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Abstract

Variables of bacterial division such as size at birth, growth rate, divi-
sion time, and the position of the septal ring, all vary from cell to cell.
Currently, it is unknown how these random fluctuations can combine to
produce a robust mechanism of homeostasis. To address this question,
we studied the dynamics of the cell division process from both experi-
mental and theoretical perspectives. Our model predicts robustness in
division times as sustained oscillations in metrics of the cell size dis-
tribution, such as the mean, variability, and the cell size autocorrela-
tion function. These oscillations do not get damped, even considering
stochasticity in division timing and the cell size at the beginning of the
experiment. Damping appears just after inducing stochasticity in either
the septum position or the growth rate. We compare the predictions
of the full model with the size dynamics of E. coli bacteria growing in
minimal media using either glucose or glycerol as carbon sources. We
observe that growth in poorer media increases the noise in both parti-
tioning position and growth rate. This additional noise results in oscil-
lations with more damping. Although intracellular noise is known as a
source of phenotypic variation, our results show that it can play a similar
but subtler role in maintaining population-level homeostasis by causing
rapid desynchronization of cell cycles..

Introduction

To achieve proper function, cells must maintain stability in their
physiological variables. To maintain this stability, also known as
homeostasis, they must synchronize all self-regulating processes
[1-4]. Recently, great effort has been made to understand cell
size homeostasis [5—7]. However, some questions remain open.
For example, it is unclear how the molecular mechanisms that
maintain size homeostasis work together despite showing ran-
dom fluctuations [8].

Recent studies predict that precise control of growth and di-
vision processes in exponentially growing cells can lead to os-
cillations in cell size autocorrelation function (ACF) [9]. These
oscillations can be related to a synchronization of the cell cy-
cle for cells that descend from a common ancestor [10]. This
synchronization could, in turn, affect size-dependent variables
such as protein concentration [11,12]. Thus, precise size con-
trol comes with a dilemma: In terms of maintaining homeostasis,
it would be best for the cell to have a growth and division cycle
as reliable as possible, but if this cycle were deterministic (per-
fect control), the cells in a clonal population would be correlated
at any longer times. This would mean that the growth medium it-
self would have periodic fluctuations in concentrations occurring
at relevant timescales for metabolic control as the synchronized
population grows and divides.

Of course, this is not what is observed experimentally: cell
growth and division are inherently stochastic processes [11,
13-15]. This randomness leads to rapid desynchronization of
cell cycles [9]. To determine exactly how the different sources
of stochasticity affect this desynchronization, we developed a
stochastic model based on a continuous division rate [9, 15-19]
and describe the stochastic process of cell growth and division
that incorporates different sources of noise. At the same time,
we have experimentally observed the size dynamics of hundreds
of E. coli bacteria in Mother Machine microfluidic devices [20] us-
ing minimal media with different carbon sources. We observed
damped oscillations with the amount of damping depending on
the richness of the medium.
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Figure 1: Schematic model, the main strategies of division and
Mother machine. A. The division is modeled as a stochastic process
that occurs after the completion of M stages. During division, the cell
resets the stages to zero. The transition rate between any stage m to
m+1is kys™ where kq is a constant, s is the cell size, and A > 0 is an
exponent. During the stages, the cell grows exponentially with a growth
rate . During division, the cell size s is halved. B. Depending on A,
different division rules can be defined. A — 0 describes the timer where
cells, on average, wait a given mean time to divide. A = 1 describes the
adder where cells add, on average, a given size to divide. A — oo
describes the sizer where cells, on average, divide at a given mean
size. C. In the Mother machine microfluidic device, bacteria are trapped
at the bottom of a dead end channel (mother cells). Their descendants
are discarded (gray).

In the first part of this article, we present a theory that predicts
the oscillations in the cell size ACF. We will also explain how to
add some biologically essential variables. These variables can
be the division strategy [16,21] and a number of cycle stages
to trigger division [8, 15]. And we show how other sources of
noise, such as fluctuations in the growth rate [14] or randomness
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in the position of the septum ring [22, 23] can damp these oscil-
lations. We then present observations of this damping in the ex-
periments mentioned earlier. We end with a discussion of some
consequences of this phenomenon.

Modeling size dynamics with stochastic-
ity in division timing
In this section, we revisit a known model that describes division

as a time-continuous stochastic process [9]. Later, it will be nec-
essary to add the relevant sources of noise.
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Figure 2: Main variables used for describing the cell size dynam-
ics. A. Schematic kymograph of cell size over time. After each divi-
sion, one of the descendants cells is discarded (gray), while the other is
tracked (yellow). The partitioning ratio b, the ratio between the size of
the daughter cell and its mother just after division, is a random variable
i.i.d. chosen from a beta distribution with a given coefficient of variation
CV2(b). We also show b for some cycles. B. Cell size measurements
(dots) can be fitted to an exponential function of time (line). C. Division
is triggered when the cell completes a fixed quantity M of cycle stages
(in this case M = 5, dashed line). D. During each cycle, we assume that
the growth rate p is constant and is a random variable i.i.d. chosen from
a gamma distribution (left) with a given coefficient of variation CV?(u).

Growth and division as continuous-time pro-
cesses

As presented in Figure 1A, we asume that a cell has size s that
elongates exponentially over time t:

ds
— = , 1
il e (1)

with a growth rate p (or equivalently, with a doubling time 7 =
In(2)/ ).

As we present in Figure 2A, after each division, one of the
two descendants cells is randomly discarded (gray) and the other
(yellow) is continuously tracked. This is what we observe in our
experiments using the Mother Machine microfluidic device (see
Figure 1C) [17,18,24].

If the size is perfectly halved during division, the cell size s(n; t)
after n € N divisions at time t is [25]:

_ Ssoexp(ut) S27

s(n;t) on on

: @)

where s is the initial cell size, that is, the cell size at t = 0.

Once the growth conditions are defined, the next process to
describe the size dynamics is division regulation. Recent models
suggest that division is triggered after the occurrence of M € N
intermediate steps that represent the cycle stages [8,15,26]. Let
m € {0,1,---, M} be the current cycle stage of the cell (see
Figure 1A and Figure 2C). The transition rate h(s) from state m
to m+ 1 can be modeled as proportional to a power of s [15,18,
19,27]:

h(s) = kyqs™, 3)

where kg is a constant and s satisfies (2). A > 0 is a parameter
that defines the division strategy, which is a concept that we will
explain later.

Let Pn, n(t) be the probability that the cell completes m cycle
stages and n divisions up to time t. This probability can be esti-
mated using the rate (3) using a master equation [9]:
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where Py, = Py .1 (see Figure 1A). This is given since dur-
ing a division (when m reaches M), m is reset to zero and n
increases by 1.

The division strategy

Consider that the cell starts exactly after one division, that is, at
m = 0 and the division counter is set to n = 0. sy can take any
arbitrary value sp, also known as the size at birth. Following the
methods explained in previous studies [9], the probability density
p(sq|sp) of the size at division sy, given the size at birth s, in a
cell cycle, satisfies:

p(Salsp) = (5)

A—1 (ﬁ(s’\ — sA)) .
KaSy LSS px\2d T Sb
( p )exp{ px(% S")} (M=)

Defining the added size before division A = sy — sp, we ob-
serve that if A\ = 1, (5) reduces to a gamma distribution for the
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variable A. The mean value (A) is independent of the size at
birth sp, but is related to p, M, and k4 by the expression [18]:

(D) = Mkﬁ. (6)
d

This property, where the mean added size (A) does not de-
pend on the size at birth s, defines the adder division strat-
egy [17,21,24]. Other strategies (see Figure 1B), such as the
sizer (a slope of -1 in A vs. sp) can be obtained at the limit
A — oo. The timer strategy (a slope of +1 in A vs. sp) is
obtained in the limit A — 0, while intermediate strategies such
as the sizer-like (a slope between -1 and 0), observed in slow-
growing bacteria [21, 22, 28] are obtained with 1 < A < oo, and
timer-like strategies (a slope between 0 and 1), found in bacteria
such as C. crescentus [29], are obtained when 0 < A < 1. It
is worth mentioning that there are other possible explanations for
the origin of sizer-like strategies [8, 28, 30] that cannot be easily
coupled with this theoretical framework.

Given the division strategy, we define s, roughly as the av-
erage size at birth when the division process reaches stability
(technical details are discussed in [9, 18]). After normalizing all
cell sizes by s, we can compare this theory with experiments.

Oscillations in central moments of size distribu-
tion after synchronization

To calculate the probability density p(s|t) of having cell size in the
interval (s, s+ ds) at time t, for simplicity, we assume that all cells
started at t = 0 with size sy. This corresponds to the PDF of the
initial cell size:

p(s|t =0) = d(s — sp), (7)

with d(x) being the Dirac delta distribution.
The probability P,(t) that the cell has divided ntimes up to time
t is obtained by the marginal sum:

Palt) = Y Pmnlt). (8)

Using (7) and (4), p(s|t) is given by the following:

e t
pllt.so) =Y 0 <s -5 > Pa(t): ©)
n=0

PDF (9) corresponds to the sum of the weighted Dirac delta
distributions d(x) with positions centered on the sizes (2). The
expected value (s) of the cell size and its variance var(s) follow:
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Figure 3 shows some examples of the mean size trajectories
(s) and the size variability CV2(s) = var(s)/(s)? for different total
stages M and division strategies A in (3) under the initial condi-
tion Ppms(t = 0) = d,005,0 With 6;; being the Kronecker delta.

Figure 3 shows the predictions obtained by solving (4) nu-
merically. The results of Monte Carlo simulations (SSA) in five
thousand cells are also presented. Note that oscillations appear

when additional division steps M > 1 are considered. These os-
cillations are robust and do not decay over time. As discussed
in previous articles, these oscillations appear as a result of the
symmetry properties of the system [9,10,31].

Currently, there is no way to accurately measure how many
cycle stages m a cell has completed. To overcome this issue,
as presented in Figure 4, we can take advantage of the indepen-
dence of the cycles and the robustness of growth and the rates
of division in steady growth. In this way, we can manually syn-
chronize all the trajectories so that the cells begin their dynamics
approximately just after some arbitrary division (Figure 4B and
Figure 4C). This technique has previously been used by other
researchers [20,28]. Thus, we can start with the assumption of
m(t = 0) = 0 such as Ppp(t = 0) = Omodno and compare the
experimental trajectories with those observed in Figure 3.

Additional sources of noise

Until now, we have shown how to estimate the cell-size distribu-
tion considering stochasticity coming only from the division tim-
ing. Figure 3 shows how the main prediction is that moments
show robust oscillations over time. In this section, we will show
how to add other sources of noise and observe how they affect
the dynamics of the moments of the cell size distribution.

The heterogeneity of starting size

In general, cells do not start their cycles with the same size s in
(7). Let p(so) be the PDF of the cell size at t = 0; thus, the PDF
p(s) at an arbitrary time follows:

t, So)

p(slt) / dsop(So)p(s

o) ut
/ dsop(so) lch(s— > )P,-u)]. (11)
i=0

Figures 5A and 5D show how the oscillation amplitude of the
central moments of the cell size is lower than the amplitude ob-
tained considering a specific size (7). This occurs because the
terms in the sum (11) are out phase. If the initial noise CV?(sy) is
high enough, the oscillations disappear and the system evolves
into a steady-moment distribution. The noise level, that is, the
noise around which the dynamics oscillates, does not change.
This means that CV?(s;) does not contribute to CV?(s).

Noise in partitioning position

If we consider that the cells are not exactly divided by half as
assumed in (2). As explained in Figure 2A, we can implement
simulations by, after each division, multiplying the size times a
random variable b with (b) = 0.5 and variability CV?(b) > 0.
Using a process similar to (2), we can conclude that the size
after n divisions at time f follows [9]

s(n,t) = soe’”Hb,-. (12)
i=1

Phenomenologically, b can be approximated to a beta-distributed
variable with variance measured from experiments [23].

Figures 5B and 5 E show the mean size (s) and the cell size
variability CV2(s) over time considering noise in the splitting po-
sition CV2(b). With increasing CV?(b), the oscillation becomes
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Figure 3: Theoretical dynamics of the size distribution central moments for different division strategies A € {1,2,0.5} and division steps
M € {1,10}. A,, B. and C. Mean cell size (s) as a function of time t. s is measured in units of expected size at birth 5, and t is measured in terms of
the doubling time 7. D.,E. and F. Fluctuations in cell size CV?(s) as a function of time. Solid line: Numerical solution of (10) through integration of (4).
The shaded region corresponds to the 95% confidence interval of the simulations of five thousand cells. (Parameters: j = In(2), so = 1, CV?(sp) = 0.
kyis selected as s, = 1. For A = 1, kg = MIn(2); for A = 0.5, kg =~ 0.84M; and for A = 2, ky =~ 0.46M).
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Figure 4: Single cell size trajectories as function of time. A. Exam-
ple of an experimental trajectory (dots) and exponential fit (solid line).
B. Multiple trajectories in which the size after the most recent division is
highlighted with a point. C. These size trajectories are synchronized so
that they start from their most recent division. After synchronization, the
mean size, represented by the black line, now exhibits oscillations.

more damped and the steady mean size decreases. As dis-
cussed in [9], the steady mean size can decrease, since the
noisier the splitting, the more likely it is to have small cells. The
cycles of these small cells last longer, given the exponential na-
ture of growth. Therefore, these cells are overrepresented in a
random population. Regarding fluctuations in cell size, the in-
crease in CV2(b) also increases CV?(s), as suggested by other
authors [23].

Cell-to-cell noise in growth rate

Assume that cells do not grow at the same rate p as explained
in (1). Instead, as explained in Figure 2D, suppose that after
a division j, a cell grows during that cycle with rate p;, being an
i.i.d. variable from a distribution centered on y and noise CV?2(11).

We neglect the correlation in growth rate for successive cycles
[20, 23, 32] or the correlation with other variables such as size
at birth [32]. Numerically, we modeled these 1 as independent
gamma-distributed variables centered on the mean growth rate
(1), using the variance observed experimentally. Returning to
the noiseless splitting regime, the size s at time t after n divisions,
each occurring at instant # is now:

n—1
S
sin.t)= 2, (Hexp (i(tje1

- 17))) exp (tn(t — t))  (13)
j=0
Figures 5C and 5F show the effect of increasing CV?(u) while
keeping the ratio k;/ 1 constant. That is, once the division rate k
cannot be measured a priori, it is selected to be proportional to
the growth rate. As a main result, we observed that the central
moments of the size distribution exhibit damped oscillations, but
CV?2(u1) does not affect the main level of CV2(s). This observa-
tion was already observed in recent studies [15].

Cell size autocorrelation Function (ACF)

The autocorrelation function (ACF) tells us about the relationship
between the cell size at a time t and its own size after a time
t + . To estimate the ACF, we first make sure that the size dis-
tribution moments are steady and do not oscillate over time. For
simulations, we collect data from cells starting from a noisy size
distribution CV?(s;) ~ 0.2 after they reach stationary moments.
Experimentally, as can be seen in Figure 4B, if the size trajecto-
ries are not synchronized, the distribution moments do not show
oscillations (see also Figure S1).

Setting t = 0 at 2 h after imaging acquisition (see Figure S1)
and knowing the size s;(t) of the cell / at a time t, ACF ~(t') is
estimated using the formula:

= [(500) — (SO (si(t) — (s(t)
7‘”'2,:< Vars o] >< var[s(t’)])) 9
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Figure 5: Effects of some sources of noise in the size distribution moment dynamics. A.,B. and C. Mean size as a function of time. Cell size is
measured in units of 55, the mean size at birth. D., E. and F. Cell size fluctuations measured by the square coefficient of variation CV?(s) = var(s)/(s)?.
The line width represents the 95% confidence interval of simulations (Parameters: 10000 cells, M = 20, i = In(2), kg = 20/n(2). To study THE noise
in the initial size, we consider initial sizes as gamma-distributed variables with mean (so) = 1 and specified CV?(sp). To study noise in partitioning
position, we consider the partitioning ratio b, the ratio between the size of daughters and mothers cells, as a beta-distributed variable with mean
(b) = 1/2 and specified CV2(b). To study the noise in the growth rate, we consider the growth rate 1 as a constant per cycle and an i.i.d. variable
selected from a gamma distribution with mean (1) = In(2) and specified CV?(1). The corresponding division rate kg is also selected for each cycle,

Mkg

such as o

=1)

In the models, neither (s) nor /var(s) depend on time. However,
as we shall discuss later, in the experiment, these moments do.
However, the ratio var(s) /(s)? is robust, justifying the use of (14).

Experiments

To observe how oscillations in cell size moments behave in na-
ture, we performed experiments on a Mother Machine microflu-
idic device (Figure 1C). We tracked the size dynamics of E. coli
cells in minimal medium with two different carbon sources: glu-
cose (2179 cells), a medium in which cells exhibit a strategy
adder (A = 1) and glycerol (665 cells), where the division strategy
is sizer-like (A = 1.5) [18,33]. Single cell trajectories were syn-
chronized with their most recent division, as explained in Figures
4B and 4C Details of the experiment can be found in Supplemen-
tary Information.

Once ) is adjusted from the division strategy graph (A) versus
Sp, the number of division steps can be estimated from the added
size noise [18]. The division rate ky can be estimated from the
mean growth rate p and the formula (6) or, if a general division
strategy is considered, we fit the mean size at birth (s;,) with s,.
Variability in sy was measured experimentally.

We assume no correlation between these random variables
except the growth rate p and the division rate ky. Although we
try to avoid adjudicating on a specific biochemical mechanism,
the most probable interpretation of kg is the rate of synthesis of
the FtsZ polymer [8]. On the other hand, w is precisely the mean

rate of protein synthesis. If we consider the absence of correla-
tion between p and kg, the mean size dynamics appears to be
strongly damped compared to the oscillations observed in the ex-
periments and shown in Figure 6. For simplicity, we assume that
 and kg are proportional.

Figure 6 shows the comparison between the dynamics of the
predicted moments considering only noise in timing and initial
size (black dashed line) and the experimental findings (green
dots). In other words, we set CV2(u) = CV2(b) = 0. Although we
found oscillations in the central moments of the experimental cell
size histogram, these oscillations are damped. To adjust these
trends, we will next include additional sources of noise.

We selected cycles with an excellent fit to exponential growth
(R? > 0.9) to estimate CV?(u) and CV?(b). Supplementary in-
formation (Table S2) presents the trends of these variables. After
using the measured values in our model, we observed that the
resulting oscillations should be more damped than the observed
ones. We will discuss the origin of this discrepancy later. To
overcome this issue, we fitted other parameters. The CV?(b)
was estimated from the level of CV?(s) as explained in Figure
5E and CV2(y) from the damping of the oscillations in CV?(s) as
observed in Figure 5F.

After the carbon source was changed to glycerol, we observed
a higher level of noise. In our theory, this implies more damped
oscillations and an increase in CV2(s) to a value higher than that
predicted with simple noise (4), as shown in Figure 6E.
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Figure 6: Robustness of the oscillations in the moments of the size distribution A. Mean cell size, B. Cell size fluctuations, C. Cell
size autocorrelation function (ACF), as functions of time for E. coli bacteria growing in minimal media with glucose as carbon source.
D. E. and F. same as A., B. and C. but for cells growing in minimum medium with glycerol as the carbon source. The experimental
results are shown by green dots with error bars representing the 95 % confidence intervals. The black dashed lines show the results of
numerical solutions that used only noise in the cycle timing and initial size. The pink lines are the result of simulations with parameters
fitted to the data. The width of the pink line also represents the 95% confidence interval of the simulations. ‘s, is the average cell size
at birth. The parameters used to fit the experiments are shown in supplementary information.

Our measurements suggest that although the growth rate did
not change significantly during the experiment (see Figure S1B in
Sl), the mean cell size increased approximately 10% during the
entire time lapse. A possible cause might be that the time after
cell insertion was not long enough for the cells to finish adapting.

In Figure 6C (glucose) and Figure 6F (glycerol), we present
the comparison between the experimental ACF ~(t') obtained
using (14) from simulations. We observe that the ACF in the
experimental data is slightly higher than the one predicted by
the simulations, but shows a similar damped oscillatory pattern.
The difference may be due to the correlations between variables
for successive cycles (not considered in the simulations) and the
mean cell size increasing over time.

Discussion

Cell size regulation models based on division rates are not well
understood due to limited mappings to experimental results of
cell size dynamics [9]. Here, considering that division is an
stochastic process that occurs at a rate proportional to a power
of the size, we explore its implications for division control. As
noted previously [18,27] this model can reproduce most known
division strategies, that is, the relation between the added size
(A = sy — sp) and the size at birth (sp).

We modeled the dynamics of the size distribution of a pop-
ulation of independent cells. After the cell size trajectories are
synchronized starting from their most recent division, our model
predicts oscillations at the central moments of the cell size and

the cell size autocorrelation function (ACF). These oscillations
are robust even considering stochasticity in the timing of division
and the initial cell size. Experimentally, although the oscillations
are evident, they are damped. From our theory, we found this
damping after considering additional noise sources (noise in both
division position and growth rate).

If we do not consider any correlation between the division rate
constant k4 in (3) and the growth rate i in (1), we observe that
the oscillations should be strongly damped. Since the damping
was slight, we assume that ky and . are proportional. A possible
justification is that ky is related to the rate of accumulation of a
molecule (such as FtsZ) to trigger division [8] and that there is
generally a relationship between protein synthesis and growth
rate [34, 35].

Another intriguing effect shown in Figures 6A and 6D is that
the average cell size increases despite the fact that the average
growth rate remains constant. This is probably because the cells
did not recover fully from insertion into the microfluid. We can
obtain a better fit to the data if it is assumed that ky changes
over time (see Figure S3 in Sl). The non-constant ky is surprising
because it implies that cells can reach a steady growth rate (u)
before stability in division ky. Additional research on these non-
stationary processes, for instance, the size variation in changing
environments such as the growth curve [36, 37] or other kind of
controlled growth conditions [38], can give us more details about
the relationship between the variables of the size dynamics.

We observe how size control is altered after increasing the
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level of noise in biochemical processes inside the cell as a re-
sponse to stress. In our case, this stress can increase when
bacteria are allowed to grow in a poor nutrient medium (M9 +
glycerol) [39]. In this medium, there is an increase in noise both
in growth rate and in partitioning position. As an effect of this
noise increasing, we predict that the oscillations in the cell size
moments should be more damped. Additional experiments can
further study our hypothesis. Using mutant bacteria with greater
variability in the position of the septum, for example, bacteria
with a mutation in the Min system [40], can quantify the effect
of noise in the split position without changing other biochemical
noise. Another option may be to adjust the noise in gene expres-
sion by adapting the bacteria to a minimal medium [41,42]. For
example, a strain adapted to growth medium in glycerol as a car-
bon source could exhibit less noise in gene expression and thus
less damped oscillations.

Although we observe this desynchronization in the cell cycles,
the observed damping is less than expected from the measured
noises in both the splitting position and the growth rate. This
suggests that there are additional hidden mechanisms to control
the timing of the cycle. Some of them can include correlations
between growth rate and size at birth (see supplementary infor-
mation), as recently reported [32], mechanisms associated with
chromosome replication to trigger division [43, 44], or other hid-
den variables relative to environmental conditions or intrinsic fac-
tors of each particular lineage [45]. We expect to face this more
complex approach in future research.

Some researchers have shown that gene expression noise
can be helpful in cells as a source of variability in phenotypes
[46—48], and that the resulting diversified strategies (bet hedging)
can be advantageous from an evolutionary perspective [49, 50].
Our results hint at a subtler but related advantage of intracellu-
lar fluctuations. By causing rapid desynchronization of the cell
cycles of sister cells, they can maintain population-level homo-
geneity in metabolic rates, which could help maintain homeosta-
sis. The impact of this size regulation on cell proliferation will
be part of the study in future articles. Some additional variables
must be incorporated into the model, such as the correlation be-
tween cell lineages [51]. Therefore, it is not yet clear whether this
result will become an evolutionary advantage.

Determining the underlying mechanisms in division control al-
lows us to understand not only cell growth, but also signaling
within cells, which depends on concentrations [52]. These con-
centrations can fluctuate depending on the timing of cell division
and its variability [23,53]. Therefore, having an accurate stochas-
tic model of cell division is essential to predict phenotypic variabil-
ity and control intracellular circuits. Specifically, some of these
applications included recently proposed frameworks for gene ex-
pression analysis [4,54] and cell lineage analysis of experimental
data from proliferating cell populations [55, 56].

Supplementary Information (SI)

Sl Datasets The data set and the script used for the data analysis
can be found online [57] (https://doi.org/10.5281/zen0do0.691769)
and (https://github.com/canietoa/SizeDynamics).

Sl Movies We present the dynamics of cell distribution in the
supplementary videos1 and video2.

Strain All strains used in this study are Escherichia coli k-12
MG1655 background [58].

Plasmid construction We obtained a plasmid with GFP-mut2
under the promoters pNac or pRpoD from the Uri Alon Plasmid
Library [59] and we modified the plasmid to insert a constitutive
RFP promoter, induced by RNA1, as a segmentation marker. As
a backbone, we used the pUA66 plasmid from the Uri Alon library
[59] and linearized it with a Bglll restriction enzyme -Thermo sci-
entific. The insert, the constitutive marker mCherryKate2, was
then amplified from the DHL60 strain from the Paulsson Lab at
Harvard Medical School using colony PCR. The final assembly
was performed using the Gibson assembly protocol of New Eng-
land BioLabs.

Growth media Defined medium was used in all experiments.
For Escherichia coli, we used M9 minimal medium [60] with dif-
ferent carbon sources, glucose or glycerol, as shown in Table S1.

Table S1: M9 medium details.

Components Concentration
Disodium Phosphate 48 mM
Monopotassium Phosphate 122 mM
Sodium Chloride 8.6 mM
Ammonium Chloride 18.7 mM
Magnesium Sulfate 1 mM
Calcium Chloride 0.5 mM
Glucose (Glycerol) 0.2%
Kanamycin 25 pl/ml
BSA 0.5 mg/ml
pluronic F108 0.8 g/l

Cell preparation. Before each time-lapse image, cells were
selected from a single colony on an agar plate that was streaked
no more than 7 days prior to use. Cells were inoculated in M9
with selection antibiotics; in our case, kanamycin 25 ul / ml. After
12-18 hours at 37 ° C on a water bath shaker, cells were diluted
1,000-fold into 2 mL of the same defined medium as that used in
the microfluidic experiment. After shaking at 37°C in a water bath
until OD600 = 0.1-0.4, cells were diluted again 100- to 1,000-fold
into the same medium and shaken at 37 °C in a water bath until
0OD600 = 0.2. The cell culture was then concentrated 10- to 100-
fold and injected into a microfluidic device Mother Machine via a
micropipette with gel loading tips. Furthermore, 0.5 mg / ml BSA
-Bovine serum albumin, Gemini Bio Products, CA- was added to
the fresh growth medium to reduce cell adhesion to the surface
of microfluidic channels. The medium was then added to 60 ml
plastic syringes -BD- and flowed using a syringe pump with a flow
of 30 w//min for time-lapse imaging. All imaging experiments
were conducted at 37 °C in an environmental chamber.

Microfluidics Mother Machine microfluidic devices were used
to monitor single cell growth for 12-20 generations. Master
molds, from each of which many PDMS microfluidic devices were
cast, were manufactured using standard nanofabrication tech-
niques (detailed protocols are available in “The Mother Machine
Handbook” from the Jun lab website at http://jun.ucsd.edu and
a video at http://www.youtube.com/watch?v=RGfb9XU500w),
courtesy of the Paulsson lab.

PDMS was prepared from a Sylgard 184 Silicone Elastomer
kit: polymer base and curing agent were mixed in a ratio of 10 to
1, air bubbles were purged in a vacuum chamber, the degassed
mixture was poured over the master, and the devices were cured
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Figure S1: Measured variables of size regulation A. Cell size and size variability CV?(s) as a function of time for M9 + glucose (left)
and M9 + glycerol (right). B. Mean growth rate and its variability CV2 (i) as a function of time for M9 + glucose (left) and M9 + glucose
(right). C. Histogram of the partitioning ratio b and the relationship between growth rate x and size at birth s, for M9 + glucose (left)
and M9 + glycerol (right). Different colors represent the two replicas taken for each growth condition.

for about 1h at 90°C. Cured PDMS has a rubber-like consistency
that allows devices to be peeled manually from the master mold.
Devices were treated with Isopropyl Alcohol to remove residual
uncured polymer from the PDMS matrix.

To bond the PDMS layers, the surfaces were exposed to oxy-
gen plasma for 15 seconds at 30 watts in a Harrick Plasma sys-
tem. Oxygen plasma makes exposed PDMS and glass reactive,
so that covalent bonds form between surfaces brought into con-
tact with one another. The seal between the PDMS surfaces was
established for 10 minutes at 65 °C.

Microscopy and image acquisition. An inverted Nikon
Eclipse Ti microscope equipped with a Perfect Focus system,
a 60x air objective lens (NA 0.95), a lumencor spectra X3 light
engine and an Andor Zyla 4.2 PLUS sCMOS camera were used
for fluorescense imaging. The filter set used was the ET-Sedat
Quad-band (8900, Chroma Technology Crop). The exposure
time was set to 200 ms and the illumination intensity was set at
100%. The time-lapse frequency was 15 minutes or 22 minutes.

Image analysis Briefly, the segmentation was done using im-
ages from a bright, constitutively expressed RFP on a PRNA1
promoter. The rough trench boundaries were estimated with the
Otsu threshold method followed by erosion, opening, and dila-
tion of the mask. Then the binding box of the trenches found
was used to find the cells within. The cells were then segmented
in each of the trenches using Niblack segmentation [61]. Cells
joined by their poles (as indicated by objects with definite re-
strictions) were separated using the top 10% brightest pixels of
cells as a seed for the watershed. Spurious noncell objects were
rejected using their size, orientation, and shape. Finally, the
boundaries were refined using opening, thickening, and active
contours. The parameters chosen for each experiment required

extensive testing, and segmentation was manually checked. We
chose to follow only the cells at the closed end of the channel.

Fitting the size dynamics to simulations

To compare the experimental trajectories of the central mo-
ments of the size distribution with simulations, we normalize the
experimental doubling time to that we can theoretically consider
the doubling time 7 = 1. This condition sets the mean growth
rate (u) = In(2), which is also normalized. The division strategy
was considered to fit the parameter X in the SRF (3) h = kys?
to the experimental trend of A vs. s,. The size was normalized
by the experimental mean size at birth, which is associated with
theoretical s, which, with the constraint 's, = 1 and given the divi-
sion strategy, the mean value of the constant (k) can be inferred
using numerical rootfinders. To simplify the model, we consider
that the particular ky in a given cell cycle was proportional to
the growth rate (considered stochastic). Noise in the initial size
CE(SO) was measured. The other resulting fitting parameters are
stored in Table S1.

The low value of M for bacteria that grow in Glycerol compared
to the M obtained from bacteria that grow in glucose can be due
to additional sources of noise such as decorrelation not mea-
sured between the growth rate 1 and the division rate ky that, for
simplicity, were assumed to be proportional in each cycle. The
division steps can also change if the actual division mechanism
explaining the sizer-like strategy is different from the power law.

Measured parameters of cell regulation

Figure S1 shows the measured variables of cell regulation.
Figure S1 shows the size dynamics and size variability as a func-
tion of the time before cycle sinchronization for both growth con-
ditions. Figure S1B shows the dynamics of the mean growth rate
and the fluctuations around this value over time. These trajecto-
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Table S1: Fitting parameters adjusted to the trajectories of the
central moments of the size distribution. Measured noises are

also presented as comparison.

Parameter M9 + glucose M9 + glycerol
Model | Experiment | Model | Experiment
T 1 1.15h 1 1.99h
() In(2) In(2)/7 In(2) In(2)/7
A 1 - 1.5 -
5 1 3.5um 1 2.2um
(kq) 17.33 - 5.63 -
CV?2(sp) 0.02 0.02 0.04 0.04
CV3(p) 0.015 0.05 0.025 0.12
CV2(b) 0.010 0.013 0.015 0.02
(1L, Sp) 0 -0.39 0 -0.27
25 - 9 -
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Figure S2: Effects of adding correlations between size reg-
ulation variables in the fitting of the moments dynamics A.
Mean size and C. size fluctuations CV?(s) over time consider-
ing the measured noise. B. Mean size and D. size fluctuations
CV?(s) over time considering measured noise, including also the
correlation between growth rate 1 and size at the beginning of
the cell cycle sp. Comparison between experiments of cells that
grow in M9 with glucose as the carbon source (green dots) and
simulations (pink line).

ries help us estimate the noise in growth rate CV?(y1) as shown
in Table A2. Figure S1C also presents the histogram of the par-
titioning ratio b for the cycles studied, and their fluctuations over
the mean CV?2(b) are also presented. The correlation between
growth rate ¢ and size at birth s, was a parameter that was not
considered in the modeling in the main article. We measured this
correlation and presented it in Figure S1C.

The effects of hidden correlations

Figure S2A shows that, considering the measured parameters
of cell regulation (Table S1), the expected oscillations in the size
moments seem to be more damped than the observed ones.

We believe that a complex model can improve the fit of the
model and the data. As recently reported [32], there are some
correlations between cell regulation variables that are not yet
very well studied. In our case, as an example, we study the ef-
fects of the correlation between growth rate and size at birth S2B.
We can see that, after including this correction, the expected os-
cillations in the moments are less damped.

The effects of a variable division rate

Figure S3: Fitting of the experimental size dynamics consid-
ering division rate k, variable over time A. Mean size and C.
size fluctuations CV?(s) for cells growing in M9 with glucose as
the carbon source. B. Mean size and D. size fluctuations CV?(s)
over time for cells growing in M9 minimal medium with glycerol
as the carbon source. Comparison between experiments of cells
that grow in M9 with glucose as the carbon source (green dots)
and simulations (blue line).

To overcome the issue of an increase in the mean size over
time, we propose that the division rate ks was not constant during
the time lapse. Figure S3 shows how, after proposing that k4
increases linearly with time, keeping the growth rate constant,
the fit to the data is improved.
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