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Abstract—Determining the link between genomic and phenotypic evolution is a
fundamental goal in evolutionary biology. Insights into this link can be gained by using a
phylogenetic approach to test for correlations between rates of molecular and morphological
evolution. However, there has been persistent uncertainty about the relationship between
these rates, partly because conflicting results have been obtained using various methods that
have not been examined in detail. We carried out a simulation study to evaluate the
performance of five statistical methods for detecting correlated rates of evolution. Our
simulations explored the evolution of molecular sequences and morphological characters
under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of
branch rates was able to detect correlated rates of evolution correctly in the largest number of
cases. This was followed by correlations of root-to-tip distances, Bayesian model selection,
independent sister-pairs contrasts, and likelihood-based model selection. As expected, the
power to detect correlated rates increased with the amount of data, both in terms of tree size
and number of morphological characters. Likewise, the performance of all five methods
improved when there was greater rate variation among lineages. We then applied these
methods to a data set from flowering plants and did not find evidence of a correlation in
evolutionary rates between genomic data and morphological characters. The results of our
study have practical implications for phylogenetic analyses of combined molecular and
morphological data sets, and highlight the conditions under which the links between genomic

and phenotypic rates of evolution can be evaluated quantitatively.

Keywords: evolutionary rates, morphological evolution, macroevolution, molecular clock,

genetic drift, flowering plants
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Detecting Correlated Rates of Evolution
Evolution has generated the great diversity of phenotypic forms across the Tree of Life.
However, the genetic mechanisms that underlie changes in phenotype remain incompletely
understood (Orr 2001). It is often assumed that there is only a weak link between molecular
and morphological change (Simpson 1944; Stanley 1975; Gould and Eldredge 1977; Lee et
al. 2013; Halliday et al. 2019), given that the sheer number of mutations accumulating in
genomes are likely to include just a small proportion that cause phenotypic changes
(Gillespie 1991; Bromham et al. 2002). Furthermore, the proposal of the neutral theory of
molecular evolution (Kimura 1968), which describes most mutations as having negligible
impact on an organism’s fitness, has bolstered the idea that molecular and morphological
evolution are broadly decoupled (Bromham et al. 2002; Davies and Savolainen 2006; Lee et
al. 2013; Halliday et al. 2019; Simdes et al. 2020). Although genetic drift is believed to be a
substantial driver of molecular evolution (Kimura 1968; Ohta 1992), morphological
characters, given their importance to an organism’s survival, are often assumed to be under
strong selection (Lee and Palci 2015; Ho et al. 2017; Manceau et al. 2020).

Explicit tests of the link between genetic change and phenotypic change have largely
focussed on model species, mapping the effect of single genes or small sets of genes (Ashton
et al. 2017; Kemble et al. 2019). Recent advances in genomic sequencing have propelled
studies of quantitative trait loci, where genomic regions that account for phenotypic trait
variation within a species can be identified. However, these studies are time-consuming,
costly, and often lack statistical power (Ashton et al. 2017). A more efficient approach that
can accommodate hundreds of taxa is to assess the link between rates of molecular and
morphological evolution using phylogenetic comparative methods. If there is a correlation
between rates of molecular and morphological evolution, then phenotypic traits might be
predominantly governed by drift rather than adaptive processes (Halliday et al. 2019), as

demonstrated in the evolution of mandibles in rodents (Renaud et al. 2007) and crania in
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primates (Ackermann and Cheverud 2004). Alternatively, if a species has a high rate of
molecular evolution, then it might also have a high rate of morphological evolution simply
because it will experience larger numbers of phenotype-altering mutations. However,
apparent correlations between molecular and morphological evolutionary rates might be due
to both being driven by a third factor. For example, species with small population sizes might
experience rapid evolutionary change because of the heightened impacts of drift on both
genomic mutations and morphological traits (Combosch et al. 2017).

To date, there have been few explicit tests of the link between molecular and
morphological evolutionary rates (Seligmann 2010). Instead, indirect tests have been carried
out on ‘living fossils’, or taxa with presumed morphological conservatism across long
timescales and high evolutionary distinctiveness (Lidgard and Love 2018; Turner 2019). For
instance, the tuatara (Sphenodon punctatus) diverged from all other squamates ~220 million
years ago (Ma) and is the only extant member of the order Rhynchocephalia (Herrera-Flores
et al. 2017). Despite the inference that the long lineage leading to the tuatara has experienced
little morphological evolution (Herrera-Flores et al. 2017; Simdes et al. 2022b), the
mitochondrial control region of the tuatara has been estimated to evolve at a remarkably high
rate (Hay et al. 2008; Subramanian et al. 2009). Earlier work on morphologically conserved
horseshoe crabs showed only modest reductions in the rate of mitochondrial evolution
compared with scorpions and brine shrimp (Avise et al. 1994). Analysis of Ginkgo biloba, the
sole surviving species in its order, showed enrichment in duplicated genes and expansion of
gene families, bolstering complex chemical defence mechanisms against herbivory (Guan et
al. 2016; Smarda et al. 2016). These results suggest a decoupling of the rates of molecular
and morphological evolution in some taxa. In contrast, however, recent transcriptomic
analyses of ‘living fossils’ have shown reduced rates of molecular evolution across hundreds

of protein-coding genes in Nautilus (Combosch et al. 2017; Zhang et al. 2021; Huang et al.
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87  2022; Sanchez et al. 2022), the African coelacanth (Amemiya et al. 2013), the tuatara
88  (Gemmell et al. 2020), and in long-lived sacred lotus (Ming et al. 2013).
89 Phylogenetic studies of the relationship between morphological and molecular
90  evolutionary rates have produced a mixture of results. An analysis of 13 vertebrate data sets
91  yielded no evidence for an association between rates of molecular and morphological
92  evolution (Bromham et al. 2002), contradicting the results of an earlier study that detected
93  such a correlation in seven of the eight diverse data sets analysed (Omland 1997). Although
94  most studies have tested evolutionary rate correlations in animals, analyses of small data sets
95  from angiosperms (flowering plants) have found weak but positive correlations between rates
96  of molecular and phenotypic evolution (Omland 1997; Barraclough and Savolainen 2001;
97  Davies and Savolainen 2006). These positive correlations have been found across many
98  angiosperm taxa, including: Sedum (family Crassulaceae), Krigia (family Asteraceae), birch
99  (family Betuleacae), spindle trees (family Celastraceae), Hypoxidaceae, walnuts (family
100  Juglandaceae), Protea (family Proteaceae), buckthorns (family Rhamnaceae), and monocots.
101 By gaining insights into the relationship between molecular and morphological evolution in
102 such an extraordinarily species-rich and hyperdiverse group (Onstein 2019), we can achieve a
103 better understanding of the rapid ecological dominance of angiosperms and their evolutionary
104  dynamics (Sauquet and Magallon 2018).
105 The persistent uncertainty about the relationship between molecular and
106  morphological rates is compounded by the lack of a detailed investigation of the conditions
107  under which a correlation can be detected (Simpson 1944; Seligmann 2010). Without the use
108  of post hoc power analyses (e.g., Davies and Savolainen 2006), it is unclear whether
109 insufficient statistical power in analyses precludes detection of correlated rates or if there is a
110 genuine lack of an association. This is especially pertinent given that previous broad-scale

111 studies examined small sets of genetic markers, commonly ‘housekeeping’ genes (Omland
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112 1997; Barraclough and Savolainen 2001; Davies and Savolainen 2006). These genes might
113 not be well-suited for comparison with morphological rates, since they are under functional
114  constraints and are unlikely to be representative of genome-wide patterns (Bromham et al.
115  2002). In addition, there remain questions about methodology, such as whether terminal
116  branches of trees inferred with morphological data should be included when testing for
117  correlations between rates of morphological and molecular evolution, given that they might
118  underestimate the amount of evolutionary change (Bromham et al. 2002; Seligmann 2010).
119  This is because autapomorphies (changes that have occurred only in single taxa) are often
120  excluded when collecting morphological characters (Wright and Hillis 2014). Furthermore,
121 previously applied approaches such as root-to-tip distance correlations have been criticized
122 for their time-averaging effect and for the inclusion of non-independent data points, thereby
123 increasing the risk of spurious positive correlations (Felsenstein 1985; Bromham et al. 2002;
124  Rambaut et al. 2016; Barba-Montoya et al. 2021). Thus, it remains unclear whether the mixed
125 results from previous studies have been due to the use of different data sets, insufficient
126  statistical power, or the use of varied methods to test for rate correlations.
127 Here we aim to uncover the conditions under which correlations between molecular
128  and morphological rates of evolution can be detected. We present a comprehensive
129  simulation study based on parameters from angiosperms, which lends reality to our estimates.
130  We evaluate five approaches for detecting correlated rates of evolution under these
131  conditions, including root-to-tip distance correlations, independent sister-pairs contrasts,
132 likelihood-based model selection, correlations of Bayesian branch rates inferred using relaxed
133 clocks, and Bayesian model selection. Using the insights provided by the simulation study,
134 we test for evolutionary rate correlations between angiosperm floral characters and genomic

135  DNA. Our analyses have implications for understanding the relationship between genotypic
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136  and phenotypic change and inform practical recommendations for detecting correlated

137  evolutionary rates.

138

139 MATERIALS AND METHODS

140 Simulations of Molecular and Morphological Evolution

141 Phylogenetic trees and evolutionary rates.—We performed simulations using

142 chronograms (branch lengths measured in millions of years, Myr) of three different sizes,
143 based on a 792-species angiosperm tree from Magallon et al. (2015) used by Sauquet et al.
144 (2017). From this tree, we sampled 18, 45, or 111 species to represent diverse angiosperm
145  lineages (Fig. 1a). These three trees had root ages of 139.40 Ma.

146 We rescaled the branch lengths of the chronograms to produce phylograms (where
147  branch lengths measured in substitutions/site). To do this, we used the R package NELSI (Ho
148  etal. 2015) to generate branch lengths according to an uncorrelated lognormal clock

149  (Drummond et al. 2006). The branch rates had a mean of 9.65x10 subs/site/Myr, inferred in
150  aprevious analysis of two nuclear markers (18S and 26S ribosomal DNA) and three plastid
151  protein-coding genes (atpB, rbcL, and matK) from 792 angiosperm species (Magallon et al.
152 2015). We generated branch rates with low, moderate, and high levels of variation, with

153  respective standard deviations of 0.25, 0.75, and 1.25.

154 We then performed simulations under two scenarios, in which molecular and

155  morphological evolutionary rates were either correlated or uncorrelated. To generate a

156  morphological phylogram with branch rates correlated with those of the molecular

157  phylogram, we scaled the branch lengths of the latter by a factor of 1.90 (Fig. 1a). This

158  scaling factor was based on a mean rate of morphological evolution of 1.83x10

159  changes/character/Myr, inferred from 27 floral characters for 792 angiosperm species

160  (Sauquet et al. 2017).
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161 For our simulations with branch rates being uncoupled between molecular and
162  morphological data sets, we simply used NELSI to generate independent sets of branch rates
163 and used these to rescale the branch lengths of the chronograms (Fig. 1a). Mean evolutionary
164  rates and standard deviations were as described above for the simulations with correlated
165  branch rates between molecular and morphological data sets.
166
167 Generating molecular sequence alignments and morphological character matrices.—
168  We used Seq-Gen version 1.3.4 (Rambaut and Grass 1997) to simulate the evolution of
169  nucleotide sequences on the phylograms produced by the previous step (Fig. 1a). These
170  simulations produced sequence alignments with lengths of 1000 nucleotides, reflecting
171  typical sizes of nuclear and plastid protein-coding genes. The nucleotide transition rates,
172 frequencies, and gamma shape parameters (degree of among-site rate variation) were based
173 on estimates from Magallon et al. (2015) and are listed in the Supplementary Material.
174 We generated morphological data matrices consisting of 10, 100, and 1000 characters
175  (Fig. 1a). Matrices with either two-state (binary) or four-state characters were simulated.
176  Character evolution was simulated using the R package geiger (Pennell et al. 2014) under the
177 Mk model (Lewis 2001), a generalization of the Jukes-Cantor (1969) model of molecular
178  evolution. The relative rate for each character was drawn randomly from a gamma
179  distribution with a shape parameter of 1.39 inferred via maximum-likelihood analysis of the
180  floral character data set from Schonenberger et al. (2020), comprising 30 binary and multi-
181  state morphological characters scored for 792 angiosperm species (see Supplementary

182  Material). This morphological data set was also used in the empirical analyses in this study.
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a) Generating data sets through simulation
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184  FIGURE 1. Flowchart of simulation study. a) Generating data sets through simulation.

185  Molecular phylograms are generated using chronograms with three tree sizes (18, 45, or 111
186  taxa), with a mean rate of evolution () that has been inferred from an empirical data set, and
187  standard deviation (o) representing three levels of among-lineage rate variation (0.25, 0.75 or
188  1.25). The branch lengths of the molecular phylogram are then multiplied by an empirical
189  scaling factor to obtain a morphological phylogram with correlated rates of evolution along
190  each branch. To obtain trees without correlated rates of evolution, morphological phylograms
191  are simply generated using an independent mean rate of evolution (u), but on the same

192 chronogram and with the same standard deviation (o) as the molecular phylogram.

193  Simulations were performed under a total of 54 distinct settings each for the scenario with
194 correlated and uncorrelated rates of evolution, with 20 replicates per setting. b) Phylogenetic
195 inference. Using a fixed tree topology, molecular and morphological branch lengths were
196 inferred using maximum-likelihood and Bayesian analyses. Marginal likelihoods were

197  estimated for the purpose of Bayesian model selection. Five methods were used to test for
198  correlated rates of evolutionary change, (i) root-to-tip distance correlations, (ii) independent
199  sister-pairs contrasts, (iif) likelihood-based model selection, (iv) correlations of Bayesian
200  branch rates, and (v) Bayesian model selection. ¢) Evaluate performance of methods. We
201  compared the accuracy and power of the five methods of testing for correlated rates of

202  evolutionary change.

203

204

205 Summary of simulation scenarios.—The settings described above yielded a total of 54
206  distinct simulation scenarios. Our simulations included trees of three sizes (18, 45, and 111
207  taxa). Nucleotide sequences consistently had a length of 1000 nucleotides, but we varied the
208  number of morphological characters (10, 100, and 1000 characters) and the number of

209  possible morphological character states (either two- or four-state characters). We simulated
210  three levels of among-lineage rate heterogeneity with standard deviations of 0.25, 0.75, and
211 1.25 for the molecular and morphological data sets (Fig. 1a). For each of the 54 simulation
212 settings, we generated 20 replicate data sets. Thus, our simulations produced a total of 1080
213 pairs of molecular and morphological data sets for each of the ‘correlated’ and ‘uncorrelated’

214 settings.

215
216 Phylogenetic Inference
217 Maximum-likelihood inference—We inferred phylograms from the simulated

218  molecular and morphological data sets using maximum likelihood in IQ-TREE2 (version

10
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219  2.0.6; Bui et al. 2020) (Fig. 1b). In each analysis, the tree topology was constrained to match
220  that used for simulation, with the addition of one outgroup taxon, the gymnosperm
221  Welwitschia mirabilis. Analyses of the molecular data used the general-time-reversible
222 model, with gamma rate heterogeneity (four discrete categories) and invariant sites
223 (GTR+T+I). Analyses of the morphological data used the time-homogeneous Mk model, with
224  empirical state frequencies and gamma rate heterogeneity with four discrete categories
225  (Mk+T) (Supplementary Material). Following maximum-likelihood inference, the
226  gymnosperm outgroup was removed from each tree. The branch lengths from these
227  phylograms were used for root-to-tip distance correlations, independent sister-pairs contrasts,
228  and likelihood-based model selection, which are described in the next section.
229
230 Bayesian inference—We analysed the molecular and morphological data using
231  Bayesian inference in BEAST?2 version 2.6.2 (Bouckaert et al. 2019) (Fig. 1b). In each
232 analysis, the tree topology was constrained to match that used for simulation. Molecular and
233 morphological data were partitioned so that they were assigned distinct substitution models,
234 with the GTR+T'+I model for the molecular data set and the Mk+ I" model for the
235  morphological data set. The molecular and morphological data sets were assigned separate
236  uncorrelated lognormal relaxed clocks, with the mean rate of each of these having a uniform
237  prior between 0 and 1. The molecular and morphological data subsets shared the same fixed
238  tree topology, with a birth-death tree prior. We also performed an analysis in which
239  molecular and morphological data shared the same uncorrelated lognormal relaxed clock, to
240  allow comparison between linked and unlinked clock models using Bayesian model selection.
241 For each Bayesian analysis, the posterior distribution was estimated using Markov
242 chain Monte Carlo (MCMC) sampling. We ran two independent chains, each of 10,000,000

243 steps, with samples drawn every 1000 steps. The first 10% of samples were discarded as

11


https://doi.org/10.1101/2022.07.24.501330
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.24.501330; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Asar, Sauquet, and Ho
244 burn-in. After checking for convergence and sufficient sampling (effective sample sizes of
245  parameters greater than 200) using the LogAnalyzer function in BEAST, we combined the
246  samples from the two chains. The tree samples were summarized using TreeAnnotator, part
247  of the BEAST package. We obtained the estimates of branch rates from the summarized trees

248  and used them in our tests of rate correlations, described below.

249
250 Testing for Correlated Rates of Evolution
251 We evaluated the performance of five methods for testing for correlated evolutionary

252 rates: (i) root-to-tip distance correlations, (ii) independent sister-pairs contrasts, (i)

253  likelihood-based model selection, (iv) correlations of Bayesian branch rates, and (v) Bayesian
254  model selection (Fig. 1b). The first three methods were performed on maximum-likelihood
255  trees that were inferred from the simulated data. The last two methods were performed using
256  the results of our Bayesian phylogenetic analyses.

257

258 (i) Root-to-tip distance correlations.—The first method of testing for correlated rates
259  was based on examination of the root-to-tip distances in the maximum-likelihood

260  phylograms. Since all of the tips represent present-day taxa and are separated from the root
261  node by the same amount of time, any differences in the root-to-tip distances reflect

262  differences in evolutionary rates (Omland 1997; Bromham et al. 2002; Arab et al. 2020). For
263  each matched pair of molecular and morphological phylograms, we calculated patristic root-
264  to-tip distances using the distRoot function in the R package adephylo (Jombart et al. 2010)
265  and tested for a correlation between the molecular and morphological root-to-tip distances.
266  To address non-independence among the root-to-tip distances, we calculated the p-value

267  using a permutation test in the R package jmuQutlier (Higgins 2004; Garren 2019), with

268 20,000 replicates.

12
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269

270 (ii) Independent sister-pairs contrasts.—The second method of testing for correlated
271  rates involved taking phylogenetically independent pairs of taxa (sister pairs) and comparing
272  their relative branch lengths between the molecular and morphological phylograms. We

273  selected sister species that shared a most recent common ancestor to the exclusion of other
274  sister pairs, which avoids the problem of phylogenetic non-independence but reduces the
275  amount of data (Felsenstein 1985; Bromham et al. 2002). We used the R package diverge to
276  extract sister pairs for each tree (Anderson and Weir 2022). Lists of sister pairs for each tree
277  size are provided in the Supplementary Material. By definition, the two branches in each
278  sister pair have been evolving for the same amount of time, such that their phylogram length
279  reflects their relative evolutionary rate. We computed the difference between the branch

280  lengths of sister species in the molecular and morphological phylograms inferred using

281  maximum likelihood. We tested for correlations between the molecular and morphological
282  contrasts using the non-parametric Spearman’s rank correlation test, to allow for violations of
283  bivariate normality and homoscedasticity. The contrasts were log-transformed and

284  standardized following standard guidelines by dividing by the square root of the time since
285  divergence between sister species (see Supplementary Materials for details; Garland et al.
286  1992; Freckleton 2000; Welch and Waxman 2008).

287

288 (iii) Likelihood-based model selection.—The third method of testing for correlated
289  rates involved likelihood-based model selection using information criteria. We analysed the
290  molecular and morphological data using maximum likelihood in IQ-TREE2 and compared
291  models in which the branch lengths were either linked (“proportionate’) or unlinked between
292 the molecular and morphological trees. These two models reflect correlated and uncorrelated

293  branch rates, respectively, between molecular and morphological data (Duchéne et al. 2020).
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294  We compared the models using the corrected Akaike information criterion (AICc) and the
295  Bayesian information criterion (BIC).
296
297 (iv) Correlations of Bayesian branch rates.—The fourth method of testing for
298  correlated rates was based on the inferred branch rates from Bayesian phylogenetic analyses.
299  We tested for correlations between the branch rates inferred using the uncorrelated lognormal
300 relaxed clock for the molecular and morphological data sets. To compute the significance of
301  the correlation, we used Spearman’s rank-order correlation test to avoid violations of
302  bivariate normality and homoscedasticity. For comparison, tests were performed using the
303  mean and median posterior branch rates. The mean posterior rate is commonly reported in
304  Bayesian phylogenetic analyses, but the median rate might be more appropriate because the
305  marginal posterior distributions are skewed.
306
307 (v) Bayesian model selection.—The fifth method of testing for correlated rates
308 involved the use of Bayesian model selection to compare the support for linked or unlinked
309  branch rates between molecular and morphological data. Model selection was performed
310  using Bayes factors, which compare the marginal likelihoods of the two models. The
311  marginal likelihoods of the linked and unlinked relaxed-clock models were estimated using
312 the ‘MS’ Model Selection package in BEAST2. We used generalized-stepping-stone
313 sampling (Baele et al. 2016), with 25 steps and chain lengths of 400,000. The ratio of the
314  marginal likelihoods was used to compute the Bayes factor, which was then interpreted using
315  the guidelines of Kass and Raftery (1995).
316
317 Evaluation of performance.—We used two approaches to evaluate the performance of

318  the five methods of testing for rate correlations. First, we evaluated the methods by their
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319  power, which is the ability to detect positive correlations under the largest number of
320  scenarios. Second, we examined the accuracy of the methods, regarded here as the ability to
321  detect positive correlations without false positives. We do not attempt to evaluate the ability

322 of the methods to infer the correct degree of rate correlation, i.e., the correlation coefficient.

323
324 Case Study: Flowering Plants
325 To test for correlated rates of molecular and morphological evolution in empirical

326  data, we applied the above five methods to large angiosperm data sets. Molecular data were
327  obtained from the One Thousand Plant Transcriptomes Initiative (2019), hereafter ONEKP.
328  This data set includes nucleotide sequences from 410 protein-coding nuclear genes from

329 1,124 green plants, glaucophytes, and red algae. For computational tractability, we analysed a
330  subset of 111 angiosperm species and one gymnosperm outgroup (Welwitschia mirabilis),
331  matching the angiosperm species in the morphological data set. We applied the data-

332 partitioning scheme as outlined by ONEKP (2019) and estimated branch lengths on a fixed
333 tree topology using maximume-likelihood analysis and Bayesian inference. The substitution
334  model for each data subset was selected using ModelFinder in IQTREE2 (Kalyaanamoorthy
335  etal. 2017).

336 The morphological data set was sourced from Schonenberger et al. (2020),

337  representing a slightly expanded data set of 30 floral characters for 792 angiosperm species,
338 initially published by (2017). These are discrete binary and multi-state morphological

339  characters, including features such as the structural sex of flowers, ovary position, phyllotaxy,
340  number of reproductive parts, and fusion of ovaries. We used a subset of 111 angiosperm

341  species for our analyses and partitioned the data according to the number of character states
342 (i.e., two-, three-, four-, and five-state data were treated as separate subsets). Branch lengths

343  were estimated on a fixed tree topology using maximume-likelihood analysis and Bayesian
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344  inference, using the Mk-+I" model of evolution with correction for ascertainment bias. The
345  model was selected using ModelFinder in IQ-TREE2.
346 We performed Bayesian phylogenetic analyses of the genomic data and floral
347  characters with and without calibrations. In the former case, we implemented secondary
348  calibrations on the ages of key angiosperm groups. The secondary calibrations were sourced
349  from Ramirez-Barahona et al. (2020) and applied as normal priors on node ages (Ho and
350  Phillips 2009). To estimate the posterior distribution, we sampled from five independent
351 MCMC runs with chain lengths of either 50 or 70 million steps. Samples were drawn every
352 1000 steps. After checking for convergence and sufficient sampling in Tracer, we removed a
353  burn-in fraction of between 40% and 60%, depending on the analysis, leaving a total of
354 170,000 sampled trees. Further details of the angiosperm case study, including settings and
355  secondary calibrations, are available in the Supplementary Material.
356 We tested for correlations between rates of nuclear genomic evolution and floral
357  character evolution using (i) root-to-tip distance correlations, (ii) independent sister-pairs
358  contrasts, (iii) likelihood-based model selection, (iv) correlations of Bayesian branch rates,
359  and (v) Bayesian model selection. We checked assumptions for each of these tests, as

360  described in the Supplementary Material.

361

362 RESULTS

363 Performance in Detecting Correlated Evolutionary Rates

364 Using data generated by simulation, we compared five methods for testing for

365  correlations in evolutionary rates between molecular sequences and morphological
366  characters. Correlations of branch rates from Bayesian relaxed-clock inference were able to
367  detect correlated rates between molecular and morphological data under the widest range of

368  simulation settings (Fig. 2 and 3). Under this method, the mean and median posterior branch
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369  rates were equally effective, with an average detection of correlated evolutionary rates of
370  85.8% and 85.6%, respectively. The performance of this method was closely followed by
371  root-to-tip distance correlations (84.9%), Bayesian model selection (64.4%), and independent
372  sister-pairs contrasts (48.2%) (Fig. 2; and 3). Likelihood-based model selection had very high
373  detection of correlated evolutionary rates across scenarios (97.0% with AICc and 100% with
374  BIC) but had an unacceptably high frequency of false positives.
375 When we analysed molecular and morphological data sets that had been generated
376  without correlated rates, we found low false-positive rates when using correlations of
377  Bayesian branch rates (1.20% and 2.96% for mean and median posterior branch rates,
378  respectively), root-to-tip distance correlations (7.96%), independent sister-pairs contrasts
379  (3.06%), and Bayesian model selection (3.06%) (Fig. 3 and 4). However, likelihood-based
380  model selection yielded a high frequency of false positives when using either the AICc

381 (47.3%) or BIC (69.3%).

382
383 Impacts of Varying Simulation Conditions
384 We tested the effect of tree size, including 18, 45, and 111 taxa in the simulations, to

385  evaluate its impact on the ability to detect correlated evolutionary rates. The number of taxa
386 influenced the detection of correlations predictably (Fig. 5a), with performance increasing
387  with tree size (57.7%, 81.1%, and 82.5% for tree sizes of 18, 45, and 111 taxa, respectively).
388  Analyses of the 18 taxon-set performed poorly when there were only 10 morphological

389  characters (Fig. 2). This was especially apparent for independent sister-pairs contrasts, where
390 analyses of 18-taxon data sets failed to detect rate correlations regardless of the degree of
391 among-lineage rate variation, number of character states, and numbers of morphological

392  characters.

393
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395

396  FIGURE 2. Heatmaps showing the performance of five approaches for testing for correlations
397  between molecular and morphological evolutionary rates, for data produced by simulation
398  with correlated evolutionary rates: a) root-to-tip distance correlations; b) independent sister-
399  pairs contrasts; c¢) likelihood-based model selection using the corrected Akaike information
400  criterion (AICc); correlations of Bayesian branch rates using d) mean posterior branch rates
401  of branches or e) median posterior branch rates; and f) Bayesian model selection. In each
402  panel, rows give results under six scenarios, representing combinations of three levels of
403  among-lineage rate variation [0.25, 0.75, 1.25], and either two- or four-state morphological
404  characters. In each panel, columns give results for data sets of various sizes, representing
405  combinations of three numbers of morphological characters [10, 100, 1000] and three

406  numbers of taxa [18, 45, 111]. For methods (a)—(b) and (d)—(e), colours indicate the

407  proportion of 20 replicates for each setting that yielded a significant rate correlation (i.e., p <
408  0.05). For method (c), colours indicate the proportion of 20 replicates for each setting that
409  yielded AAICc > 2, supporting a model of linked rates over a model of unlinked rates. For
410  method (f), colours indicate the proportion of 20 replicates for each setting that yielded a log
411  Bayes factor (BF) > 1.0 for a model of linked rates over a model of unlinked rates. For

412 heatmaps of likelihood-based model selection using the Bayesian information criterion, see
413 Supplementary Material.
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416  Figure 3. Boxplots showing the frequency of detecting correlated rates of evolution between
417  simulated molecular and morphological data using different methods. A) Accuracy of the
418  methods when analysing data simulated with correlated rates. The dashed horizontal line

419  represents the ideal detection of correlated rates of evolution (100% of scenarios). B)

420  Propensity of methods to detect correlations when analysing data simulated with uncorrelated
421  rates (false positive detection). The dashed horizontal line represents the detection of

422  correlated rates of evolution expected under frequentist statistics with a critical value of 0.05
423  (false positive rate of 5%).
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426  FIGURE 4. Heatmaps showing the performance of five approaches for testing for correlations
427  between molecular and morphological evolutionary rates, for data produced by simulation
428  without correlated evolutionary rates: a) root-to-tip distance correlations; b) independent
429  sister-pairs contrasts; ¢) likelihood-based model selection using the corrected Akaike

430  information criterion; correlations of Bayesian branch rates using d) mean posterior branch
431  rates of branches or ¢) median posterior branch rates; and f) Bayesian model selection. In
432  each panel, rows give results under six scenarios, representing combinations of three levels of
433  among-lineage rate variation [0.25, 0.75, 1.25], and either two- or four-state morphological
434 characters. In each panel, columns give results for data sets of various sizes, representing
435  combinations of three numbers of morphological characters [10, 100, 1000] and three

436  numbers of taxa [18, 45, 111]. For methods (a)—(b) and (d)—(e), colours indicate the

437  proportion of 20 replicates for each setting that yielded a significant rate correlation (i.e., p <
438  0.05). For method (c), colours indicate the proportion of 20 replicates for each setting that
439  yielded AAICc > 2, supporting a model of linked rates over a model of unlinked rates. For
440  method (f), colours indicate the proportion of 20 replicates for each setting that yielded a log
441  Bayes factor (BF) > 1.0 for a model of linked rates over a model of unlinked rates. For

442  heatmaps of likelihood-based model selection using the Bayesian information criterion, see
443  Supplementary Material.
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444  FIGURE 5. Boxplots showing the frequency of detecting correlated rates of evolution between
445  simulated molecular and morphological data using different settings. The left panels show the
446  performance of methods when data were simulated with correlated rates, with dashed

447  horizontal lines representing the ideal detection of correlated rates of evolution (100% of

448  scenarios). The right panels show results when simulated with uncorrelated rates, with dashed
449  horizontal lines representing the detection of correlated rates of evolution expected under
450  frequentist statistics with a critical value of 0.05 (false positive rate of 5%). The different

451  settings used were: a) three tree sizes, b) three sizes of morphological character matrices, ¢)
452  two numbers of possible morphological character states, and d) three levels of among-lineage
453  rate variation. The results were pooled across all methods except for likelihood-based model
454  selection, since this method had such a high rate of false positives and would unreasonably
455  skew the detection of correlations. Boxplots calculated with the results from likelihood-based
k56  model selection can be found in the Supplementary Material.

457

458 We varied the number of morphological characters [10, 100, 1000] to evaluate their
459  impact on the ability of the five methods to detect correlated evolutionary rates. We found
460 that the average detection of positive correlations increased from 57.6%, 80.6%, to 83.2% for
461  data sets with 10, 100, and 1000 morphological characters, respectively (Fig. 2 and 5b). We
462  found that the effect depended on the amount of among-lineage rate variation; where branch
463  rates had a standard deviation of at least 0.75, the four best approaches were generally able to
464  detect correlations with any number of morphological characters (Fig. 2). However, when
465  there was a low degree of among-lineage rate variation, rate correlation could not be detected
466  when there were only 10 morphological characters. Furthermore, likelihood-based model

467  selection detected a high rate of false positives, but this was mitigated when there were either
468 100 or 1000 morphological characters and moderate or high among-lineage rate variation
469  (Fig. 4c and Supplementary Material).

470 The number of character states for the morphological data had a minor impact on

471  detection of correlations. Generally, correlations were more frequently detected when the
472  morphological data comprised four-state characters, with a positive detection of 75.1%

473  compared with 72.4% when the data comprised two-state characters (Fig. 2 and 5c), although

474  this effect was negligible when there were greater than 10 morphological characters and 18

475  taxa in the data set (Fig. 3).
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476 Across the four most powerful and accurate methods, the most important factor for
477  detection of correlated evolutionary rates was among-lineage rate variation (Fig. 2 and 5d).
478  When we implemented low among-lineage rate variation in the data sets, correlated rates
479  could only be detected across 50.2% of replicates, whereas medium and high levels increased
480  detection to 81.9% and 89.2%, respectively. Where there was low among-lineage rate
481  variation, with branch rates having a standard deviation of 0.25, the four best approaches
482  were generally unable to detect correlations without sampling at least 100 morphological
483  characters (Fig. 2). This was especially true for Bayesian model selection, which could not

484  detect correlated rates of evolution at the lowest level of among-lineage rate variation.

485
486 Case Study: Flowering Plants
487 In our analyses of genomic DNA and floral characters in angiosperms, we found that

488  two of the five methods, root-to-tip distance correlations and likelihood-based model

489  selection, detected a correlation in evolutionary rates. We found evidence of a correlation in
490  our analysis of root-to-tip distances (p = 0; Fig. 6a). Outliers (data points outside 1.5 times
491  the interquartile range) were excluded from the permutation test, but root-to-tip distances
492  were significantly correlated both before and after removal of outliers (see Supplementary
493  Material). These outliers included the branch leading to the sister taxon to all remaining
494  angiosperms, Amborella trichopoda, which had a low morphological evolutionary rate of
495  2.38x10° changes/character/Myr. Other ANA-grade angiosperms, such as Austrobaileya
496  scandens and [llicium floridanum, similarly had low rates of morphological change and were
497  removed from the test. Likelihood-based model selection also yielded strong support for
498  linking branch lengths between nuclear sequences and floral characters, when using both

499  AICc (AAICc =203.4) and BIC scores (ABIC = 2504.9).
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Figure 6. Comparisons between evolutionary rates of nuclear genomic DNA and floral
characters inferred from angiosperms. The methods used to test for correlated rates of
evolution are a) root-to-tip distance correlation; b) independent-sister pairs contrasts; c)
correlations of Bayesian mean posterior branch rates; and d) correlations of Bayesian median
posterior branch rates. The plot for each comparison has been fit with a linear model, which
is displayed along with the 95% confidence interval.

We found no evidence of correlated molecular and morphological rates when we
analysed the data using independent sister-pairs contrasts (s = 0.0162, p = 0.466; Fig. 6b),
correlations of Bayesian mean posterior branch rates (» =—-0.0209, p = 0.617; Fig. 6¢), or

correlations of Bayesian median posterior branch rates (r; = —0.0685, p = 0.837; Fig. 6d). The
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514  Bayes factor gave very strong support to unlinking the clock models between nuclear and
515  floral characters, with an average log Bayes factor of 51.4. Our Bayesian approaches failed to
516  detect a correlation regardless of whether fossil calibrations were included or not (see

517  Supplementary Material for the results of analyses without fossil calibrations).

518
519 DISCUSSION
520 We have shown through a comprehensive simulation study that correlated rates of

521  evolution between molecular sequences and morphological characters can be detected under
522  avariety of circumstances. The best-performing method was correlations of Bayesian branch
523  rates, followed by root-to-tip distances, Bayesian model selection, independent sister-pairs
524  contrasts, and lastly likelihood-based model selection. However, when taking computational
525  burden into account, testing for correlations using root-to-tip distances is the most efficient
526  method. Overall, methods had more power when the data had a high degree of among-lineage
527  rate variation, and when at least 45 taxa or 100 morphological characters were sampled.

528  When we applied these methods to an angiosperm data set, we found limited evidence for
529  coupled evolutionary rates when analysing nuclear DNA and floral characters. The estimation
530  of root-to-tip distances might have been misled by missing character data in the floral trait
531  data set. However, missing data are often unavoidable in morphological data sets, due to

532  inapplicable characters, i.e., characters that are not common across species, and difficulties in
533 accessing suitable samples (Scholtz 2010; Wanninger 2015). Although our simulations used
534  evolutionary parameters that were empirically informed, they still represented an idealized
535  form of the evolutionary process and yielded complete data sets. Below we discuss the results
536  and implications of the simulation study before returning to the case study of angiosperms.
537

538

25


https://doi.org/10.1101/2022.07.24.501330
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.24.501330; this version posted July 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Asar, Sauquet, and Ho
539 Detecting Correlations Between Rates of Molecular and Morphological Evolution
540 Our simulation study has provided detailed evaluations of five methods of testing for
541  correlations between rates of molecular and morphological evolution. We found that the three
542  methods that used inferences from maximume-likelihood phylogenetic analysis required at
543  least 100 morphological characters for accurate detection of rate correlations. We found that
544  correlations of root-to-tip distances performed well, with a low rate of false positives. While
545  statistical analyses of root-to-tip distances are hindered by the non-independence of the data
546  points (Rambaut et al. 2016), appropriate p-values can be computed using a permutation test
547  (Higgins 2004; Garren 2019). Analysis using independent sister-pair contrasts was able to
548  detect rate correlations less frequently than the other methods that we evaluated, and this is
549 likely to be due to the reduced number of data points that are sampled. For instance, for the
550 tree including 111 species, root-to-tip distance correlations are based on 111 data points,
551  whereas independent sister-pairs contrasts use only 35 data points.
552 When we used likelihood-based model selection to compare models with
553  proportionate (linked) versus unlinked branch lengths, we consistently found support for the
554  proportionate model even for data that had been generated by simulation with uncorrelated
555  rates. However, this was probably because the proportionate model captures a substantial
556  amount of variation while bringing only a modest increase in the number of parameters
557  (Duchéne et al. 2020). The proportionate model was favoured under almost all simulation
558  settings, except when there was a large number of morphological characters. Of the two
559  information criteria that were employed, model selection using the AICc yielded fewer false
560  positives, since it penalizes model size less harshly than the BIC (Duchéne et al. 2020).
561 The two Bayesian methods of testing for rate correlations showed highly contrasting
562  performance in our simulation study. We found that correlations could be detected in our

563  analyses of Bayesian branch rates even under less informative settings, such as when there
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564  were only 10 morphological characters. This strong performance was unexpected, given the
565  typically large uncertainty in estimates of branch rates (e.g., Ho et al. 2005; Drummond et al.
566  20006), but can perhaps be attributed to the large number of data points sampled by the test
567  (one comparison per branch). Compared with the likelihood-based approach, Bayesian model
568 selection performed well when detecting correlated evolutionary rates, except when there was
569  low among-lineage rate variation. It may be useful to compare the performance of other
570  methods of marginal-likelihood estimation, such as path sampling or nested sampling
571  (Skilling 2006; Russel et al. 2019).
572 Further evaluations of methods that test for correlations between molecular and
573  morphological rates of evolution will be valuable, given that the dynamics of morphological
574  evolution and the relationship to molecular evolution remain poorly understood (Lee and
575  Palci 2015). In our study, we have not considered processes ‘external’ to coding in DNA
576  sequences, such as phenotypic plasticity and epigenetics, but these may shape adaptation and
577  phenotypic changes over time (West-Eberhard 1989; Nylin and Wahlberg 2008).
578  Furthermore, there is a lack of congruence between phylogenies inferred from different types
579  of biological data (Oyston et al.), possibly due to the limited size of morphological data sets
580  or the effect of homoplasy (Keating et al. 2020). However, this might not be pertinent at
581  higher taxonomic levels (Jablonski and Finarelli 2009), where diagnostic characters tend to
582  be more informative and can carry strong phylogenetic signal.
583 By testing for correlations between molecular and morphological evolutionary rates,
584  we can better understand the dynamics of the ‘morphological clock’. Whilst a broad link
585  between molecular and morphological change is expected (Simpson 1953), the existence of a
586  morphological clock has so far been rejected (Beck and Lee 2014; Lee and Palci 2015;

587  O’Reilly et al. 2015; Lee 2016; Tarasov 2019). This is reinforced by the apparent lack of a
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588  ‘common mechanism’ governing the evolution of morphological characters, with the pattern
589  of among-character rate variation differing across branches (Goloboff et al. 2019).
590 The performance of methods is likely to be worse in analyses of real data sets
591  compared to simulated data sets, because of the complexities of the evolutionary process in
592  reality and because of the shortcomings of our evolutionary models, particularly models of
593  morphological evolution. Estimating morphological rates of evolution is fraught with
594  uncertainty, and the distribution of rates across taxa and over time is largely undescribed
595  (Simpson 1944; Schopf 1984). Unlike molecular data, the collection of morphological data is
596 ‘infinitely extensible’; there is no upper boundary on the total number of characters and states
597  that can be considered (Oyston et al.), because there are no objectively defined categories
598  such as the 20 amino acids or four nucleotides found in molecular data (Davalos et al. 2014;
599  Lee and Palci 2015; Barba-Montoya et al. 2021). The morphological characters that are
600 selected for phylogenetic inference are usually chosen for their diagnostic utility, so invariant
601  and rapidly evolving characters are typically excluded (Lewis 2001; Wright and Hillis 2014).
602 Previous work has shown that Bayesian and maximum-parsimony phylogenetic
603  analyses of morphological data have greater accuracy for data that have been generated under
604  stochastic processes rather than being subject to selection (Keating et al. 2020). This indicates
605 that at a macroevolutionary scale, the dynamics of morphological evolution may deviate from
606  the Mk model, which is a simplified version of the general multiple-rate asymmetrical Mk
607  model, originally introduced for morphological data (Pagel 1994; Goloboff et al. 2019;
608  Keating et al. 2020). Although the inadequacy of the Mk model is often assumed to hamper
609  phylogenetic inference using morphological characters, it might not be a substantial problem
610  unless homoplasy is particularly extensive (Jablonski and Finarelli 2009) or when rates are
611  extremely high (Reyes et al. 2018; Klopfstein et al. 2019; Simdes et al. 2022a). Apart from

612  these cases, Bayesian inference using the Mk model seems to be relatively robust and can
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613  accurately infer topologies and branch lengths under a broad range of conditions (Klopfstein

614  etal. 2019).

615
616 Evolutionary Rates in Angiosperms
617 Our analysis of data from 111 angiosperms failed to detect a correlation between the

618  evolutionary rates of nuclear DNA and floral traits. The 30-character floral data set that we
619  analysed might not have been sufficiently informative, so our results will require

620  confirmation using larger data sets comprising at least 100 characters. Additionally, the floral
621  data set that we examined excluded hypervariable characters, such as floral colour. The

622  resulting characters in the floral data set were all slowly evolving, at rates below 0.006

623  changes/Myr. These low rates have been described as ‘optimal’ for phylogenetic inference
624  (Klopfstein et al. 2019), and were likewise suited to the primary goal of ancestral state

625  reconstruction for which this data set was assembled (Sauquet et al. 2017). However,

626  simulating data sets with a broader diversity of rates, including both higher and lower ones,
627  would be useful. Also, incorporating missing data in the simulations would improve the

628  realism of the data sets and allow evaluation of the impacts of missing data on detecting

629  correlations in evolutionary rates.

630 The molecular data set used to test for correlations between rates of floral and

631  sequence evolution included 410 protein-coding, single-copy nuclear genes, obtained by

632  sequencing the vegetative tissue transcriptomes of plant species (ONEKP 2019). These 410
633  protein-coding genes likely control phenotypic expression across a broad range of characters.
634  However, the set of 30 curated floral traits only represents a small proportion of the total

635  phenotypic traits of each flowering plant species. Assessing a larger number of

636  morphological traits will not only lend more power to the analyses but will also provide a

637  more accurate reflection of the overall rate of morphological trait evolution. Such a data set is
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638 not yet available for flowering plants across a broad phylogenetic sample because of the
639  considerable work required in its assembly. Studies could possibly be done with resources
640  such as the global ‘TRY" plant database (Kattge et al. 2020), which is composed mostly of
641  vegetative traits. Generally, floral traits are under intense sexual selection (Barrett 2010),
642  which might influence the detection of correlated rates. Indeed, Barraclough and Savolainen
643  (2001) found a very strong correlation between the evolution of molecular sequences and
644  floral traits, but a weak correlation when analysing vegetative traits.
645 Overall, the result might correctly reflect a more general uncoupling of molecular and
646  morphological rates in angiosperms. A decoupling of evolutionary rates between the nuclear
647  genome and floral characters suggests a departure from a model of gradual morphological
648  change, i.e., that morphological evolution is not proportional to time (Halliday et al. 2019).
649  This may be because the floral characters exhibit high heterogeneity and deviation from
650  clocklike evolution. Indeed, from the Bayesian relaxed-clock analysis, the floral characters
651  exhibited a coefficient of variation of branch rates of 1.53 (95% credible interval 0.896-2.24)
652  whereas the genomic DNA had a coefficient of variation of 1.35 (95% credible interval 1.27—
653  1.52). Pulses of morphological change have occurred throughout plant evolution, possibly at
654  speciation events (Eldredge and Gould 1972), with notable episodes corresponding to the
655  introduction of vascular plants in the Devonian and the diversification of angiosperms in the
656  Late Cretaceous (Leslie et al. 2021).
657 A lack of an association between rates of floral character and molecular evolution
658  would also be consistent with floral evolution being driven by changes at specific loci
659  (Kimura 1968; Barrier et al. 2001; Davies and Savolainen 2006; Duret 2008; Gaut et al.
660  2011). The mutations that produce phenotypic change might occur largely in adaptive and
661  regulatory genes, while many genomic mutations are neutral in their impact on fitness

662  (Kimura 1968, 1983). Indeed, a large proportion of the morphological diversity amongst
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663  flowering plants can be attributed to specialized interactions between angiosperms and their
664  insect pollinators (Darwin 1862; Friis et al. 2006; Benton et al. 2021; Asar et al. 2022).
665  Furthermore, in our study, we were limited to examining evolutionary change in protein-
666  coding genes, which only included the first two sites of each codon. Testing for correlations
667  separately using rates of nonsynonymous and synonymous substitution will allow further

668  insights into the relative importance of selection and drift (Barrier et al. 2001).

669
670 Concluding Remarks
671 We have shown that correlations between molecular and morphological evolutionary

672  rates can be detected under the conditions explored in our simulation study. However, the
673  complexities of how morphological evolution proceeds, and whether this is effectively

674  described by current evolutionary models and approaches, will ultimately determine whether
675  the rates of morphological character evolution and their correlates can be accurately

676  reconstructed in practice. While we did not find evidence of correlated evolutionary rates

677  between angiosperm genomic DNA and floral characters, the question of whether the rates of
678  genotypic and phenotypic evolution are correlated in angiosperms should be addressed with a
679  larger morphological data set.

680 Our study has implications for combined analyses of molecular and morphological
681  data, where branch lengths between data sets are often linked as a default approach (Nylander
682  etal. 2004; O’Reilly et al. 2015). The results of our simulation study lead us to suggest that
683  future studies should use morphological character matrices of at least 100 characters; this

684  would allow for partitioning of the morphological data set, which has been demonstrated to
685  improve the precision of divergence date estimates and accuracy of branch-length estimates
686  (Lee 2016; Caldas and Schrago 2019; Neumann et al. 2021). Moreover, increasing the size of

687  the morphological data set can minimize the impacts of character correlation (Guillerme and
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688  Brazeau 2018; Simdes et al. 2022a). This work should not only be extended to larger data
689  sets, but should also span across the Tree of Life, to help elucidate the processes that drive
690  macroevolutionary change. Furthermore, these methods are not restricted to analyses of
691  molecular and morphological evolution, but can also be used to test for correlations in rates
692  between symbionts and their hosts or between organellar and nuclear genomes in plants.
693
694 SUPPLEMENTARY MATERIALS
695  Supplementary material is available online. All text, files and code are available at Dryad
696  [X].
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