with anti-S1 (Sino Biological, 40150-T62), anti-S2 (Sino Biological, 40590-T62), anti-p24 (NIH
451 ARP-1513), and anti-GAPDH (Santa Cruz Biotech, sc-47724) with anti-mouse-IgG-peroxidase
452 (Sigma A5278) and anti-rabbit-IgG-HRP (Sigma, A9169) secondary antibodies. Blots were
453 imaged with Immobilon Crescendo Western HRP substrate (Millipore, WBLUR0500) on a GE
454 Amersham Imager 600. Band intensities were quantified using ImageJ (Bethesda, MD) image
455 analysis software.

456

457 *Homology modeling*

458 Structural modeling of Omicron BA.2.75 spike protein and its complex with ACE2 receptor was
459 conducted on SWISS-MODEL server with cryo-EM structure of SARS-CoV2 Omicron BA2 strain
460 spike and complexes (PDB 7TNW and 7XB0) as templates. Glycan modeling, residue
461 examination and rotamer adjustment were carried out manually with programs Coot (Cambridge,
462 England) and PyMOL (New York, NY).

463

464 *Quantification and statistical analysis*

465 NT₅₀ values were determined by least-squares-fit, non-linear-regression in GraphPad
466 Prism 9 (San Diego, CA). NT₅₀ values were log₁₀ transformed for hypothesis testing to better
467 approximate normality. Throughout, multiplicity was addressed by the use of Bonferroni
468 corrections. Statistical analyses were performed using GraphPad Prism 9 (San Diego, CA) and
469 are referenced in the figure legends and include one-way ANOVA (Fig. 3B and Fig. 4B and D),
470 one-way repeated measures ANOVA (Fig. 1C-F, Fig. 2C-D), and a paired, two-tailed Student's t
471 test with Welch's correction was used (Fig. S1A-F). Syncytia sizes were quantified by Leica
472 Applications Suit X (Wetzlar, Germany). Band intensities (Figs. 3E and Fig. 4G-H) were quantified
473 by ImageJ (Bethesda, MD) image analysis software.

474

475 **References:**

476 Callaway, E. 2022. Will 'Centaurus' be the next global coronavirus variant? Indian cases offer
477 clues. *Nature*.

478 Cao, Y., W. Song, L. Wang, P. Liu, C. Yue, F. Jian, Y. Yu, A. Yisimayi, P. Wang, Y. Wang, Q.
479 Zhu, J. Deng, W. Fu, L. Yu, N. Zhang, J. Wang, T. Xiao, R. An, J. Wang, L. Liu, S. Yang,
480 X. Niu, Q. Gu, F. Shao, X. Hao, R. Jin, Y. Wang, X.S. Xie, and X. Wang. 2022.
481 Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75.
482 *bioRxiv*:2022.2007.2018.500332.

483 Centers for Disease Control and Prevention. 2022. COVID Data Tracker. Atlanta, GA: US
484 Department of Health and Human Services, CDC. 2022, August 10.
485 <https://covid.cdc.gov/covid-data-tracker>

486 Evans, J.P., C. Zeng, P. Qu, J. Faraone, Y.M. Zheng, C. Carlin, J.S. Bednash, T. Zhou, G.
487 Lozanski, R. Mallampalli, L.J. Saif, E.M. Oltz, P.J. Mohler, K. Xu, R.J. Gumina, and S.L.
488 Liu. 2022. Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2.
489 *Cell Host Microbe*. 30:1093-1102.e1093.

490 Goerke, A.R., A.M. Loening, S.S. Gambhir, and J.R. Swartz. 2008. Cell-free metabolic
491 engineering promotes high-level production of bioactive *Gaussia princeps* luciferase.
492 *Metab Eng.* 10:187-200.

493 Greaney, A.J., T.N. Starr, C.O. Barnes, Y. Weisblum, F. Schmidt, M. Caskey, C. Gaebler, A. Cho,
494 M. Agudelo, S. Finkin, Z. Wang, D. Poston, F. Muecksch, T. Hatziloannou, P.D. Bieniasz,
495 D.F. Robbiani, M.C. Nussenzweig, P.J. Bjorkman, and J.D. Bloom. 2021. Mapping
496 mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies.
497 *Nat Commun.* 12:4196.

498 Gruell, H., K. Vanshylla, P. Tober-Lau, D. Hillus, P. Schommers, C. Lehmann, F. Kurth, L.E.
499 Sander, and F. Klein. 2022. mRNA booster immunization elicits potent neutralizing serum
500 activity against the SARS-CoV-2 Omicron variant. *Nat Med.* 28:477-480.

501 Hoffmann, M., N. Krüger, S. Schulz, A. Cossmann, C. Rocha, A. Kempf, I. Nehlmeier, L. Graichen,
502 A.S. Moldenhauer, M.S. Winkler, M. Lier, A. Dopfer-Jablonka, H.M. Jäck, G.M.N. Behrens,
503 and S. Pöhlmann. 2022. The Omicron variant is highly resistant against antibody-mediated
504 neutralization: Implications for control of the COVID-19 pandemic. *Cell.* 185:447-456.e411.

505 Liu, L., S. Iketani, Y. Guo, J.F. Chan, M. Wang, L. Liu, Y. Luo, H. Chu, Y. Huang, M.S. Nair, J.
506 Yu, K.K. Chik, T.T. Yuen, C. Yoon, K.K. To, H. Chen, M.T. Yin, M.E. Sobieszczky, Y.
507 Huang, H.H. Wang, Z. Sheng, K.Y. Yuen, and D.D. Ho. 2022. Striking antibody evasion
508 manifested by the Omicron variant of SARS-CoV-2. *Nature.* 602:676-681.

509 Qu, P., J. Faraone, J.P. Evans, X. Zou, Y.M. Zheng, C. Carlin, J.S. Bednash, G. Lozanski, R.K.
510 Mallampalli, L.J. Saif, E.M. Oltz, P.J. Mohler, R.J. Gumina, and S.L. Liu. 2022.
511 Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. *The New
512 England Journal of Medicine.* 386:2526-2528.

513 Saito, A., T. Tamura, J. Zahradnik, S. Deguchi, K. Tabata, I. Kimura, J. Ito, H. Nasser, M. Toyoda,
514 K. Nagata, K. Uriu, Y. Kosugi, S. Fujita, D. Yamasoba, M. Shofa, M.M. Begum, Y. Oda, R.
515 Suzuki, H. Ito, N. Nao, L. Wang, M. Tsuda, K. Yoshimatsu, Y. Yamamoto, T. Nagamoto,
516 H. Asakura, M. Nagashima, K. Sadamasu, K. Yoshimura, T. Ueno, G. Schreiber, A.
517 Takaori-Kondo, K. Shirakawa, H. Sawa, T. Irie, K. Takayama, K. Matsuno, S. Tanaka, T.
518 Ikeda, T. Fukuhara, and K. Sato. 2022. Virological characteristics of the SARS-CoV-2
519 Omicron BA.2.75. *bioRxiv*:2022.2008.2007.503115.

520 Sheward, D.J., C. Kim, J. Fischbach, S. Muschiol, R.A. Ehling, N.K. Björkström, G.B. Karlsson
521 Hedestam, S.T. Reddy, J. Albert, T.P. Peacock, and B. Murrell. 2022. Evasion of
522 neutralizing antibodies by Omicron sublineage BA.2.75. *bioRxiv*:2022.2007.2019.500716.

523 Tuekprakhon, A., R. Nutalai, A. Dijokaité-Guraliuc, D. Zhou, H.M. Ginn, M. Selvaraj, C. Liu, A.J.
524 Mentzer, P. Supasa, H.M.E. Duyvesteyn, R. Das, D. Skelly, T.G. Ritter, A. Amini, S. Bibi,
525 S. Adele, S.A. Johnson, B. Constantinides, H. Webster, N. Temperton, P. Klenerman, E.
526 Barnes, S.J. Dunachie, D. Crook, A.J. Pollard, T. Lambe, P. Goulder, N.G. Paterson, M.A.
527 Williams, D.R. Hall, E.E. Fry, J. Huo, J. Mongkolsapaya, J. Ren, D.I. Stuart, and G.R.
528 Screaton. 2022. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine
529 and BA.1 serum. *Cell.* 185:2422-2433.e2413.

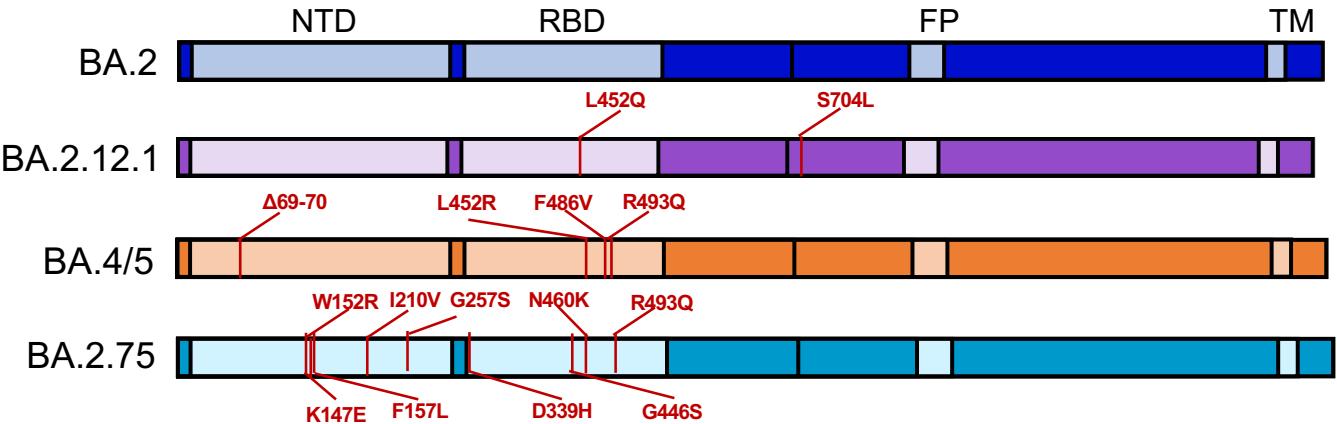
530 Wang, Q., S. Iketani, Z. Li, Y. Guo, A.Y. Yeh, M. Liu, J. Yu, Z. Sheng, Y. Huang, L. Liu, and D.D.
531 Ho. 2022a. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA. 2.75.
532 *bioRxiv*.

533 Wang, X., J. Ai, X. Li, X. Zhao, J. Wu, H. Zhang, X. He, C. Zhao, R. Qiao, M. Li, Y. Cui, Y. Chen,
534 L. Yang, Z. Hu, C. Xu, W. Zhang, and P. Wang. 2022b. Neutralization of Omicron
535 BA.4/BA.5 and BA.2.75 by Booster Vaccination or BA.2 Breakthrough Infection Sera.
536 *bioRxiv*:2022.2008.2004.502716.

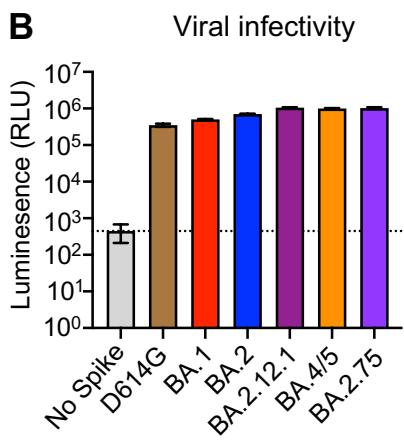
537 World Health Organization. 2022. Tracking SARS-CoV-2 variants. World Health Organization.
538 2022, August 10. <https://www.who.int/en/activities/tracking-SARS-CoV-2-variants>.

539 Xie, X., J. Zou, C. Kurhade, M. Liu, P. Ren, and P.-Y. Shi. 2022. Neutralization of SARS-CoV-2
540 Omicron sublineages by 4 doses of mRNA vaccine. *bioRxiv*:2022.2007.2029.502055.

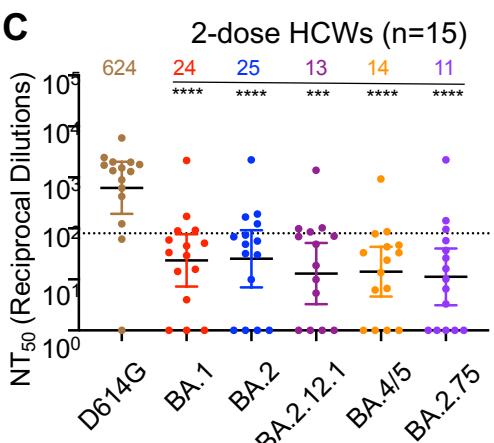
541 Yamasoba, D., I. Kimura, Y. Kosugi, K. Uriu, S. Fujita, J. Ito, and K. Sato. 2022a. Neutralization
542 sensitivity of Omicron BA.2.75 to therapeutic monoclonal antibodies.
543 *bioRxiv*:2022.2007.2014.500041.

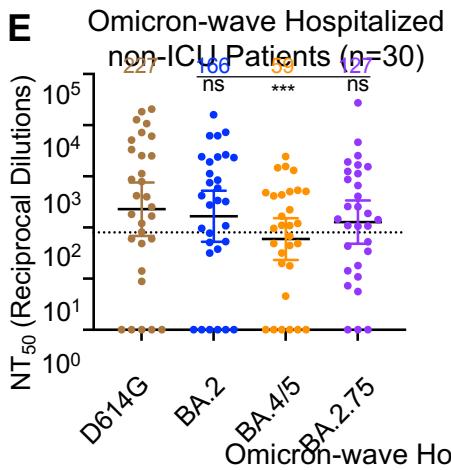

544 Yamasoba, D., I. Kimura, H. Nasser, Y. Morioka, N. Nao, J. Ito, K. Uriu, M. Tsuda, J. Zahradnik,
545 K. Shirakawa, R. Suzuki, M. Kishimoto, Y. Kosugi, K. Kobiya, T. Hara, M. Toyoda, Y.L.
546 Tanaka, E.P. Butlertanaka, R. Shimizu, H. Ito, L. Wang, Y. Oda, Y. Orba, M. Sasaki, K.
547 Nagata, K. Yoshimatsu, H. Asakura, M. Nagashima, K. Sadamasu, K. Yoshimura, J.
548 Kuramochi, M. Seki, R. Fujiki, A. Kaneda, T. Shimada, T.A. Nakada, S. Sakao, T. Suzuki,
549 T. Ueno, A. Takaori-Kondo, K.J. Ishii, G. Schreiber, H. Sawa, A. Saito, T. Irie, S. Tanaka,
550 K. Matsuno, T. Fuku, T. Ikeda, and K. Sato. 2022b. Virological characteristics of the
551 SARS-CoV-2 Omicron BA.2 spike. *Cell*. 185:2103-2115.e2119.

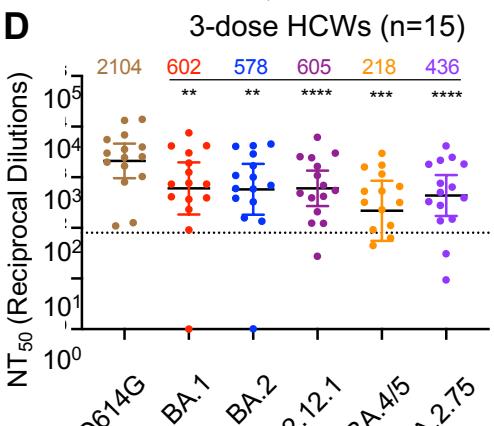
552 Zeng, C., J.P. Evans, R. Pearson, P. Qu, Y.M. Zheng, R.T. Robinson, L. Hall-Stoodley, J. Yount,
553 S. Pannu, R.K. Mallampalli, L. Saif, E. Oltz, G. Lozanski, and S.L. Liu. 2020. Neutralizing
554 antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and
555 convalescent plasma donors. *JCI Insight*. 5.


556 Zeng, C., J.P. Evans, P. Qu, J. Faraone, Y.M. Zheng, C. Carlin, J.S. Bednash, T. Zhou, G.
557 Lozanski, R. Mallampalli, L.J. Saif, E.M. Oltz, P. Mohler, K. Xu, R.J. Gumina, and S.L. Liu.
558 2021. Neutralization and Stability of SARS-CoV-2 Omicron Variant. *bioRxiv*.

559


A


B


C

E

D

F

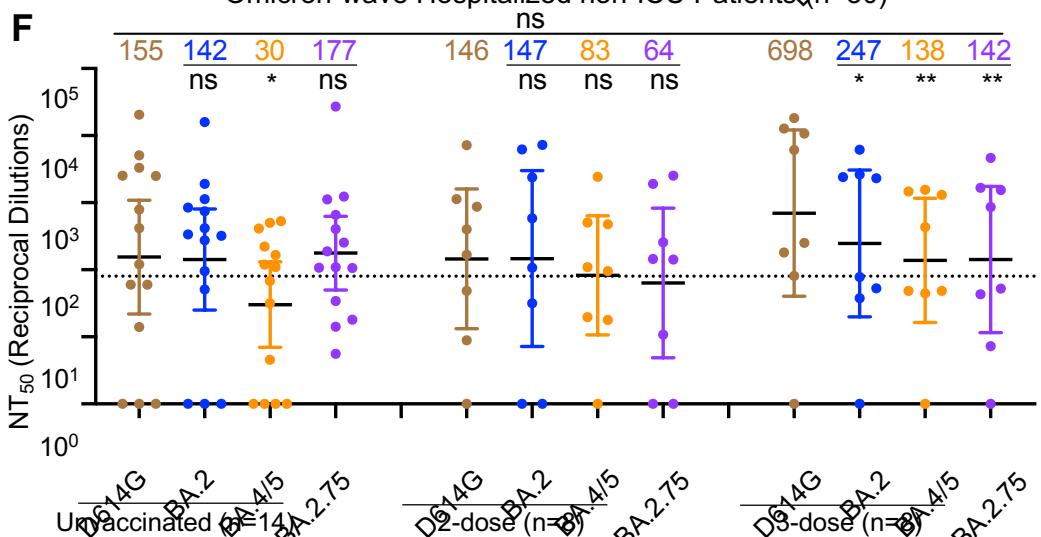


Figure 1

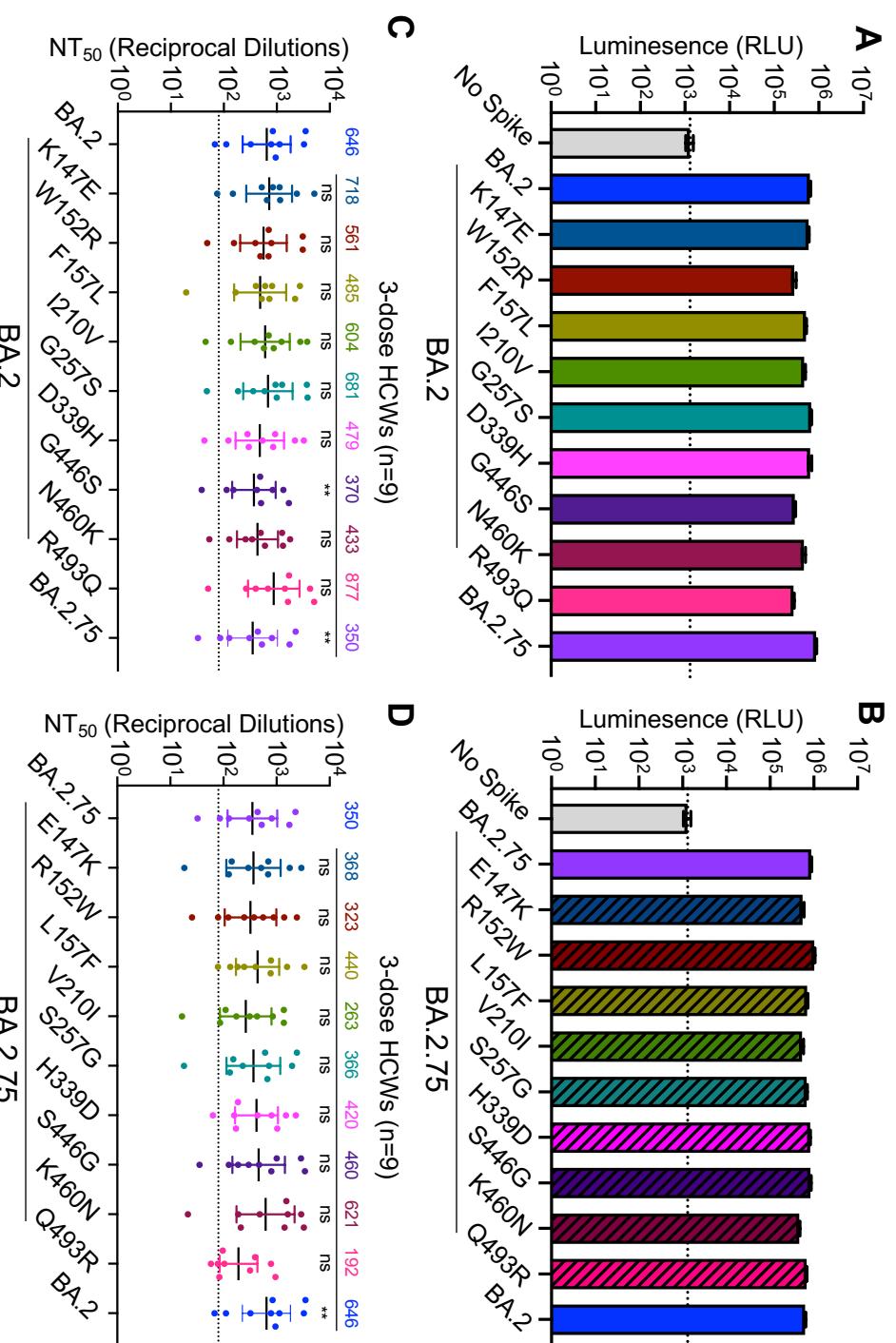


Figure 2

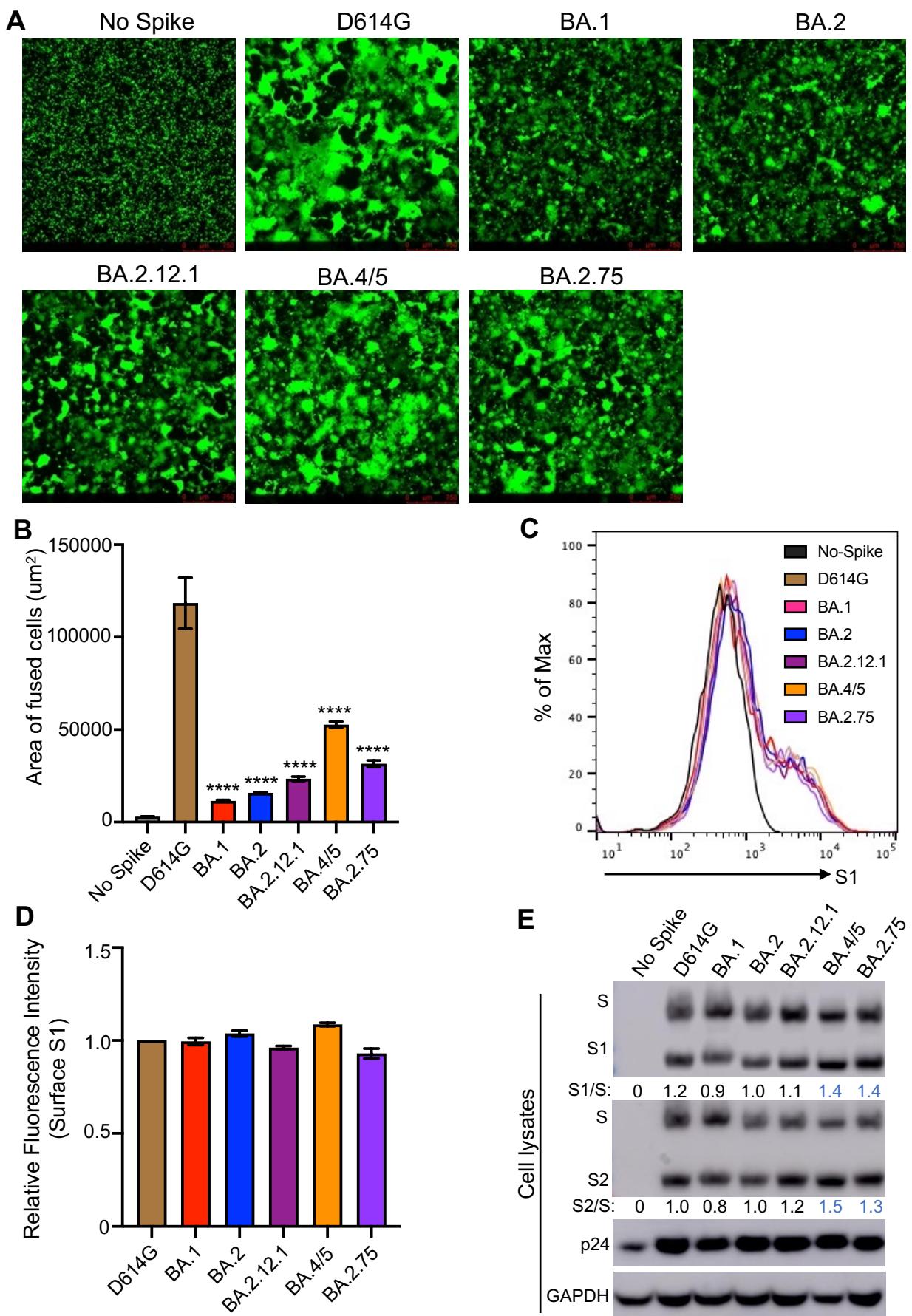


Figure 3

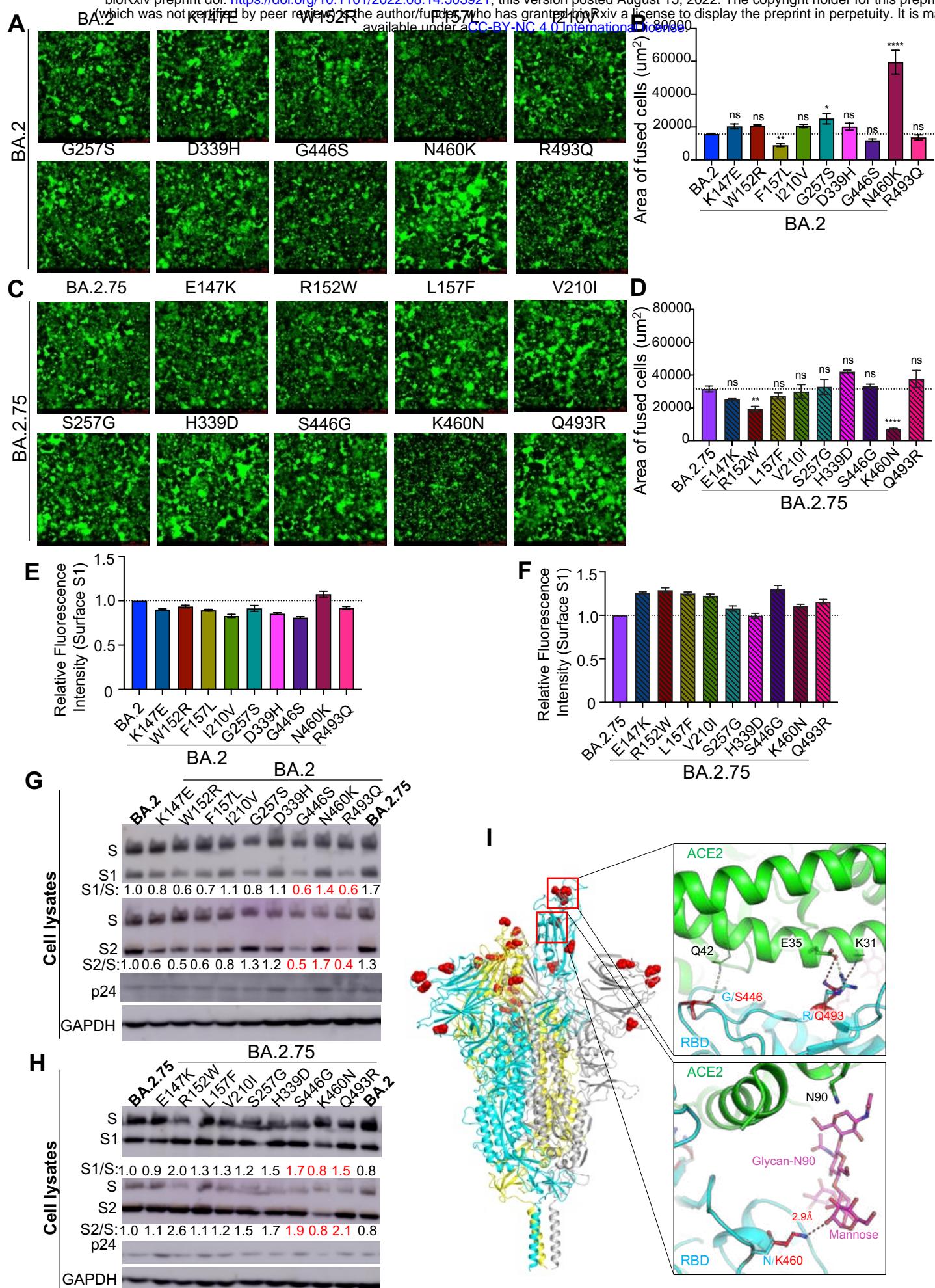


Figure 4

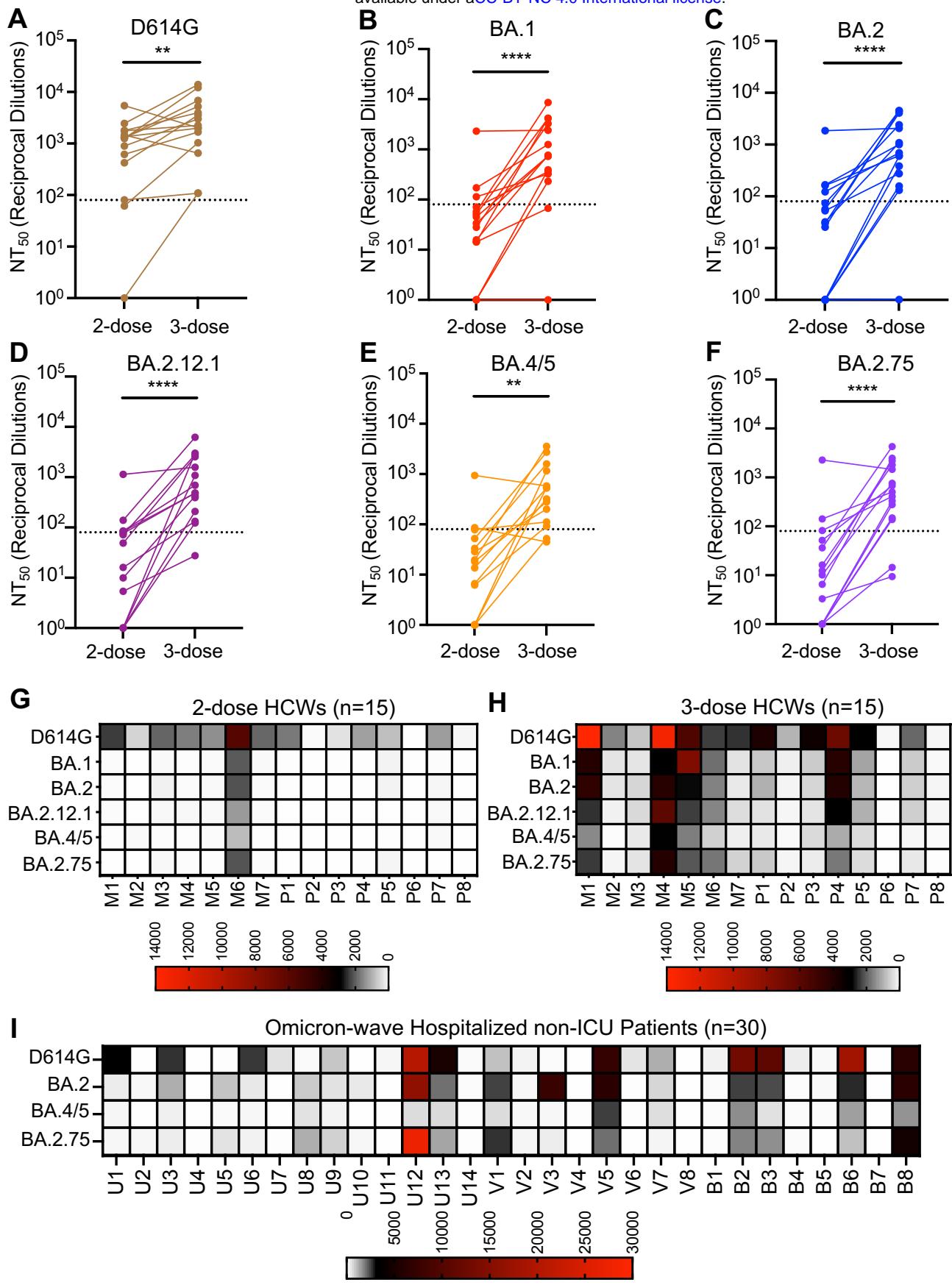


Figure S1

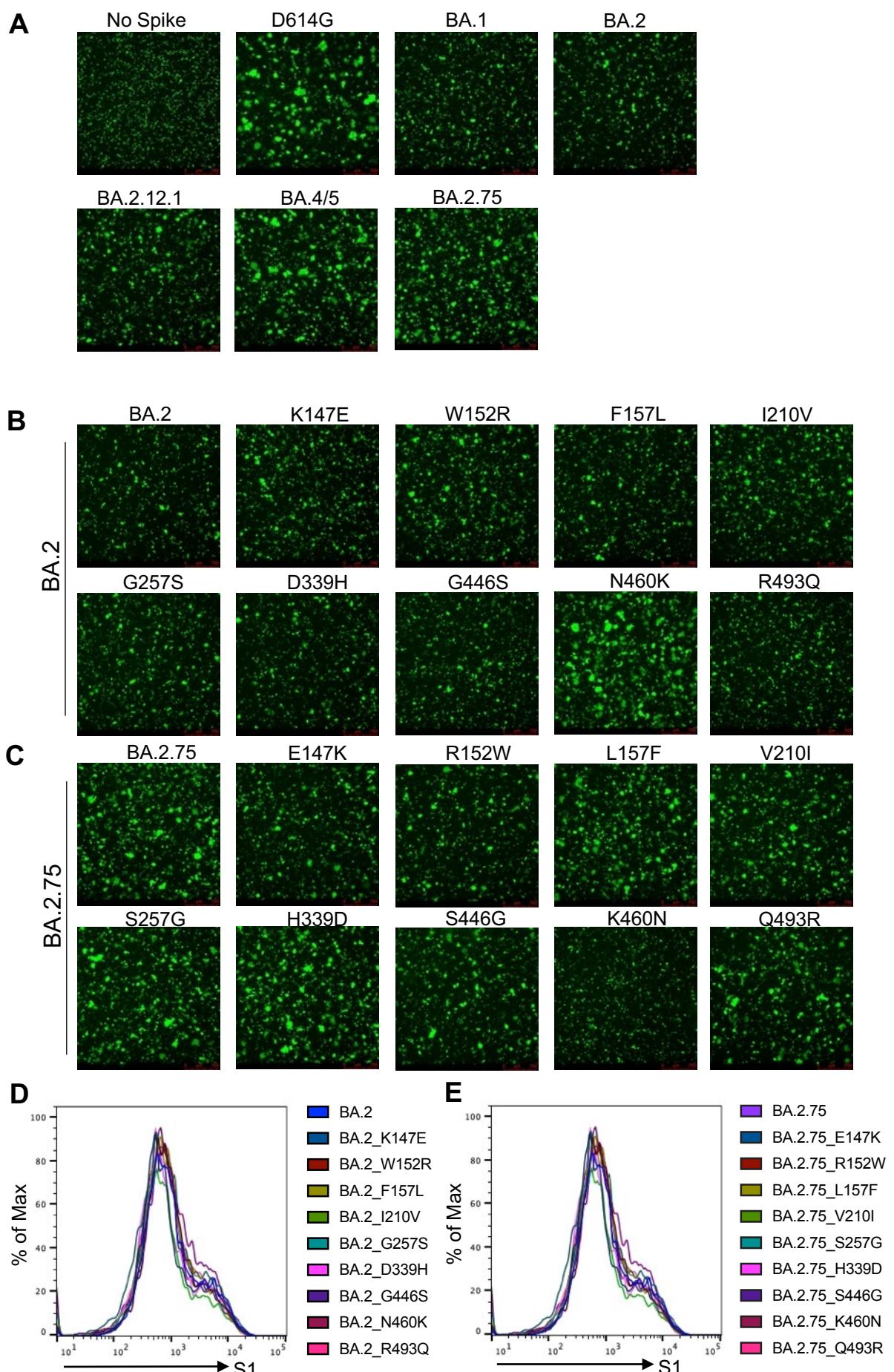


Figure S2