

1 **FRONT MATTER**

2 **Title**

3 Matrix-seq: An adjustable-resolution spatial transcriptomics via microfluidic matrix-based
4 barcoding.

5 **Short Title**

6 Microfluidic matrix-based spatial transcriptomics.

7 **Authors**

8 Haifeng Zhao^{1*}, Geng Tian², Aihua Hu³

9 **Affiliations**

10 ¹Intelligent Healthcare Co., Ltd., Beijing, 100023, China.

11 ²Geneis Beijing Co., Ltd., Beijing, 100102, China

12 ³Beijing Children's Hospital, National Center for Children's Health, Capital Medical
13 University, China

14 *Corresponding author: Haifeng Zhao

15 Email: zhaohf@intelligenthealthcare.net

16 **Abstract**

17 Spatial transcriptomics technology complements the spatial information lost in
18 single-cell RNA sequencing, which enables visualization and quantitative analysis of
19 transcriptomics of cells in tissue sections. Although this technology is a promising tool to
20 study complex biological processes, its popularization is limited by cumbersome barcoding
21 steps. We presented a microfluidics-based barcoding strategy called Matrix-seq, which gets
22 rid of both precision instruments and the *in situ* indexing. The deterministic barcoding
23 matrix is fabricated by the crossflow of Barcode-X and Barcode-Y. The overlapping areas
24 (spot) formed deterministic barcoding primers (Barcode-X-Y) via the ligation reaction.
25 Matrices with different spot size (ranging from 10 to 50 μ m), which was decided by the
26 width of microchannels, were fabricated and then applied to a mouse main olfactory bulb
27 section and a mouse brain section. While maintaining high performance and resolution, this
28 technology greatly reduces the technical threshold and cost of spatial barcoding. As a result,
29 Matrix-seq can be rapidly applied in various fields including developmental biology,
30 neuroscience and clinical pathology.

31 **Teaser**

32 Matrix-seq provides an orthogonal microchannel-based barcoding strategy for adjustable-
33 resolution spatial transcriptomics.

34 **MAIN TEXT**

35 **Introduction**

36 Single-cell RNA sequencing (scRNA-seq), which provides unbiased high-
37 throughput gene expression information and reveals the unexpectedly large degree of

48 heterogeneity in cell types and cell states in bulk tissue, has become a key technology in
49 biomedical research and disease diagnosis in the past decade(1-5). The disassociation
50 process during the sample preparation inevitably leads to the loss of spatial information of
51 individual cells, which severely limits the understanding of tissue complexity in normal
52 physiology or under perturbation. Specifically, scRNA-seq is weak in unveiling cell status,
53 in which cell location plays important roles, such as cell-cell interactions, tissue
54 microenvironments, and so on. Spatial transcriptomics technology complements the spatial
55 information lost in tissue dissociation, which enables visualization of transcriptomics in
56 tissue sections(6). Several remarkable methodologies have been developed, including
57 image-based and next generation sequencing (NGS)-based technologies(7). Image-based
58 methods relies on multiplexing fluorescent probes, including in situ hybridization (ISH) or
59 sequencing (ISS)(8). Although it is possible to detect gene expression in the whole
60 transcriptome scale recently(9), this technology still has a high technical threshold, relying
61 on high-sensitivity single-molecule fluorescence imaging systems and a lengthy, repeated
62 and sophisticated workflow(8, 10). The methods powered by NGS provide unbiased,
63 genome-level, high throughput and cost-efficient analytical solutions, and the difference
64 among NGS-based methods is mainly in the spatial barcoding strategies. In the early stage,
65 laser capture microdissection (LCM) was used to segment different regions to preserve
66 spatial information before dissociation(11, 12). Although LCM is a robust technology with
67 cell-level cutting accuracy, it is very labor intensive, which limits the throughput of samples.
68 In recent years, various technologies for spatial barcoding have emerged. In terms of
69 barcoding strategies, they can be divided into deterministic and random barcoding. The
70 former marks deterministic barcoding primers at a fixed position, while the latter randomly
71 synthesizes the barcoding primer and then performs decoding and indexing by in-situ
72 sequencing. The typical techniques are spatial transcriptomics (ST) and Slide-seq(6, 13). In
73 terms of ligation between RNA and barcoding primers, it can be divided into capture- and
74 labeling-based strategies. The former releases the RNA in the tissue section and captures
75 them by the primers on the solid-phase substrate (slide, silicon wafer or beads), and the
76 latter directly labels the primers into the tissue. Typical techniques are HDST and DBiT(10,
77 14). Although Visium (10x Genomics) was the first to be commercialized, the high cost,
78 low yield and low resolution of the barcoding strategy limited its wide-scale promotion.

79 It is highly desirable to develop a barcoding strategy with high-spatial resolution,
80 high sensitivity, and low cost. In addition, it should be easy to store and has no requirement
81 for special instruments, to facilitate the usage of researchers without special training. Due
82 to an imbalance between resolution, efficient area and cost, ideal protocols can freely adjust
83 the resolution and area to match cell density and size in different samples. Essentially, NGS-
84 based techniques are two-dimensional encoding and indexing of transcripts in tissue
85 sections. Similar addressing problems exist widely in chess sports, mathematics and
86 computer sciences. Row-column addressing is one of the most classic schemes. As early as
87 two thousand years ago, the ancients in China used row-column to describe the position of
88 chess pieces on the chessboard. Prof. Fan's group took the lead in applying this idea to
89 spatial omics (DBiT-seq)(10). They used row-column microfluidics for delivering barcoded
90 probes directly into tissues and can simultaneously label transcripts and selected protein
91 targets. Compared with the independent and serial barcoding of each spot, the barcoding
92 based on row-column microfluidics can be carried out in parallel, simplifying thousands of
93 dispensing processes into two injections, which greatly reduces the labor and requirements
94 for the capacity of the barcode library. Although in-situ labeling achieves high sensitivity
95 and compatibility with multi-omics(15), the risk of clogging and leakage due to the soft
96 nature of the tissue section significantly reduces the yield and causes the inhomogeneity
97 between microchannels. These defects often require sequencing analysis to detect, which is

98 clearly unacceptable for the analysis of precious clinical samples and poses a challenge to
99 quality control.

100 Here, we developed a different barcoding strategy called the matrix-based spatial
101 transcriptomics (Matrix-seq), which applies row-column microfluidics to fix and ligate
102 deterministic barcoding primers to slides. The primers are produced by two sets of parallel
103 microfluidic channels (10, 25, or 50 μm in width), defined as Microchannel-X and
104 Microchannel-Y, which are orthogonal to each other. The Barcode-X (BC-X, X_1 to X_{70})
105 transported in the Microchannel-X was modified in the functionalized slide, and then the
106 crossflow of Barcode-Y (BC-Y, Y_1 to Y_{70}) in the Microchannel-Y yielded a matrix of
107 deterministic barcoding primers (X_1Y_1 to $X_{70}Y_{70}$) on the overlapping area via the ligation
108 reaction. The resolution of matrix (width of spots and gaps) was determined by the width of
109 the microchannels and walls, which brings a high degree of flexibility in the design of its
110 resolution, coverage and field of view. The fabricated slides can be transported and
111 cryopreserved in the same way as conventional DNA chips. When in use, the users paste
112 the tissue section on the barcoded area, and then performs fixation, H&E staining,
113 permeabilization, digestion and reverse transcription (RT) in sequence. The barcoded
114 cDNAs were collected into a tube. After PCR amplification and fragmentation, the library
115 was prepared for NGS sequencing. We demonstrated a matrix arrayed by 70×70 spots
116 with 50/30 μm width of microchannel/gap for spatial transcriptomic mapping of main
117 olfactory bulb (MOB) and half brain of mouse. Matrix-seq faithfully identified the
118 anatomical structures and detected the whole transcriptome. While retaining the advantages
119 (efficiency, high-resolution, simple and easy-operation) of row-column barcoding, Matrix-
120 seq divides the preparation process into the slide part and tissue part, which makes the
121 quality control of barcoded matrix very convenient and allows researchers without special
122 training to fabricate these slides boldly without worrying about the loss of precious samples.
123 This technology provides a full-process solution from barcoding to analysis, lowering the
124 threshold of spatial transcriptomics to an unprecedented level, which can be adopted in any
125 laboratory with a pipette, cryostat, microscope and PCR amplifier.

127 Results

128 Workflow of Matrix-seq

129 The workflow of Matrix-seq was described in Fig. 1, which can be divided into three
130 parts, i) preparation of Matrix-slide, ii) spatial barcoding of tissue sections and iii) data
131 analysis. Microchannel-X containing 70 parallel microchannels was placed on the
132 functionalized glass slide. The structure of this assembly was shown in Fig. 2A, where
133 Microchannel-X was attached to a standard glass slide (75 mm \times 25 mm). The set of BC-
134 X solutions were introduced in the inlet wells and driven in parallel by a vacuum pump,
135 which can be accomplished in several minutes. The BC-X is composed of an amino in 5'
136 end for binding to the epoxy-modified slide, a PCR handle, a deterministic BC – X_i (i=1-
137 70), and a ligation linker. The binding reaction between the BC-X and slide was conducted
138 in the microchannel under the condition provided by the manufacturer. Then, the
139 Microchannel-X was replaced by Microchannel-Y. The microchannels in Microchannel-Y
140 are perpendicular to those in Microchannel-X. The BC-Y contains a ligation linker, a
141 deterministic BC – Y_j (j=1-70), a unique molecular identifier (UMI), and a series of T (poly
142 T) for mRNA capture. The regents mixed by BC-Y solution, T4 ligase and a complementary
143 ligation linker were driven into Microchannel-Y for in situ ligation at the overlapping area,
144 resulting in a matrix consisted of 4900 square spots. Each spot was indexed by the spatial
145 coordinate (row-column, $X_i – Y_j$) and contains a deterministic barcoded primer (BC – X_iY_j).

147 Prepared slides can be easily stored and transported until used. When barcoding the tissue,
148 a frozen tissue section (10 μm) was loaded onto the Matrix-slide, followed by fixation, H&E
149 staining, and permeabilization to release RNAs, which was captured by barcoded primers.
150 After RT and amplification, amplified and barcoded cDNA were collected and used as the
151 template for library preparation and NGS. Based on the strict correspondence between
152 spatial coordinates and barcoding sequences, transcript data can be easily classified into the
153 corresponding spatial position. This technique builds a bridge between classical
154 bioinformatics analysis of transcripts and pathologic analysis of H&E images to reveal the
155 gene expression in individual spots and shows the corresponding tissue morphology
156 synchronously. The key reagents, sequences of barcodes and design of microchannels were
157 summarized in Tables S1 and S2 and shown in fig. S1, respectively.

158 **Evaluation of microfluidic matrix-based barcoding**

159 To benchmark the barcoding process, fluorescent-labeled BC-X (green, fluorophore
160 fluorescein isothiocyanate (FITC)) and BC-Y (red, Cy3) were used to visualize the spatial
161 distribution of oligonucleotides. The fluorescent matrix consisted of row and column
162 fluorescent bands was generated as expected (Fig. 2B). The overlapping areas exhibited
163 strong red fluorescence indicating the efficiency of ligation reaction. Ideally, the red
164 fluorescent of BC-Y should not be present on non-overlapping areas. We suspect this is
165 related to non-specific adsorption. The clear boundaries indicate that this method exhibits
166 high precision and robustness, which is difficult to achieve on the tissue surface due to
167 potential diffusion effect and its unevenness and softness. Further, we fabricated matrices
168 with different spot size (50, 25 and 10 μm), which was visualized by fluorescence-labeled
169 probes (red, Cy3) via RT reaction to evaluate the spatial accuracy of this method (Fig. 2C).
170 Among them, the matrix consisted by 70×70 spots of 50 μm was prepared for subsequent
171 tissue experiments, while the spots of 25 μm and 10 μm were generated respectively to
172 demonstrate the superiority of this method in coverage and resolution. Coverage is defined
173 here as the ratio of the effective area (spots) to the total matrix area, which is determined by
174 the size of spots and gaps. Higher coverage can capture more released transcripts and make
175 the map more complete, but it requires higher spatial accuracy of lattice generation to
176 prevent the confusion of barcoding. For example, the ST technology used circular spots with
177 a diameter of 100 μm and a center-to-center distance of 200 μm and Stereo-seq used a grid-
178 patterned array of spots with approximately 220 nm in diameter and a center-to-center
179 distance of 500 nm, which means their coverage is about 19.6% and 15.2% (6, 16). Even
180 after optimization for commercialization, the coverage of Visium with a diameter of 55 μm
181 and a center-to-center distance of 100 μm is still about 15.9% (17). Compared to them,
182 Matrix-seq has solid walls to separate different barcode solution, which brings excellent
183 stability, robustness and accuracy. As a demonstration, we produced a matrix consisted of
184 square spots of a diameter of 25 μm and a center-to-center distance of 32 μm with coverage
185 up to 61%. Due to the high precision of the photolithography process, high-resolution spots
186 of 10 μm can also be produced by this method with high yield and uniformity. Based on
187 fluorescent images of RT, we further characterized the uniformity of spot size and
188 fluorescent intensity, which represent the processing accuracy and uniformity of primers, as
189 shown in Fig. 2D and E. The point where the fluorescence value drops to 10% of that of
190 spot center was set as the spot boundary. The length deviation between the spots in different
191 series are all less than 0.3 μm , indicating the excellent dimensional accuracy and consistency
192 of Matrix-seq. It should be explained that there was a deviation between the average size
193 and the design size, which we suspected was introduced by microchannels and belonged to
194 the normal deviation in lithography processing. The normalized fluorescence intensities of
195 spots indicated that the intensity uniformity between spots was better than 3.1%, which was

196 crucial to truly reflect the expression levels of different spatial regions. It is worth
197 emphasizing that there is no coffee ring effect, which deteriorates the uniformity of reactants
198 distribution in droplets and often need to be suppressed by adjusting the composition of
199 reactants and conditions, making this method more friendly to the production environment
200 and operation. To analyze the relationship between spot size and the number of cells, the
201 DAPI-stained MOB section was merged with the three matrices (fig. S2). When the spot
202 size is as low as 10 μm , the spatial resolution can reach the single-cell level (Fig. 2F).

203 The sequencing data were processed by umitools with a custom protocol to extract
204 the UMI, BC-X and BC-Y in each pair of reads (18). The final spatial barcodes ($\text{BC} - X_i Y_j$)
205 were concatenated from the two. The processed reads were trimmed and aligned against the
206 mouse gene reference by STAR (19). The featureCounts (version 2.0.3) was used to count
207 the UMIs of each gene for evaluation of capture performance (20). Due to the different spot
208 size between different technologies, in order to evaluate the capture ability fairly, we chose
209 the number of gene/UMI per unit area (μm^2) as the standard (Fig. 2G). Except for DBiT-
210 seq using a fixed embryonic brain, other methods used fresh frozen MOB as the tissue
211 sample. Matrix-seq exhibits strong capture performance on the same level as Visium (Fig.
212 2G), indicating that the two-stage reaction do not deteriorate the capture performance. The
213 number of UMIs captured by this method is lower than that of the others, which is due to
214 the unsaturation of the sequencing depth.

216 **Spatial transcriptomic mapping of MOB**

217 To test the performance of Matrix-seq, we first profiled the MOB, which is the
218 model tissue widely used in ST approaches(6, 14, 21). A matrix with 4900 barcoded spots
219 of 50 μm was used and capture numbers ranging on average from 2611 genes and 5085
220 transcripts per spot (fig. S4). The H&E image and mapping of UMI of the same tissue
221 section were shown in Fig. 3A. Compared to separate analysis on multiple adjacent sections,
222 this method performing staining-based microscopic imaging analysis and ST analysis on
223 the same section provides the most accurate data for joint analysis, which is very important
224 for understanding the pathology and function of a specific area. We selected two genes
225 (*Pcp4* and *Slc17a7*) as significantly expressed genes to assess the correlation between
226 expression levels and specific structures. The distribution of the two genes shown in Fig.
227 3B and 3C were remarkable similarity to the ISH results from Allen Brain Atlas(22). It is
228 worth mentioning that although the matrix was modified by two-stage reactions, due to the
229 excellent uniformity, the irregular boundaries of structures in the tissue were truly reflected,
230 and the expression level in adjacent spots on same structures maintains a good continuity.
231 To assess the potential diffusion problems during permeabilization, we traced the
232 fluorescent cDNAs to show a pattern of captured transcripts (fig. S5). The fluorescent
233 cDNAs were strictly localized directly under cells. It can be seen in the detailed images that
234 although there was a diffusion effect at the micron level, which did not affect the resolution
235 of 50- μm matrix, but it is meaningful to guide the subsequent development of high-precision
236 matrix. Then, unsupervised clustering was performed to computationally reconstruct the
237 spatial identity (Fig. 3D and 3E). Based on the H&E image and general histology, the
238 clusters were annotated as the corresponding anatomical structures, including the olfactory
239 nerve layer (ONL), subependymal zone (SEZ), granular cell zone deep (GCL-D), granular
240 cell layer internal (GCL-I), granular cell layer externa (GCL-E), internal plexiform layer
241 (IPL), mitral layer (ML), outer plexiform layer (OPL), glomerular layer (GL), accessory
242 olfactory bulb (AOB) and damaged area (DA). Tissue structures with only a single spot
243 width, such as ML, can be resolved, which also proves the excellent resolution of this
244 technique. Further, analysis of differentially expressed genes (DEG) was used to show the
245 gene expression heatmap of clusters (Fig. 3F).

247 **Spatial transcriptomic mapping of mouse brain**

248 To further test the performance of Matrix-seq in complex tissues, we used the matrix
249 slide with 50- μ m spots to analyze a half mouse brains section. Characterizing the gene
250 expression and spatial position of diverse type cell in the brain is fundamental to understand
251 normal brain function and the mechanisms of neural diseases, such as neurodegenerative
252 disorders. The ST technology promises new insights into the relationship between genes,
253 brain and behavior(22). The matrix captured 3459 genes and 7690 UMIs per spot on average
254 (fig. S6). The H&E image and mapping of UMI of the same tissue section were shown in
255 Fig. 3A and 3B. Unsupervised clustering also was used here and identified 11 spatial
256 clusters. It is worth emphasizing that the pyramidal layer (cluster-10) was identified, which
257 was a thin layer with a thickness of only tens of micrometers and appeared as a filament
258 with a single spot width in the section. In addition, the multi-layered structure of the
259 neocortex was also well identified. We further visualized selected marker genes to verify
260 the consistency between the spatial distribution of gene expression detected by Matrix-seq
261 and histological structure. The genes Mef2c, Pcp4, Mobp and Hpcp are known makers for
262 the neocortex, thalamus, fiber tracts and hippocampus, respectively(23). The results in Fig.
263 4D demonstrated this technique can truly detect the gene expression of different cell types
264 in tissue sections with high spatial resolution and sensitivity.

265 **Discussion**

266 Matrix-seq innovatively introduces the idea of matrix coding in the preparation of
267 the ST slides, and realizes the modification of barcoding primers on the substrate through
268 the two-stage reaction based on the two types of microfluidics. High-coverage and high-
269 precision matrices were fabricated to verify the potential of the technology. To further
270 facilitate adoption of the technology, we generated a barcoded matrix with 4900 spots for
271 RNA capture from the mouse MOB and brain. It is worth emphasizing that this work
272 provides only one paradigm, the Matrix-seq has many more possibilities in terms of
273 processing options and performance. The mature systems of DNA probe immobilization
274 provide high-performance solutions for the first-stage reaction and are compatible with a
275 variety of solid-phase substrates, not only glass slides. In terms of performance, the current
276 states are far from the limit of this technology. By optimizing the number and morphologies
277 of microchannels, there is still room for further improvement in the effective area, coverage
278 and resolution. In addition, conventional soft-lithography technology for four-inch wafer
279 allows the number and length of microchannels to be expanded to achieve a field of view
280 of several centimeters. The combination of microfluidic matrix for spatial indexing, simple
281 operational procedures in line with clinical practice, and easy-to-use bioinformatics analysis
282 process should support wide application of Matrix-seq in both biological research and
283 clinical pathology.

287
288
289

Materials and Methods

Regent and resource

name	source	Cat No.
Nexterion® Slide E	SCHOTT NEXTERION®	1066643
T4 DNA Ligase	New England Biolabs	M0202L
Methanol, for HPLC, ≥99.9%	Millipore Sigma	34860
2-Propanol (Isopropanol), ≥99.5%	Millipore Sigma	I9516-25ML
Hematoxylin, Mayer's (Lillie's Modification)	Agilent	S30930-2
Bluing Buffer, Dako	Agilent	CS70230-2
Eosin, Dako	Agilent	CS70130-2
Pepsin	Sigma-Aldrich	P7000-25G
Superscript III	Thermo Fisher	18080085
RNase Inhibitor	Thermo Fisher	AM2694
BSA	NEB	B9000S
DMSO	Sigma-Aldrich	472301
dATP (100 mM)	Thermo Fisher	R0141
dCTP (100 mM)	Thermo Fisher	R0151
dGTP (100 mM)	Thermo Fisher	R0161
dTTP (100 mM)	Thermo Fisher	R0171
Cyanine 3-dCTP	APExBIO	B8159-10ul
Proteinase K	Qiagen	19131
PKD buffer	Qiagen	1034963
Klenow Fragment (3'→5' exo-)	NEB	M0212L
KAPA HiFi HotStart ReadyMix Kit	Kapa Biosystems	KK2601
Ampure XP beads	Beckman Coulter	A63880
VAHTS® Universal Plus DNA Library Prep Kit for Illumina V2	Vazeme	ND627

290
291
292

Oligonucleotides

PCR Handle	5'NH ₂ -CTACACGACGCTTCCGATCT
Barcode X	/5Phos/CTCTTCCCTAC 12345678 ACGACGCTCTC
Barcode Y	/5Phos/GAGTGATTGCTTGACGCCT 87654321 NNNNNNNNNNNN TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT VN
linker	GCAATCACTCGAAGAGCGT
TSO	AAGCAGTGGTATCAACGCAGAGTACATrGrGrG-3'
Second Strand Primer	AAGCAGTGGTATCAACGCAGAG
cDNA Primer-Forward	CTACACGACGCTTCCGATCT
cDNA Primer-Reverse	AAGCAGTGGTATCAACGCAGAG
i5 index primer	AATGATAACGGGACCAACGGAGATCTACAC [i5 index] ACACCTTTCCCTACACGACGCTC
i7 index primer	CAAGCAGAACGGCATACGAGAT [i7 index] GTGACTGGAGTTCAGACGTGT

293
294

Fabrication of microfluidic channel

The microfluidic channel was fabricated by standard soft lithography based on Polydimethylsiloxane (PDMS). A thin layer of SU-8 photoresist (Microchem, USA) was spin-coated and patterned by ultraviolet exposure on a silicon wafer. The masks with 10 μm, 25 μm, 50 μm microchannel were ordered from CETC (Nanjing, China). The PDMS base and curing agent (Dow Corning, USA) were mixed in a 10:1 ratio, poured into the SU-8 mold and cured at 65 °C for 45 min. Then, the microchannel was peeled off the mold and cut into the desired shape. A metal punch was used to drill holes in the channel to form the inlets and outlets. Finally, the PDMS microchannel was integrated with the glass slide with a customized holder.

304

Generation of spatially barcoded arrays

Barcode X: The arrays of Barcode X were generated onto the surface of Nexterion Slide E. Briefly, microchannel X was attached to the slide and they were clamped by a holder. Add 5 μL oligonucleotides X solution (10~20 μM in PBS) to inlets (one unique barcoded oligonucleotide for each inlet). The samples entered the microchannel through negative pressure in outlets. The

310 oligonucleotides were immobilized in features of microchannel according to the protocols
311 supported by the manufacturer. Briefly, placed the slides with microchannel in a wet box with
312 saturated sodium chloride at 35°C overnight. Then, the microchannel was removed, and the
313 modified slide was washed sequentially with 0.1 % Triton X-100, 1 mM HCl, 100 mM KCl, and
314 then blocked with 0.1 M Tris (pH 9.0), 50 mM ethanolamine, 0.1% SDS at 50 °C. Finally, the
315 modified slide was blown dry by nitrogen.

316 Barcode Y: The arrays of Barcode Y were generated on the slide by the ligation reaction.
317 The microchannel Y was attached to the modified slide. The sample (Barcode Y (10~20 μ M in
318 PBS), linker and T4 ligase) was injected into microchannel by negative pressure. Same as before,
319 one unique barcoded oligonucleotide for each inlet. After injection, the assembled slide was
320 incubated at 37 °C for 30 minutes for the ligation reaction. Then, the microchannel was washed
321 with 1×PBS buffer and DI water in sequence and blown dry by nitrogen.

322 Storage of the modified slides: After the modification, the slides were packaged by the
323 vacuum bag and stored in a 4 °C.

324

325 **Tissue preparation**

326 Mice (7 weeks for main olfactory bulbs and 2 weeks for mouse brain) were euthanized. The
327 olfactory bulbs and mouse brains were immediately isolated and washed by precooled PBS buffer.
328 After drying by absorbent paper, the tissues were embedded into cold OCT before sectioning. The
329 tissues were sectioned on a cryostat (-20 °C) at a thickness of 10 μ m. The tissue sections were
330 mounted onto the barcoded slide.

331

332 **H&E staining and imaging**

333 After incubation at 37 °C for 1 min, the tissue-attached slide was fully immersed in
334 precooled methanol and fixed at -20 °C for 30 min. After drying the slide, 500 μ l of isopropanol
335 was added and incubated for 1 min at room temperature. Then, the isopropanol was removed and
336 the slide stand at room temperature for drying. We added 1 ml of hematoxylin, bluing buffer and
337 Eosin in turn to evenly cover the tissue sections, and incubated the slide at room temperature for 7
338 min, 2 min and 1 min, respectively. The slide was washed by RNase-free Water before changing
339 reagents. Finally, after incubating the slide for 5 min at 37 °C, brightfield imaging was performed.

340

341 **Permeabilization and RT**

342 The chamber was assembled on the barcoded slide by a clamp holder. Then, 70 μ L
343 permeabilase (0.1% pepsin diluted in 0.1N HCl) was added to the chamber. After incubating at
344 37°C for 5~15 min, the permeabilase was removed and the chamber was washed with 0.1×SSC.

345 Then, 70 μ l of RT sample was added, which included: 1x first-strand buffer, 5 mM DTT,
346 500 μ M dNTP, 0.19 μ g/ μ l BSA, 1% DMSO, 20 U/ μ l Superscript III, 2 U/ μ l RNase inhibitor and
347 2.5 μ M TSO. The chamber was sealed by the membrane and incubated at 50°C overnight. After the
348 reaction, the RT reaction solution was removed and the chamber was washed by RNase-free Water.
349 Then 70 μ l of 0.08 M KOH was added to the chamber and incubated for 5 minutes at room
350 temperature. Remove KOH from the chambers and then washed by RNase-free Water.

351

352 **Second strand synthesis and cDNA collection**

353 cDNA second-strand synthesis reaction solution was added into the washed chamber, which
354 included: 1x first-strand buffer, 10U Klenow Exo-, 2.5 μ M Second Strand Primer. After sealing the
355 chamber, it was placed on a temperature control plate to incubate at 37 °C for 1 hour for cDNA
356 double-strand synthesis. After the reaction, the second-strand synthesis reaction solution in the
357 chamber was discarded, and the chamber was washed by RNase-free Water. Then 35 μ l of 0.08 M
358 KOH was added to the chamber and incubated for 10 minutes at room temperature. several 1.5ml

359 centrifuge tubes were prepared and 10 μ l Tris (1 M, pH 7.0) was pre-added into them. The sample
360 in the chamber was transferred into the tubes for cDNA collection.

361
362 **cDNA amplification and purification**

363 The amplification reaction solution was prepared in a new PCR tube on ice. The PCR
364 reaction solution included: 1 \times Kapa HiFi Hotstart ReadyMix, 0.8 μ M cDNA Forward Primer, 0.8
365 μ M cDNA Reverse Primer, 35 μ l cDNA template, with a total volume of 100 μ l. Per amplification
366 cycles included: 98 °C for 3 min, then cycled at 98 °C for 15 s, 63 °C for 20 s, 72 °C for 1 min, for
367 15 cycles. After amplification, 0.6 \times AMpure XP Beads were used to purify the amplified product.
368 Concentration and length distribution of purified product was identified by the Qubit and Agilent
369 Bioanalyzer High Sensitivity chips, respectively. The concentration and the length of fragment
370 should be between 2-20 ng/ μ l and larger than 1000 bp.

371
372 **Library construction and sequencing**

373 The fragmentation reaction solution includes: 5 μ l FEA Buffer V2, 10 μ l DNA purified in
374 the previous step, 25 μ l ddH₂O, 10 μ l FEA Enzyme Mix V2, and the total volume is 50 μ l. The
375 solution was mixed by pipetting in a precooled tube. Then, the tube was placed in the PCR
376 amplifier, which run the following program: 37 °C for 20 min, 65 °C for 30 min, 4 °C Hold.

377 The adapter ligation reaction solution includes: 25 μ l Rapid Ligation Buffer V2, 50 μ l DNA
378 fragmented in the previous step, 15 μ l DI water, 5 μ l Rapid DNA Ligase V2, 5 μ l adapter (10pM),
379 and the total volume is 100 μ l. The tube was placed in the PCR amplifier, which run the following
380 program: 20 °C for 30 min, 4 °C Hold.

381 The library amplification reaction solution includes: 25 μ l VAHTS HiFi Amplification Mix,
382 20 μ l DNA prepared in the previous step, 2.5 μ l i5 index primer (10pM), 2.5 μ l i7 index primer (10
383 pM), the total volume is 50 μ l. The solution was mixed by pipetting and placed into the PRC
384 amplifier, which run the following program: 98 °C 20 s, 63 °C 30 s, 72 °C 20 s for one cycle and a
385 process including 13 cycles. After the amplification reaction, 0.9 \times AMpure XP was used to purify
386 the amplified product. The constructed library was checked by Qubit and Agilent Bioanalyzer High
387 Sensitivity chip for concentration and length distribution, respectively. The concentration should
388 not be lower than 20 ng/ μ l and the length of fragments should be distributed between 200-600 bp.

389 Libraries were sequenced by an illumina NovaSeq 6000 in the PE150 mode.

390
391 **Data analysis**

392 To obtain transcriptomics information, the Read 1 was processed by umitool (version 1.1.2)
393 to extract the UMI, Barcode-X and Barcode-Y(18). The processed read 1 was trimmed and mapped
394 against the mouse gene reference, mm10 (GENCODE Vm23/Ensembl 98) by STAR (version:
395 2.5.3a)(19). The featureCounts (version 2.0.3) was used to assign gene (20) and the digital gene
396 expression matrix for down-stream analysis also was generated by umitools. The barcode X and
397 barcode Y correspond to their location coordinates (row X and column Y). The data of spatial
398 transcriptomics were aligned with the image of H&E staining by manual operation.

399 The data analysis of tissue sections was carried out with Seurat V4.1.1 following standard
400 procedures(24, 25). In short, data normalization, transformation, and selection of variable genes
401 were performed using the SCTtransform function with default settings. Principal component
402 analysis (PCA) was performed on the top 3,000 variable genes using the RunPCA function, and the
403 first 20 principal components were used for Shared Nearest Neighbor (SNN) graph construction
404 using the FindNeighbors function. Clusters were then identified using the FindClusters function.
405 We used Uniform Manifold Approximation and Projection (UMAP) to visualize data in a reduced
406 two-dimensional space. To identify differentially expressed genes for every cluster, pairwise
407 comparisons of cells in individual clusters against all remaining cells were performed using the

408 FindAllMarkers function (settings: min.pct = 0.1, logfc.threshold = 0.25). Expression heatmap was
409 then generated using top 10 differentially expressed genes in each cluster.
410

411 **References**
412

1. A. M. Klein *et al.*, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. *Cell* **161**, 1187-1201 (2015).
2. L. Mazutis *et al.*, Single-cell analysis and sorting using droplet-based microfluidics. *Nat Protoc* **8**, 870-891 (2013).
3. E. Z. Macosko *et al.*, Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. *Cell* **161**, 1202-1214 (2015).
4. J. Xu, L. Cai, B. Liao, W. Zhu, J. Yang, CMF-Impute: an accurate imputation tool for single-cell RNA-seq data. *Bioinformatics* **36**, 3139-3147 (2020).
5. L. Peng *et al.*, Single-cell RNA-seq clustering: datasets, models, and algorithms. *RNA Biol* **17**, 765-783 (2020).
6. P. L. Stahl *et al.*, Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science* **353**, 78-82 (2016).
7. M. Asp, J. Bergenstrahle, J. Lundeberg, Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration. *Bioessays* **42**, e1900221 (2020).
8. X. Pichon, M. Lagha, F. Mueller, E. Bertrand, A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. *Mol Cell* **71**, 468-480 (2018).
9. C. L. Eng *et al.*, Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. *Nature* **568**, 235-239 (2019).
10. Y. Liu *et al.*, High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. *Cell* **183**, 1665-1681 e1618 (2020).
11. J. Chen *et al.*, Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. *Nat Protoc* **12**, 566-580 (2017).
12. G. Peng *et al.*, Molecular architecture of lineage allocation and tissue organization in early mouse embryo. *Nature* **572**, 528-532 (2019).
13. S. G. Rodrigues *et al.*, Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science* **363**, 1463-1467 (2019).
14. S. Vickovic *et al.*, High-definition spatial transcriptomics for *in situ* tissue profiling. *Nat Methods* **16**, 987-990 (2019).
15. Y. Deng *et al.*, Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. *Science* **375**, 681-686 (2022).
16. A. Chen *et al.*, Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. *Cell* **185**, 1777-1792 e1721 (2022).
17. R. Wu *et al.*, Comprehensive analysis of spatial architecture in primary liver cancer. *Sci Adv* **7**, eabg3750 (2021).
18. T. Smith, A. Heger, I. Sudbery, UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. *Genome Res* **27**, 491-499 (2017).
19. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).
20. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).
21. I. H. Wang *et al.*, Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. *Nat Neurosci* **25**, 484-492 (2022).

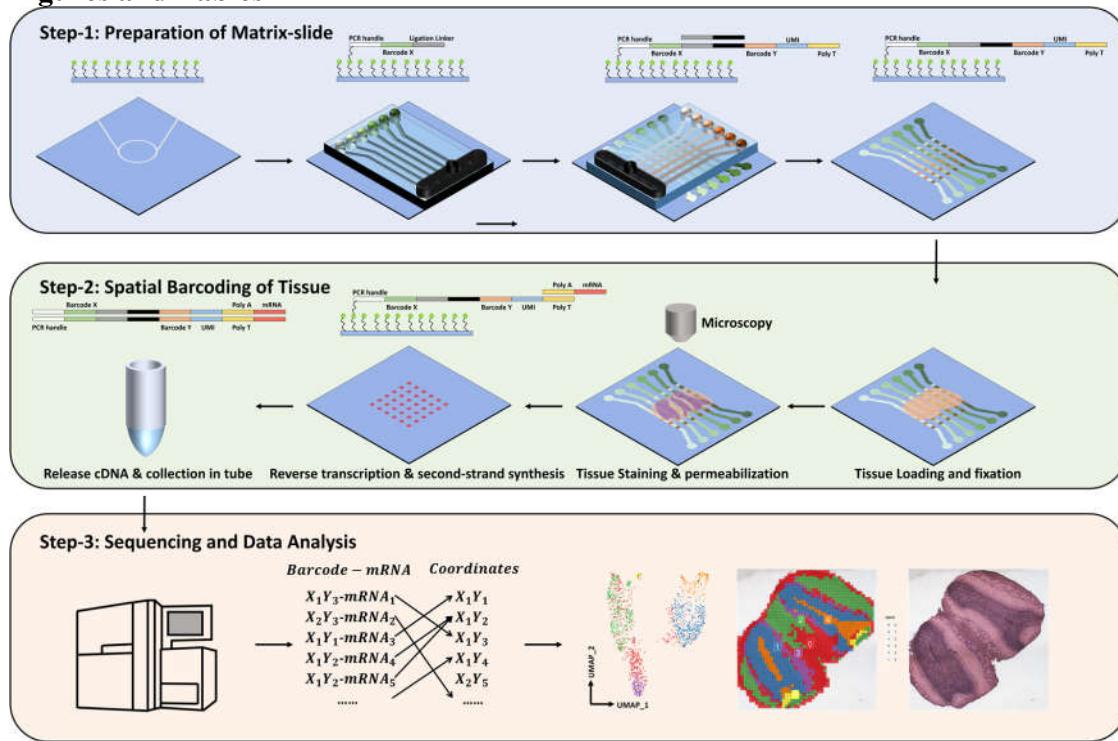
457 22. E. S. Lein *et al.*, Genome-wide atlas of gene expression in the adult mouse brain. *Nature*
458 **445**, 168-176 (2007).

459 23. B. Tasic *et al.*, Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
460 *Nat Neurosci* **19**, 335-346 (2016).

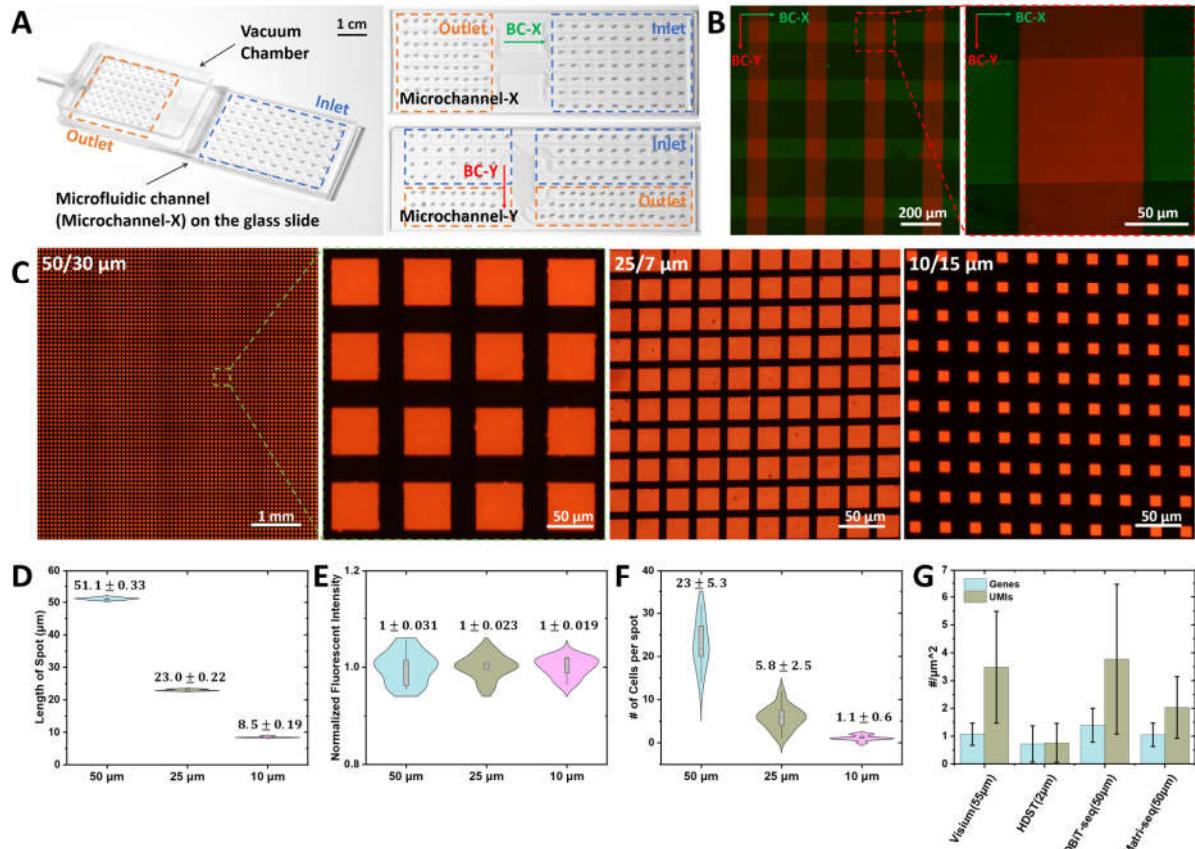
461 24. A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell
462 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol*
463 **36**, 411-420 (2018).

464 25. T. Stuart *et al.*, Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902
465 e1821 (2019).

466

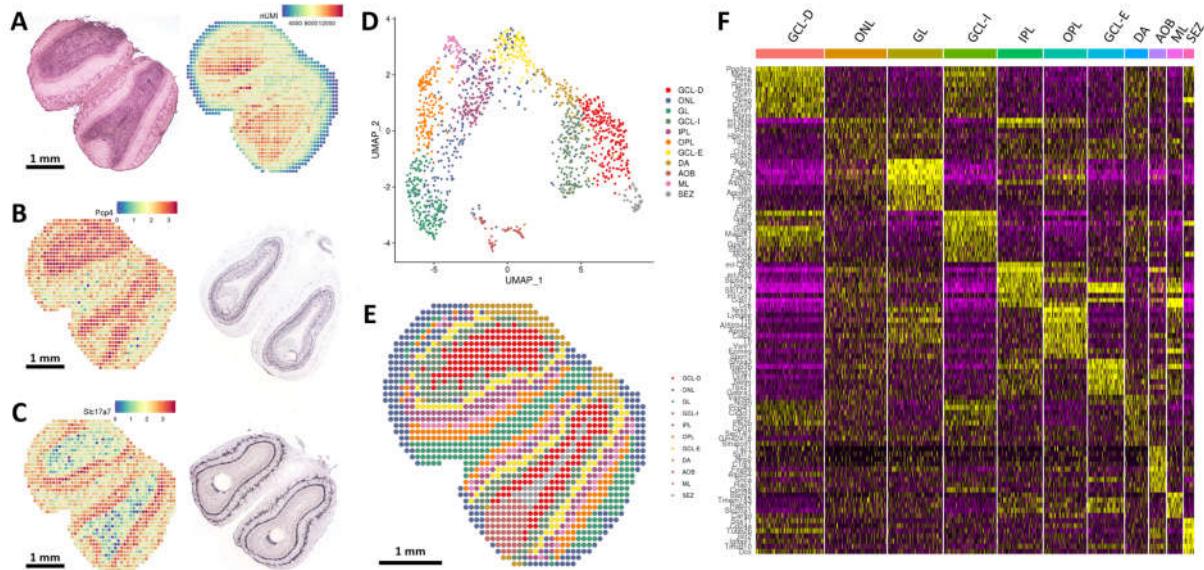

467

468 **Data and materials availability:** All data are available in the main text or the
469 supplementary materials.

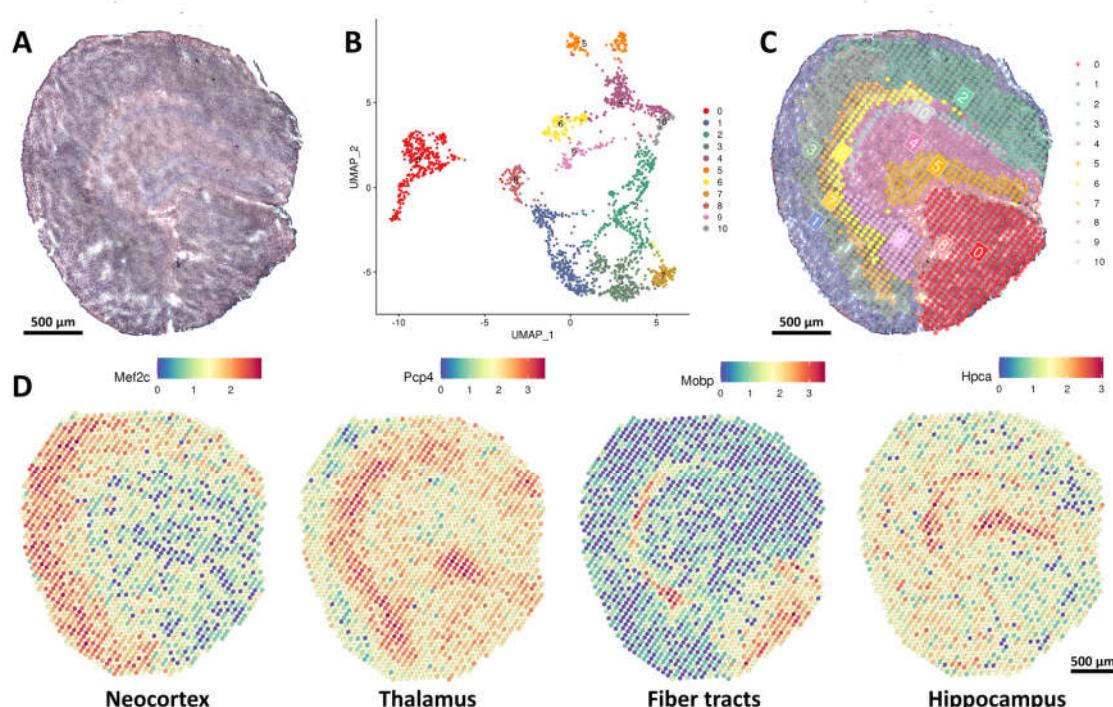

470

471
472

Figures and Tables



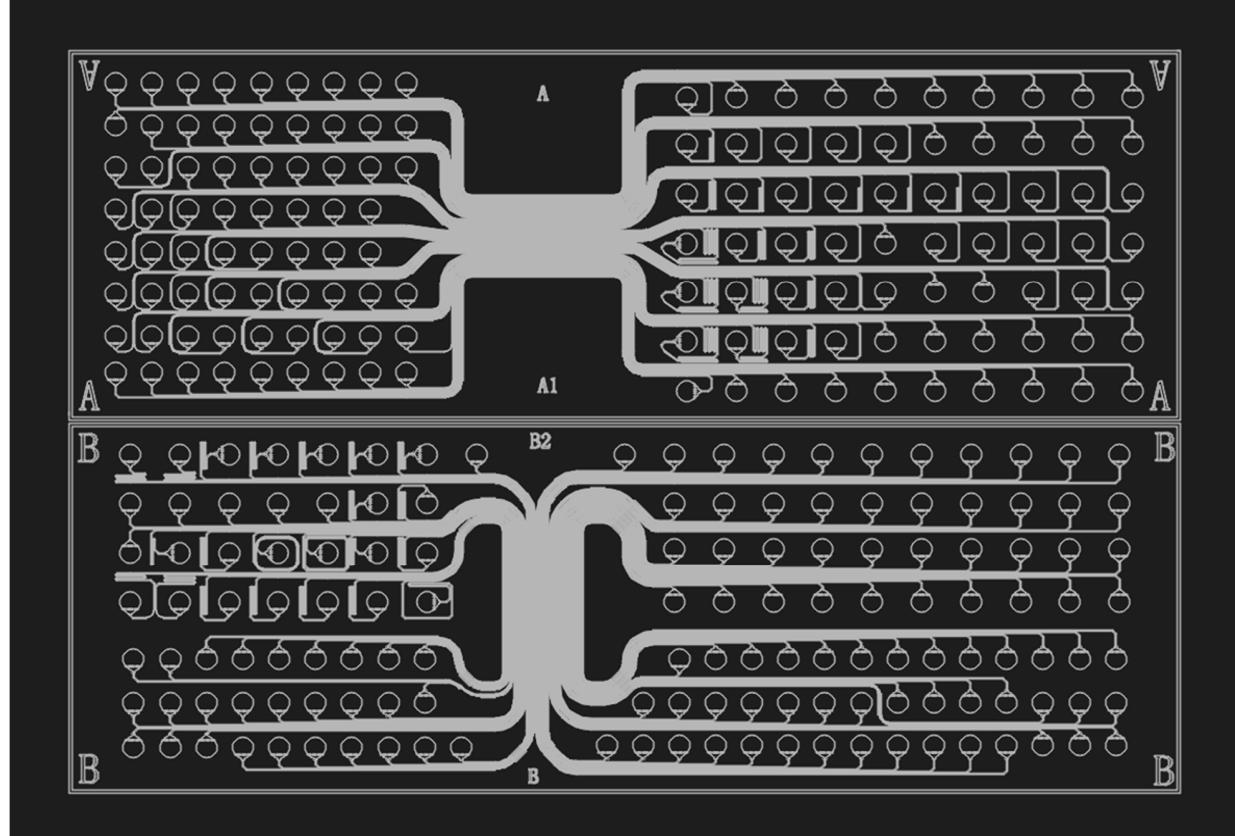
473
474 **Fig. 1 Matrix-seq pipeline.** Step-1, preparation of the Matrix-slide. The barcoded spots
475 are fabricated by two set of parallel microchannels with binding and ligation reaction. Step-
476 2, spatial barcoding of tissue. After fixation and H&E staining, The RNAs released from
477 the tissue section by permeabilization are in situ capture by the barcoded primers. Followed
478 by RT and second-strand synthesis, the released cDNA is collected in tube for library
479 construction. Step-3, sequencing and data analysis. a spatial mRNA map is reconstructed
480 by matching the spatial barcodes to spatial spots. The transcript map can be correlated to
481 the H&E image to identify the fine structures.
482



483
484 **Fig. 2 Evaluation of barcoding process and performance.** (A) Structure of Matrix
485 barcoding platform. The platform is consisted of a vacuum chamber, microfluidic chip and
486 functionalized glass slide. The images of Microchannel-X and Microchannel-Y are shown
487 in left. The regions of inlets and outlets are marked by blue and orange dashed rectangles.
488 The direction of BC-X and BC-Y are pointed by green and red arrows. (B) The merge
489 fluorescent image demonstrates the distribution of BC-X (green) and BC-Y (red). The detail
490 image shows the overlapping area exhibits stronger fluorescence and sharper boundaries.
491 (C) The fluorescent images of matrices consisted of spots of 50, 25 and 10 μm . The gaps
492 between the spots are 30, 7 and 15 μm , respectively. (D-F) Qualification of the length of
493 spots, uniformity of fluorescence and the number of cells per spot. (G) Evaluation of capture
494 performance. Normalized gene and UMI count of Matrix-seq was compared to Visium,
495 HDST and DBiT. The fresh frozen tissues of MOB were used in Matrix-seq, HDST and
496 Visium. The fixed embryonic brain was used in DBiT.

497

498
499 **Fig. 3 Spatial transcript mapping of MOB.** (A) H&E image of the MOB section and
500 heatmap of UMI number captured from the same section. (B)(C) Spatial heatmap of
501 significant gene expression (*Pcp4* and *Slc17a7*). The ISH results are showed in left. In the
502 high expression region, the two showed excellent consistency. (D)(E) UMAP analysis and
503 spatial distribution of 11 distinct clusters classified by unsupervised clustering, which are
504 annotated according to the histological structures. (F) Gene expression heatmap of 11
505 clusters. Top ranked differentially expressed genes are shown in each cluster.
506

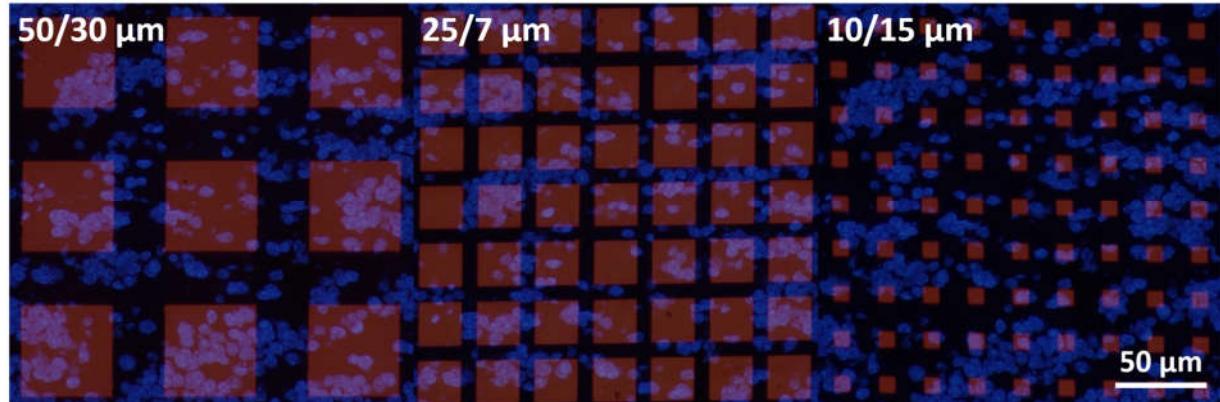

507
508 **Fig. 4 Spatial transcript mapping of mouse brain.** (A) H&E image of the half mouse
509 brain section. (B) UMAP analysis of spots. They are classified into 11 clusters. (C) Spatial
510 distribution of the distinct clusters annotated by unsupervised clustering. (D) Spatial
511 heatmaps of marker genes. The spatial heatmaps show the position and expression of

512 selected genes (Mef2c, Pcp4, Mobb and Hpca) in the section, which is consistent with the
513 histological structures based on the H&E image.
514
515

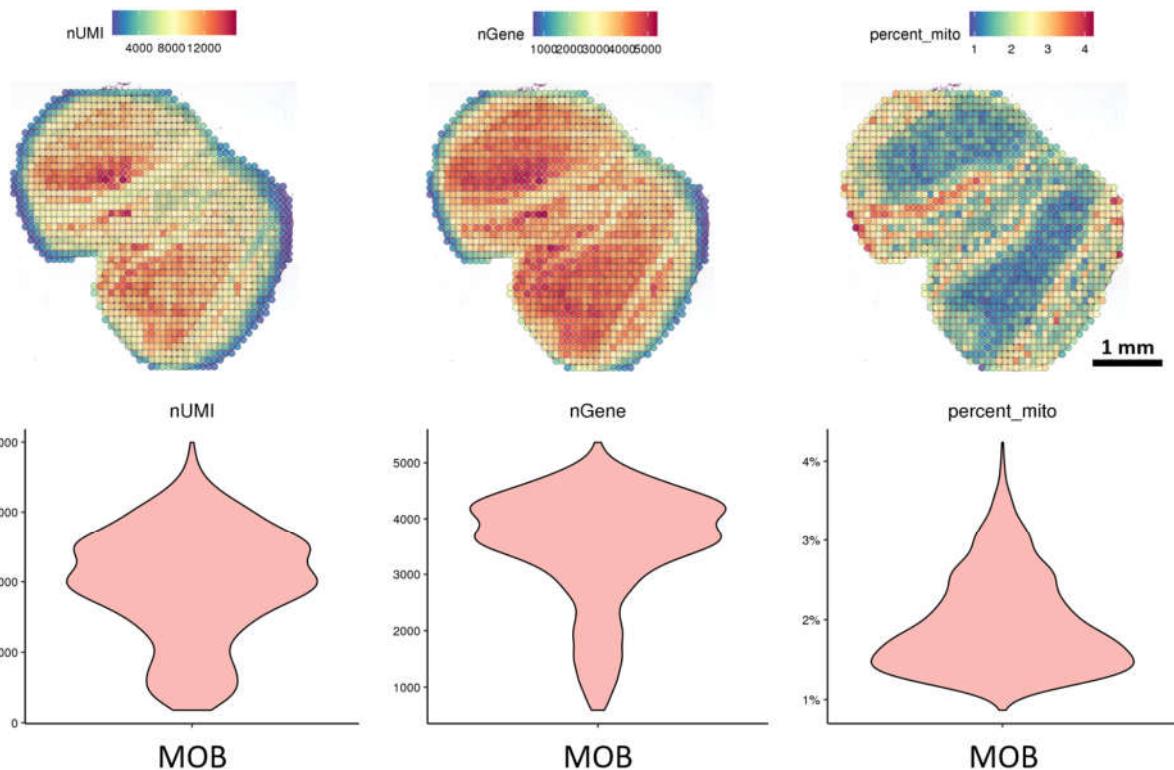
516

Supplementary

Materials

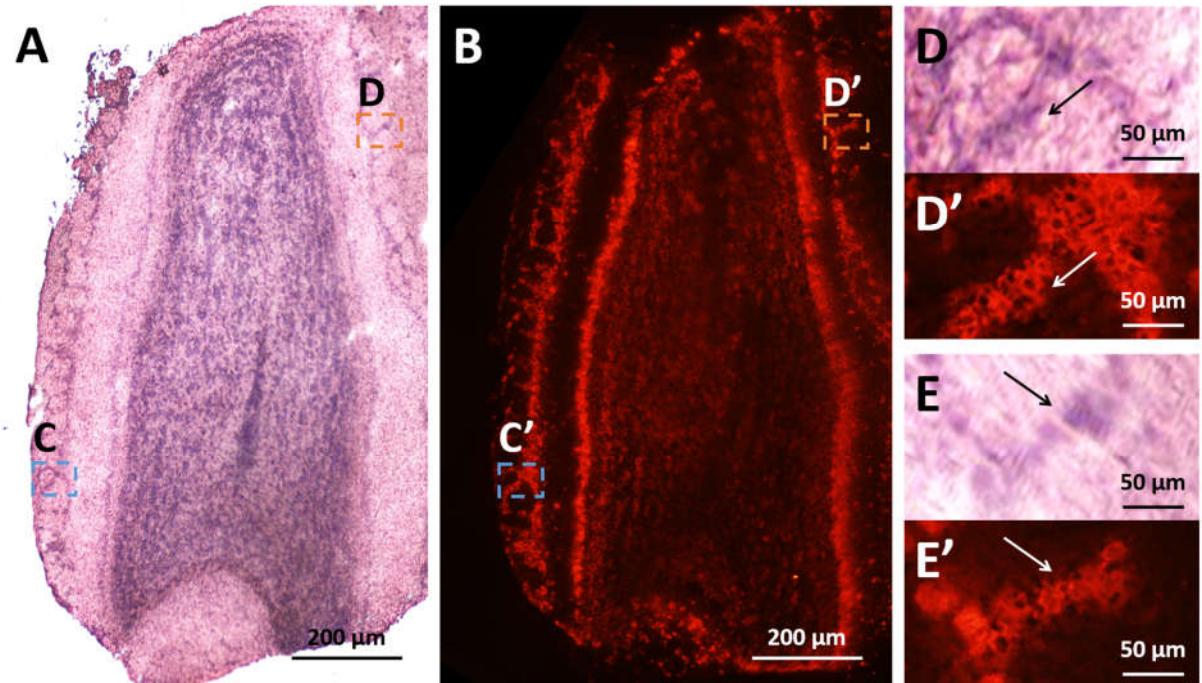


517

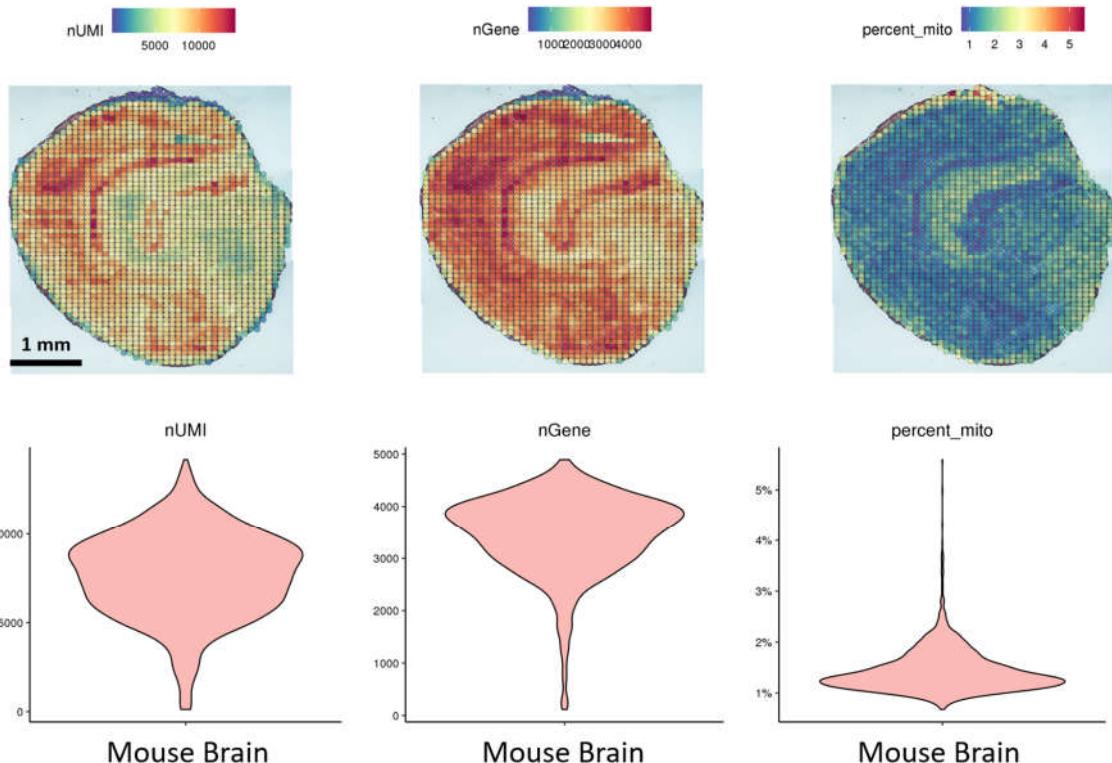

fig. S1 Design diagram of microchannels.

518

519



520
521 fig. S2 Cell distribution in the matrices with spots of 50, 25, 10 μm . The images are stacked
522 by the images of stained cells and the images of fluorescence-labeled spots. The cells were
523 stained by DAPI and fluorescent spots were labeled by cDNA. cDNA synthesis with Cy3-
524 labeled nucleotides reveals fluorescent cDNA.
525



526
527
528
529

fig. S3 Spatial distributions and statistical graphics of UMI number (nUMI), gene number (nGene) and percentage of mito in MOB.

530
531 fig. S4 Spatially localized cDNA synthesis. (A) The H&E stain image of the MOB tissue
532 section. (C) Fluorescent image of fluorescence-labeled cDNA after tissue removal. cDNA
533 synthesis with Cy3-labeled nucleotides reveals fluorescent cDNA after tissue removal.
534 (C)(D)/(C')(D') Magnified images of cytoplasm/corresponding cDNA.
535

536
537 fig. S5 Spatial distributions and statistical graphics of UMI number (nUMI), gene number
538 (nGene) and percentage of mito in the half mouse brain.
539