

1 **No evidence for a common blood microbiome based on a**

2 **population study of 9,770 healthy humans**

3 Cedric C.S. Tan^{1,2}, Minghao Chia¹, Karrie K.K. Ko^{1,3,4,5}, Hui Chen¹, Jianjun Liu¹, Marie
4 Loh^{6,7,8}, Niranjan Nagarajan^{1,5}

5 1) Genome Institute of Singapore, A*STAR, Singapore.

6 2) UCL Genetics Institute, University College London, UK.

7 3) Department of Microbiology, Singapore General Hospital, Singapore.

8 4) Department of Molecular Pathology, Singapore General Hospital, Singapore.

9 5) Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

10 6) Population and Global Health, Lee Kong Chian School of Medicine, Nanyang
11 Technological University, Singapore.

12 7) Department of Epidemiology and Biostatistics, Imperial College London, United
13 Kingdom.

14 8) National Skin Centre, Singapore.

15 Correspondence: cedriccstan@gmail.com (C.C.S. Tan) or [nagarajann@gis.a-
star.edu.sg](mailto:nagarajann@gis.a-
16 star.edu.sg) (N. Nagarajan)

17 **Abstract**

18 Human blood is conventionally considered sterile. Recent studies have challenged this,
19 suggesting the presence of a blood microbiome in healthy humans. We present the
20 largest investigation to date of microbes in blood, based on shotgun sequencing
21 libraries from 9,770 healthy subjects. Leveraging the availability of data from multiple
22 cohorts, we stringently filtered for laboratory contaminants to identify 117 microbial
23 species detected in the blood of sampled individuals, some of which had signatures of
24 DNA replication. These primarily comprise of commensals associated with human body
25 sites such as the gut ($n=40$), mouth ($n=32$), and genitourinary tract ($n=18$), which are
26 species that are distinct from common pathogens detected in clinical blood cultures
27 based on more than a decade of records from a tertiary hospital. Contrary to the
28 expectations of a shared blood microbiome, no species were detected in 84% of
29 individuals, while only a median of one microbial species per individual was detected in
30 the remaining 16%. Furthermore, microbes of the same species were detected in <5% of
31 individuals, no co-occurrence patterns similar to microbiomes in other body sites was
32 observed, and no associations between host phenotypes (e.g. demographics and blood
33 parameters) and microbial species could be established. Overall, these results do not
34 support the hypothesis of a consistent core microbiome endogenous to human blood.
35 Rather, our findings support the transient and sporadic translocation of commensal
36 microbes from other body sites into the bloodstream.

37 Introduction

38 In recent years, there has been considerable interest regarding the existence of a
39 microbiome in the blood of healthy individuals, and its links to health and disease.
40 Human blood is traditionally considered a sterile environment (i.e., devoid of viable
41 microbes), where the occasional entry and proliferation of pathogens in blood can
42 trigger a dysregulated host response, resulting in severe clinical sequelae such as
43 sepsis, septic shock or death¹. Asymptomatic transient bacteraemia (i.e., bacterial
44 presence in blood) in blood donors is also known to be a major cause of transfusion-
45 related sepsis². Recent studies have suggested the presence of a blood microbiome,
46 providing evidence for microbes circulating in human blood for healthy individuals³⁻⁷
47 (reviewed in Castillo *et al*⁸). However, most of these studies were either done in
48 relatively small cohorts or lacked rigorous checks to distinguish true biological
49 measurements from different sources of contamination⁸. In this work, we analysed
50 blood DNA sequencing data from a population study of healthy individuals, comprising
51 of multiple cohorts processed by different laboratories with varied sequencing kits. By
52 leveraging the large dataset ($n=9,770$) complete with batch information in our
53 systematic differential analyses for potential contaminants, our aim was to determine
54 whether a blood microbiome truly exists in the general population.

55 For meaningful discourse, it is useful to formalise what the presence of a hypothetical
56 'blood microbiome' entails. Berg *et al.*⁹ concluded that the term microbiome should refer
57 to a community of microbes that interact with each other and with the environment in
58 their ecological niche, which in our context is human blood. Therefore in a blood
59 microbiome, the presence of microbial cells in blood from healthy individuals should
60 exhibit community structures indicated by co-occurrence or mutual exclusion of
61 species¹⁰ as seen in the microbiomes of other sites such as the gut¹¹ or mouth¹².
62 Furthermore, we may expect the presence of core microbial species, which can be
63 defined as species that are frequently observed and shared across individuals^{13,14}, such
64 as *Staphylococcus epidermidis* on human skin¹⁵. More precisely, taxa that are found in
65 a substantial fraction of samples from distinct individuals (i.e. with high prevalence) may
66 be considered 'core'. Notably, the prevalence threshold for defining core taxa is

67 arbitrary, with previous microbiome studies using values ranging from 30-100% and
68 many of these studies opting for 100%¹⁴. Regardless, identifying core microbes in blood
69 would form the basis for associating microbiome changes with human health.

70 Existing studies have provided evidence for the presence of microbes in the blood of
71 healthy individuals using both culture-based^{3,4} and culture-independent⁵⁻⁷ approaches.
72 The former approach involves blood culture experiments while the latter involves one or
73 a combination of the following molecular methods: 16S ribosomal RNA (rRNA)
74 quantitative polymerase chain reaction (qPCR), 16S rRNA amplicon sequencing, and
75 shotgun sequencing of RNA or DNA. Depending on the study design, these results
76 should be interpreted with caution due to several methodological and technical
77 limitations which include small sample sizes, limited taxonomic resolution, difficulties in
78 distinguishing cell-free microbial DNA from live microbial cells, and the ubiquity of
79 environmental contamination^{8,16-19}. In particular, contaminating DNA must be accounted
80 for in order to characterize the blood microbiome. The workflow of sample processing,
81 from skin puncture during phlebotomy, to microbial detection, is rife with opportunities
82 for microbes or microbial nucleic acids to be introduced. Contaminating microbial cells
83 introduced due to poor aseptic technique or insufficient disinfection of the skin puncture
84 site²⁰ affects both culture-dependent and culture-independent approaches. Sequencing-
85 based approaches are especially sensitive to contaminant microbial DNA native to
86 laboratory reagent kits (i.e., the 'kitome')¹⁹, exacerbated by the low microbial biomasses
87 in blood, accompanied by high host background which increases the noise-to-signal
88 ratio¹⁷. Correspondingly, comprehensive profiling of the breadth and prevalence of
89 microbial species in blood after accounting for external sources of contamination has
90 not yet been done and several aspects of the 'blood microbiome' remain unclear. For
91 instance, are the detected microbes endogenous to blood or translocated from other
92 body sites? Is there a core set of microbes that circulates in human blood? Is there a
93 microbial community whose structure and function could influence host health?

94 To address these questions, we performed the largest scale analysis of a blood
95 sequencing dataset to date, based on DNA libraries for 9,770 healthy individuals from
96 six distinct cohorts (**Supplementary Table 1**). We applied various bioinformatic
97 techniques to differentiate DNA signatures of microbes in blood from potential reagent

98 contaminants and sequence analysis artefacts, leveraging the differences in reagent
99 kits used to process each cohort. We detected 117 microbial species in the blood of
100 these healthy individuals, most of which are commensals associated with the
101 microbiomes of other body sites. Additionally, we identified DNA signatures of
102 replicating bacteria in blood using coverage-based peak-to-trough ratio analyses^{21,22},
103 providing a culture-independent survey that has not been achieved previously. Despite
104 this, we found no evidence for microbial co-occurrence relationships, core species, or
105 associations with host phenotypes. These findings challenge the paradigm of a 'blood
106 microbiome' and instead support a model whereby microbes from other body sites (e.g.
107 gut, oral) sporadically translocate into the bloodstream of healthy individuals, albeit
108 more commonly than previously assumed. Overall, our observations serve to establish
109 a much needed baseline for the use of clinical metagenomics in investigating
110 bloodstream infections.

111 **Results**

112 **Robust inference of microbial DNA signatures in blood based on multi-cohort 113 analysis**

114 Blood samples from healthy individuals typically contain low microbial biomass
115 accompanied by high host DNA background¹⁷, making it difficult to discriminate between
116 biologically relevant signals from artefactual ones. We first addressed artefacts arising
117 during bioinformatic sequence analysis by performing stringent quality control on
118 samples (**Figure 1a**), comprising of read quality trimming and filtering, removal of low
119 complexity sequences that are of ambiguous taxonomic origin, exclusion of reads that
120 likely originate from human DNA (**Methods**), and removal of samples with low number
121 of reads (<100 read pairs) of microbial origin after taxonomic classification with
122 *Kraken2*²³. This provided a species-level characterisation of microbial DNA signatures in
123 blood for most ($n=8,892$) samples. To minimise noise due to false positive taxonomic
124 assignments, we applied an abundance-cutoff based filter to discriminate between
125 species that are likely present from those that could be misclassification artefacts
126 (**Methods**). Additionally, we validated the reliability of the microbial species detected via
127 *Kraken2* by comparison to read alignment analysis using reference genomes, where

128 recovery of large fractions of a microbial reference covered uniformly by mapped reads
129 improves our confidence that they are true positives as opposed to sequencing or
130 analysis artefacts^{24,25}. We validated 93% of the species detected using this mapping-
131 based approach. We further observed an excellent linear relationship between the
132 number of *Kraken2*-assigned read pairs and the number of aligned read pairs on the
133 log10 scale (slope=1.05; $F=228$, $d.f.=118$, $p<0.001$; **Supplementary Figure 1**),
134 suggesting that *Kraken2* taxonomic assignments are a reliable proxy for the more
135 precise and stringent read alignment approach. These findings collectively provide
136 confidence that the microbial species detected in our blood sequencing libraries are not
137 likely sequence analysis artefacts.

138 To address artefactual signals arising due to reagent and handling contamination during
139 sample processing, we used a series of stringent decontamination filters (**Figure 1a**).
140 These filters are based on the idea that contamination artefacts will lead to false positive
141 detections that are often correlated with each other and biased towards specific
142 cohorts²⁶, and such analysis was found to be highly effective for *in silico*
143 decontamination in previous studies²⁷⁻²⁹ (**Methods**). Additionally, the identification of
144 batch-specific contaminants in this study was greatly aided by the availability of multiple
145 large cohorts of healthy individuals (**Supplementary Table 1**), and corresponding rich
146 batch information, including reagent kit types and lot numbers. Application of reagent
147 and handling contamination filters resulted in a final list of 117 microbial species that
148 were detected in the whole blood samples of 8,892 individuals (**Supplementary Table**
149 **2**). The list of 117 confidently detected microbial species spanned 56 genera, and
150 comprised of 110 bacteria, 5 viruses and 2 fungi.

151 To estimate the effectiveness of our filtering strategy in improving biological signal while
152 reducing contamination noise, we examined the types of microbial species detected in
153 our dataset before (870 species) and after (117 species) all filters were applied (**Figure**
154 **1b-d**). Firstly, the microbial species were cross-referenced against a published list of
155 common genera seen as contaminants in sequencing data as curated by Poore *et al*³⁰
156 and derived from the list published by Salter *et al*¹⁹. In this list, genera were either
157 classified as likely contaminants, mixed-evidence (i.e., both a pathogen and common
158 contaminant), or potential pathogens/commensals. Following decontamination, the

159 proportion of detected species that are classified as contaminants decreased from 21%
160 to 10% (**Figure 1b**). Next, the microbial species were compared against human blood
161 culture records spanning more than a decade (2011-2021) from a tertiary hospital
162 (**Figure 1c**). These blood cultures were typically ordered if clinical indications of
163 bacteraemia were present, and therefore represent the range of microbial species that
164 are known to cause symptomatic infection as detected in a clinical setting. The
165 proportion of species that have been cultured from blood increased from 12% to 27%
166 after decontamination, suggesting that our filtering procedures enriched for microbial
167 species which are capable of invading the bloodstream. Finally, we compared the
168 proportion of human-associated microbes before and after decontamination using a
169 host-pathogen association database describing the host range of pathogens³¹ (**Figure**
170 **1d**). For species that were not found in this database, a systematic PubMed search
171 (**Methods**) was performed to determine if there was at least one past report of human
172 infection. The proportion of human-associated species increased from 40% to 78% after
173 decontamination, indicating that they are more likely to be biologically relevant. These
174 results collectively suggest that by using a set of contaminant-identification heuristics,
175 our filters effectively retain a higher proportion of biologically relevant taxa while
176 removing likely contaminants.

177 **Blood microbial signatures from healthy individuals reflect sporadic translocation**
178 **of commensals**

179 We next determined the fraction of distinct, healthy individuals for which microbes could
180 be detected (i.e., prevalence). Notably, the most prevalent microbial species, *C. acnes*,
181 was observed in 4.7% of individuals (**Figure 2a**), suggesting that none of the 117
182 microbes can be considered ‘core’ species that are consistently detected across most
183 healthy individuals. Additionally, we did not detect any microbial species in most (82%)
184 of the samples after decontamination (**Figure 2b**), whereas the remaining 18% of
185 samples had a median of only one microbial species per sample. This low number of
186 species detected per sample was not due to insufficient sequencing depth since there
187 was a weak negative correlation between the number of confidently detected species
188 per sample and the microbial read depth (Spearman’s $p=-0.232$, $p<0.001$). Furthermore,
189 some samples containing no microbial species had a microbial read count of up to ~2.1

190 million (median=6,187 reads; distribution shown in **Supplementary Figure 2**). That is,
191 even though a considerable number of reads were classified as microbial, they were all
192 assigned to contaminant species. These results suggest that the presence of microbes
193 in the blood of healthy and apparently asymptomatic individuals, as estimated by our
194 detection methods, is infrequent and sporadic.

195 Given past reports of bacterial translocation from the mouth³² or gut³³ into blood, we
196 asked if the microbes we detected could have originated from various body sites. To do
197 so, we assigned potential body site origins to the 117 microbial species detected in
198 blood based on microbe-to-body-site mappings extracted from the Disbiome
199 database³⁴. We found that many ($n=59$; 50%) of these confidently detected species are
200 indeed human commensals that are present at various human body sites (**Figure 2c**).
201 This, together with their low prevalence, suggests that the microbial DNA of these
202 species may have transiently translocated from other locations in the body rather than
203 being endogenous to blood. We further categorised the microbial species based on their
204 growth environments (**Figure 2d**). A significant portion ($n=42$; 36%) of the species were
205 obligate anaerobes or obligate intracellular microbes, atypical of skin-associated
206 microbes that may be introduced during phlebotomy², indicating that they are not likely
207 to be sampling artefacts. All in all, the diverse origins of the microbes detected in blood,
208 together with their low prevalence across a healthy population, is consistent with
209 sporadic translocation of commensals into the bloodstream.

210 Microbial presence in blood (i.e., bacteraemia) is typically associated with a range of
211 clinical sequelae from mild fevers to sepsis. As such, we asked if the common microbes
212 identified in patients with disease-associated bacteraemia are different from those
213 detected in our cohorts of healthy individuals. To do so, we compared the prevalence of
214 microbes detected in the sequenced blood samples against observations from 11 years
215 of hospital blood culture records. The prevalence of microbial genera detected in the
216 hospital blood culture records clearly differed from that in our sequenced blood
217 samples, despite the overlap in detected taxa (**Figure 2e**). For example, while
218 *Staphylococcus*, *Escherichia* and *Klebsiella* were the predominant genera identified in
219 blood cultures, they were rarely detected in our blood sequencing libraries. These
220 findings may be explained by the potentially higher virulence of pathogens detected in

221 the clinic, which are more likely to cause clinical symptoms in individuals that would
222 result in exclusion during our recruitment process. Conversely, our findings suggest that
223 the microbes detected in the blood of healthy individuals are potentially better tolerated
224 by the immune system (e.g. *Bifidobacterium* spp.³⁵ and *Faecalibacterium prausnitzii*³⁶
225 with immunomodulatory properties as gut commensals; **Figure 2a**).

226 **Evidence for replicating microbial cells but without community structure or host
227 associations**

228 To better characterise the microbial DNA signatures detected in blood, we asked if they
229 reflect the presence of viable microbial cells as opposed to circulating cell-free DNA.
230 This is because the former would allow for complex microbe-microbe or microbe-host
231 interactions that would be of greater and more direct clinical relevance. In contrast to
232 previous approaches that used microbial cultures^{3,37}, we looked for more broad-based
233 evidence of live bacterial growth in by applying replication rate analyses^{21,22} on our
234 sequenced blood samples. This approach is based on the principle that DNA
235 sequencing of replicating bacteria would yield an increased read coverage (i.e., peak)
236 nearer to the origin of replication (*Ori*) and decreased coverage (i.e., trough) nearer to
237 the terminus (*Ter*)²². A coverage peak-to-trough ratio (PTR) greater than one is
238 indicative of bacterial replication. Through this analysis, we found evidence for
239 replication of 11 bacterial species out of the 20 that were sufficiently abundant to do this
240 analysis (**Figure 3a**). The median-smoothed coverage plots of the replicating species all
241 exhibited the sinusoidal coverage pattern (in black; **Figure 3b**) characteristic of
242 replicating bacterial cells²². This contrasts with the even coverage patterns of three
243 representative contaminants identified during the decontamination steps:
244 *Achromobacter xylosoxidans*, *Pseudomonas mendocina* and *Alcaligenes faecalis*
245 (**Figure 3c**). The *Ori* and *Ter* positions determined using coverage biases largely
246 corresponded with an orthogonal method based on the GC-skew³⁸ of bacterial
247 genomes, suggesting that the replication rate analyses are reliable. Additionally, all but
248 one of these replicating species are present in hospital blood culture records and in
249 previous reports of bacteraemia³⁹⁻⁴⁸ (**Figure 3a**), indicating their ability to replicate in
250 human blood. Overall, beyond the detection of microbial DNA, we present the first
251 culture-independent evidence for replicating bacterial cells in blood.

252 Given the presence of live bacteria, we investigated if the microbial species detected
253 showed patterns of microbe-microbe interactions as would be expected from a microbial
254 community. To do so, we computed pairwise *SparCC* correlations⁴⁹ between species,
255 where positive and negative values indicate co-occurrence and mutual-exclusion,
256 respectively. *SparCC* correlation is a reliable metric for assessing co-occurrence since it
257 accounts for the sparse and compositional nature of microbial taxonomic profiles that
258 confound standard correlation inference techniques⁴⁹. We visualised *SparCC*
259 correlations of the 117 microbial species confidently detected in blood sequencing
260 libraries using network graphs, where each node is a species and each edge represents
261 the co-occurrence/exclusion associations between two species (**Figure 4a**). We could
262 not detect strong community co-occurrence/exclusion patterns, with most associations
263 being weak (*SparCC* correlation<0.05), and only 19 pairwise associations exceeding a
264 correlation value of 0.2, with four exceeding a value of 0.3 (**Figure 4a**). To determine if
265 this result is a function of our stringent decontamination filters, we generated
266 independent network graphs for the five adult cohorts before decontamination filtering
267 and examined the co-occurrence/exclusion associations shared across cohorts. With an
268 already lenient *SparCC* correlation threshold of 0.2, we identified no associations
269 common to all the network graphs (**Figure 4b**), indicating that there were no consistent
270 detectable microbial community associations in blood typical of microbiomes in various
271 human body sites.

272 Previous studies have demonstrated the use of blood microbial DNA as a biomarker for
273 disease, demonstrating associations with cancer³⁰, type II diabetes⁵⁰ and periodontal
274 disease⁵¹. In a similar vein, we investigated if the presence of microbes was associated
275 with host phenotypes in our dataset. We first examined if microbes were detected more
276 frequently in infants relative to adults. Given that the still-developing immune systems of
277 infants puts them at greater risk of infection relative to healthy adults⁵², we reasoned
278 that the prevalence of microbes in blood may differ within a birth cohort (GUSTO)
279 relative to adult cohorts. Indeed, samples from GUSTO appeared to have a higher
280 prevalence of microbes associated with most human body sites (**Supplementary**
281 **Figure 3a**). This was in part, driven by genitourinary tract-associated microbes,
282 *Fannyhessea vaginæ*, *Lactobacillus jensenii*, *Lactobacillus crispatus*, *Lactobacillus*

283 *iners*, and *Gardnerella vaginalis* (**Supplementary Figure 3b**). Similarly, we found
284 enrichment of gut-associated bacteria such as *Bifidobacterium* spp. in GUSTO
285 (**Supplementary Figure 3c**). These findings suggest that bacterial translocation may be
286 more frequent in infants relative to adults, though differences in sample collection
287 (umbilical cord *versus* venipuncture) could also partially explain them.

288 Next, we systematically tested for pairwise associations between eight host phenotypes
289 that were documented on the day of blood collection and the presence of each of the
290 117 microbial species detected in blood. These host phenotypes attributes were: sex,
291 ancestry, age, body mass index (BMI), blood total cholesterol (TC), blood triglycerides
292 (TG), systolic and diastolic blood pressure (SBP and DBP). Given the multiple large
293 independent cohorts, we could perform statistical tests on each cohort separately, which
294 allowed us to assess the consistency of identified association patterns across the
295 different cohorts. Since these cohorts were sampled from a homogenous population,
296 true association patterns are expected to be detected repeatedly regardless of cohort.
297 Using this statistical testing approach, we found only five significant microbe-phenotype
298 associations ($p<0.05$; **Supplementary Table 3**) after adjusting for multiple comparisons.
299 Notably, all but one of the significant associations were present in only one cohort. The
300 exception was *C. acnes*, which was significantly associated with ancestry in two
301 cohorts. However, while *C. acnes* was more prevalent in individuals of Malay ancestry
302 within the SEED cohort, it was more prevalent in Chinese individuals within the MEC
303 cohort (**Supplementary Figure 4**). These cohort specific differences could be due to
304 other demographic variables that were not recorded in this study, or perhaps from *C.*
305 *acnes* subspecies differences. To ensure that we did not miss any associations due to
306 the possible non-linearity of host-phenotype and microbial relationships, we also derived
307 categorical phenotypes based on the recorded phenotypic information. These include
308 being elderly (age ≥ 65), and other measures of 'poorer health', such as being obese
309 ($BMI > 30$), having high blood triglycerides ($TG > 2.3$ mmol/L), high total cholesterol
310 ($TC > 6.3$ mmol/L), or high blood pressure ($SBP > 130$ and $DBP > 80$). We then tested
311 for pairwise associations between these derived phenotypes and the presence of *any*
312 bacteria but found no significant associations ($p > 0.05$; **Supplementary Table 4**).
313 Collectively, these results suggest no consistent associations between the presence of

314 microbes in blood and the host phenotypes tested within a healthy population of
315 individuals.

316 **Discussion**

317 We present the largest scale analysis, to date, of microbial signatures in human blood
318 with rigorous accounting for computational and contamination artefacts and found no
319 evidence for a common blood microbiome in a healthy population. Instead, we observed
320 mostly sporadic instances of blood harbouring DNA from single microbial species of
321 diverse bodily origins, some of which might be actively replicating. Our findings hint at
322 the possibility that the bloodstream represents a route for movement of microbes
323 between different body sites in healthy individuals. However, the low prevalence of the
324 detected species suggest that this movement is likely to be infrequent and transient.
325 Unresolved questions remain about how interconnected the microbiomes at various
326 body sites are, and whether these processes are altered during disease or throughout a
327 person's lifetime. Can perturbations to the microbial community at one body site affect
328 that at another site, and how does the host immune system asymptotically regulate
329 microbial presence in blood? Our study lays the groundwork for future investigations
330 into these questions, which may pave the way for a systemic understanding of the
331 human microbiome across body sites in relation to human health and disease.

332 We found no core species in human blood on the basis of low prevalence across
333 individuals in our population-level dataset. The prevalence estimates provided in this
334 study are contingent on the sensitivity of detecting microbes through sequencing.
335 Previous studies have shown that untargeted shotgun sequencing is highly sensitive for
336 the detection of microbes in blood at a total sequencing depth of 20-30 million reads per
337 sample⁵³⁻⁵⁵, perhaps even more so than culture-based methods^{56,57}. In contrast, a
338 median of 373 million reads was generated per sample for our sequencing libraries,
339 suggesting that our methods do not lack sensitivity. Our prevalence estimates are also
340 affected by the abundance thresholds used to determine whether a species is present in
341 a single sample (i.e., abundance filter; **Figure 1a**). We defined these thresholds in terms
342 of both absolute read count and relative abundance, which were determined based on
343 simulation experiments (see **Methods**). Overly stringent abundance thresholds would

344 lead to the erroneous masking of genuine signals, leading to an underestimation of
345 microbial prevalence. However, even when relaxing the threshold to just a relative
346 abundance of 0.001, none of the species, whether flagged as a contaminant or not, had
347 more than 52% prevalence (**Supplementary Table 5**). Furthermore, the 20 most
348 prevalent species at this threshold are all environmental microbes, and mostly comprise
349 of *Sphingomonas* and *Bradyrhizobium* species, which are known to be common
350 sequencing-associated contaminants¹⁹. This suggests that independent of our
351 decontamination filters, none of the species detected qualify as core members.

352 In addition to not being able to detect any core species, we could not detect any strong
353 co-occurrence or mutual exclusion associations between species regardless of whether
354 our decontamination filters were applied. These associations generally reflect
355 cooperation or competition between species, respectively⁵⁸. Indeed, within a microbial
356 community, metabolic dependencies of species and the ability of different species to
357 complement these dependencies have been shown to be a key driver of microbial co-
358 occurrence⁵⁹. On the other hand, competitive behaviours such as nutrient sequestration
359 to deprive potential competitors of nutrients or producing adhesins to bind and occupy
360 favourable sites in an environment⁶⁰ can lead to mutual exclusion between species. The
361 fact that we could not detect any strong associations therefore points to the absence of
362 an interacting microbial community in healthy humans. Of note, since our dataset was
363 derived from circulating venous blood, we are, in principle, not able to detect microbial
364 interactions that may be occurring at other sites of the bloodstream such as the inner
365 endothelial lining of blood vessels. Experiments investigating the adherence of bacteria
366 to blood vessel linings may provide further insight into this.

367 The availability of 11 years of blood culture records from the same country of origin as
368 our blood samples enabled a reliable comparison of the prevalence of microbes in the
369 healthy population and in the clinic. This is because the frequency of infections caused
370 by different microbial species is known to differ from country to country⁶¹. Despite this,
371 we expect that some of the variation in prevalence estimates may be due to the
372 differences in detection methods. That said, previous studies have shown a strong
373 concordance between culture and sequencing-based detection^{53,54,56,57}, suggesting that
374 the distinction between the prevalence of microbes found in healthy individuals and in

375 the clinic is not due to the differences in detection methods. Our results support the
376 conclusion that microbial presence in blood (i.e., bacteraemia) does not always lead to
377 disease. These results are consistent with our other observation that microbes detected
378 in our cohorts of asymptomatic individuals tend to be commensals, which may
379 inherently be less virulent and better tolerated by the host compared to disease-causing
380 pathogens. Indeed, the long-standing co-evolution of humans and colonizing microbes,
381 places a selective pressure against high virulence phenotypes in these microbes to
382 maintain host viability⁶². Simultaneously, there is a selective pressure for
383 immunomodulatory phenotypes in commensals to improve their fitness, evidenced by
384 the wealth of immunomodulatory activities found in the gut microbiome⁶³. This agrees
385 with previous findings that colonisation by commensals modulate early development of
386 the immune system⁶⁴, which would allow a measured and regulated response against
387 translocated commensals. By extension, the immunomodulatory properties of bacteria
388 and their links to host tolerance to bacteraemia may be key factors in determining
389 clinical outcomes. Perhaps, the presence (or lack) of these properties may determine
390 whether an individual with bacteraemia is asymptomatic or septic. For example,
391 abundant gut bacterial species such as *Bacteroides* spp. were not commonly detected
392 in blood. Further exploration into the immunomodulatory activities of commensals vis-à-
393 vis common blood culture pathogens may be the key to design therapeutics to manage
394 or prevent the dysregulated host response that defines sepsis¹.

395 We found no convincing associations between both measured (e.g. TC, SBP) and
396 derived (e.g. obesity) host phenotypes with microbial presence. This suggests that the
397 risk of transient microbial translocation, at least across our cohorts of healthy adults, is
398 fairly consistent. In contrast, this risk may increase in individuals with more severe
399 disease. In fact, variable microbial DNA profiles in blood have been used to delineate
400 health and disease states. This has most prominently been shown for sepsis^{53–57,65},
401 where the presence of viable microbes is expected, but also for cancer³⁰, periodontal
402 disease⁵¹, and chronic kidney disease⁶⁶, which are unrelated to bloodstream infections.
403 These studies highlight the promise of metagenomic sequencing of blood for developing
404 diagnostic, prognostic, or therapeutic tools. Our characterisation of the species breadth
405 in healthy individuals forms a crucial baseline for comparison with that in diseased

406 individuals. Indeed, our findings open new doors to understanding why and how blood
407 microbial profiles correlate with health status. One possible hypothesis is that mucosal
408 integrity is compromised in a disease state, leading to higher translocation rates of
409 microbes into the bloodstream. This is consistent with findings of increased intestinal
410 permeability (i.e., 'leaky gut') in disease or even during physiological stress⁶⁷. Future
411 studies testing this hypothesis may consider a focus on the gut-associated bacteria that
412 were detected in our study (e.g. *Bifidobacterium adolescentis*, *Faecalibacterium*
413 *prausnitzii*). Further experimental investigations into the mechanisms of microbial
414 translocation and the modulatory effects of the microbiomes present at other body sites
415 may shed light on the relationship between microbial presence in blood and health
416 status.

417 If we take the definition of a 'microbiome' as a microbial community whose member
418 species interact amongst themselves and with their ecological niche⁹, our findings lead
419 to the conclusion that there is no consistent circulating blood microbiome. Sporadic and
420 transient translocation of commensals from other body sites into the bloodstream
421 (**Figure 5**) is the more parsimonious explanation for the observation that most of the
422 microbes detected are commensals from other body sites. Furthermore, the relatively
423 low prevalence of microbes in blood suggests rapid clearance of translocated microbes
424 rather than prolonged colonisation in blood. Based on these findings, we advocate
425 against the use of the term 'blood microbiome' or 'circulating microbiome', which are
426 potentially misleading, when referring to the detection of microbial DNA or of microbial
427 cells in blood due to transient translocation events.

428 **Methods**

429 *Datasets*

430 Our sequencing dataset, also known as the SG10K_Health dataset
431 (<https://www.npm.sg/collaborate/partners/sg10k/>), comprises of shotgun sequencing
432 libraries of DNA extracted from the whole blood or umbilical cord blood of 9,770 healthy
433 Singaporean individuals⁶⁸ who were recruited as part of six independent cohorts. Whole
434 blood for sequencing was collected via venipuncture from the five adult cohorts (median
435 age=49; interquartile range=16): Health for Life in Singapore (HELIOS; $n=2,286$),
436 SingHealth Duke-NUS Institute of Precision Medicine (PRISM, $n=1,257$), Tan Tock
437 Seng Hospital Personalised Medicine Normal Controls (TTSH, $n=920$), Singapore
438 Epidemiology of Eye Diseases (SEED, $n=1,436$)^{69,70}, and the Multi-Ethnic Cohort (MEC,
439 $n=2,902$)⁷¹. Additionally, cord blood was collected for the birth cohort Growing Up in
440 Singapore Towards healthy Outcomes (GUSTO; $n=969$)⁷². Measurement of host
441 phenotypes was performed on the day of blood collection, except for the GUSTO cohort
442 where measurements were taken at a later timepoint when the children were at a
443 median age of 6.1 (interquartile range=0.1). Using nearest neighbor approaches to
444 reference genotypes⁷³, individuals were broadly categorised into four ethnic categories
445 representing distinct genetic ancestries: Chinese (59%), Malays (19%), Indians (21%)
446 and Others (1%). All individuals were deemed healthy at the point of recruitment if they
447 did not include any self-reported diseases in the recruitment questionnaires. All cohort
448 studies were approved by relevant institutional ethics review boards. A summary of the
449 cohort demographics and the ethics review approval reference numbers are provided in
450 **Supplementary Table 1**.

451 Additionally, we retrieved anonymised blood culture records from Singapore General
452 Hospital, the largest tertiary hospital in Singapore. These records span the years 2011-
453 2021 and include aerobic, anaerobic and fungal blood cultures taken from 282,576
454 unique patients. These blood cultures were ordered as part of routine clinical
455 management, that is, when clinically indicated for the investigation of bacteremia or
456 fungemia. Blood cultures were performed and analysed as per hospital standard
457 operating procedures. In brief, blood samples were collected aseptically and inoculated

458 into BD™ BACTEC™ bottles at the bedside (BD™ BACTEC™ Plus Aerobic/F Culture
459 vials Plastic [catalogue number 442023] for aerobic blood culture, BD™ BACTEC™
460 Plus Anaerobic/F Culture vials Plastic [catalogue number 442022] for anaerobic blood
461 culture and Myco/F Lytic [catalogue number 42288] for fungal blood culture). The
462 inoculated bottles were transported to the diagnostic laboratory at ambient temperature
463 and incubated in the BD™ BACTEC™ FX Blood Culture System on arrival. Aerobic and
464 anaerobic blood culture bottles were incubated for a maximum of five days, and fungal
465 blood culture bottles were incubated for a maximum of 28 days. Blood culture bottles
466 that were flagged positive by the BD™ BACTEC™ FX Blood Culture System were
467 inoculated onto solid media, and the resultant colonies were identified using a
468 combination of biochemical tests and matrix assisted laser desorption ionization-time of
469 flight mass spectrometry (MALDI-TOF MS) (Bruker® microflex LRF).

470 *Sample preparation and batch metadata*

471 DNA from whole blood was extracted using one of six different DNA extraction kits.
472 Paired-end 151bp sequencing with an insert size of 350bp was performed up to 15-fold
473 or 30-fold coverage of the human genome. Library preparation was performed using
474 one of three library preparation kits. Sequencing was performed on the Illumina HiSeq X
475 platform with HiSeq PE Cluster Kits and HiSeq SBS Kits. The type of extraction kits and
476 library preparation kits used, and lot numbers for the SBS Kits, PE Cluster Kits, and
477 sequencing flow cells used are provided as batch metadata. All reagent kits used, the
478 number of batches and the number of samples processed per batch are provided in
479 **Supplementary Table 6.**

480 *Data pre-processing and quality control*

481 The bioinformatic processing steps applied to the sequencing libraries are summarised
482 in **Figure 1a**. Read alignment of sequencing reads to the GRCh38 human reference
483 genome was already performed as part of a separate study⁶⁸ using *BWA-MEM*
484 *v0.7.17*⁷⁴. We retrieved read pairs where both members of the pair did not map to the
485 human genome. Following which, we performed quality control of the sequencing reads.
486 We trimmed low quality bases at the ends of reads with quality <Q10 (base quality
487 trimming) and discarded reads with average read quality less than Q10 (read quality

488 filter). We also discarded low complexity sequences with an average entropy less than
489 0.6, with a sliding window of 50 and k-mer length of five (low complexity read filter). All
490 basic quality control steps were performed using *bbduk* from the *BBTools suite* v37.62
491 (sourceforge.net/projects/bbmap/).

492 *Taxonomic classification of blood sequencing libraries*

493 Taxonomic classification of non-human reads was done using *Kraken2* v2.1.2²³ with the
494 ‘—paired’ flag. We used the *PlusPF* database (17th May 2021 release) maintained by
495 Ben Langmead ([https://genome-
496 dbx.s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz](https://genome-dbx.s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz)), which includes archaeal,
497 bacterial, viral, protozoan, and fungal references. Of all non-human read pairs, 72%
498 were classified as microbial at the species level, yielding 8,890 species. Samples with
499 less than 100 microbial read pairs were removed, resulting in a final dataset comprising
500 8,892 samples, with a median microbial read-pair count of 6187.

501 To minimise noise in the taxonomic assignments, we defined a set of abundance
502 thresholds whereby species with abundance values less than or equal to these
503 thresholds (i.e., relative abundance \leq 0.05, read pairs assigned \leq 10) were counted as
504 absent (set to zero read counts). We performed simulations to systematically determine
505 a relative abundance threshold that minimizes false positive species assignments.
506 Sequencing reads were simulated using *InSilicoSeq* v1.5.4⁷⁵ with error models trained
507 on the SG10K_Health sequencing libraries and processed using the same bioinformatic
508 steps as per the SG10K_Health dataset to obtain microbial taxonomic profiles. We
509 simulated 373 million reads equivalent to the median library read count of all samples,
510 comprising reads from the GRCh38 human reference and ten microbial genomes
511 (*Yersinia enterocolitica*, *Leclercia adecarboxylata*, *Moraxella osloensis*, *Streptococcus*
512 *pneumoniae*, *Pasteurella multocida*, *Staphylococcus epidermidis*, *Actinomyces*
513 *viscosus*, *Torque teno virus*, *Human betaherpesvirus 6A*, *Candida albicans*) at various
514 proportions. Due to read misclassification, some of the simulated reads were
515 erroneously assigned to another species and produced false positives. A final relative
516 abundance threshold of 0.005 that delineated these false positive assignments from
517 true positives was selected (**Supplementary Figure 5**). Relative abundances were

518 calculated by dividing the microbial read count in a sample by the total number of
519 microbial reads assigned to that sample.

520 *Decontamination filters*

521 After application of the presence/absence filter, we identified and removed putative
522 contaminants using established decontamination heuristics²⁶ that have been validated
523 in previous studies^{27,28}, prior to our downstream analyses. These rules were applied
524 using eight types of batch information: source cohort, DNA extraction kit type, library
525 preparation kit type, and lot numbers for sequencing-by-synthesis kit (box 1, box 2),
526 paired-end cluster kit (box 1, box 2) and sequencing flow cell used. Other batch
527 information such as the pipettes and consumables used, or storage location and
528 duration were not recorded and could potentially contribute to some level of batch-
529 specific contamination. However, these batches are expected to be correlated with the
530 other types of batch information available, and so the resultant contaminants could in
531 theory be accounted for using our filters. We describe the four decontamination filters
532 used, as shown in **Figure 1a**, in sequential order:

533 (1) *Prevalence filter*. A microbial species is considered a contaminant specific to a
534 batch if it is present at greater than 25% prevalence in that batch and has greater
535 than a two-fold higher prevalence than that for any other batch. Batches with less
536 than 100 samples were excluded from this analysis. This filter is based on the
537 principle that species which are highly prevalent in some batches but lowly
538 prevalent or absent in others are likely contaminants²⁶. We illustrate this for an
539 example species in **Supplementary Figure 6a**.

540 (2) *Correlation filter*. A microbial species is considered a contaminant if it is highly
541 correlated (Spearman's $\rho > 0.7$) with any contaminant within the same batch, as
542 identified by the prevalence filter. This filter is based on the principle that
543 contaminants are highly correlated within the same batch²⁶. Spearman's ρ was
544 calculated using centred log-ratio (CLR) transformed⁷⁶ microbial relative
545 abundances. CLR transformations and Spearman's ρ were calculated using the
546 *clr* function as part of the *compositions* package⁷⁷ and *cor.test* function in R. We

547 illustrate this within-batch correlation for an example species in **Supplementary**
548 **Figure 6b.**

549 (3) *Batch filter*. A non-contaminant microbial species must be detected in samples
550 processed by at least two reagent kit batches or reagent types. That is, any
551 species that is only detected in a single batch for any of the reagent kits used
552 (**Supplementary Table 6**) are considered contaminants. This filter is based on
553 the principle that species that can be repeatedly observed across different
554 reagent batches are more likely to reflect genuine non-contaminant signals²⁶.
555 Library preparation kit type was excluded from this analysis since only three kit
556 types were used, with 86% of samples processed using one of the kits.

557 (4) *Read count filter*. A microbial species is considered a sequencing or analysis
558 artefact if it is not assigned at least 100 reads in at least one sample. This filter is
559 based on the principle that species that are always assigned a low number of
560 read pairs, never exceeding the background noise within sequencing libraries,
561 are more likely to be artefactual rather than genuine signals. An example of an
562 artefactual species is *Candidatus Nitrosocosmicus franklandus*, which was
563 assigned at most 22 read pairs by *Kraken2* across 21 sequenced samples.

564 *Characterisation of microbial species*

565 We classified microbial species as human-associated or not based on a published host-
566 pathogen association database⁷⁸. In this database, host-pathogen associations are
567 defined by the presence of at least one documented infection of the host by the
568 pathogen³¹. For species that were not found in this database, we performed a
569 systematic PubMed search using the search terms: (microbial species name) AND
570 (human) AND ((infection) OR (commensal)). Similarly, species that had at least one
571 published report of human colonisation/infection were considered human-associated.
572 Additionally, we classified the potential body site origins for each microbial species
573 using the *Disbiome* database, which collects data and metadata of published
574 microbiome studies in a standardised way³⁴. We extracted the information for all
575 microbiome experiments in the database using the URL:
576 '<https://disbiome.ugent.be:8080/experiment>' (accessed 26th April 2022). We first

577 extracted microbe-to-sample type mappings from this information (e.g. *C. acnes*→skin
578 swab). We then manually classified each sample type into different body sites (e.g. skin
579 swab→skin). This allowed us to generate microbe-to-body site mappings. Sample types
580 with ambiguous body site origins (e.g. abscess pus) were excluded. The range of
581 sample types within the Disbiome database used to derive the microbe-body-site
582 mappings are provided in **Supplementary Table 7**. Finally, we classified microbial
583 species based on their growth requirements, with reference to a clinical microbiology
584 textbook⁷⁹. Viruses were classified as obligate intracellular. The microbiological
585 classifications for each species are provided in **Supplementary Table 2**.

586 *Estimating coverage breadth and bacterial replication rates*

587 We performed read alignment of sequencing libraries to microbial reference genomes
588 using *Bowtie v2.4.5*⁸⁰ with default parameters. In total we used references for 27 of the
589 117 microbial species detected in blood, comprising the 20 bacterial species with the
590 highest number of reads in a sample, all fungal ($n=2$) and all viral species ($n=5$). For
591 each species, we aligned the microbial reads of five sample libraries with the most
592 reads assigned to that species, to the reference genome of that species. For each
593 sample and microbial genome, the genome coverage per position was computed using
594 the *pileup* function as part of the *Rsamtools v2.8.0* package⁸¹ in *R*. In principle,
595 recovery of a larger fraction of a microbial genome provides a higher confidence that it
596 is truly present in a sample^{24,25}. We could recover at least 10% of the microbial
597 genomes for 25/27 (93%) of the species. For the replication rate analyses, PTR values
598 were calculated using the *bPTR* function in *iRep v1.1.0*²¹, which is based on the method
599 proposed by Korem et al.²². The *Ori* and *Ter* positions were determined based on the
600 coverage peaks and troughs (in red and blue, respectively; **Figure 3**). *Ori* and *Ter*
601 positions were also calculated using a cumulative GC-skew line, which is expected to
602 be in anti-phase with the sinusoidal coverage pattern across the genome³⁸ (in green;
603 **Figure 3**).

604 *Microbial networks*

605 Microbial co-occurrence/mutual exclusion associations were computed using the
606 *SparCC* algorithm⁴⁹, implemented in the *SpecEasi v1.1.2* package⁸² in *R* and the

607 microbial networks were visualized using *Igraph v1.2.9*⁸³. We excluded the birth cohort
608 GUSTO since it is of a different demographic that may possess a distinct set of
609 microbial associations.

610 *Detecting associations between microbial taxonomic profiles and host phenotypes*

611 We tested for microbe-host phenotype associations within individual cohorts separately.
612 For the two categorical host phenotypes, genetic sex and ancestry, we tested for
613 differences in the prevalence of each microbial species between the different categories
614 using a two-sided Fisher's exact test (*fisher.test* function in *R*). For the continuous
615 variables (age, BMI, TC, TG, SBP and DBP) we used a two-sided Mann-Whitney U test
616 (*wilcox.test* function in *R*) to test for differences in the distributions of the variables when
617 a species was present or absent. Benjamini-Hochberg multiple-testing correction was
618 applied only after consolidating the *p*-values from both tests and for all cohorts using the
619 *p.adjust* function in *R*. Statistical tests were only performed if a species was present in
620 at least 50 samples in total. Separately, for derived phenotypes (i.e., being elderly or
621 measures of 'poorer health'), we used the Fisher's exact test before applying Benjamini-
622 Hochberg multiple-testing correction. In all cases, samples with missing host
623 phenotypes were excluded.

624 *Data analysis and visualisation*

625 All data analyses were performed using *R* v4.1.0 or using *Python* v3.9.12. Visualisations
626 were performed using *ggplot* v3.3.5⁸⁴. **Figure 5** was created using BioRender.com
627 under an academic subscription.

628 **Data availability**

629 Requests for the sequencing data used in this study should be made through the
630 National
631 Precision Medicine (NPM) Programme Data Access Committee (contact_npco@gis.a-star.edu.sg). The accession numbers for all genome references used are provided in
633 **Supplementary Table 8.**

634 **Code availability**

635 All custom code used to perform the analyses reported here are hosted on GitHub
636 (https://github.com/cednotsed/blood_microbial_signatures.git).

637 **Acknowledgements**

638 The computational work for this article was partially performed on resources of the
639 National Supercomputing Centre, Singapore (<https://www.nscc.sg>). This study made
640 use of data generated as part of the Singapore National Precision Medicine program
641 funded by a grant from the Industry Alignment Fund (Pre-Positioning) (IAF-PP:
642 H17/01/a0/007).

643 This study made use of data / samples collected in the following cohorts in Singapore:

644 (1) The Health for Life in Singapore (HELIOS) study at the Lee Kong Chian School of
645 Medicine, Nanyang Technological University, Singapore (supported by grants from a
646 Strategic Initiative at Lee Kong Chian School of Medicine, the Singapore Ministry of
647 Health (MOH) under its Singapore Translational Research Investigator Award
648 (NMRC/STaR/0028/2017) and the IAF-PP: H18/01/a0/016);

649 (2) The Growing up in Singapore Towards Healthy Outcomes (GUSTO) study, which is
650 jointly hosted by the National University Hospital (NUH), KK Women's and Children's
651 Hospital (KKH), the National University of Singapore (NUS) and the Singapore
652 Institute for Clinical Sciences (SICS), Agency for Science Technology and Research
653 (A*STAR) (supported by the Singapore National Research Foundation under its
654 Translational and Clinical Research (TCR) Flagship Programme and administered
655 by the Singapore Ministry of Health's National Medical Research Council (NMRC),
656 Singapore - NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional
657 funding was provided by SICS and IAF-PP H17/01/a0/005);

658 (3) The Singapore Epidemiology of Eye Diseases (SEED) cohort at Singapore Eye
659 Research Institute (SERI) (supported by NMRC/CIRG/1417/2015;
660 NMRC/CIRG/1488/2018; NMRC/OFLCG/004/2018);

661 (4) The Multi-Ethnic Cohort (MEC) cohort (supported by NMRC grant 0838/2004; BMRC
662 grant 03/1/27/18/216; 05/1/21/19/425; 11/1/21/19/678, Ministry of Health, Singapore,
663 National University of Singapore and National University Health System, Singapore);
664 (5) The SingHealth Duke-NUS Institute of Precision Medicine (PRISM) cohort
665 (supported by NMRC/CG/M006/2017_NHCS; NMRC/STaR/0011/2012,
666 NMRC/STaR/ 0026/2015, Lee Foundation and Tanoto Foundation);
667 (6) The TTSH Personalised Medicine Normal Controls (TTSH) cohort (supported by
668 NMRC/CG12AUG17 and CGAug16M012).

669 The views expressed are those of the authors, are not necessarily those of the National
670 Precision Medicine investigators, or institutional partners. We thank all investigators,
671 staff members and study participants who made the National Precision Medicine Project
672 possible.

673 **Ethics declaration**

674 All individuals in the participating cohorts were recruited with signed informed consent
675 from the participating individual or parent/guardian in the case of minors. All studies
676 were approved by relevant institutional ethics review boards detailed in **Supplementary**
677 **Table 1.**

678 **Figure legends**

679 **Figure 1: Decontamination results.** (a) Summary of pre-processing steps and filters
680 applied to taxonomic profiles ($n=9,770$ individuals) and the number of species retained
681 after each filter. Pie charts showing the proportion of microbial species that are (b)
682 human-associated, (c) common sequencing contaminants, and (d) detected in blood
683 culture records, before and after applying the decontamination filters.

684 **Figure 2: Microbial signatures in human blood from healthy individuals.** (a) Bar
685 chart showing the prevalence of the top 50 confidently detected microbial species in all
686 8,892 blood sequencing libraries. (b) Histogram of the number of microbial species per
687 sample. (c) Bar chart of the human body sites that the 117 confidently detected species
688 are associated with, as determined using the Disbiome database³⁴. Species are
689 classified as ‘multiple’ if they are associated with more than one body site and classified
690 otherwise if they are only associated with a single body site. (d) Piechart showing the
691 microbiological classification of the 117 confidently detected species. (e) Bar chart
692 showing prevalence of genera in blood culture records and in the blood sequencing
693 libraries before and after decontamination.

694 **Figure 3: Evidence for replicating bacteria in blood samples from healthy
695 individuals.** (a) Summary statistics for samples where bacterial species were deemed
696 to be replicating using *iRep*²¹ (i.e., peak-to-trough ratio (PTR)>1). The number of reads
697 assigned to the species by *Kraken2*²³, the possible body sites the species are
698 associated with, whether they were previously reported in published studies of
699 bacteraemia, the overall prevalence of the species across all 8,892 individuals in our
700 study and the calculated PTR values, are indicated. Coverage plots of (b) three
701 representative confidently detected species and (c) three representative contaminant
702 species, showing the expected patterns of *Ori* to *Ter* coverage skew only where
703 expected i.e. confidently detected species.

704 **Figure 4: Microbial co-occurrence networks.** (a) *SparCC*⁴⁹ co-occurrence networks
705 computed from all samples with at least two microbial species following
706 decontamination at different *SparCC* correlation thresholds (0.05, 0.2, 0.3). Only
707 associations with a magnitude of *SparCC* correlation greater than the respective

708 thresholds are retained. (b) *SparCC* networks for individual cohorts at a correlation
709 threshold of 0.2. No co-occurrence associations were retained after taking the
710 intersection of edges between all cohort networks. For (a) and (b), each node
711 represents a single microbial species, and each edge a single association between a
712 pair of microbial species. Edge thickness is scaled by the magnitude of correlation. The
713 number of samples used to compute each network and the correlation thresholds used
714 are annotated. Positive and negative *SparCC* correlations are indicated in green and
715 blue respectively.

716 **Figure 5: Potential models for microbes in blood.** Our findings suggest that there is
717 no consistent circulating blood microbiome (i.e., the blood microbiome model). The
718 more likely model is where microbes from other body sites transiently and sporadically
719 translocate into blood. Created with BioRender.com under an academic subscription.

720 References

- 721 1. Singer, M. *et al.* The third international consensus definitions for sepsis and septic
722 shock (Sepsis-3). *Jama* **315**, 801–810 (2016).
- 723 2. Brecher, M. E. & Hay, S. N. Bacterial contamination of blood components. *Clin.*
724 *Microbiol. Rev.* **18**, 195–204 (2005).
- 725 3. Damgaard, C. *et al.* Viable bacteria associated with red blood cells and plasma in
726 freshly drawn blood donations. *PLoS One* **10**, e0120826 (2015).
- 727 4. Schierwagen, R. *et al.* Circulating microbiome in blood of different circulatory
728 compartments. *Gut* **68**, 578–580 (2019).
- 729 5. Païssé, S. *et al.* Comprehensive description of blood microbiome from healthy
730 donors assessed by 16 S targeted metagenomic sequencing. *Transfusion* **56**,
731 1138–1147 (2016).
- 732 6. Whittle, E., Leonard, M. O., Harrison, R., Gant, T. W. & Tonge, D. P. Multi-method
733 characterization of the human circulating microbiome. *Front. Microbiol.* 3266
734 (2019).
- 735 7. D'Aquila, P. *et al.* Microbiome in Blood Samples From the General Population
736 Recruited in the MARK-AGE Project: A Pilot Study. *Front. Microbiol.* 2055 (2021).
- 737 8. Castillo, D. J., Rifkin, R. F., Cowan, D. A. & Potgieter, M. The healthy human
738 blood microbiome: Fact or fiction? *Front. Cell. Infect. Microbiol.* **9**, 148 (2019).
- 739 9. Berg, G. *et al.* Microbiome definition re-visited: old concepts and new challenges.
740 *Microbiome* **8**, 1–22 (2020).
- 741 10. Faust, K. *et al.* Microbial co-occurrence relationships in the human microbiome.
742 *PLoS Comput. Biol.* **8**, (2012).
- 743 11. Das, P., Ji, B., Kovatcheva-Datchary, P., Bäckhed, F. & Nielsen, J. In vitro co-
744 cultures of human gut bacterial species as predicted from co-occurrence network
745 analysis. *PLoS One* **13**, e0195161 (2018).
- 746 12. Relvas, M. *et al.* Relationship between dental and periodontal health status and

747 the salivary microbiome: bacterial diversity, co-occurrence networks and
748 predictive models. *Sci. Rep.* **11**, 1–22 (2021).

749 13. Risely, A. Applying the core microbiome to understand host–microbe systems. *J.*
750 *Anim. Ecol.* **89**, 1549–1558 (2020).

751 14. Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome:
752 Challenges and prospects. *Proc. Natl. Acad. Sci.* **118**, e2104429118 (2021).

753 15. Consortium, H. M. P. Structure, function and diversity of the healthy human
754 microbiome. *Nature* **486**, 207 (2012).

755 16. Johnson, J. S. *et al.* Evaluation of 16S rRNA gene sequencing for species and
756 strain-level microbiome analysis. *Nat. Commun.* **10**, 5029 (2019).

757 17. Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent
758 bacterial DNA contamination of extraction and sequencing reagents may affect
759 interpretation of microbiota in low bacterial biomass samples. *Gut Pathog.* **8**, 24
760 (2016).

761 18. Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of
762 controls in microbiome research. *FEMS Microbiol. Ecol.* **95**, fiz045 (2019).

763 19. Salter, S. J. *et al.* Reagent and laboratory contamination can critically impact
764 sequence-based microbiome analyses. *BMC Biol.* **12**, 87 (2014).

765 20. Doern, G. V *et al.* A comprehensive update on the problem of blood culture
766 contamination and a discussion of methods for addressing the problem. *Clin*
767 *Microbiol Rev* **33**, e00009-19 (2019).

768 21. Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of
769 bacterial replication rates in microbial communities. *Nat. Biotechnol.* **34**, 1256–
770 1263 (2016).

771 22. Korem, T. *et al.* Growth dynamics of gut microbiota in health and disease inferred
772 from single metagenomic samples. *Science (80-).* **349**, 1101–1106 (2015).

773 23. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken
774 2. *Genome Biol.* **20**, 257 (2019).

775 24. Hillmann, B. *et al.* SHOGUN: a modular, accurate and scalable framework for
776 microbiome quantification. *Bioinformatics* **36**, 4088–4090 (2020).

777 25. Al-Ghalith, G. & Knights, D. BURST enables mathematically optimal short-read
778 alignment for big data. *bioRxiv* 2020.09.08.287128 (2020)
779 doi:10.1101/2020.09.08.287128.

780 26. de Goffau, M. C. *et al.* Recognizing the reagent microbiome. *Nat. Microbiol.* **3**,
781 851–853 (2018).

782 27. Chia, M. *et al.* Shared signatures and divergence in skin microbiomes of children
783 with atopic dermatitis and their caregivers. *J. Allergy Clin. Immunol.* (2022)
784 doi:<https://doi.org/10.1016/j.jaci.2022.01.031>.

785 28. Chng, K. R. *et al.* Cartography of opportunistic pathogens and antibiotic
786 resistance genes in a tertiary hospital environment. *Nat. Med.* **26**, 941–951
787 (2020).

788 29. de Goffau, M. C. *et al.* Human placenta has no microbiome but can contain
789 potential pathogens. *Nature* **572**, 329–334 (2019).

790 30. Poore, G. D. *et al.* Microbiome analyses of blood and tissues suggest cancer
791 diagnostic approach. *Nature* **579**, 567–574 (2020).

792 31. Shaw, L. P. *et al.* The phylogenetic range of bacterial and viral pathogens of
793 vertebrates. *Mol. Ecol.* **n/a**, (2020).

794 32. Tomás, I., Diz, P., Tobías, A., Scully, C. & Donos, N. Periodontal health status
795 and bacteraemia from daily oral activities: systematic review/meta-analysis. *J.*
796 *Clin. Periodontol.* **39**, 213–228 (2012).

797 33. Wells, C. L., Maddaus, M. A. & Simmons, R. L. Proposed mechanisms for the
798 translocation of intestinal bacteria. *Rev. Infect. Dis.* **10**, 958–979 (1988).

799 34. Janssens, Y. *et al.* Disbiome database: linking the microbiome to disease. *BMC*
800 *Microbiol.* **18**, 50 (2018).

801 35. Ruiz, L., Delgado, S., Ruas-Madiedo, P., Sánchez, B. & Margolles, A.
802 Bifidobacteria and their molecular communication with the immune system. *Front.*

803 *Microbiol.* **8**, 2345 (2017).

804 36. Sokol, H. et al. *Faecalibacterium prausnitzii* is an anti-inflammatory commensal
805 bacterium identified by gut microbiota analysis of Crohn disease patients. *Proc.*
806 *Natl. Acad. Sci.* **105**, 16731–16736 (2008).

807 37. Domingue, G. J. & Schlegel, J. U. Novel bacterial structures in human blood:
808 cultural isolation. *Infect. Immun.* **15**, 621–627 (1977).

809 38. Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria.
810 *Mol. Biol. Evol.* **13**, 660–665 (1996).

811 39. Yang, C.-C. et al. Characteristics and outcomes of *Fusobacterium nucleatum*
812 bacteremia—a 6-year experience at a tertiary care hospital in northern Taiwan.
813 *Diagn. Microbiol. Infect. Dis.* **70**, 167–174 (2011).

814 40. DEMMLER, G. J., COUCH, R. S. & TABER, L. H. *Neisseria subflava* bacteremia
815 and meningitis in a child: report of a case and review of the literature. *Pediatr.*
816 *Infect. Dis. J.* **4**, 286–288 (1985).

817 41. Oill, P. A., Chow, A. W. & Guze, L. B. Adult bacteraemic *Haemophilus*
818 *parainfluenzae* infections: seven reports of cases and a review of the literature.
819 *Arch. Intern. Med.* **139**, 985–988 (1979).

820 42. Chan, J. F. W. et al. First report of spontaneous intrapartum *Atopobium vaginae*
821 bacteremia. *J. Clin. Microbiol.* **50**, 2525–2528 (2012).

822 43. Mendes, R. E. et al. Assessment of linezolid resistance mechanisms among
823 *Staphylococcus epidermidis* causing bacteraemia in Rome, Italy. *J. Antimicrob.*
824 *Chemother.* **65**, 2329–2335 (2010).

825 44. Choi, J. Y. et al. Mortality risk factors of *Acinetobacter baumannii* bacteraemia.
826 *Intern. Med. J.* **35**, 599–603 (2005).

827 45. Wertlake, P. T. & Williams, T. W. Septicaemia caused by *Neisseria flavescens*. *J.*
828 *Clin. Pathol.* **21**, 437–439 (1968).

829 46. Shah, S. S., Ruth, A. & Coffin, S. E. Infection due to *Moraxella osloensis*: case
830 report and review of the literature. *Clin. Infect. Dis.* **30**, 179–181 (2000).

831 47. Felten, A., Barreau, C., Bizet, C., Lagrange, P. H. & Philippon, A. *Lactobacillus*
832 species identification, H₂O₂ production, and antibiotic resistance and correlation
833 with human clinical status. *J. Clin. Microbiol.* **37**, 729–733 (1999).

834 48. Ježek, P. *et al.* *Corynebacterium imitans* isolated from blood culture in a patient
835 with suspected bacteremia—the first isolation from human clinical material in the
836 Czech Republic. *Klin. Mikrobiol. Infekc. Lek.* **20**, 98–101 (2014).

837 49. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data.
838 *PLoS Comput Biol* **8**, e1002687 (2012).

839 50. Anhê, F. F. *et al.* Type 2 diabetes influences bacterial tissue compartmentalisation
840 in human obesity. *Nat. Metab.* **2**, 233–242 (2020).

841 51. Emery, D. C. *et al.* Comparison of blood bacterial communities in periodontal
842 health and periodontal disease. *Front. Cell. Infect. Microbiol.* **10**, 799 (2021).

843 52. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in
844 humans from infancy to old age. *Proc. R. Soc. B Biol. Sci.* **282**, 20143085 (2015).

845 53. Blauwkamp, T. A. *et al.* Analytical and clinical validation of a microbial cell-free
846 DNA sequencing test for infectious disease. *Nat. Microbiol.* **4**, 663–674 (2019).

847 54. Grumaz, C. *et al.* Rapid Next-Generation Sequencing-Based Diagnostics of
848 Bacteremia in Septic Patients. *J. Mol. Diagnostics* **22**, 405–418 (2020).

849 55. Tan, C. C. S., Acman, M., van Dorp, L. & Balloux, F. Metagenomic evidence for a
850 polymicrobial signature of sepsis. *Microb. genomics* **7**, (2021).

851 56. Grumaz, S. *et al.* Next-generation sequencing diagnostics of bacteremia in septic
852 patients. *Genome Med.* **8**, 73 (2016).

853 57. Grumaz, S. *et al.* Enhanced performance of next-generation sequencing
854 diagnostics compared with standard of care microbiological diagnostics in patients
855 suffering from septic shock. *Crit. Care Med.* **47**, e394 (2019).

856 58. Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nat. Rev.*
857 *Microbiol.* **10**, 538–550 (2012).

858 59. Zelezniak, A. *et al.* Metabolic dependencies drive species co-occurrence in

859 diverse microbial communities. *Proc. Natl. Acad. Sci.* **112**, 6449–6454 (2015).

860 60. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition:
861 surviving and thriving in the microbial jungle. *Nat. Rev. Microbiol.* **8**, 15–25 (2010).

862 61. Cross, A. & Levine, M. M. Patterns of bacteraemia aetiology. *Lancet Infect. Dis.*
863 **17**, 1005–1006 (2017).

864 62. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary
865 perspective on human–microbe mutualism and disease. *Nature* **449**, 811–818
866 (2007).

867 63. Geva-Zatorsky, N. *et al.* Mining the human gut microbiota for immunomodulatory
868 organisms. *Cell* **168**, 928–943 (2017).

869 64. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by
870 microbiota in early life shapes the immune system. *Science (80-.).* **352**, 539–544
871 (2016).

872 65. Brenner, T. *et al.* Next-generation sequencing diagnostics of bacteremia in sepsis
873 (Next GeneSiS-Trial): study protocol of a prospective, observational,
874 noninterventional, multicenter, clinical trial. *Medicine (Baltimore)* **97**, (2018).

875 66. Shah, N. B. *et al.* Blood microbiome profile in CKD: a pilot study. *Clin. J. Am. Soc.*
876 *Nephrol.* **14**, 692–701 (2019).

877 67. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in
878 humans. *Gut* **68**, 1516–1526 (2019).

879 68. Wu, D. *et al.* Large-scale whole-genome sequencing of three diverse Asian
880 populations in Singapore. *Cell* **179**, 736–749 (2019).

881 69. Foong, A. W. P. *et al.* Rationale and methodology for a population-based study of
882 eye diseases in Malay people: The Singapore Malay eye study (SiMES).
883 *Ophthalmic Epidemiol.* **14**, 25–35 (2007).

884 70. Lavanya, R. *et al.* Methodology of the Singapore Indian Chinese Cohort (SICC)
885 eye study: quantifying ethnic variations in the epidemiology of eye diseases in
886 Asians. *Ophthalmic Epidemiol.* **16**, 325–336 (2009).

887 71. Tan, K. H. X. *et al.* Cohort profile: the Singapore multi-ethnic cohort (mec) study.
888 *Int. J. Epidemiol.* **47**, 699–699j (2018).

889 72. Soh, S.-E. *et al.* Cohort profile: Growing Up in Singapore Towards healthy
890 Outcomes (GUSTO) birth cohort study. *Int. J. Epidemiol.* **43**, 1401–1409 (2014).

891 73. Teo, Y.-Y. *et al.* Singapore Genome Variation Project: a haplotype map of three
892 Southeast Asian populations. *Genome Res.* **19**, 2154–2162 (2009).

893 74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
894 transform. *bioinformatics* **25**, 1754–1760 (2009).

895 75. Gourlé, H., Karlsson-Lindsjö, O., Hayer, J. & Bongcam-Rudloff, E. Simulating
896 Illumina metagenomic data with InSilicoSeq. *Bioinformatics* **35**, 521–522 (2019).

897 76. Aitchison, J. The statistical analysis of compositional data. *J. R. Stat. Soc. Ser. B*
898 **44**, 139–160 (1982).

899 77. Van den Boogaart, K. G. & Tolosana-Delgado, R. “Compositions”: a unified R
900 package to analyze compositional data. *Comput. Geosci.* **34**, 320–338 (2008).

901 78. Shaw, L. The phylogenetic range of bacterial and viral pathogens of vertebrates:
902 dataset and supplementary material. (2020) doi:10.6084/m9.figshare.8262779.v2.

903 79. Jorgensen, J. *et al.* *Manual of Clinical Microbiology*. (American Society for
904 Microbiology Press, 2015). doi:10.1128/9781555817381.

905 80. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat.*
906 *Methods* **9**, 357–359 (2012).

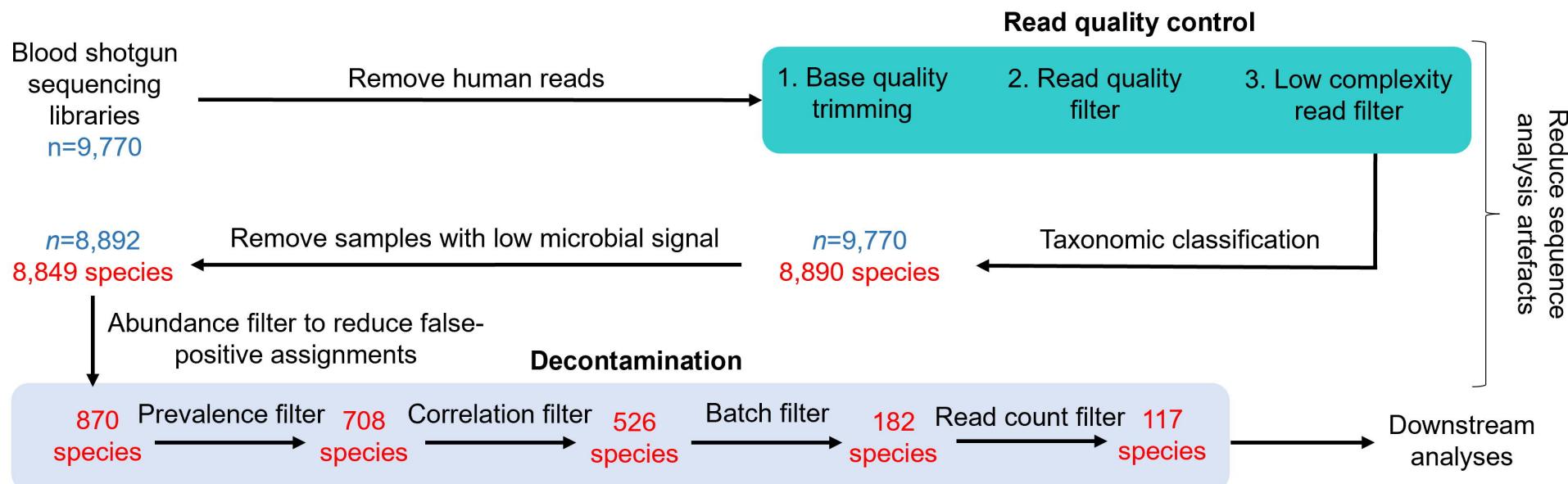
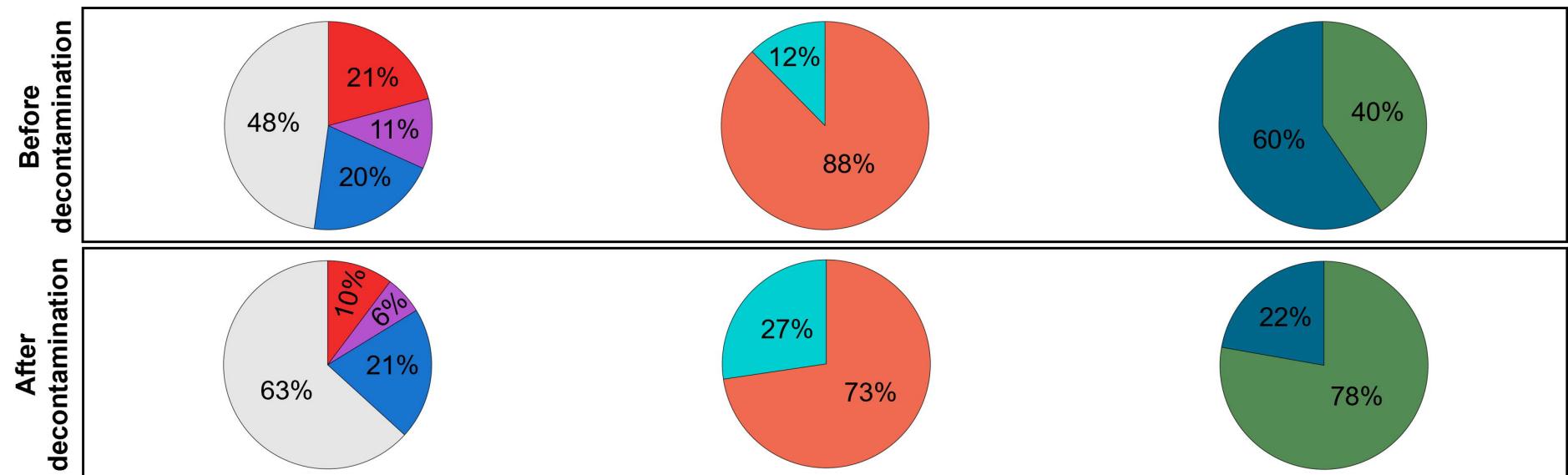
907 81. Morgan, M., Pagès, H., Obenchain, V. & Hayden, N. Rsamtools: Binary alignment
908 (BAM), FASTA, variant call (BCF), and tabix file import. R package version 2.8.0.
909 (2021).

910 82. Kurtz, Z. D. *et al.* Sparse and compositionally robust inference of microbial
911 ecological networks. *PLoS Comput Biol* **11**, e1004226 (2015).

912 83. Csardi, G. & Nepusz, T. The igraph software package for complex network
913 research. *InterJournal, complex Syst.* **1695**, 1–9 (2006).

914 84. Wickham, H. *ggplot2*. *Wiley Interdiscip. Rev. Comput. Stat.* **3**, 180–185 (2011).

915

Figure 1**a****b** Contaminant?

- █ Likely
- █ Potential pathogen/commensal
- █ Mixed evidence
- █ Not common contaminant

c Detected in blood culture?

- █ Yes
- █ No

d Human-associated?

- █ Yes
- █ No

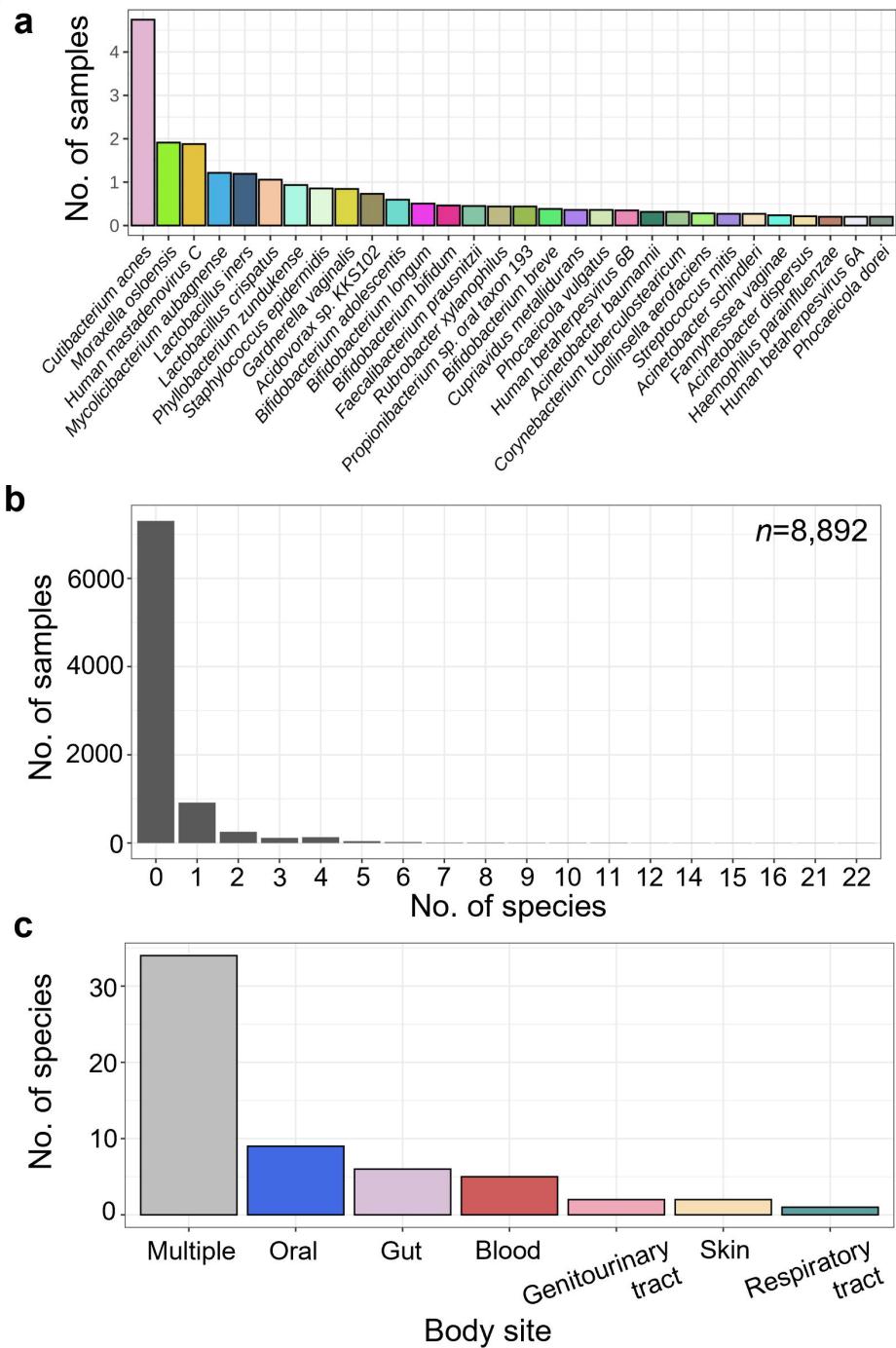
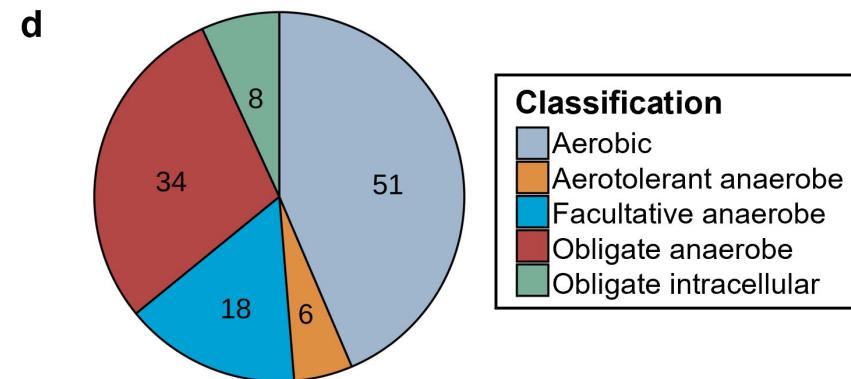
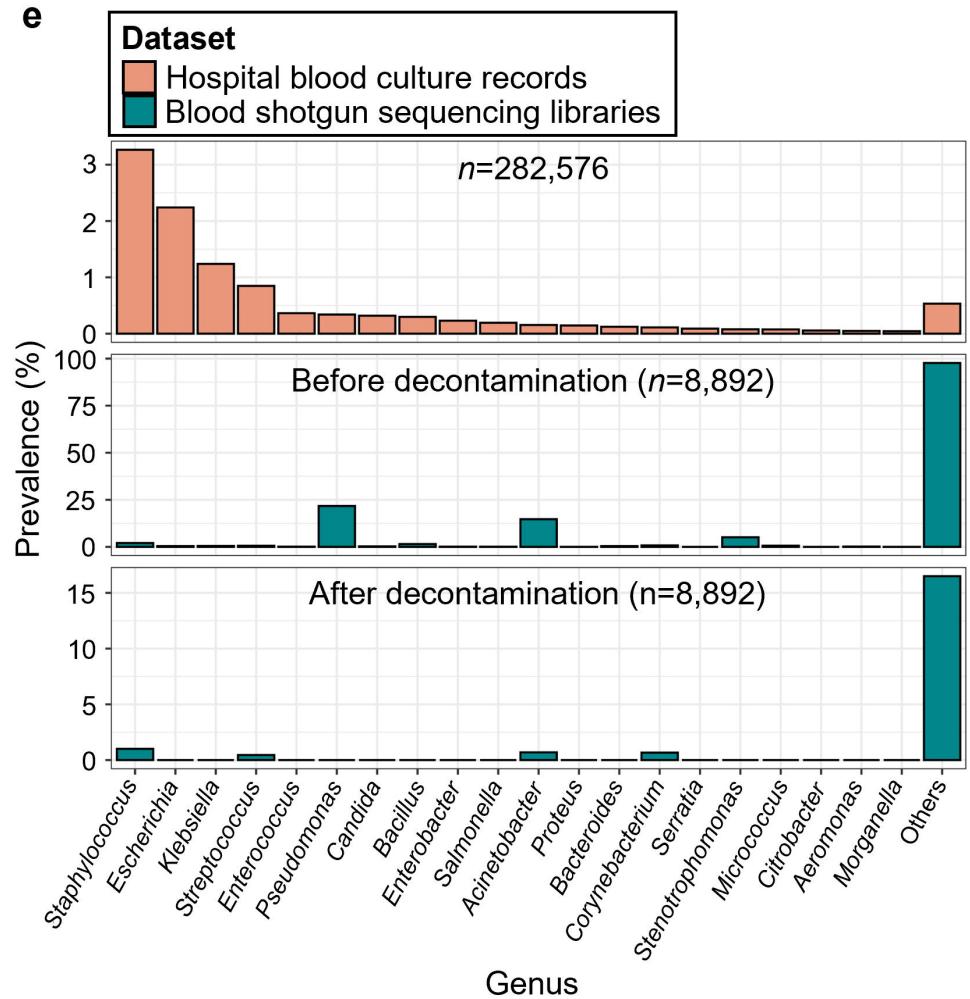
Figure 2

Figure 3

a

Sample	Species	Body site(s)	Reported in blood	No. of read pairs assigned	Overall prevalence (%)	PTR
WHB4594	<i>Fusobacterium nucleatum</i>	genitourinary tract, gut, mouth	✓	194199	0.11	1.68
WHB9179	<i>Neisseria subflava</i>	gut, mouth	✓	15385	0.16	1.51
WHB9179	<i>Haemophilus parainfluenzae</i>	gut, mouth, respiratory tract	✓	12183	0.2	1.17
WHB4035	<i>Fannyhessea vaginiae</i>	genitourinary tract	✓	10395	0.24	1.88
WHB6459	<i>Staphylococcus epidermidis</i>	gut, mouth, respiratory tract, skin	✓	9140	0.85	1.57
WHB10710	<i>Lactobacillus crispatus</i>	genitourinary tract, gut, mouth	✓	7799	1.06	1.57
0116-0053	<i>Acinetobacter baumannii</i>	mouth	✓	7673	0.31	1.9
WHB9179	<i>Neisseria flavescens</i>	mouth	✓	3787	0.06	1.38
WHB9978	<i>Rickettsia</i> sp. <i>Tillamook 23</i>		✗	2923	0.02	1.35
WHH1248	<i>Moraxella osloensis</i>	skin	✓	2402	1.91	1.33
WHB9812	<i>Corynebacterium imitans</i>		✓	1976	0.02	1.59

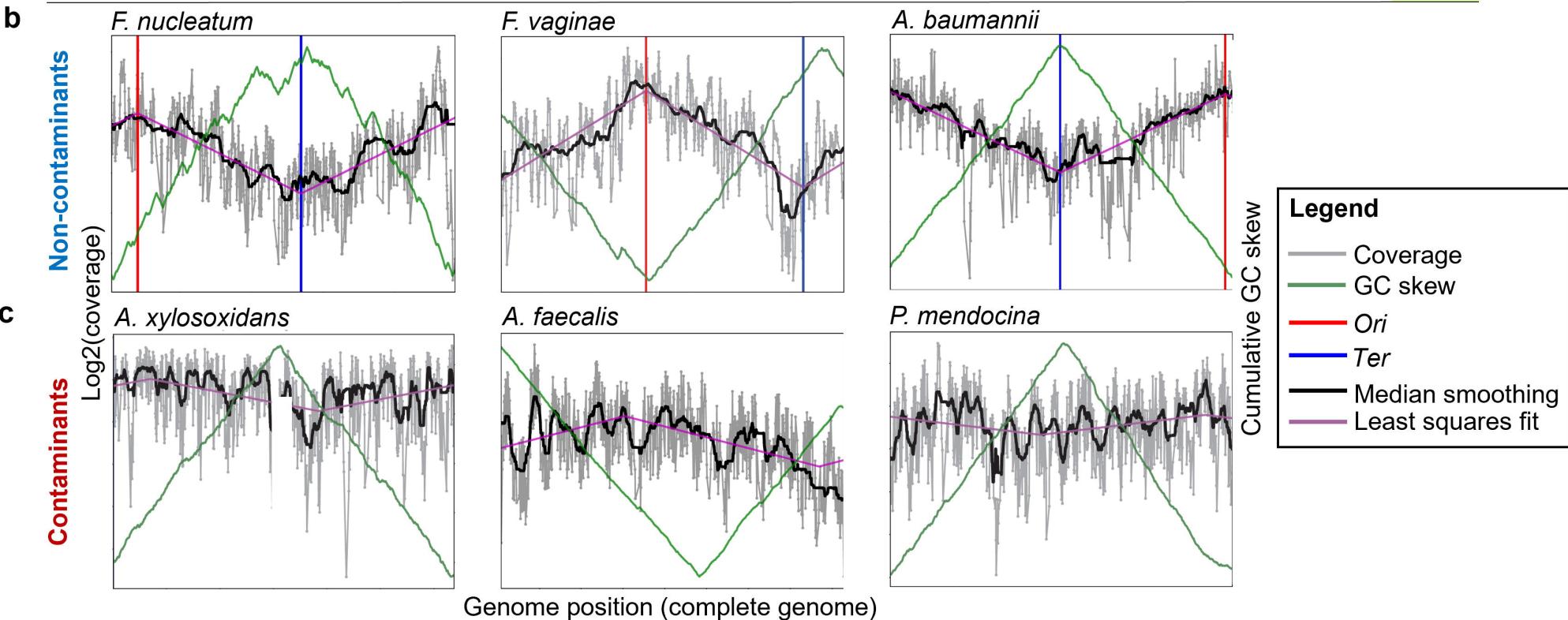
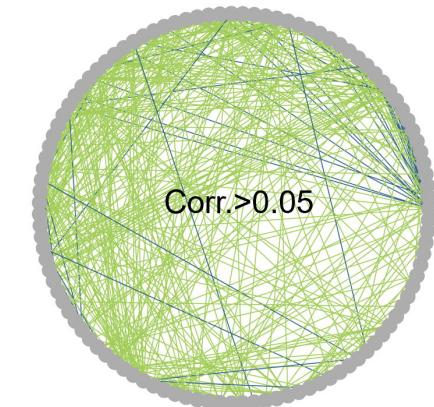
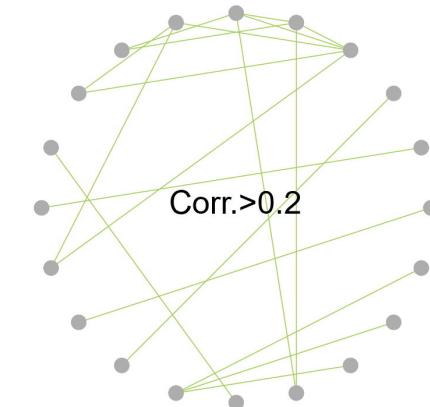
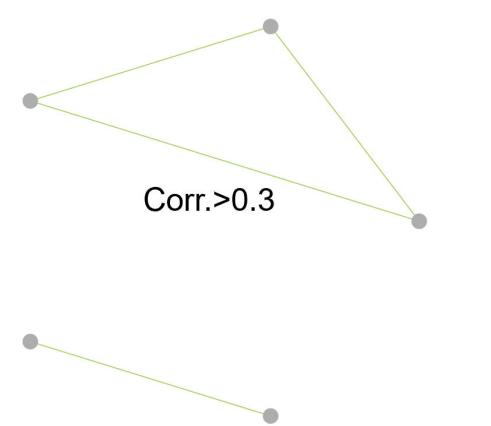


Figure 4

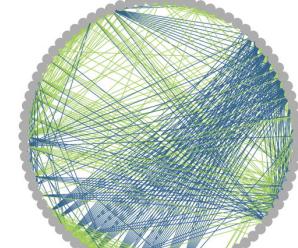
a

After decontamination (117 species)
 $n=476$ (samples with >1 microbial species)

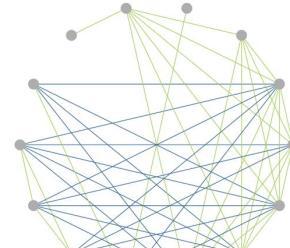


b

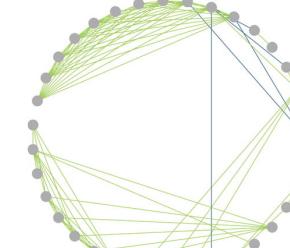
Before decontamination (870 species)



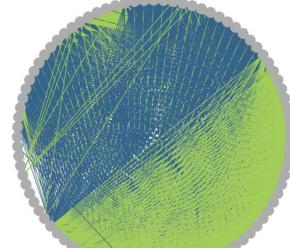
HELIOS ($n = 2282$)



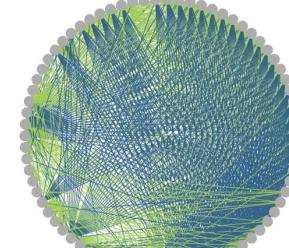
TTSH ($n = 629$)



SEED ($n = 590$)



MEC ($n = 2746$)



PRISM ($n = 1257$)

No common associations

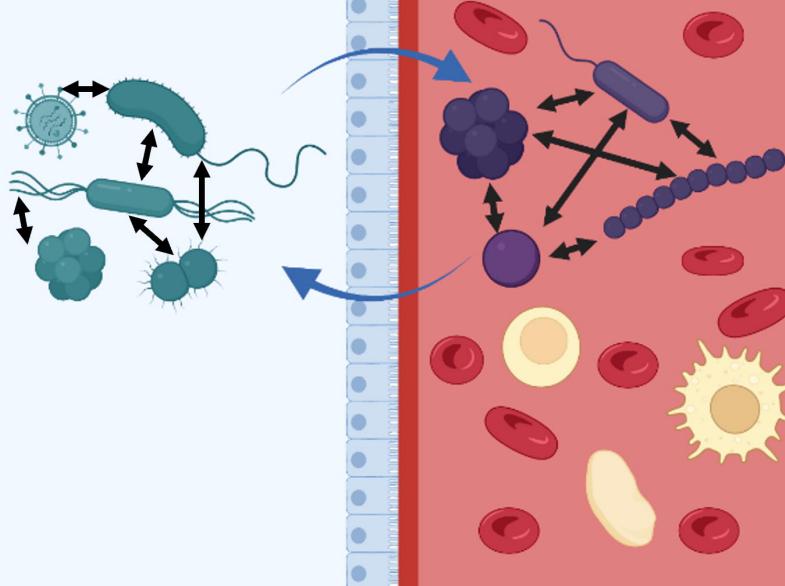
Legend

- Microbial species
- Co-occurrence
- Co-exclusion

Figure 5

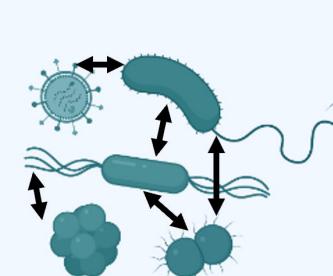
Blood microbiome model

Microbial community at various body sites

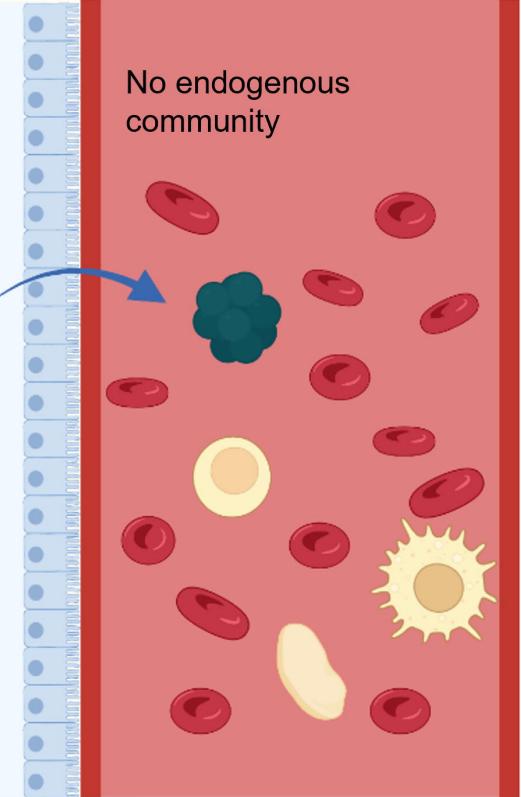


Transient translocation model

Microbial community at various body sites



No endogenous community



Legend

Microbial interaction

Red blood cells

Translocation

Other blood cells

Microbes

Barrier