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Abstract  

Fundamental knowledge gaps exist with respect to the plasticity of cells from adult soma 

and the potential diversity of body shape and behavior in living constructs derived from such 

genetically wild-type cells. Here we introduce Anthrobots, a spheroid-shaped multicellular 

biological robot platform with diameters ranging from 30 to 500 microns. Anthrobots have an 

inherent capacity for motility in aqueous environments, via cilia covering their surface. Each 

Anthrobot starts out as a single cell, derived from the adult human lung, and self-construct into a 

multicellular motile biological machine after having been cultured in extra cellular matrix for 2 

weeks, followed by a transfer into a minimally viscous and adhesive habitat. Anthrobots exhibit a 

wide range of behaviors with motility patterns ranging from tight loops to straight lines with speeds 

ranging from 5-50 microns/second. Our anatomical investigations reveal that this diversity in their 

movement types is significantly correlated with their diversity in morphological types. Anthrobots 

can assume diverse morphologies from fully polarized to wholly ciliated bodies with spherical or 

ellipsoidal shapes, each correlating with a distinct movement type. Anthrobots were found to be 

able to traverse live human tissues in various ways as a function of these different movement types. 

Remarkably, Anthrobots are shown to be able to induce rapid repair of wounds in human neural 

cell sheets in vitro. By controlling microenvironmental cues, entirely novel structure, behavior, 

and biomedically-relevant capabilities can be discovered in morphogenetic processes not requiring 

direct genetic manipulation. 
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Highlights: 

 

• This work is part of the existing science of organoids and synthetic bioengineering 

• Anthrobots are made from discarded tracheal epithelial (skin) cells of adult patients 

• The cells self-organize, in a dish, into tiny clusters of cells that swim around by waving cilia (which 

other animals use, and the human trachea uses to propel particles out of the airway) 

• They are related to Xenobots, showing that the Xenobot phenomenon is not due to special features of 

embryonic or of amphibian cells – adult human cells do it too, which suggests this is a wide-spread 

cellular capability 

• No transgenes were used – their abilities are completely natural 

• Biobots are a platform for learning about native cellular intelligence, and showing how life explores 

new ways of being (cellular creativity, competency, plasticity) 

• Anthrobots can heal wounds in neural tissue; it is not known yet what other surprising behaviors and 

capabilities they may have 

• Potential future positive impacts and uses – bio-robotics for regenerative medicine: 

o Chasing down cancer cells in your gut 

o Putting down pro-regenerative drugs or other molecules 

o Out of the body sculpting engineered tissue for transplantation 

o Patient-specific avatars for drug testing = personalized medicine (reduces animal testing use, 

while showing you effects of drugs on your own tissues) 

• Safety aspects 

o Made of patient’s own cells - no problem with immune rejection and no need for immune 

suppressing medication 

o Limited life span – they only live a few weeks 

o Biodegradable 

o Very stringent survival requirements – they can’t live outside of a very specific lab culture 

environment (unlike all the artificial bacteria and viruses made today) 

o They do not reproduce 

o Not genetically-modified 

• Ethics 

o No embryonic cells used, so no human (and no animal) was negatively impacted  

o Skin only, so concern for their welfare should be much less than for brainy experimental or 

food animals like fish or cows 

o We view this as a new tool with which to advance the moral responsibility to actively reduce 

human and animal suffering from biomedical causes 
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Introduction 

 Fundamental questions in evolutionary, developmental, cell, and synthetic biology revolve 

around the issue of morphogenetic plasticity: the range of anatomical and behavioral phenotypes 

that emerge from cells with a specific genome. Exploring the rules of multicellular self-assembly 

toward adaptive function is critical for understanding the evolution of body-plans, and for 

developing interventions in regenerative medicine which coax cells toward rebuilding desired 

complex structures1. By confronting cells with new microenvironments and signals, and focusing 

on the emergent (spontaneous) self-assembly and resulting functionality in physiological, 

transcriptional, and physical spaces2,3, much can be learned about the mesoscale rules governing 

collective cell behavior and the relative contributions of genetic and generic laws of form4–8. 

 Another key field impacted by this question is bioengineering and synthetic biology, more 

specifically synthetic morphogenesis – the  development of self-constructing living structures by 

design with predictable and programmable properties9–26. Biobots is a related, rapidly growing 

field, focusing on building new kinds of living machines27–31. In the last decade, interest in 

developing biobots, which often come in the form of motile biogenic assemblies, have seen a rapid 

surge 32,33. Early examples of biobots are hybrids between biological cells and inert chemical 

substances supporting them, such as gels or 3D-printed scaffolds 34–38. These efforts were recently 

followed by Xenobots, fully-cellular biobots created from frog epithelial cells that are motile and 

do not require external pacing39–41.  

 Xenobots exhibit a range of surprising behaviors and capabilities, hinting at the plasticity 

of cellular self-assembly toward novel structures and functions, and raised a number of key open 

questions. First, could adult, somatic cells exhibit the same kind of surprising capability, or is this 

level of morphological and functional plasticity limited to embryonic material?  Second, was their 

novel phenotype due to their origin in amphibians – known for morphological plasticity? If human 

cells had such capacities, this would have implications for understanding the modifications to cell 

behavior that implement multicellularity, as well as open opportunities for patient-relevant living 

machines in biomedical contexts. Third, could a biobot be made of mammalian cells without 

exogenous synthetic biology circuits or genomic editing – do wild-type mammalian cells have 

capacities to build novel functional architectures from the exact same genome? If so, what 

surprising capabilities might be revealed? And finally, could a high-throughput process be 

developed that produces large numbers of biobots in parallel without the manual extraction, or use 

of animals, needed to acquire material, as was the case for Xenobots?  

 Here, we introduce new biodegradable, fully organic, motile living constructs created out 

of human lung epithelium. We refer to them as Anthrobots, in light of their human origin and 

potential as a biorobotics platform27,30,31,42, and quantify their emergent, baseline properties as an 

essential background characterization of their native capacities from which future efforts to 

reprogram form and function will flow. Anthrobots self-assemble in vitro, via a fully scalable 

method that requires no external form-giving machinery, manual sculpting, or embryonic tissues 

and produces swarms of biobots in parallel. They move via cilia-driven propulsion, living for 45-

60 days. We quantitatively characterized the range of movement and morphotypes, showing that 

their behaviors are strongly correlated with specific features of their anatomy. The ability of adult, 

somatic, human cells to form a novel functional anatomy, with unique behaviors, reveals that this 

plasticity is not restricted to amphibian or embryonic cell properties, and is a fundamental feature 

of wild-type cells that requires no direct genetic manipulation to unlock. Apical-out lung organoids 

created using various methods have very recently been reported43,44; however, no significant 

translocation has been shown. Remarkably, Anthrobots exhibit a behavior completely unexpected 
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given their origin as static tracheal epithelium: they can traverse wounds in (human) neural tissue 

and induce repair. Numerous in vitro and in vivo uses of such living machines can be envisioned, 

especially because they can now be made of the patient’s own cells. Thus, we show that the human 

genome encodes cellular hardware with morphogenetic, behavioral, and functional potential that 

goes far beyond the familiar default outcomes in vivo, potentially enabling a range of biomedical 

applications in addition to hinting at new aspects of evolutionary developmental biology.  

 

 

Results  

 

Human bronchial epithelial cells self-construct into multicellular motile living architectures. 

Is the ability to make a self-propelled, multicellular living construct, with a body structure 

and behavior different from the species-default, despite its wild-type genome, limited to embryonic 

amphibian tissues? Hypothesizing that anatomical and behavioral plasticity was a fundamental 

property of cell collectives, we chose a cell source that might be least expected to reveal novel 

morphogenetic activity: adult, human, somatic, progenitor cells from elderly patients. In order to 

explore and exploit morphogenetic plasticity of adult human cells, we hypothesized that novel 

multicellular constructs with autonomous locomotion could be created via progenitor cells’ innate 

developmental capacity. To study and steer the in vitro morphogenesis of novel three dimensional 

tissues with motile appendages, we developed a novel protocol (Figure  1A) that builds upon the 

existing ability of human bronchial epithelium progenitor cells to form monoclonal spheroids 

(Figure 1-a.1) with cilia-lined lumina45–48 (i.e., apical-in configuration). We modified this process 

by manipulating the culture environment such that it now yields cilia-coated (i.e., apical-out 

configuration) self-constructing spheroids, which exhibit spontaneous locomotive ability.  

A key step in their construction, in order to obtain significant translocation, is inducing the 

cilia to face outward. Given that cilia naturally localize into the lumen due to the basal cells’ 

interaction with the surrounding high-viscosity matrix, we hypothesized that changing the culture 

environment to a lower viscosity level (e.g., water-based media instead of gel-based matrix) may 

trigger the basal layer cells to migrate inward and allow the apical layer to take their place on the 

spheroid cortex49. Thus, in order to trigger apicobasal polarity switching, we first grew airway 

organoids embedded in Matrigel as has been done previously50 (Figure 1-a.2), and then we 

dissolved the surrounding matrix and transferred the spheroids into a low-adhesive dish (Figure 1-

a.3). We observed that in this new low viscosity environment, originally apical-in spheroids that 

show no motility on day 0 (Figure 1-b.1) became motile by day 7 (Figure 1-b.2).  

To characterize the temporal dynamics of motility initiation, we periodically (bidaily) 

counted the number of spheroids that became motile for 3 weeks following dissolution and 

observed a sigmoidal motility profile with peak change in motility on day 10 (Figure 1C). We next 

confirmed that this drastic change in motility occurred as a result of a morphological 

reorganization event exposing cilia on the cortex (Figure 1D). We immunostained the spheroids 

on day 0 (pre-motility) and day 7 (post-motility) with DAPI and for the apical markers a-tubulin 

(cilia marker) and ZO1 (tight junction marker), revealing a drastic increase in multi-ciliated cells 

on day 7 compared to day 0. Figure 1E shows the tissue organization within an approximately 50-

micron depth of a typical Anthrobot (darker colors representing the deeper layers). 
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Anthrobots self-organize into discrete movement types. 

 Despite their wild-type human genome and somatic basis, these cells produce discrete, self-

motile constructs with a wide range of behaviors and an anatomy that differs from the species-

specific morphology expected from their human tissue origin. As with any new organism2, a key 

task is to determine whether its major behaviors are discrete characters or continuous ones51,52. 

Thus, we quantitatively analyzed their range of behavior modes in timelapse videos of 

approximately 200 randomly-selected motile spheroids (Figure 2A, see supplemental videos 1-4) 

for 5 hours in groups of 4 or 5 Anthrobots, and extracted their movement trajectory coordinates. 

We then split up these 5 hour-long trajectories into 30 second periods to classify behavior with a 

higher degree of granularity and in an aggregate manner. To identify patterns within a potentially 

unlimited set of possible movements, we characterized these trajectories by how straight and/or 

circular they are as all possible trajectories can be explained together by these two properties. To 

this end, we developed two main trajectory characterization metrics: straightness and gyration 

indices (see Methods for detailed description of how these indices are calculated) and plotted all 

viable trajectorial periods along these two indices (Figure 2B). We then ran an unsupervised 

clustering algorithm on this landscape, which revealed four statistically distinct clusters (Figure 

2C). Further investigation of these clustering sub-populations suggested each represents a distinct 

movement type: circular, linear, curvilinear and eclectic (Figure 2D). Figure 2E shows the 

homogeneity and size characterization of each cluster and Figure 2F shows a quantitative 

comparison of different clusters along the two major movement indices. 

 Circular bots (type 1, Figure 2D) score the highest on gyration and lowest on straightness 

indices (Figure 2F). They also have the smallest dissimilarity index and contains over 30% of all 

the periods (Figure 2E), meaning they have highly similar trajectories in terms of shape and are 

very common among the behaviors of spheroids as a whole. Linear bots (type2, Figure 2D) score 

the highest on straightness and lowest on gyration indices (Figure 2F). They have a higher 

dissimilarity than circular bots but also have the greatest number of periods out of all clusters 

(Figure 2E). Circular and linear bots together make up more than half of the population, and each 

have the most homogeneous populations among all movement types. Finally, the third most 

common (Figure 2E) type of bot is the curvilinear bot (type 3, Figure 2D), which scores high on 

both the gyration and straightness indices (Figure 2F) and has the second most heterogeneous 

trajectories (Figure 2E). Bots with most disorganized trajectories and smallest representation in 

the overall population (Figure 2E) are the eclectic bots (type 4, Figure 2D), which score the lowest 

on both the gyration and straightness indices (Figure 2F) due to exhibiting eccentric trajectories 

that are often a combination of the other three types. 

 We continued the characterization of this novel system’s behavior by testing the sequences 

of its various discrete behaviors and their transition probabilities 53–55 : is there a pattern describing 

how the individual behaviors extracted from trajectory domains follow each other during a bot’s 

lifetime? In order to investigate the stability of each trajectory, we used a Markov chain to 

concatenate the successive periods of a given trajectory and thus reconstruct each bot’s path. 

Figure 2G features the Markov chain of all ~200 bots we included in this movement type 

characterization analysis and shows the circular bots (type 1) as the most committed category with 

92.1% chance of the next period being a circular if the current period is a circular. It is followed 

by linears and curvilinears, which are also relatively consistent at 80.0% and 75.3% respectively. 

Cluster 4, or the eclectics, as expected, are very unstable, with a consistency of only 39.6%. Cluster 

4 seems to act as a sort of intermediate, since there is a substantial chance of the eclectics 

converting to linear (34.5%) or to a lesser degree circular (15.0%) or curvilinear (10.7%).  The 
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transition probability between circulars and linears and vice versa is the lowest and almost 

nonexistent, at 0.3% and 0.2% respectively. Linears, curvilinears, and circulars rarely convert into 

eclectics with a probability of 12.3%, 7.5%, 5.8% respectively (and when they do, it is most likely 

due to collisions or using eclectics as an intermediary). This analysis provides an ethnogram of 

Anthrobot behavior and reveals that the most stable configuration for a spheroid is circular, 

followed by linear/curvilinear. The eclectics act more like an intermediate and at least 

probabilistically, over time, should mostly resolve into one of the 3 other categories. Therefore, 

we conclude that the vast majority of Anthrobot movements can be broken down into simpler, 

highly consistent patterns like linear, circular, curvilinear, with eclectics acting as a transient 

intermediary.  The fact that Anthrobots exhibit movement types with high “consistency” and low 

rates of inter-type conversion (e.g., circulars and linears) suggests that Anthrobots self-organize 

into discrete movement types, each with a distinct motility fingerprint.  
 

Anthrobots self-organize into distinct morphological types 

Having observed several distinct movement classes, we next asked whether the range of 

their structural properties was continuous or distributed as discrete characters56–59. This question 

is important for both understanding the meso-scale rules of self-assembly, and for future efforts to 

control their functional properties. We hypothesized the primary parameters of this possible 

underlying morphological framework to be a function of the Anthrobots’ 3D shape and cilia 

pattern, since Anthrobot motility is generated by cilia. We collected 3-dimensional structural data 

(Figure 3-a.1) specifically for shape and cilia layers from ~350 Anthrobots using ICC/IF and 

confocal microscopy and binarized these data (Figure 3-a.2) to extract quantitative information on 

cilia localization pattern and body boundaries. We then pipelined this information for ~350 

Anthrobots into an 8-dimensional PCA cloud (Figure 3B) wherein each dimension represented a 

specific morphological index that we developed to quantitatively describe and characterize the 

Anthrobot shape and cilia patterns (See Supplemental Figure 2A).  

 These 8 formal morphological indices included shape-related characteristics, such as the 

ratio between the longest and shortest distance within a spheroid (i.e., “aspect”), longest distance 

within a spheroid (i.e., “max radius”), how invaginating or protruding the spheroid surface is (i.e., 

"shape smoothness"); as well as the cilia-related indices, such as total area covered by cilia signal 

on a spheroid surface ("cilia points"), cilia signal per unit area on a spheroid surface ("cilia 

points/area"), proximity of current cilia point distribution to a complete random uniform 

distribution ("cilia distribution homogeneity"), how clustered the cilia are on a spheroid surface 

("polarity"), and how many free-floating cilia points there are that are not a part of a cluster ("noise 

points"). See Methods section for more details on how these morphological indices were 

calculated. 

 Next, we ran an unsupervised clustering algorithm on this 8-dimensional PCA cloud and 

observed the emergence of three statistically distinct clusters (Figure 3C), each representing a 

distinct morphological type (morphotype). Figure 3D shows a quantitative characterization of each 

cluster along 8 different morphological indices. This analysis revealed the following two 

characteristics to be the most important (to an equal degree, both ranking the top place in PC1 

contributions) distinguishing factors between different morphotypes: the size of the Anthrobot 

(measured by “max radius”), and the uniformity of its shape (measured by “shape smoothness”). 

These two most distinguishing characteristics formally describe type 1 bots to be significantly 

smaller in size and smoother (spherical) in its volume, while type 2 bots to be the largest and least 
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uniformly shaped, and type 3 to be somewhere in between the two both. (See Methods section for 

PC1 and PC2 contribution rankings of different indices used to uncover this hierarchy.) 

At the second level of importance in distinguishing between these three morphotypes is a 

set of four indices (all ranking equally top place in PC2 contributions), all pertaining to cilia 

characterization. While the first two of these indices characterize cilia count, i.e., the density of 

cilia per Anthrobot (measured by “cilia points), and the density of cilia per unit area of Anthrobot 

(measured by “cilia points/area”); the remaining two indices characterize the pattern in which these 

cilia are distributed: how tightly grouped the cilia are (measured by “polarity,”), and the amount 

of “free-floating” ciliary patches that are not within a group (measured by “noise points”). These 

four indices together describe type 2 bots as being significantly more ciliated than type 1 and type 

3 bots, and type 3 bots as having a significantly more polarized cilia distribution pattern (with the 

least amount of extra-cluster noise) in comparison to type 1 and type 2 bots (Figure 3D). 

 The third most important (scoring a second level rank in both PC1 and PC2) characteristic 

in distinguishing between the different morphotypes is a function of both the size/shape of the 

Anthrobot and the localization pattern of its cilia: the homogeneity of cilia distribution on the 

surface of the Anthrobot (measured by “cilia distribution homogeneity”). This local index is 

related to, but not directly anti-correlated with, the polarity index, because while cilia distribution 

homogeneity characterizes local neighborhood patterns, polarity (along with its supporting index 

“noise points”) characterizes the global (entire Anthrobot-level) cilia distribution. (See Methods 

for more information). In this way, we obtain both a local and a global view of the cilia distribution 

patterns at once, and identify type 1 bots as both globally and locally homogeneous, type 2 bots as 

globally homogeneous but locally heterogeneous, and type 3 bots as both globally and locally 

heterogeneous with high degree of global polarization.  

Finally, one characteristic that does not seem to be changing in any significant way between 

these three morphotypes is the ratio between the longest and shortest distance within a spheroid 

(measured by “aspect”). Although the 3 morphotypes differ significantly in terms of the volumetric 

regularities (measured by the shape smoothness index) as explained above, their aspect ratios are 

very similar. 

Taken together, our morphological characterization pipeline suggest that Anthrobots self-

organize into 3 major morphotypes: type 1 Anthrobots are small, regularly shaped, tightly and 

uniformly covered by cilia. Type 2 and 3 bots are larger, more irregularly shaped and have less 

tightly-knit cilia patterns, with type 3 bots featuring significantly more polarized cilia coverage. 

Specific examples of these morphotypes are shown on Figure 3E.  

This relationship can be represented by a developmental decision tree shown on Figure 3F 

wherein the first “decision point” determines the Anthrobot size and shape. Accordingly, bots that 

are small and regularly shaped (morphotype 1) form one branch, whereas bots that are larger and 

more irregularly shaped (morphotypes 2 and 3) form the alternating branch. On this alternating 

branch a second decision point forms further downstream and determines Anthrobot cilia pattern. 

Anthrobots with a non-polarized cilia pattern form one branch (morphotype 2), and Anthrobots 

with a polarized cilia pattern form the other (morphotype 3).  

 

Distinct movement types and morphotypes are highly correlated 

Having observed several discrete types of movement (Figure 2) and morphology (Figure 

3) emerge, we next decided to investigate whether there is a mapping between these different 

movement types and morphotypes of Anthrobots. To do this, we incorporated an additional level 

of movement-type information into the PCA analysis used for identifying the morphotypes as 
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discussed in Figure 3. During the initial sample collection process for this analysis, we had been 

able to definitively distinguish between non-motile Anthrobots (non-movers) and motile 

Anthrobots (movers) (Figure 1C). To further represent the movement types observed within this 

mover population, we randomly sampled from the set of motile subjects, targeting 30 Anthrobots 

that moved well enough (i.e., displacing movers) to assign a movement type. The selected 

displacing movers were collected from the two most orthogonal movement types, circular and 

linear, in approximately equal proportions, to cover the extreme ends of the possible movement 

types. 

Next, we identified these non-mover and displacing mover Anthrobots within the PCA cloud 

presented in Figure 3 and assigned them this additional layer of information, i.e., movement type 

(Figure 4A) without changing anything else in our sample size or analysis workflow. In result, 

62% of non-movers were identified within morphotype 1 cluster (with the remaining 38% falling 

into the morphotype 2 cluster). A 100% of displacing bots were identified in morphotypical 

clusters 2 and 3, with ~85% of linear bots being in cluster 2, and 88% of circular bots being in 

cluster 3. We have further computed the statistical significance of these overlaps (using the Fisher 

test, see Methods) and conclude that the non-movers, linears, and circulars significantly 

correspond with the morphotypes 1, 2 and 3, respectively.  

None of the displacing bots were identified within the morphotype 1 cluster. This suggests 

that the movers identified within the morphotype 1 category (i.e., those data points within the 

morphotype 1 cluster which are not labeled as “non-movers”) are statistically likely to be non-

displacing movers, displaying a stationary wiggling motion. Accordingly, we conclude that 

morphotype 1 bots are likely to assume either non-mover behavior or wiggler behavior. This may 

be attributable to their spherical shape with homogeneously distributed cilia where the propulsion 

forces generated by the ciliary motion are more prone to canceling each other out due to the radially 

symmetric spherical shape, resulting in little or no movement. Accordingly, inherent noise in the 

system (such as small imbalances in the cilia distribution on this spherical landscape or how the 

bot happened to be oriented in the plate) may be sufficient to generate small amounts of movement, 

i.e., wiggling, but not enough to have these bots to displace. We conclude that there is a statistically 

significant relationship between the Anthrobots’ developmental morphology and their behavior, 

and show visual examples of this relationship with categorical examples on Figure 4B. 

This relationship can be further represented by a decision tree in the form of a Waddington 

Landscape – a formalism often used to characterize cell- and body-level properties by mapping 

out the sequential logic of decision-points in transcriptional space or morphospace60–63. Figure 4C 

shows the Waddington Landscape for the Anthrobot. The single cell at the top of the diagram 

represents the single cell that will develop into the multicellular Anthrobot. During this process of 

self-construction, the Anthrobot moves through the developmental landscape, negotiating certain 

points of morphological possibility to reach its final architecture. We conclude that the unique and 

spontaneous 3-D multicellular morphogenesis of adult tracheal cells into Anthrobots is consistent; 

the final form of the Anthrobot displays a degree of variability and exhibits discrete characters 

with easily recognizable primary features that also map on to phenotypic behavior. 

 

Anthrobots can traverse live tissues 

One possible use of these living machines is to manipulate other tissues, in vitro or in vivo, 

in future biomedical or bioengineering applications. How will biobots react to environments 
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different from those that their component cells face in their native configuration in vivo? Thus, 

Anthrobot behaviors need to be characterized not only in a bare culture dish context, and especially 

in environments which tracheal epithelia do not normally encounter. Having characterized their 

baseline movement and morphology, we decided to study the ability of Anthrobots to traverse live 

tissues (specifically channel-like morphologies), taking advantage of a common model system: the 

scratch assay in vitro64,65. We produced 2-D confluent layers of human neurons derived from 

hiNSCs, and introduced a wound by mechanically scratching away a few Anthrobot lengths-width. 

Anthrobots were placed within these “neuronal wound” environments in order to 

characterize the dynamics of Anthrobots in this novel biological environment. Bots were allowed 

to traverse on their own and timelapse videos were recorded (Figure  5A, see supplemental videos 

5, 6). These videos were then tracked and specific indices were calculated from the tracked files 

(Figure 5B). Among these indices, we characterized the degree by which bots interact with the 

native tissue surrounding the scar (measured by “proportion of bot on tissue”), bots’ tendency to 

assume a circular motility profile (measured by “bot’s rotational tendency”), and bots’ 

displacement speed in traversing the scar (measured by “instantaneous velocity”). More 

specifically, we investigated the relationship between bots’ efficiency in traversing the scar as a 

function of the circularity of their movement pattern (Figure 5C). We observed a significant 

positive relationship (slope=1.3, p=0.01), confirming our baseline assumption that although 

circling bots are less efficient in forward motion, they arebetter at “exploring” the scar. We have 

further observed that the instantaneous velocity also had a significant positive relationship with 

bots’ efficiency in traversing the scar (slope=0.009, p=0.048 (Figure 5D), presumably due to 

increased collisions with the tissue. Taken together, these data reveal that Anthrobots are capable 

of traversing damage sites in tissues, and that bots that have a higher rotational tendency and or 

higher speed end up “exploring” the tear better by covering a higher percentage of the tear 

interface. 

Having observed the behavior of these bots in scars, we focused on the interactions between 

scar surfaces and the bots following the edge of the scar. In order to do so, we first constrained the 

dataset to trajectories that could be used to further understand the relationships between the two. 

More specifically we focused on bots that were not extreme in their rotational tendencies and had 

ample contact with the scar while not being slower than 10 microns per second in speed. This 

enabled us to isolate the tendency of the bot to turn consistently in the same direction (measured 

again by “bot’s rotational tendency”), the straightness of the scar wall (measured by “scar 

straightness”) and the correlation between the trajectory and scar edge (measured by “scar-

trajectory correlation”). With our constrained dataset, we saw that Gyration had a quadratic effect 

on scar-trajectory similarity (Figure 5E) with p=0.0167 and scar straightness a linear effect with 

Slope=-1.489 and p=0.049 (Figure 5F).  

Remarkably, these results suggest that there is a specific range for gyration where the scar-

trajectory correlation can be maximized: Anthrobots can be chosen to specifically maximize the 

exploration efficiency based on their gyration. Additionally, increase in the evenness of a scar (i.e., 

increasing “scar straightness”) leads to the bot following the scar less, which suggests Anthrobots 

are better at traversing irregular surfaces. 

 

Anthrobots can promote regeneration in live tissue wounds 

One of the most important aspects of exploring synthetic morphogenesis is the opportunity 

to observe novel behaviors that are obscured by standard, default phenotypes. Having seen that 

these tracheal cell-derived constructs can traverse and settle in neural wounds, we decided to check 
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for the effects of their presence on the surrounding cells. A characterization of their wild-type 

capabilities is important not only for understanding biological plasticity but also for establishing a 

baseline for future efforts in which biobots are augmented with additional synthetic circuits for 

pro-regenerative applications. 

We first facilitated random self-aggregation of distinct Anthrobots to larger “superbot” 

assemblies. We accomplished this without using molds or any other external shape-giving 

equipment, but by simply constraining multiple Anthrobots in a relatively smaller dish, while 

keeping everything else constant. We then carefully placed these superbots into arbitrary sites 

along the tissue tear such that they span the entire width of the tear, enabling them to “bridge” two 

sides of the damaged tissue. Figure 6A shows a superbot on a scarred live tissue upon its placement 

on day 0, as well as the resulting bridge configuration on subsequent days of day 1 and day 2. 

Strikingly, within the next 72 hours upon inoculation of the superbot into the tissue tear on 

day 0, we observed a substantial regrowth of the native tissue taking place, resulting in the 

formation of a stitch right underneath the “superbot bridge,” connecting the two sides of the scar 

(Figure 6B). This stitch was observed solely at the site of superbot inoculation, and at no other 

place along the long tear (Figure 6C). A quantitative analysis (Figure 6D) of these self-stitch sites 

shows that while the neuron pixel coverage density of the stitch is as high as the native tissue 

outside the wound (see Supplemental Figure 3), the rest of the scar space, whether adjacent or far, 

had significantly less density of coverage. Thus, the density of the induced stitch area that was 

built with the aid of our bots represented full (statistically indistinguishable from 100%) recovery 

of the original tissue, and was uniquely different from the surrounding “scar” area: Anthrobot 

assemblies induce efficient healing of live neural tissue. 

 

Discussion 

 

 Biorobotics and bioengineering have at least two main areas of impact. One is the 

production of useful living machines27–29. The other is the use of unconventional configurations 

for living materials at all scales, to probe the meso-scale rules of self-assembly of form and 

function66,4,17,67. Specifically, by confronting evolved systems with novel contexts, we can learn 

about the degree of plasticity that cells and control pathways can exhibit toward new anatomical 

and functional endpoints, as well as develop protocols to alter default outcomes. Here, we used 

human patient cells to begin the journey toward immunologically-acceptable, active, living 

biomedical constructs, and to begin to probe the morphological and functional capabilities of 

mammalian, adult cells.  

 Self-motile, fully-organic biobots have been demonstrated with frog cells41,40,39; 

however, it was unknown whether their properties depend strongly on their amphibian genome 

and evolutionary history, as well as their embryonic state. Moreover, their construction depended 

on a rate-limiting process of extracting source cells from frog embryos. Here we show a protocol 

for enabling the self-assembly of Anthrobots: organoids made from epithelial cells that traverse 

aqueous environments. The process is highly scalable, and produces Anthrobots in the course of 3 

weeks, with minimal manual input, but weekly media changes. At the end of their 4-6 weeks life 

span, they safely degrade. Airway organoids with apical out tissue organization have very recently 

been shown using alternative approaches involving additional steps43,44, but these platforms have 

to date been used as organotypic cultures, and have not been shown to translocate or self-organize 

into distinct movement or morphological types. 
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Anthrobots’ overall shape and behavior are similar to that of Xenobots, but not identical. 

Anthrobots are around 20 to 300+ micrometers in size, whereas Xenobots range from an average 

of 487 ± 39 μm for the smallest cut explants to 602 ± 30 μm for the largest40. Xenobots likewise 

offer discrete motion types, and their behavior transition profile is similar. The interconversion 

between linear and circular is very small for Xenobots (0.5% and 1.6%) and Anthrobots (0.2% and 

0.3%), while their consistency of Circular behavior is extremely high for Xenobots (95%) just like 

for Anthrobots (92%). However, Xenobots’ linear behavior consistency was not as high (67%) 

when compared to Anthrobots (80%). Despite their highly divergent genome, age, and tissue 

origin, the two platforms assemble into very similar types of creatures, illustrating the importance 

of generic laws of morphogenesis8,68–72 in addition to species-specific genomic information. 

 Anthrobots are derived from adult human tissue, and in the future could be personalized 

for each patient, enabling safe in-vivo deployment of these robots in the human body without 

causing inflammation or triggering an immune response. Once inoculated in the body via 

minimally invasive methods such as injection, various applications can be imagined, including but 

not limited to clearing plaque buildup in the arteries of atherosclerosis patients, bulldozing the 

excess mucus from the airways of cystic fibrosis patients, and locally delivering drugs of interest 

in target tissues. They could also be used as avatars for personalized drug screening73  having the 

advantage of behavior over simple organoids, which could be used to screen for a wider range of 

phenotypes.  

 Anthrobots exhibit several distinct movement and morphological classes, which are 

significantly correlated. This is especially important because the structure and function of this 

novel construct is not that of a familiar organism (despite a wild-type genome), and it was not yet 

known whether its morphospace possessed specific attractors, how reliable the cells’ navigation 

of that morphospace was, or how the movement patterns would relate to its specific morphology.  

Anthrobots showed clear and consistent active movement types, quantified over 30 second periods: 

circulars, linears, curvilinears, and eclectics, with the last category including the non-displacing 

bots, i.e., wigglers, as well as distinct morphotypes that are best distinguished by Anthrobot size, 

shape, and cilia localization patterns. While more work needs to be done to establish a causal 

relationship between these morphotypes and the movement types, our correlation analyses showed 

significant correlation between the non-displacing (wiggler or non-mover) movement type and 

morphotype 1, linear movement type and morphotype 2, and finally circular movement type and 

morphotype 3. Such correlation has implications for future control of higher-order behaviors (such 

as movement types) by way of controlling Anthrobot morphology through synthetic 

morphogenesis, as well as real-time physiological signaling.  

While the motion type is likely influenced by their structure, it is also likely (given the 

active nature of ciliary propulsion in other74,75)  that some degree of real-time behavioral control 

exists. We do not yet know the degree of sophistication of the mechanisms linking environmental 

inputs to behaviors, and this will be tested in subsequent work where these epithelial cells will be 

exposed to a wide range of stimuli to which they may naturally respond. Future work will 

interrogate both the Anthrobots and cells in their environment (e.g., the neural scar cells) to 

determine whether transcriptional, physiological, or biomechanical signals are exchanged.  

 Like Xenobots, these are a biorobotics platform76, in addition to a kind of organoid, because 

they offer an ideal model system in which to explore guided self-assembly and controlled function 

via future addition of metabolic and computational transcriptional circuits5,9,77–87. In recent years, 

many types of robots, mostly non-organic, have been engineered to perform operations in smaller 

biological contexts (millimeter or even micrometer level). Sizes of these robots have ranged from 
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less than a hundred micrometres88 to insect-sized89 at around <20 mm. Comparatively, Anthrobots 

fall at the lower edge of this spectrum, with sizes mostly around or below 100 microns and 

comparable to a “microscopic robot”88. Most other bots that are biologically inspired but non-

organic tend to have sizes that are visible to the naked eye with microbots having a diameter ~260 

micrometers90, and crab-inspired robots around 500-700 micrometers91 are thus a few times the 

size of an average Anthrobot. Other bots have had larger sizes, like the magnetically controlled 

soft-body milirobot ~3.7 mm 92, the water droplet manipulating magnetic-actuated robot ~ 2.4 

mm93 and the origami milirobot ~6-8 mm94 of which the largest was the aforementioned insect-

inspired robot with a size of <20 mm=20000 micrometer89, which is tens to hundreds of times the 

size of the Anthrobots. Like many modern robotics platforms, they are not single-scale, 

deterministic, human-programmed, inorganic devices95–101, but instead offer a tantalizing mix of 

baseline competencies that could eventually be managed and augmented by environmental stimuli 

and the addition of smart materials, circuits, and behavior-shaping protocols. 

 As has been seen in evolutionary robotics in artificial life and computer engineering102, 

these offer surprises. In many ways, characterizing these constructs resembles studying a new 

organism, because novel properties abound despite its familiar (wild-type human) genotype. The 

most amazing to date is their ability (Figure  6) to induce the healing of neural scars. This capacity 

for tracheal cells (like their propensity to reboot their multicellularity into a motile spheroid) could 

not have been predicted from first principles, and we hypothesize that numerous other surprising 

abilities remain to be found in the future. This offers many implications for therapeutics, not only 

in the direct use of Anthrobots on neural wounds but in the extension of this principle to optimize 

other kinds of biological repair-inducing constructs.  

 These data establish a research program with many unanswered questions for subsequent 

work. What other cells can Anthrobots be made of? What other behaviors might they exhibit, and 

in what environments? What other cell types can they repair or affect in other ways? Can 

transcriptional or physiological signatures be read out in living bots, that reflect their past and 

immediate interactions with surrounding cellular or molecular landscapes? Do they have 

preferences or primitive learning capacities103, with respect to their traversal of richer 

environments? More fundamentally, these data reveal additional morphogenetic competencies of 

cells which could have implications for evolutionary developmental biology, as evolution of 

anatomical and functional features could be affected by the ability of the same genome to produce 

very diverse forms in different environments. Finally, this kind of new model system is a 

contribution to two key future efforts. The study of synthetic biological systems11,104,17,105 is an 

essential complement to the standard set of phenotypic defaults available in the natural 

phylogenetic tree of Earth, revealing the adjacent possible in morphological and behavioral 

spaces106,107. Moreover, these systems offer a safe, highly tractable sandbox in which to learn to 

predict and control the surprising and multi-faceted system-level properties of multiscale complex 

systems. 
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Methods  

 

NHBE culture 

Normal human bronchial epithelial cells (NHBE) were used from Lonza Walkersville, MD. 

The cells were first thawed and seeded on a T150 flask containing bronchial epithelial growth 

medium (Lonza CC-3170) for 2D cell culture growth. Once the NHBEs were ~80% confluent, 

they were passaged into a 24-well-plate of Matrigel beds for 3D cell culture. The NHBEs were not 

passaged past the 3rd passage.  Each matrigel bed contained 500µL of 25% Matrigel-, 0.1% 0.5nM 

retinoic acid and 75% BEDM that was centrifuged for 5 seconds at 100 x g and prepared at least 

4 hours before passaging the cells. The cells were re-suspended in 5% matrigel, 95% BEDM and 

0.1% RA and seeded directly onto the matrigel beds with 500µL per well at a 30,000 cells/mL 

concentration. Once seeded, the NHBEs were centrifuged for 5 seconds at 50 x g. On days 2 and 

8, the NHBEs received a top feed containing 750µL 5% matrigel, 95% BEDM, and 0.1% RA. On 

day 14, 500µL of the wells’ contents was aspirated and 500µL of dispase (#D469) at concentration 

2 mg/mL was added to each well. A mini cell scraper was used to break up the matrigel clumps 

and then followed by a 0.05% Triton coated pippete tip to mix up the matrigel with the dispase. 

The dispase was then incubated at 37°C for 1 hour with the pipetting process repeated every 15 

minutes. During incubation, Pluristrainer Mini’s with a 40 µm pore size (Fisher Scientific 

#431004050) were placed in wells of a fresh 24-well-plate that contained 2.5 mL of 0.05% Triton.  

After the incubation period, 250 µL of 1% 5mM EDTA in D-PBS was added into each well. The 

media in each well was then drawn up, using the Triton-coated tip, and added to the Triton-coated 

strainers. The NHBE spheroids in the strainer were rinsed with 1 mL of D-PBS then expelled onto 

a low adhesive dish by inverting the strainer over the dish and expelling 5 times of 1 mL of BEDM 

through the bottom of the strainer. After all spheroids were in one dish, they were divided evenly 

amongst multiple 60mm dishes by using a Triton-coated pipette tip and a microscope to manually 

draw up and divide them. 0.5µL of 0.5nM retinoic acid was added into each dish once divided. 

For the next 14 days as the spheroids started moving, they required 0.5µL of 0.5nM retinoic acid 

every other day and a media change every 4 days. The media change was performed by circling 

the Anthrobots to the center of the dish then collecting 2 mL of old media and adding 3 mL of 

fresh BEDM-this was done under a microscope to ensure no Anthrobots got aspirated. 

 

Neuronal culture 

A 150 cm dish was first coated with 0.1% gelatin for 20 minutes and then aspirated off 

before seeding mouse embryonic fibroblasts (ATCC #SCRC-1008) in MEF growth media (89% 

DMEM GlutaMAX, 10% Fetal Bovine Serum, and 1% Anti-anti). Once the MEFs were confluent, 

they were inactivated by adding 20 mL of MEF growth media containing 500 µL of 10µg/mL 

mitomycin C (Sigma #M4287) and incubating for 2-3 hours at 37°C. After incubation, the MEF 

growth media + mitomycin C media was replaced with hiNSCs at a density of 1/10 of a confluent 

target vessel  in 25 mL of hiNSC growth media (77.6% Knockout DMEM, 20.20% KOSR, 1% 

GlutaMAX, 1% Anti-anti, 0.18%  2-mercaptoethanol with 0.1 % of 20 ng/mL bFGF). The day 

after seeding the hiNSCs required a media change where all the old media was aspirated off, and 

25 mL of fresh hiNSCs growth media was added. Media changes were performed every other day 

until the hiNSCs were 80-85% confluent. 3 hours before performing the differentiation, the 

destination vessels were first coated with .1mg/mL poly-d-lysine (enough to coat the bottom of 

the wells) for one hour at room temp, and then the PDL was aspirated before adding in 10ug/mL 

laminin in DPBS (enough to coat the bottom) for 2 hours at 37°C. In the differentiation, the hiNSCs 
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first went through one D-PBS wash before adding TrypLE Select for 3-5 min to detach the cells 

from the plate. The cells were then collected and spun down for 3 minutes at 500g then resuspended 

in neurobasal differentiation media (96% Neurobasal Media, 2% B-27 supplement, 1% 

GlutaMAX, 1% Anti-anti). The hiNSCs were seeded at a concentration of 100,000 cells/cm^2. 

Once the hiNSCs were in differentiation, there was a media change the day preceding their 

differentiation and then every other day from there . 

 

 Immunocytochemistry / Immunofluorescence 

Anthrobots were collected in Pluristrainer Mini’s with a 40-micron pore size (Fisher 

Scientific #431004050) and fixed with 4% paraformaldehyde at room temperature for 30 minutes. 

Following PBS washes, blocking and permeabilization were performed for 1 hour at room 

temperature on a rocker in a blocking buffer consisting of phosphate-buffered saline with 10% 

normal goat serum, 1% bovine serum albumin, and .15% triton x-100. Anthrobots were then 

incubated with mouse anti-acetylated tubulin (Sigma-Aldrich #T7451) and rabbit anti-cytokeratin 

5 (Abcam #ab52635) primary antibodies diluted 1:250 and 1:100, respectively, in blocking buffer 

for 24 hours at 4oC on a rocker. The primary antibodies were labeled with Alexa Fluor 647 donkey 

anti-mouse (Thermo Fisher Scientific #A31571) and Alexa Fluor 488 donkey anti-rabbit (Abcam 

#ab150073) secondary antibodies, both at 1:500 dilutions in blocking buffer, for 1 hour at room 

temperature on a rocker. Lastly, Anthrobots were incubated with Alexa Fluor 594-conjugated 

mouse anti-ZO-1 (Thermo Fisher Scientific #339194) at a 1:100 dilution in blocking buffer for 24 

hours at 4oC on a rocker. Anthrobots were mounted on glass-bottom 96-well plates in ProLong 

Glass Antifade Mountant with NucBlue (Thermo Fisher Scientific #P36981). Images were 

collected using a Lecia SP8 FLIM microscope with a 25x water immersion objective. Z-stack step 

size=3 micron unless otherwise specified.   

 

Tracking timelapse videos 

Timelapse videos of the Anthrobots were contrast-enhanced using the video editing 

software ImageJ. They were then processed to extract the trajectories of the Anthrobots utilizing 

the trackR function in the trackR package (version 0.5.1) for R. The software parameters were 

chosen manually in order to increase the accuracy of the tracking, following the instructions in the 

trackR package’s help. Tracking errors such as the swapping, deletion or insertion of tracks were 

subsequently manually corrected using the trackFixer function from the same package.  

 

Movement type analysis  

From the extracted trajectories, we computed the following metrics: (i) the linear distance 

between the current position and the immediately preceding one; (ii) the linear speed at each 

position, approximated as the distance moved between the current position and the immediately 

preceding one during the time interval between these two positions; (iii) the heading of the bot at 

each position, approximated as the angle between the vector formed by the current position and 

the immediately preceding one and that formed by the current position and the immediately 

following one; (iv) the angular speed of the bot at each position, approximated as the difference 

between the heading at the immediately preceding position and that at the current one during the 

time interval between the corresponding three positions required to calculate these two headings; 

(v) the time difference between each position. 

Behavioral classification was then performed on non-overlapping 30-second blocks of 

trajectory. To determine how predictable a position change was, the linear speed, heading, and 
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angular speed were estimated at each position to predict the coordinates of the following position. 

The error (Euclidean distance) between the predicted coordinates and the actual coordinates was 

then computed. For each complete 30-second block of trajectory (i.e., a block with no missing 

timestamp), total error over the entire block was calculated and normalized by the total distance 

traveled during that block to account for the artificial error amplification caused by predicting over 

longer distances. To separate active from inactive blocks, an automated classification method was 

used on the distribution of total normalized errors. A gamma mixture model with two components 

was fit to the data using the expectation maximization algorithm in the REBMIX function from 

the rebmix package (version 2.12.0) for R108. The 30-second periods in the resulting cluster with 

the highest total normalized error were considered as inactive and excluded from further 

classification.  

 We then derived two metrics to describe each trajectory: (i) a “straightness” index 

computed as 1 minus the circular variance of the headings during the block (a value of 1 indicates 

a perfectly straight line) and (ii) a “gyration” index computed as 1 minus the circular variance of 

the angular speed during the block divided by the circular variance of the same angular speeds and 

their additive inverse, which helps in taking into account the magnitude of the angular speeds 

themselves (a value of 1 indicates a trajectory following a perfect circle).  

 The need for two indices arises from the fact that a straightness index alone cannot fully 

tease apart all different movement types due to its aggregate view of a trajectory. In other words, 

a low straightness index does not automatically translate into a perfectly circular bot, as we can 

see in Supplemental Figure 1-a.1 and 1-a.2 with the arc trajectory. This is due to the fact that the 

straightness index does not account for the time-dependent dynamics and thus ignores individual 

variations across frames. This is where the second movement metric, the gyration index, comes 

into play. To account for temporal information, we calculate the angular speed, which is the 

difference between successive headings divided by time between frames and thus has units of 

radians/ second. Supplemental Figure 1B shows a bent trajectory and Supplemental Figure 1C 

shows an arc trajectory, both of which have similar straightness indices. However, when we start 

looking at their temporal relationships using angular speeds, the behavior is entirely different. For 

the arc (Figure S1C), the variance of the angular speed is very small since the change in heading 

of the trajectory each time is relatively consistent (the distribution shown in the histograms).  

For the bent trajectory (Figure S1B), the variance of angular speed is much larger than the 

arc since for most of the trajectory the angular speed is close to 0 (it goes straight), but the bent 

portion has a very high angular speed, i.e., the angle changes very quickly. In general, the greater 

the absolute value of the angular speed the sharper the turn in the trajectory (zero is straight) and 

the greater the variance of the angular speeds, the less the consistency of the turns in the trajectory. 

A circle or arc usually has absolute values of the angular speed much greater than zero and low 

variation of angular speed. However, the gyration index alone cannot differentiate between all 

behavior either. Let’s look at a circular trajectory (Supplemental Figure 1D). Even though the 

absolute values of the angular speeds between arcs and circles are different, the circle also ends up 

having a gyration index close to 1 since all the turns in a circle are highly consistent like in an arc 

and thus the variance of the angular speed for both is very small. This fact means the gyration 

index cannot segregate between arcs and circles, among other things, by itself. Interestingly, the 

straightness index is exceptional at separating arcs and circles. This shows that though either index 

alone cannot distinguish all movement types well, together they can accomplish much more. 

To separate the trajectory blocks into categories of similar behavior after calculating the 

movement metrics, a cross-entropy clustering algorithm was used109, and implemented in the cec 
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function of the CEC package (version 0.10.2) for R110. This yielded us six categories, of which 

trajectories from categories numbered 3 and 4 were merged into categories numbered 1 and 2 

respectively due to the difference being phenotypically minimal. In the “behavioral space” as 

defined by the straightness and gyration indices, cluster 3 had the same straightness index range 

as cluster 1 and a lower gyration range between roughly 0.65 and 0.95, which represented 

trajectories that were highly circular but fell short of cluster 1 which represented “prototypical 

circulars”. Similarly, Cluster 4 had a slightly smaller straightness index range than cluster 2 (0.7 

to 1 instead of 0.6 to 1) and higher gyration range between 0.1 and 0.55 which represented 

trajectories that were mostly linear but didn’t have a high enough gyration to be curvilinear or low 

enough gyration to be Cluster 2, a “prototypical linear”. The merge of the two clusters increased 

the average dissimilarity of the cluster, but it is a testament to how similar clusters 1 and 3, and 2 

and 4 were already that their dissimilarity still remains very low at ~0.09 and ~0.14 respectively. 

Last, to understand how the bots’ behaviors are distributed relative to each other, transition 

probabilities between each behavioral category were estimated by calculating the proportion of 

times a block of a given category is followed by a block of the same or another category. This was 

then presented in the form of a Markov Chain. 

 

Morphotype analysis  

To find whether there were any unique morphological types like was the case with movement 

types, each spheroid was processed through a custom-made analysis pipeline (code attached). First, 

we created a 3D model of the bot in R where the points corresponding to the body and the cilia were 

clearly indicated. For this, we first isolated the cilia channel from the LIF images of the bots and ran 

the images through CiliaQ111 using the RenyiEntropy algorithm for detection. These binarized cilia 

were then imported into our code, along with the points that comprised the body. These “body points'' 

were extracted using the “body channel” of the LIF images by first running the pixels through a logistic 

transform then thresholding the pixels based on the signal to noise ratio, calculated by using a median 

filter and comparing the points before (“signal + noise”) to after (“only signal”).  

Due to the large volume of body points, to reduce the points to a manageable amount, we found 

outlines of each slice of the spheroid by using a concave hull using the Concaveman package (version 

1.1.0)112. The cilia points were then projected on the nearest body points by simply choosing the 

nearest one by distance to get the shadow of the cilia on the body.  

The structural index variable Cilia Points was calculated by counting the number of unique 

projected points on the body. Then, the dbscan package (version 1.1-10)’ 113function in R was used to 

find the clusters of cilia. The number of points that fell outside of clusters with this definition were 

defined as Noise Points.  

Following this step we computed the spanning ellipsoid of the body points by using the 

‘ellipsoidhull’ function from the cluster package (version 2.1.3)114. The Max Radius variable was 

calculated directly by the function, and Aspect was defined as the ratio of the largest radius to the 

shortest radius, all quantities computed by the function. Finally, we used the ‘ashape3D’ function from 

the alphashape3d package (version 1.3.1) 115 to generate a 3D alpha hull of the body points, and used 

the mesh to get the surface area of each spheroid. 

Cilia Points/Area was defined as the Cilia Points variable divided by the calculated surface 

area. Similarly, the Shape Smoothness was defined as the ratio of the volume of the 3D alpha hull to 

the volume of the spanning ellipsoid. Finally, we found the center of the bot by finding the sum of the 

centroids of each triangle that makes up the alpha hull weighted by area of the triangle. Polarity was 

defined as the norm of the vectors from the center to each cilia point divided by the sum of the norm 
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of each vector. The Cilia Distribution Homogeneity was defined as 1 -  D statistic of the two sample 

Kolmogorov-Smirnov test, where sample A is the 1st nearest neighbor (1NN) distances for the cilia, 

and sample B the 1NN distances if the same number of cilia points were distributed close to uniformly 

but randomly across the surface of the bot. After these analyses were carried out, we ran the dataset 

through a Principal Components Analysis with centering and scaling. Afterwards, a hierarchical 

clustering was carried out on the resultant dataset with the Ward.D2 method and the resulting 

classification was plotted as above. In total, 350 bots were put through the pipeline and into the 

following PCA and included Movers, Nonmovers, Linears and Circulars. Further details can be seen 

in the code.   

To get a confidence interval for the absolute value of the loadings, we bootstrapped the 

loading value by sampling 250 bots from the 350 that we have, 10 times. We then took the loadings 

value for the 1st and the 2nd primary component for all 8 variables and calculated the mean and 

95% Confidence Interval for the loadings for the PC in question. If there was overlap between the 

CI of the loadings, they were assigned the same rank, otherwise they were assigned different ranks. 

Ranks were relative to the “highest” contributor of the rank; i.e, for PC1, Shape Smoothness had 

overlap with Max Radius, but it also had overlap with Cilia Distribution Homogeneity. However, 

Cilia Distribution Homogeneity did not overlap with Max Radius. Max Radius had the highest 

upper limit of the CI among the 3 variables in question, and thus Shape Smoothness was co-ranked 

#1 along with Max Diameter, but Cilia Distribution Homogeneity was not.   

 

Morphotype & movement type overlap 

After finding trends among behavioral and morphological data, we decided to see if there was 

any potential overlap between the two. To eke out any possible correlation, we first chose to use 

categories of spheroids behaviorally orthogonal to movers, the non-movers. The goal was to observe 

whether there is any overlap between the morphology of movers and non-movers. Similarly, we had 

four potential behavioral types that could overlap with our morphological clusters. Eclectics could not 

be included in the analysis since they are an aggregate of multiple inconsistent patterns and highly 

uncommitted to their behavior (Figure 2G), and thus cannot be used in a bot-level analysis (instead of 

period). Circulars and Linears on the other hand were highly committed behavioral types that were 

orthogonal to each other (had little to no interconversion on the Markov plot) and prototypes of two 

extreme movement types with high variability between them. Consequently, the Curvilinear 

behavioral subtype was also not included since it lacked orthogonality with both Circulars and Linears 

due to shared traits between them. The morphological indices for each spheroid were calculated as 

outlined in the methods for the previous sections, and then clustered with Circulars, Linears, 

Nonmovers and Movers together. To measure the significance of the overlap, if any, between clusters, 

we decided to use a Fisher test to compute whether the proportion of a certain behavior per cluster 

type was different from the others. We ran the test twice, once to see if there were any significant 

differences in number of nonmovers per cluster, and once to compute the difference in the ratio 

between circulars and linears per cluster. It showed that the proportion of nonmovers in Cluster 1 vs. 

Clusters 2 and 3 were significantly different with an average p=2.6*10e-6 and 3.5*10e-8 respectively 

Cluster 2 and 3 also had a statistically significant difference in number of nonmovers (p=0.01) which 

is understandable, since Cluster 2 had no non-movers. For Circular/Straight, Cluster 2 vs. 3 were 

significantly different with p=0.00011, and Cluster 1 had no Circulars nor Straights.  
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Traversal video tracking and analysis 

To better explain the relationship between bot trajectory and movement in certain 

environments, we tried to relate the scar edge to the actual movement of the bot. The steps taken 

before analysis involved (i) creating a background image prototype from the.czi recording, (ii) 

verifying the quality of the background image and saving as .png file, (iii) tracking the bot, (iv) 

extracting the coordinates of the scar, and (v) checking whether tracking was correctly carried out 

by generating a video with a beacon on the bot.  

 This procedure was carried out on 30+ files and yielded 21 usable datasets, which were 

whittled down to 12 after a manual check of quality. Using the coordinates of the scar walls and 

the tracking of the bot, we used the Rbioformats (version 0.0.74)116 and Rvision (version 0.6.2)117   

package tools to test (1) whether bots are more in contact with the scar when they have a higher 

rotational tendency and (2) when moving on tissue, whether faster bots tend to cover more area 

i.e., explore better. The lm() function was used to model the data after calculation of proportion of 

bot on tissue, instantaneous angular velocity and linear speed as variables. Before each model was 

approved, diagnostics were run on the model using the DHARMa package which included analysis 

of the residuals.  

Afterwards, in order to take a better look at the nuances of interactions between bots and 

scars, we decided to limit the data and remove any videos that had an average linear speed of less 

than 10 microns per second because they were moving too slowly for the effect of the scar on 

movement to be truly studied since they didn’t traverse enough of the scar. Additionally, bots with 

very low rotational tendency (=<~0.3) were excluded since they were not stable enough in their 

rotational behavior. Finally, bots with either very high rotational tendency (>=0.7) and low angular 

velocity (which means the bot was “skidding”) or bots with low levels of overlap/contact with scar 

were removed. After all these removals, our dataset ended up with 6 examples of scar-bot 

interactions which could be effectively analyzed. In order to calculate the Scar Straightness, the 

distance between the two endpoints from the section above were divided by the sequential from 

left to right sum of the distances of the points. The Gyration was simply the Rotational Tendency 

values renamed. Our Scar-Trajectory Similarity metric was calculated as the larger absolute value 

of the correlation between the heading angle of the trajectory and the heading angles of the scar 

from the surface perpendicular to the bot. These correlation values were then modelled using the 

lm() function with an expectation of a quadratic relationship for Gyration and a linear one for Scar 

Straightness. The specifics can be seen in the attached code.   

 

Traversal Video Processing 

Traversal videos of bots moving along a scar within a neuron plate were processed via 

Adobe Illustrator to see if the bot faithfully followed the edge of the scar. The videos were 

processed within Adobe Photoshop to generate image sequences compatible with Illustrator for 

this analysis. The first method of processing aligned the center of the scar at a horizontal line 

parallel to the bottom of the screen and placed a point on the center of the bot at each frame of the 

video as well as straight above and below this point on the edges of the scar. Lines were made to 

connect each respective type of point for both of the edges of the scar and the position of the bot. 

The output of this for further analysis was a set of coordinates of the end of each line derived from 

rendering these series of lines as an SVG file and exported as text. 
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Neuronal tissue density analysis 

To investigate whether these “bridges” were actually akin to neurons, we decided to 

analyze the pixel densities of various areas on and surrounding the bridge. In order to prevent 

confusions regarding this process with regard to intensity of color, we to binarized the image on 

ImageJ. If the automatic thresholding did not visually appear similar to the raw image, we adjusted 

the threshold manually.  We ended up with six areas of interest: the neurons above the bridge, 

below the bridge, to the left but adjacent, to the left but far, and to the right, both adjacent and far. 

These areas were defined relative to a FIJI ROI box on the neuronal bridge which tried to 

encompass the width of the bridge and the height close to the narrowest point of the scar channel 

that we would interact with. A line of one bridge length or lower if the image size required smaller 

lines to fit the boxes was used in the vertical and horizontal directions (called hereafter as “bridge 

length”). The above and below bridge measurements were taken by placing the bounding box one 

vertical bridge length from the box on the neuronal ridge. The adjacent areas on both sides were 

defined as 1 horizontal bridge length away from the bridge in the scar. The far areas were 1 bridge 

length beyond the adjacent areas. The far and adjacent boxes were (vertically) adjusted so they 

overlaid the scar as much as possible (Figure S6). Finally, we used Analyze>Histogram in FIJI to 

get the size of the box (which was constant) and the number of pixels of scar tissue (in black) and 

calculated the proportion. We then used an unpaired two sample T-test with unequal SD to 

calculate the significance of the difference, if any. 
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Figure 1 Human bronchial epithelial cells self-construct into multicellular motile living 

architectures. (A) Workflow for producing Anthrobots. NHBE cells’ apical-in to apical-out transition is 

facilitated by first culturing them in extra cellular matrix (ECM) under appropriate differentiation-

inducing conditions), during which time apical-in spheroids self-construct from single cells (a.1),  and 

upon the completion of this 14 day period (a-.2by releasing mature spheroids from the ECM (a.3) and 

continuing to culture them in low-adhesive environment. Scalebar 50um. (B) Phase contrast images of an 

apical-in (b.1) and apical-out (b.2) spheroids, captured immediately after dissolution from ECM (day 0) 

and 7 days after dissolution (day 7), respectively. Day 0 spheroids show no motility, whereas day 7 

spheroids show drastically increased motility. Scalebars 50um. (C) Percentage of cumulative and newly 

motile spheroids in the 22 days following dissolution. Out of the 2281 spheroids characterized total, 

around 50 % consistently showed no signs of motility (despite having cilia) within this 3-week period and 

were labeled as non-movers. (D) Immunostaining of day0 and day7 spheroids with a-tubulin (cilia 
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marker), ZO-1 (tight junction marker), and DAPI (nuclear stain). (E) A mature Anthrobot with depth 

background. Immunostained with a-tubulin (cilia marker), ZO-1 (tight junction marker), and DAPI 

(nuclear stain). 

 

 
Figure 2. Anthrobots self-organize into discrete movement types. (A) Anthrobots display different 

movement types. Scalebar 100uM. (B) Distribution of all 30-second periods in the analysis plotted by their 

straightness and gyration indices, showing signs of clustering near three of the 4 corners of the plot. (C) 

Clustered scatter plot of all 30-second periods with centers of cluster marked and colored. (D) Prototypical 

examples from each cluster with 30-second sample trajectories. (E) Quantitative comparison of key 

characteristics of the four clusters in terms of intra-cluster homogeneity  (”average dissimilarity”) and 

occurrence frequency (”% of observations”) which show that the largest clusters 1 and 2 have relatively 

low dissimilarity indicating these are the most consistent behavioral patterns. (F) Comparison of gyration 

and straightness indices for each cluster with significance levels indicated, showing that each cluster 
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occupies a unique, quantifiable position in the sample space. (G) Markov chain showing state transitions 

between different clusters and the degree of commitment to a given behavior (persistence), with eclectics 

being least persistent. Remarkably, type 1 and 2 bots have the lowest interconversion rate which suggests 

that they are behaviorally the most orthogonal.   
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Figure 3. Anthrobots self-organize into distinct morphological types. (A) Anthrobot 

immunocytochemistry enables morphological classification pipeline. (a1) Sample immunological stain for 

cilia (acctub, i.e., alpha tubulin) and body mesh formed by the tight junctions (ZO1) (a2) and its binarized 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502707doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502707
http://creativecommons.org/licenses/by-nc-nd/4.0/


counterpart, showing the Anthrobot body boundaries and cilia localization on the body, represented by a 

mesh. (B) Binarized body and cilia information from 350 Anthrobots plotted along 8 morphological indices 

on a PCA cloud. (C) PCA clustered with the unsupervised Ward.D2 method with three morphotypical 

clusters emerging. Red arrows point to specific examples featured in panel E, selected from the cluster 

edges for distinct representation.  (D) Distinct morphotypes translate with significance to differences in 

real-life morphological metrics, characterized by 8 variables from which the PCA was computed. (E) 

Sample morphotype examples for Cluster 1, 2 and 3 chosen for their ability to best represent the cluster. 

Scalebar 50uM. (F) Decision tree of Anthrobot morphogenesis with two major checkpoints as revealed by 

the PCA hierarchy: first decision point is size/shape (has equal impact), second decision point is cilia 

localization pattern. 
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Figure 4. Distinct movement types and morphotypes are highly correlated.  (A) PCA of 350 bots 

forming 3 morphotypical clusters, showing that there is significant overlap between these clusters and the 

separately marked Non-movers, linears and circulars. Red arrows point to specific examples featured in 
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panel B, selected from the cluster edges for distinct representation. (B) Sample morphotype examples from 

each cluster, corresponding to Cluster 1, 2 and 3 and Nonmover, Linear, and Circular, respectively chosen 

for their ability to best represent the morphotype vs movement type mapping. Scalebar 50uM. (C) 

Waddington landscape illustrating the logic of determination of bot behavior and their relation to 

morphotypical indices with end behavioral products, as well as the potential states possible at each level of 

bifurcation of the bots’ development. (Waddington Landscape image modified from J. Ferrell, 2012.) 

 
Figure 5.  Anthrobots can traverse live tissues. (A) A representative timelapse video of an Anthrobot as 

it traverses a neural scar in vitro. (B) Sample tracking video output with scar edge highlighted in yellow 

and bot path in red. The rotation of the bot is measured through the change in the orientation of the green 

and red bars attached to the center of the bot in white. (C) The significant (p=0.01, slope 1.3) positive 

relationship between bot gyration index and proportion of bot’s body in contact with scar suggest that 

circular bots explore the edges of the scar more as they traverse the wound. (D) The significant (p=0.04, 

slope 0.008) positive relationship between bot speed and proportion of bot’s body in contact with scar 

further suggest that faster bots also explore the edges of the scar more as they traverse the wound. (E) For 

a subset of bots (dataset constrained to non-stalling bots with min 10 microns/second speed), the quadratic 

relationship (p=0.01) between bot gyration index and scar-trajectory similarity metric suggests that there is 

a goldilocks zone for how circular bots need to for maximum scar area exploration. (F) For the same subset 

of bots as in panel E, the significant negative correlation (p=0.04) between scar straightness and scar-

trajectory similarity metric further suggest that bots can explore more jagged and more blunt scar interfaces 

with higher success. r2 = 0.99  
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Figure 6. Anthrobots can promote regeneration in live tissue wounds.  (A) sample micrograph of a 

bridge across a neural scar over time. (B) An overlay of a bridge bot and the induced stitch at the end of the 
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observation. (C) Immunological staining of neurons fixed on day3 after the bots were introduced to the 

system, showing an induced neural repair at the site of bot settlement. Scalebar 500uM. (D) Average 

proportion of neuronal coverage by pixel counts for each positional category at the healing (self-stitch) site, 

unwounded native tissue (calculated by the average of the two neuron heavy area pixel coverage), adjacent 

areas of scar and further reaches of scar. Difference between stitch site and native tissue is insignificant (p 

= 0.37), while the difference between the stitch site and both adjacent and distal scar sites are significant 

(w/ p = 0.006 and p = 0.005, respectively) which suggests the healed tissue is as dense as the native tissue, 

and the healing effect follow a crisp profile as opposed to a gradient profile. See methods section for 

example frame of a sampling region. (E) Immunological staining of another sample bridge superbot (green) 

and the neuronal tissue (red). 
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Supplemental Figure 1
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Figure S1 Sample trajectories that reference a relative x-axis to find heading angle. (A) Visual 

representation of straightness index, which calculates spread of headings as a whole without taking 

into account temporal dynamics. (B, C, D) Visual representation of gyration index, which includes 

the temporal aspect and calculates spread of change in headings relative to their magnitude. 

Graphically, it is represented as the ratio of the blue length (original circular variance) to the red 

length (circular variance of the original angular speeds and their additive inverse) on the 

histograms.  
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Supplemental Figure 2 

 

Figure S2. Eight morphological indices were used to characterize Anthrobot morphotypes. (A) Visual 

summary of morphological indices at their extreme points (low, high). (B) Graphic summary of boxplots 

on Figure 3D, describing 3 different morphotypes. Arrow thicknesses are correlated with the # of standard 

deviations between a given morphotype’s mean vs the overall population mean for a particular 

morphological index. 
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Supplemental Figure 3 
 

 

Figure S3 Sample neuronal density sampling region. Each rectangle represents an area sampled and the 

lines are consistently the same length, the “bridge length”. 
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Supplemental Videos 
Please refer to the following directory for the Supplemental Videos: 

https://tufts.box.com/s/u5hm3sz4ihh4fr2qw0znq9e2oupcosgg  

 

Video Legends 
Supplemental Video 1 - Anthrobots are self-constructing motile biobots, and therefore can be created 

in a high-throughput manner. 

Supplemental Video 2 - Anthrobots exhibit a range of movement patterns. (Higher zoom, narrower 

arena.) 

Supplemental Video 3 - Anthrobots exhibit a range of movement patterns. (Lower zoom, broader 

arena.) 

Supplemental Video 4 - Sample linear mover Anthrobot. 

Supplemental Video 5 - Anthrobot with higher circular tendency traverse a neuronal wound. 

Supplemental Video 6 - Anthrobot with lower circular tendency traverse a neuronal wound. 
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