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Abstract 17 

Human blood is conventionally considered sterile. Recent studies have challenged this, 18 

suggesting the presence of a blood microbiome in healthy humans. We present the 19 

largest investigation to date of microbes in blood, based on shotgun sequencing 20 

libraries from 9,770 healthy subjects. Leveraging the availability of data from multiple 21 

cohorts, we stringently filtered for laboratory contaminants to identify 117 microbial 22 

species detected in the blood of sampled individuals, some of which had signatures of 23 

DNA replication. These primarily comprise of commensals associated with human body 24 

sites such as the gut (n=40), mouth (n=32), and genitourinary tract (n=18), which are 25 

species that are distinct from common pathogens detected in clinical blood cultures 26 

based on more than a decade of records from a tertiary hospital. Contrary to the 27 

expectations of a shared blood microbiome, no species were detected in 84% of 28 

individuals, while only a median of one microbial species per individual was detected in 29 

the remaining 16%. Futhermore, microbes of the same species were detected in <5% of 30 

individuals, no co-occurrence patterns similar to microbiomes in other body sites was 31 

observed, and no associations between host phenotypes (e.g. demographics and blood 32 

parameters) and microbial species could be established. Overall, these results do not 33 

support the hypothesis of a consistent core microbiome endogenous to human blood. 34 

Rather, our findings support the transient and sporadic translocation of commensal 35 

microbes from other body sites into the bloodstream.  36 
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Introduction 37 

In recent years, there has been considerable interest regarding the existence of a 38 

microbiome in the blood of healthy individuals, and its links to health and disease. 39 

Human blood is traditionally considered a sterile environment (i.e., devoid of viable 40 

microbes), where the occasional entry and proliferation of pathogens in blood can 41 

trigger a dysregulated host response, resulting in severe clinical sequelae such as 42 

sepsis, septic shock or death1. Asymptomatic transient bacteraemia (i.e., bacterial 43 

presence in blood) in blood donors is also known to be a major cause of transfusion-44 

related sepsis2. Recent studies have suggested the presence of a blood microbiome, 45 

providing evidence for microbes circulating in human blood for healthy individuals3–7 46 

(reviewed in Castillo et al8). However, most of these studies were either done in 47 

relatively small cohorts or lacked rigorous checks to distinguish true biological 48 

measurements from different sources of contamination8. In this work, we analysed 49 

blood DNA sequencing data from a population study of healthy individuals, comprising 50 

of multiple cohorts processed by different laboratories with varied sequencing kits. By 51 

leveraging the large dataset (n=9,770) complete with batch information in our 52 

systematic differential analyses for potential contaminants, our aim was to determine 53 

whether a blood microbiome truly exists in the general population. 54 

For meaningful discourse, it is useful to formalise what the presence of a hypothetical 55 

‘blood microbiome’ entails. Berg et al.9 concluded that the term microbiome should refer 56 

to a community of microbes that interact with each other and with the environment in 57 

their ecological niche, which in our context is human blood. Therefore in a blood 58 

microbiome, the presence of microbial cells in blood from healthy individuals should 59 

exhibit community structures indicated by co-occurrence or mutual exclusion of 60 

species10 as seen in the microbiomes of other sites such as the gut11 or mouth12. 61 

Furthermore, we may expect the presence of core microbial species, which can be 62 

defined as species that are frequently observed and shared across individuals13,14, such 63 

as Staphylococcus epidermidis on human skin15. More precisely, taxa that are found in 64 

a substantial fraction of samples from distinct individuals (i.e. with high prevalence) may 65 

be considered ‘core’. Notably, the prevalence threshold for defining core taxa is 66 
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arbitrary, with previous microbiome studies using values ranging from 30-100% and 67 

many of these studies opting for 100%14. Regardless, identifying core microbes in blood 68 

would form the basis for associating microbiome changes with human health.  69 

Existing studies have provided evidence for the presence of microbes in the blood of 70 

healthy individuals using both culture-based3,4 and culture-independent5–7 approaches. 71 

The former approach involves blood culture experiments while the latter involves one or 72 

a combination of the following molecular methods: 16S ribosomal RNA (rRNA) 73 

quantitative polymerase chain reaction (qPCR), 16S rRNA amplicon sequencing, and 74 

shotgun sequencing of RNA or DNA. Depending on the study design, these results 75 

should be interpreted with caution due to several methodological and technical 76 

limitations which include small sample sizes, limited taxonomic resolution, difficulties in 77 

distinguishing cell-free microbial DNA from live microbial cells, and the ubiquity of 78 

environmental contamination8,16–19. In particular, contaminating DNA must be accounted 79 

for in order to characterize the blood microbiome. The workflow of sample processing, 80 

from skin puncture during phlebotomy, to microbial detection, is rife with opportunities 81 

for microbes or microbial nucleic acids to be introduced. Contaminating microbial cells 82 

introduced due to poor aseptic technique or insufficient disinfection of the skin puncture 83 

site20 affects both culture-dependent and culture-independent approaches. Sequencing-84 

based approaches are especially sensitive to contaminant microbial DNA native to 85 

laboratory reagent kits (i.e., the ‘kitome’)19, exacerbated by the low microbial biomasses 86 

in blood, accompanied by high host background which increases the noise-to-signal 87 

ratio17. Correspondingly, comprehensive profiling of the breadth and prevalence of 88 

microbial species in blood after accounting for external sources of contamination has 89 

not yet been done and several aspects of the ‘blood microbiome’ remain unclear. For 90 

instance, are the detected microbes endogenous to blood or translocated from other 91 

body sites? Is there a core set of microbes that circulates in human blood? Is there a 92 

microbial community whose structure and function could influence host health?  93 

To address these questions, we performed the largest scale analysis of a blood 94 

sequencing dataset to date, based on DNA libraries for 9,770 healthy individuals from 95 

six distinct cohorts (Supplementary Table 1). We applied various bioinformatic 96 

techniques to differentiate DNA signatures of microbes in blood from potential reagent 97 
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contaminants and sequence analysis artefacts, leveraging the differences in reagent 98 

kits used to process each cohort. We detected 117 microbial species in the blood of 99 

these healthy individuals, most of which are commensals associated with the 100 

microbiomes of other body sites. Additionally, we identified DNA signatures of 101 

replicating bacteria in blood using coverage-based peak-to-trough ratio analyses21,22, 102 

providing a culture-independent survey that has not been achieved previously. Despite 103 

this, we found no evidence for microbial co-occurrence relationships, core species, or 104 

associations with host phenotypes. These findings challenge the paradigm of a ‘blood 105 

microbiome’ and instead support a model whereby microbes from other body sites (e.g. 106 

gut, oral) sporadically translocate into the bloodstream of healthy individuals, albeit 107 

more commonly than previously assumed. Overall, our observations serve to establish 108 

a much needed baseline for the use of clinical metagenomics in investigating 109 

bloodstream infections.  110 

Results 111 

Robust inference of microbial DNA signatures in blood based on multi-cohort 112 

analysis 113 

Blood samples from healthy individuals typically contain low microbial biomass 114 

accompanied by high host DNA background17, making it difficult to discriminate between 115 

biologically relevant signals from artefactual ones. We first addressed artefacts arising 116 

during bioinformatic sequence analysis by performing stringent quality control on 117 

samples (Figure 1a), comprising of read quality trimming and filtering, removal of low 118 

complexity sequences that are of ambiguous taxonomic origin, exclusion of reads that 119 

likely originate from human DNA (Methods), and removal of samples with low number 120 

of reads (<100 read pairs) of microbial origin after taxonomic classification with 121 

Kraken223. This provided a species-level characterisation of microbial DNA signatures in 122 

blood for most (n=8,892) samples. To minimise noise due to false positive taxonomic 123 

assigments, we applied an abundance-cutoff based filter to discriminate between 124 

species that are likely present from those that could be misclassification artefacts 125 

(Methods). Additionally, we validated the reliability of the microbial species detected via 126 

Kraken2 by comparison to read alignment analysis using reference genomes, where 127 
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recovery of large fractions of a microbial reference covered uniformly by mapped reads 128 

improves our confidence that they are true positives as opposed to sequencing or 129 

analysis artefacts24,25. We validated 93% of the species detected using this mapping-130 

based approach. We further observed an excellent linear relationship between the 131 

number of Kraken2-assigned read pairs and the number of aligned read pairs on the 132 

log10 scale (slope=1.05; F=228, d.f.=118, p<0.001; Supplementary Figure 1), 133 

suggesting that Kraken2 taxonomic assignments are a reliable proxy for the more 134 

precise and stringent read alignment approach. These findings collectively provide 135 

confidence that the microbial species detected in our blood sequencing libraries are not 136 

likely sequence analysis artefacts. 137 

To address artefactual signals arising due to reagent and handling contamination during 138 

sample processing, we used a series of stringent decontamination filters (Figure 1a). 139 

These filters are based on the idea that contamination artefacts will lead to false positive 140 

detections that are often correlated with each other and biased towards specific 141 

cohorts26, and such analysis was found to be highly effective for in silico 142 

decontamination in previous studies27–29 (Methods). Additionally, the identification of 143 

batch-specific contaminants in this study was greatly aided by the availability of multiple 144 

large cohorts of healthy individuals (Supplementary Table 1), and corresponding rich 145 

batch information, including reagent kit types and lot numbers. Application of reagent 146 

and handling contamination filters resulted in a final list of 117 microbial species that 147 

were detected in the whole blood samples of 8,892 individuals (Supplementary Table 148 

2). The list of 117 confidently detected microbial species spanned 56 genera, and 149 

comprised of 110 bacteria, 5 viruses and 2 fungi.  150 

To estimate the effectiveness of our filtering strategy in improving biological signal while 151 

reducing contamination noise, we examined the types of microbial species detected in 152 

our dataset before (870 species) and after (117 species) all filters were applied (Figure 153 

1b-d). Firstly, the microbial species were cross-referenced against a published list of 154 

common genera seen as contaminants in sequencing data as curated by Poore et al30 155 

and derived from the list published by Salter et al19. In this list, genera were either 156 

classified as likely contaminants, mixed-evidence (i.e., both a pathogen and common 157 

contaminant), or potential pathogens/commensals. Following decontamination, the 158 
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proportion of detected species that are classified as contaminants decreased from 21% 159 

to 10% (Figure 1b). Next, the microbial species were compared against human blood 160 

culture records spanning more than a decade (2011-2021) from a tertiary hospital 161 

(Figure 1c). These blood cultures were typically ordered if clinical indications of 162 

bacteraemia were present, and therefore represent the range of microbial species that 163 

are known to cause symptomatic infection as detected in a clinical setting. The 164 

proportion of species that have been cultured from blood increased from 12% to 27% 165 

after decontamination, suggesting that our filtering procedures enriched for microbial 166 

species which are capable of invading the bloodstream. Finally, we compared the 167 

proportion of human-associated microbes before and after decontamination using a 168 

host-pathogen association database describing the host range of pathogens31 (Figure 169 

1d). For species that were not found in this database, a systematic PubMed search 170 

(Methods) was performed to determine if there was at least one past report of human 171 

infection. The proportion of human-associated species increased from 40% to 78% after 172 

decontamination, indicating that they are more likely to be biologically relevant. These 173 

results collectively suggest that by using a set of contaminant-identification heuristics, 174 

our filters effectively retain a higher proportion of biologically relevant taxa while 175 

removing likely contaminants.  176 

Blood microbial signatures from healthy individuals reflect sporadic translocation 177 

of commensals  178 

We next determined the fraction of distinct, healthy individuals for which microbes could 179 

be detected (i.e., prevalence). Notably, the most prevalent microbial species, C. acnes, 180 

was observed in 4.7% of individuals (Figure 2a), suggesting that none of the 117 181 

microbes can be considered ‘core’ species that are consistently detected across most 182 

healthy individuals. Additionally, we did not detect any microbial species in most (82%) 183 

of the samples after decontamination (Figure 2b), whereas the remaining 18% of 184 

samples had a median of only one microbial species per sample. This low number of 185 

species detected per sample was not due to insufficient sequencing depth since there 186 

was a weak negative correlation between the number of confidently detected species 187 

per sample and the microbial read depth (Spearman’s ρ=-0.232, p<0.001). Furthermore, 188 

some samples containing no microbial species had a microbial read count of up to ~2.1 189 
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million (median=6,187 reads; distribution shown in Supplementary Figure 2). That is, 190 

even though a considerable number of reads were classified as microbial, they were all 191 

assigned to contaminant species. These results suggest that the presence of microbes 192 

in the blood of healthy and apparently asymptomatic individuals, as estimated by our 193 

detection methods, is infrequent and sporadic.  194 

Given past reports of bacterial translocation from the mouth32 or gut33 into blood, we 195 

asked if the microbes we detected could have originated from various body sites. To do 196 

so, we assigned potential body site origins to the 117 microbial species detected in 197 

blood based on microbe-to-body-site mappings extracted from the Disbiome 198 

database34. We found that many (n=59; 50%) of these confidently detected species are 199 

indeed human commensals that are present at various human body sites (Figure 2c). 200 

This, together with their low prevalence, suggests that the microbial DNA of these 201 

species may have transiently translocated from other locations in the body rather than 202 

being endogenous to blood. We further categorised the microbial species based on their 203 

growth environments (Figure 2d). A significant portion (n=42; 36%) of the species were 204 

obligate anaerobes or obligate intracellular microbes, atypical of skin-associated 205 

microbes that may be introduced during phlebotomy2, indicating that they are not likely 206 

to be sampling artefacts. All in all, the diverse origins of the microbes detected in blood, 207 

together with their low prevalence across a healthy population, is consistent with 208 

sporadic translocation of commensals into the bloodstream. 209 

Microbial presence in blood (i.e., bacteraemia) is typically associated with a range of 210 

clinical sequelae from mild fevers to sepsis. As such, we asked if the common microbes 211 

identified in patients with disease-associated bacteraemia are different from those 212 

detected in our cohorts of healthy individuals. To do so, we compared the prevalence of 213 

microbes detected in the sequenced blood samples against observations from 11 years 214 

of hospital blood culture records. The prevalence of microbial genera detected in the 215 

hospital blood culture records clearly differed from that in our sequenced blood 216 

samples, despite the overlap in detected taxa (Figure 2e). For example, while 217 

Staphylococcus, Escherichia and Klebisiella were the predominant genera identified in 218 

blood cultures, they were rarely detected in our blood sequencing libraries. These 219 

findings may be explained by the potentially higher virulence of pathogens detected in 220 
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the clinic, which are more likely to cause clinical symptoms in individuals that would 221 

result in exclusion during our recruitment process. Conversely, our findings suggest that 222 

the microbes detected in the blood of healthy individuals are potentially better tolerated 223 

by the immune system (e.g. Bifidobacterium spp.35 and Faecalibacterium prausnitizii36 224 

with immunomodulatory properties as gut commensals; Figure 2a).  225 

Evidence for replicating microbial cells but without community structure or host 226 

associations  227 

To better characterise the microbial DNA signatures detected in blood, we asked if they 228 

reflect the presence of viable microbial cells as opposed to circulating cell-free DNA. 229 

This is because the former would allow for complex microbe-microbe or microbe-host 230 

interactions that would be of greater and more direct clinical relevance. In contrast to 231 

previous approaches that used microbial cultures3,37, we looked for more broad-based 232 

evidence of live bacterial growth in by applying replication rate analyses21,22 on our 233 

sequenced blood samples. This approach is based on the principle that DNA 234 

sequencing of replicating bacteria would yield an increased read coverage (i.e., peak) 235 

nearer to the origin of replication (Ori) and decreased coverage (i.e., trough) nearer to 236 

the terminus (Ter)22. A coverage peak-to-trough ratio (PTR) greater than one is 237 

indicative of bacterial replication. Through this analysis, we found evidence for 238 

replication of 11 bacterial species out of the 20 that were sufficiently abundant to do this 239 

analysis (Figure 3a). The median-smoothed coverage plots of the replicating species all 240 

exhibited the sinusoidal coverage pattern (in black; Figure 3b) characteristic of 241 

replicating bacterial cells22. This contrasts with the even coverage patterns of three 242 

representative contaminants identified during the decontamination steps: 243 

Achromobacter xylosoxidans, Pseudomonas mendocina and Alcaligenes faecalis 244 

(Figure 3c). The Ori and Ter positions determined using coverage biases largely 245 

corresponded with an orthogonal method based on the GC-skew38 of bacterial 246 

genomes, suggesting that the replication rate analyses are reliable. Additionally, all but 247 

one of these replicating species are present in hospital blood culture records and in 248 

previous reports of bacteraemia39–48 (Figure 3a), indicating their ability to replicate in 249 

human blood. Overall, beyond the detection of microbial DNA, we present the first 250 

culture-independent evidence for replicating bacterial cells in blood.  251 
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Given the presence of live bacteria, we investigated if the microbial species detected 252 

showed patterns of microbe-microbe interactions as would be expected from a microbial 253 

community. To do so, we computed pairwise SparCC correlations49 between species, 254 

where positive and negative values indicate co-occurrence and mutual-exclusion, 255 

respectively. SparCC correlation is a reliable metric for assessing co-occurrence since it 256 

accounts for the sparse and compositional nature of microbial taxonomic profiles that 257 

confound standard correlation inference techniques49. We visualised SparCC 258 

correlations of the 117 microbial species confidently detected in blood sequencing 259 

libraries using network graphs, where each node is a species and each edge represents 260 

the co-occurrence/exclusion associations between two species (Figure 4a). We could 261 

not detect strong community co-occurrence/exclusion patterns, with most associations 262 

being weak (SparCC correlation<0.05), and only 19 pairwise associations exceeding a 263 

correlation value of 0.2, with four exceeding a value of 0.3 (Figure 4a). To determine if 264 

this result is a function of our stringent decontamination filters, we generated 265 

independent network graphs for the five adult cohorts before decontamination filtering 266 

and examined the co-occurrence/exclusion associations shared across cohorts. With an 267 

already lenient SparCC correlation threshold of 0.2, we identified no associations 268 

common to all the network graphs (Figure 4b), indicating that there were no consistent 269 

detectable microbial community associations in blood typical of microbiomes in various 270 

human body sites.   271 

Previous studies have demonstrated the use of blood microbial DNA as a biomarker for 272 

disease, demonstrating associations with cancer30, type II diabetes50 and periodontal 273 

disease51. In a similar vein, we investigated if the presence of microbes was associated 274 

with host phenotypes in our dataset. We first examined if microbes were detected more 275 

frequently in infants relative to adults. Given that the still-developing immune systems of 276 

infants puts them at greater risk of infection relative to healthy adults52, we reasoned 277 

that the prevalence of microbes in blood may differ within a birth cohort (GUSTO) 278 

relative to adult cohorts. Indeed, samples from GUSTO appeared to have a higher 279 

prevalence of microbes associated with most human body sites (Supplementary 280 

Figure 3a). This was in part, driven by genitourinary tract-associated microbes, 281 

Fannyhessea vaginae, Lactobacillus jensenii, Lactobacillus crispatus, Lactobacillus 282 
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iners, and Gardnerella vaginalis (Supplementary Figure 3b). Similarly, we found 283 

enrichment of gut-associated bacteria such as Bifidobacterium spp. in GUSTO 284 

(Supplementary Figure 3c). These findings suggest that bacterial translocation may be 285 

more frequent in infants relative to adults, though differences in sample collection 286 

(umbilical cord versus venipuncture) could also partially explain them.       287 

Next, we systematically tested for pairwise associations between eight host phenotypes 288 

that were documented on the day of blood collection and the presence of each of the 289 

117 microbial species detected in blood. These host phenotypes attributes were: sex, 290 

ancestry, age, body mass index (BMI), blood total cholesterol (TC), blood triglycerides 291 

(TG), systolic and diastolic blood pressure (SBP and DBP). Given the multiple large 292 

independent cohorts, we could perform statistical tests on each cohort separately, which 293 

allowed us to assess the consistency of identifed association patterns across the 294 

different cohorts. Since these cohorts were sampled from a homogenous population, 295 

true association patterns are expected to be detected repeatedly regardless of cohort. 296 

Using this statistical testing approach, we found only five significant microbe-phenotype 297 

associations (p<0.05; Supplementary Table 3) after adjusting for multiple comparisons. 298 

Notably, all but one of the significant associations were present in only one cohort. The 299 

exception was C. acnes, which was significantly associated with ancestry in two 300 

cohorts. However, while C. acnes was more prevalent in individuals of Malay ancestry 301 

within the SEED cohort, it was more prevalent in Chinese individuals within the MEC 302 

cohort (Supplementary Figure 4). These cohort specific differences could be due to 303 

other demographic variables that were not recorded in this study, or perhaps from C. 304 

acnes subspecies differences. To ensure that we did not miss any associations due to 305 

the possible non-linearity of host-phenotype and microbial relationships, we also derived 306 

categorical phenotypes based on the recorded phenotypic information. These include 307 

being elderly (age>=65), and other measures of ‘poorer health’, such as being obese 308 

(BMI>30), having high blood triglycerides (TG>2.3 mmol/L), high total cholesterol 309 

(TC>=6.3 mmol/L), or high blood pressure (SBP>=130 and DBP>=80). We then tested 310 

for pairwise associations between these derived phenotypes and the presence of any 311 

bacteria but found no significant associations (p>0.05; Supplementary Table 4). 312 

Collectively, these results suggest no consistent associations between the presence of 313 
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microbes in blood and the host phenotypes tested within a healthy population of 314 

individuals.   315 

Discussion 316 

We present the largest scale analysis, to date, of microbial signatures in human blood 317 

with rigorous accounting for computational and contamination artefacts and found no 318 

evidence for a common blood microbiome in a healthy population. Instead, we observed 319 

mostly sporadic instances of blood harbouring DNA from single microbial species of 320 

diverse bodily origins, some of which might be actively replicating. Our findings hint at 321 

the possibility that the bloodstream represents a route for movement of microbes 322 

between different body sites in healthy individuals. However, the low prevalence of the 323 

detected species suggest that this movement is likely to be infrequent and transient. 324 

Unresolved questions remain about how interconnected the microbiomes at various 325 

body sites are, and whether these processes are altered during disease or throughout a 326 

person’s lifetime. Can perturbations to the microbial community at one body site affect 327 

that at another site, and how does the host immune system asymptomatically regulate 328 

microbial presence in blood? Our study lays the groundwork for future investigations 329 

into these questions, which may pave the way for a systemic understanding of the 330 

human microbiome across body sites in relation to human health and disease.  331 

We found no core species in human blood on the basis of low prevalence across 332 

individuals in our population-level dataset. The prevalence estimates provided in this 333 

study are contingent on the sensitivity of detecting microbes through sequencing. 334 

Previous studies have shown that untargeted shotgun sequencing is highly sensitive for 335 

the detection of microbes in blood at a total sequencing depth of 20-30 million reads per 336 

sample53–55, perhaps even more so than culture-based methods56,57. In contrast, a 337 

median of 373 million reads was generated per sample for our sequencing libraries, 338 

suggesting that our methods do not lack sensitivity. Our prevalence estimates are also 339 

affected by the abundance thresholds used to determine whether a species is present in 340 

a single sample (i.e., abundance filter; Figure 1a). We defined these thresholds in terms 341 

of both absolute read count and relative abundance, which were determined based on 342 

simulation experiments (see Methods). Overly stringent abundance thresholds would 343 
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lead to the erroneous masking of genuine signals, leading to an underestimation of 344 

microbial prevalence. However, even when relaxing the threshold to just a relative 345 

abundance of 0.001, none of the species, whether flagged as a contaminant or not, had 346 

more than 52% prevalence (Supplementary Table 5). Furthermore, the 20 most 347 

prevalent species at this threshold are all environmental microbes, and mostly comprise 348 

of Sphingomonas and Bradyrhizobium species, which are known to be common 349 

sequencing-associated contaminants19. This suggests that independent of our 350 

decontamination filters, none of the species detected qualify as core members.   351 

In addition to not being able to detect any core species, we could not detect any strong 352 

co-occurrence or mutual exclusion associations between species regardless of whether 353 

our decontamination filters were applied. These associations generally reflect 354 

cooperation or competition between species, respectively58. Indeed, within a microbial 355 

community, metabolic dependencies of species and the ability of different species to 356 

complement these dependencies have been shown to be a key driver of microbial co-357 

occurrence59. On the other hand, competitive behaviours such as nutrient sequestration 358 

to deprive potential competitors of nutrients or producing adhesins to bind and occupy 359 

favourable sites in an environment60 can lead to mutual exclusion between species. The 360 

fact that we could not detect any strong associations therefore points to the absence of 361 

an interacting microbial community in healthy humans. Of note, since our dataset was 362 

derived from circulating venous blood, we are, in principle, not able to detect microbial 363 

interactions that may be occurring at other sites of the bloodstream such as the inner 364 

endothelial lining of blood vessels. Experiments investigating the adherence of bacteria 365 

to blood vessel linings may provide further insight into this.  366 

The availability of 11 years of blood culture records from the same country of origin as 367 

our blood samples enabled a reliable comparison of the prevalence of microbes in the 368 

healthy population and in the clinic. This is because the frequency of infections caused 369 

by different microbial species is known to differ from country to country61. Despite this, 370 

we expect that some of the variation in prevalence estimates may be due to the 371 

differences in detection methods. That said, previous studies have shown a strong 372 

concordance between culture and sequencing-based detection53,54,56,57, suggesting that 373 

the distinction between the prevalence of microbes found in healthy individuals and in 374 
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the clinic is not due to the differences in detection methods. Our results support the 375 

conclusion that microbial presence in blood (i.e., bacteraemia) does not always lead to 376 

disease. These results are consistent with our other observation that microbes detected 377 

in our cohorts of asymptomatic individuals tend to be commensals, which may 378 

inherently be less virulent and better tolerated by the host compared to disease-causing 379 

pathogens. Indeed, the long-standing co-evolution of humans and colonizing microbes, 380 

places a selective pressure against high virulence phenotypes in these microbes to 381 

maintain host viability62. Simultaneously, there is a selective pressure for 382 

immunomodulatory phenotypes in commensals to improve their fitness, evidenced by 383 

the wealth of immunomodulatory activities found in the gut microbiome63. This agrees 384 

with previous findings that colonisation by commensals modulate early development of 385 

the immune system64, which would allow a measured and regulated response against 386 

translocated commensals. By extension, the immunomodulatory properties of bacteria 387 

and their links to host tolerance to bacteraemia may be key factors in determining 388 

clinical outcomes. Perhaps, the presence (or lack) of these properties may determine 389 

whether an individual with bacteraemia is asymptomatic or septic. For example, 390 

abundant gut bacterial species such as Bacteroides spp. were not commonly detected 391 

in blood. Further exploration into the immunomodulatory activities of commensals vis-à-392 

vis common blood culture pathogens may be the key to design therapeutics to manage 393 

or prevent the dysregulated host response that defines sepsis1.  394 

We found no convincing associations between both measured (e.g. TC, SBP) and 395 

derived (e.g. obesity) host phenotypes with microbial presence. This suggests that the 396 

risk of transient microbial translocation, at least across our cohorts of healthy adults, is 397 

fairly consistent. In contrast, this risk may increase in individuals with more severe 398 

disease. In fact, variable microbial DNA profiles in blood have been used to delineate 399 

health and disease states. This has most prominently been shown for sepsis53–57,65, 400 

where the presence of viable microbes is expected, but also for cancer30, periodontal 401 

disease51, and chronic kidney disease66, which are unrelated to bloodstream infections. 402 

These studies highlight the promise of metagenomic sequencing of blood for developing 403 

diagnostic, prognostic, or therapeutic tools. Our characterisation of the species breadth 404 

in healthy individuals forms a crucial baseline for comparison with that in diseased 405 
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individuals. Indeed, our findings open new doors to understanding why and how blood 406 

microbial profiles correlate with health status. One possible hypothesis is that mucosal 407 

integrity is compromised in a disease state, leading to higher translocation rates of 408 

microbes into the bloodstream. This is consistent with findings of increased intestinal 409 

permeability (i.e., ‘leaky gut’) in disease or even during physiological stress67. Future 410 

studies testing this hypothesis may consider a focus on the gut-associated bacteria that 411 

were detected in our study (e.g. Bifidobacterium adolescentis, Faecalibacterium 412 

prausnitzii). Further experimental investigations into the mechanisms of microbial 413 

translocation and the modulatory effects of the microbiomes present at other body sites 414 

may shed light on the relationship between microbial presence in blood and health 415 

status.  416 

If we take the definition of a ‘microbiome’ as a microbial community whose member 417 

species interact amongst themselves and with their ecological niche9, our findings lead 418 

to the conclusion that there is no consistent circulating blood microbiome. Sporadic and 419 

transient translocation of commensals from other body sites into the bloodstream 420 

(Figure 5) is the more parsimonious explanation for the observation that most of the 421 

microbes detected are commensals from other body sites. Furthermore, the relatively 422 

low prevalence of microbes in blood suggests rapid clearance of translocated microbes 423 

rather than prolonged colonisation in blood. Based on these findings, we advocate 424 

against the use of the term ‘blood microbiome’ or ‘circulating microbiome’, which are 425 

potentially misleading, when referring to the detection of microbial DNA or of microbial 426 

cells in blood due to transient translocation events.   427 
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Methods 428 

Datasets 429 

Our sequencing dataset, also known as the SG10K_Health dataset 430 

(https://www.npm.sg/collaborate/partners/sg10k/), comprises of shotgun sequencing 431 

libraries of DNA extracted from the whole blood or umbilical cord blood of 9,770 healthy 432 

Singaporean individuals68 who were recruited as part of six independent cohorts. Whole 433 

blood for sequencing was collected via venipuncture from the five adult cohorts (median 434 

age=49; interquartile range=16): Health for Life in Singapore (HELIOS; n=2,286), 435 

SingHealth Duke-NUS Institute of Precision Medicine (PRISM, n=1,257), Tan Tock 436 

Seng Hospital Personalised Medicine Normal Controls (TTSH, n=920), Singapore 437 

Epidemiology of Eye Diseases (SEED, n=1,436)69,70, and the Multi-Ethnic Cohort (MEC, 438 

n=2,902)71. Additionally, cord blood was collected for the birth cohort Growing Up in 439 

Singapore Towards healthy Outcomes (GUSTO; n=969)72. Measurement of host 440 

phenotypes was performed on the day of blood collection, except for the GUSTO cohort 441 

where measurements were taken at a later timepoint when the children were at a 442 

median age of 6.1 (interquartile range=0.1). Using nearest neighbor approaches to 443 

reference genotypes73, individuals were broadly categorised into four ethnic categories 444 

representing distinct genetic ancestries: Chinese (59%), Malays (19%), Indians (21%) 445 

and Others (1%). All individuals were deemed healthy at the point of recruitment if they 446 

did not include any self-reported diseases in the recruitment questionnaires. All cohort 447 

studies were approved by relevant institutional ethics review boards. A summary of the 448 

cohort demographics and the ethics review approval reference numbers are provided in 449 

Supplementary Table 1.  450 

Additionally, we retrieved anonymised blood culture records from Singapore General 451 

Hospital, the largest tertiary hospital in Singapore. These records span the years 2011-452 

2021 and include aerobic, anaerobic and fungal blood cultures taken from 282,576 453 

unique patients. These blood cultures were ordered as part of routine clinical 454 

management, that is, when clinically indicated for the investigation of bacteremia or 455 

fungemia. Blood cultures were performed and analysed as per hospital standard 456 

operating procedures. In brief, blood samples were collected aseptically and inoculated 457 
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into BDTM BACTECTM bottles at the bedside (BDTM BACTECTM Plus Aerobic/F Culture 458 

vials Plastic [catalogue number 442023] for aerobic blood culture, BDTM BACTECTM 459 

Plus Anaerobic/F Culture vials Plastic [catalogue number 442022] for anaerobic blood 460 

culture and Myco/F Lytic [catalogue number 42288] for fungal blood culture). The 461 

inoculated bottles were transported to the diagnostic laboratory at ambient temperature 462 

and incubated in the BDTM BACTECTM FX Blood Culture System on arrival. Aerobic and 463 

anaerobic blood culture bottles were incubated for a maximum of five days, and fungal 464 

blood culture bottles were incubated for a maximum of 28 days. Blood culture bottles 465 

that were flagged positive by the BDTM BACTECTM FX Blood Culture System were 466 

inoculated onto solid media, and the resultant colonies were identified using a 467 

combination of biochemical tests and matrix assisted laser desorption ionization-time of 468 

flight mass spectrometry (MALDI-TOF MS) (Bruker® microflex LRF).  469 

Sample preparation and batch metadata 470 

DNA from whole blood was extracted using one of six different DNA extraction kits. 471 

Paired-end 151bp sequencing with an insert size of 350bp was performed up to 15-fold 472 

or 30-fold coverage of the human genome. Library preparation was performed using 473 

one of three library preparation kits. Sequencing was performed on the Illumina HiSeq X 474 

platform with HiSeq PE Cluster Kits and HiSeq SBS Kits. The type of extraction kits and 475 

library preparation kits used, and lot numbers for the SBS Kits, PE Cluster Kits, and 476 

sequencing flow cells used are provided as batch metadata. All reagent kits used, the 477 

number of batches and the number of samples processed per batch are provided in 478 

Supplementary Table 6. 479 

Data pre-processing and quality control 480 

The bioinformatic processing steps applied to the sequencing libraries are summarised 481 

in Figure 1a. Read alignment of sequencing reads to the GRCh38 human reference 482 

genome was already performed as part of a separate study68 using BWA-MEM 483 

v0.7.1774. We retrieved read pairs where both members of the pair did not map to the 484 

human genome. Following which, we performed quality control of the sequencing reads. 485 

We trimmed low quality bases at the ends of reads with quality <Q10 (base quality 486 

trimming) and discarded reads with average read quality less than Q10 (read quality 487 
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filter). We also discarded low complexity sequences with an average entropy less than 488 

0.6, with a sliding window of 50 and k-mer length of five (low complexity read filter). All 489 

basic quality control steps were performed using bbduk from the BBTools suite v37.62 490 

(sourceforge.net/projects/bbmap/).  491 

Taxonomic classification of blood sequencing libraries 492 

Taxonomic classification of non-human reads was done using Kraken2 v2.1.223 with the 493 

‘—paired’ flag. We used the PlusPF database (17th May 2021 release) maintained by 494 

Ben Langmead (https://genome-495 

idx.s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz), which includes archaeal, 496 

bacterial, viral, protozoan, and fungal references. Of all non-human read pairs, 72% 497 

were classified as microbial at the species level, yielding 8,890 species. Samples with 498 

less than 100 microbial read pairs were removed, resulting in a final dataset comprising 499 

8,892 samples, with a median microbial read-pair count of 6187.  500 

To minimise noise in the taxonomic assignments, we defined a set of abundance 501 

thresholds whereby species with abundance values less than or equal to these 502 

thresholds (i.e., relative abundance≤0.05, read pairs assigned≤10) were counted as 503 

absent (set to zero read counts). We performed simulations to systematically determine 504 

a relative abundance threshold that minimizes false positive species assignments. 505 

Sequencing reads were simulated using InSilicoSeq v1.5.475 with error models trained 506 

on the SG10K_Health sequencing libraries and processed using the same bioinformatic 507 

steps as per the SG10K_Health dataset to obtain microbial taxonomic profiles. We 508 

simulated 373 million reads equivalent to the median library read count of all samples, 509 

comprising reads from the GRCh38 human reference and ten microbial genomes 510 

(Yersinia enterocolitica, Leclercia adecarboxylata, Moraxella osloensis, Streptococcus 511 

pneumoniae, Pasteurella multocida, Staphylococcus epidermidis, Actinomyces 512 

viscosus, Torque teno virus, Human betaherpesvirus 6A, Candida albicans) at various 513 

proportions. Due to read misclassification, some of the simulated reads were 514 

erroneously assigned to another species and produced false positives. A final relative 515 

abundance threshold of 0.005 that delineated these false positive assignments from 516 

true positives was selected (Supplementary Figure 5). Relative abundances were 517 
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calculated by dividing the microbial read count in a sample by the total number of 518 

microbial reads assigned to that sample. 519 

Decontamination filters 520 

After application of the presence/absence filter, we identified and removed putative 521 

contaminants using established decontamination heuristics26 that have been validated 522 

in previous studies27,28, prior to our downstream analyses. These rules were applied 523 

using eight types of batch information: source cohort, DNA extraction kit type, library 524 

preparation kit type, and lot numbers for sequencing-by-synthesis kit (box 1, box 2), 525 

paired-end cluster kit (box 1, box 2) and sequencing flow cell used. Other batch 526 

information such as the pipettes and consumables used, or storage location and 527 

duration were not recorded and could potentially contribute to some level of batch-528 

specific contamination. However, these batches are expected to be correlated with the 529 

other types of batch information available, and so the resultant contaminants could in 530 

theory be accounted for using our filters. We describe the four decontamination filters 531 

used, as shown in Figure 1a, in sequential order: 532 

(1) Prevalence filter. A microbial species is considered a contaminant specific to a 533 

batch if it is present at greater than 25% prevalence in that batch and has greater 534 

than a two-fold higher prevalence than that for any other batch. Batches with less 535 

than 100 samples were excluded from this analysis. This filter is based on the 536 

principle that species which are highly prevalent in some batches but lowly 537 

prevalent or absent in others are likely contaminants26. We illustrate this for an 538 

example species in Supplementary Figure 6a.  539 

(2) Correlation filter. A microbial species is considered a contaminant if it is highly 540 

correlated (Spearman’s ρ>0.7) with any contaminant within the same batch, as 541 

identified by the prevalence filter. This filter is based on the principle that 542 

contaminants are highly correlated within the same batch26. Spearman’s ρ was 543 

calculated using centred log-ratio (CLR) transformed76 microbial relative 544 

abundances. CLR transformations and Spearman’s ρ were calculated using the 545 

clr function as part of the compositions package77 and cor.test function in R. We 546 
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illustrate this within-batch correlation for an example species in Supplementary 547 

Figure 6b. 548 

(3) Batch filter. A non-contaminant microbial species must be detected in samples 549 

processed by at least two reagent kit batches or reagent types. That is, any 550 

species that is only detected in a single batch for any of the reagent kits used 551 

(Supplementary Table 6) are considered contaminants. This filter is based on 552 

the principle that species that can be repeatedly observed across different 553 

reagent batches are more likely to reflect genuine non-contaminant signals26. 554 

Library preparation kit type was excluded from this analysis since only three kit 555 

types were used, with 86% of samples processed using one of the kits.  556 

(4) Read count filter. A microbial species is considered a sequencing or analysis 557 

artefact if it is not assigned at least 100 reads in at least one sample. This filter is 558 

based on the principle that species that are always assigned a low number of 559 

read pairs, never exceeding the background noise within sequencing libraries, 560 

are more likely to be artefactual rather than genuine signals. An example of an 561 

artefactual species is Candidatus Nitrosocosmicus franklandus, which was 562 

assigned at most 22 read pairs by Kraken2 across 21 sequenced samples.    563 

Characterisation of microbial species 564 

We classified microbial species as human-associated or not based on a published host-565 

pathogen association database78. In this database, host-pathogen associations are 566 

defined by the presence of at least one documented infection of the host by the 567 

pathogen31. For species that were not found in this database, we performed a 568 

systematic PubMed search using the search terms: (microbial species name) AND 569 

(human) AND ((infection) OR (commensal)). Similarly, species that had at least one 570 

published report of human colonisation/infection were considered human-associated. 571 

Additionally, we classified the potential body site origins for each microbial species 572 

using the Disbiome database, which collects data and metadata of published 573 

microbiome studies in a standardised way34. We extracted the information for all 574 

microbiome experiments in the database using the URL: 575 

‘https://disbiome.ugent.be:8080/experiment’ (accessed 26th April 2022). We first 576 
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extracted microbe-to-sample type mappings from this information (e.g. C. acnes�skin 577 

swab). We then manually classified each sample type into different body sites (e.g. skin 578 

swab�skin). This allowed us to generate microbe-to-body site mappings. Sample types 579 

with ambiguous body site origins (e.g. abscess pus) were excluded. The range of 580 

sample types within the Disbiome database used to derive the microbe-body-site 581 

mappings are provided in Supplementary Table 7. Finally, we classified microbial 582 

species based on their growth requirements, with reference to a clinical microbiology 583 

textbook79. Viruses were classified as obligate intracellular. The microbiological 584 

classifications for each species are provided in Supplementary Table 2. 585 

Estimating coverage breadth and bacterial replication rates 586 

We performed read alignment of sequencing libraries to microbial reference genomes 587 

using Bowtie v2.4.580 with default parameters. In total we used references for 27 of the 588 

117 microbial species detected in blood, comprising the 20 bacterial species with the 589 

highest number of reads in a sample, all fungal (n=2) and all viral species (n=5). For 590 

each species, we aligned the microbial reads of five sample libraries with the most 591 

reads assigned to that species, to the reference genome of that species. For each 592 

sample and microbial genome, the genome coverage per position was computed using 593 

the pileup function as part of the Rsamtools v2.8.0 package81 in R.  In principle, 594 

recovery of a larger fraction of a microbial genome provides a higher confidence that it 595 

is truly present in a sample24,25. We could recover at least 10% of the microbial 596 

genomes for 25/27 (93%) of the species. For the replication rate analyses, PTR values 597 

were calculated using the bPTR function in iRep v1.1.021, which is based on the method 598 

proposed by Korem et al.22. The Ori and Ter positions were determined based on the 599 

coverage peaks and troughs (in red and blue, respectively; Figure 3). Ori and Ter 600 

positions were also calculated using a cumulative GC-skew line, which is expected to 601 

be in anti-phase with the sinusoidal coverage pattern across the genome38 (in green; 602 

Figure 3). 603 

Microbial networks 604 

Microbial co-occurrence/mutual exclusion associations were computed using the 605 

SparCC algorithm49, implemented in the SpiecEasi v1.1.2 package82 in R and the 606 
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microbial networks were visualized using Igraph v1.2.983. We excluded the birth cohort 607 

GUSTO since it is of a different demographic that may possess a distinct set of 608 

microbial associations. 609 

Detecting associations between microbial taxonomic profiles and host phenotypes 610 

We tested for microbe-host phenotype associations within individual cohorts separately. 611 

For the two categorical host phenotypes, genetic sex and ancestry, we tested for 612 

differences in the prevalence of each microbial species between the different categories 613 

using a two-sided Fisher’s exact test (fisher.test function in R). For the continuous 614 

variables (age, BMI, TC, TG, SBP and DBP) we used a two-sided Mann-Whitney U test 615 

(wilcox.test function in R) to test for differences in the distributions of the variables when 616 

a species was present or absent. Benjamini-Hochberg multiple-testing correction was 617 

applied only after consolidating the p-values from both tests and for all cohorts using the 618 

p.adjust function in R. Statistical tests were only performed if a species was present in 619 

at least 50 samples in total. Separately, for derived phenotypes (i.e., being elderly or 620 

measures of ‘poorer health’), we used the Fisher’s exact test before applying Benjamini-621 

Hochberg multiple-testing correction. In all cases, samples with missing host 622 

phenotypes were excluded. 623 

Data analysis and visualisation 624 

All data analyses were performed using R v4.1.0 or using Python v3.9.12. Visualisations 625 

were performed using ggplot v3.3.584. Figure 5 was created using BioRender.com 626 

under an academic subscription. 627 

Data availability 628 

Requests for the sequencing data used in this study should be made through the 629 

National 630 

Precision Medicine (NPM) Programme Data Access Committee (contact_npco@gis.a-631 

star.edu.sg). The accession numbers for all genome references used are provided in 632 

Supplementary Table 8. 633 
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Code availability 634 

All custom code used to perform the analyses reported here are hosted on GitHub 635 

(https://github.com/cednotsed/blood_microbial_signatures.git).  636 
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NMRC/STaR/ 0026/2015, Lee Foundation and Tanoto Foundation);  666 

(6) The TTSH Personalised Medicine Normal Controls (TTSH) cohort (supported by 667 

NMRC/CG12AUG17 and CGAug16M012).  668 

The views expressed are those of the authors, are not necessarily those of the National 669 

Precision Medicine investigators, or institutional partners. We thank all investigators, 670 

staff members and study participants who made the National Precision Medicine Project 671 

possible. 672 
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Figure legends  678 

Figure 1: Decontamination results. (a) Summary of pre-processing steps and filters 679 

applied to taxonomic profiles (n=9,770 individuals) and the number of species retained 680 

after each filter. Pie charts showing the proportion of microbial species that are (b) 681 

human-associated, (c) common sequencing contaminants, and (d) detected in blood 682 

culture records, before and after applying the decontamination filters.  683 

Figure 2: Microbial signatures in human blood from healthy individuals. (a) Bar 684 

chart showing the prevalence of the top 50 confidently detected microbial species in all 685 

8,892 blood sequencing libraries. (b) Histogram of the number of microbial species per 686 

sample. (c) Bar chart of the human body sites that the 117 confidently detected species 687 

are associated with, as determined using the Disbiome database34. Species are 688 

classified as ‘multiple’ if they are associated with more than one body site and classified 689 

otherwise if they are only associated with a single body site. (d) Piechart showing the 690 

microbiological classification of the 117 confidently detected species. (e) Bar chart 691 

showing prevalence of genera in blood culture records and in the blood sequencing 692 

libraries before and after decontamination. 693 

Figure 3: Evidence for replicating bacteria in blood samples from healthy 694 

individuals. (a) Summary statistics for samples where bacterial species were deemed 695 

to be replicating using iRep21 (i.e., peak-to-trough ratio (PTR)>1). The number of reads 696 

assigned to the species by Kraken2 23, the possible body sites the species are 697 

associated with, whether they were previously reported in published studies of 698 

bacteraemia, the overall prevalence of the species across all 8,892 individuals in our 699 

study and the calculated PTR values, are indicated. Coverage plots of (b) three 700 

representative confidently detected species and (c) three representative contaminant 701 

species, showing the expected patterns of Ori to Ter coverage skew only where 702 

expected i.e. confidently detected species.  703 

Figure 4: Microbial co-occurrence networks. (a) SparCC49 co-occurrence networks 704 

computed from all samples with at least two microbial species following 705 

decontamination at different SparCC correlation thresholds (0.05, 0.2, 0.3). Only 706 

associations with a magnitude of SparCC correlation greater than the respective 707 
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thresholds are retained. (b) SparCC networks for individual cohorts at a correlation 708 

threshold of 0.2. No co-occurrence associations were retained after taking the 709 

intersection of edges between all cohort networks. For (a) and (b), each node 710 

represents a single microbial species, and each edge a single association between a 711 

pair of microbial species. Edge thickness is scaled by the magnitude of correlation. The 712 

number of samples used to compute each network and the correlation thresholds used 713 

are annotated. Positive and negative SparCC correlations are indicated in green and 714 

blue respectively.  715 

Figure 5: Potential models for microbes in blood. Our findings suggest that there is 716 

no consistent circulating blood microbiome (i.e., the blood microbiome model). The 717 

more likely model is where microbes from other body sites transiently and sporadically 718 

translocate into blood. Created with BioRender.com under an academic subscription. 719 
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