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Abstract.—Determining the link between genomic and phenotypic evolution is a 14 

fundamental goal in evolutionary biology. Insights into this link can be gained by using a 15 

phylogenetic approach to test for correlations between rates of molecular and morphological 16 

evolution. However, there has been persistent uncertainty about the relationship between 17 

these rates, partly because conflicting results have been obtained using various methods that 18 

have not been examined in detail. We carried out a simulation study to evaluate the 19 

performance of five statistical methods for detecting correlated rates of evolution. Our 20 

simulations explored the evolution of molecular sequences and morphological characters 21 

under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of 22 

branch rates was able to detect correlated rates of evolution correctly in the largest number of 23 

cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, 24 

independent sister-pairs contrasts, and likelihood-based model selection. As expected, the 25 

power to detect correlated rates increased with the amount of data, both in terms of tree size 26 

and number of morphological characters. Likewise, the performance of all five methods 27 

improved when there was greater rate variation among lineages. We then applied these 28 

methods to a data set from flowering plants and did not find evidence of a correlation in 29 

evolutionary rates between genomic data and morphological characters. The results of our 30 

study have practical implications for phylogenetic analyses of combined molecular and 31 

morphological data sets, and highlight the conditions under which the links between genomic 32 

and phenotypic rates of evolution can be evaluated quantitatively. 33 

 34 

Keywords: evolutionary rates, morphological evolution, macroevolution, molecular clock, 35 

genetic drift, flowering plants   36 
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Evolution has generated the great diversity of phenotypic forms across the Tree of Life. 37 

However, the genetic mechanisms that underlie changes in phenotype remain incompletely 38 

understood (Orr 2001). It is often assumed that there is only a weak link between molecular 39 

and morphological change (Simpson 1944; Stanley 1975; Gould and Eldredge 1977; Lee et 40 

al. 2013; Halliday et al. 2019), given that the sheer number of mutations accumulating in 41 

genomes are likely to include just a small proportion that cause phenotypic changes 42 

(Gillespie 1991; Bromham et al. 2002). Furthermore, the proposal of the neutral theory of 43 

molecular evolution (Kimura 1968), which describes most mutations as having negligible 44 

impact on an organism’s fitness, has bolstered the idea that molecular and morphological 45 

evolution are broadly decoupled (Bromham et al. 2002; Davies and Savolainen 2006; Lee et 46 

al. 2013; Halliday et al. 2019; Simões et al. 2020). Although genetic drift is believed to be a 47 

substantial driver of molecular evolution (Kimura 1968; Ohta 1992), morphological 48 

characters, given their importance to an organism’s survival, are often assumed to be under 49 

strong selection (Lee and Palci 2015; Ho et al. 2017; Manceau et al. 2020). 50 

Explicit tests of the link between genetic change and phenotypic change have largely 51 

focussed on model species, mapping the effect of single genes or small sets of genes (Ashton 52 

et al. 2017; Kemble et al. 2019). Recent advances in genomic sequencing have propelled 53 

studies of quantitative trait loci, where genomic regions that account for phenotypic trait 54 

variation within a species can be identified. However, these studies are time-consuming, 55 

costly, and often lack statistical power (Ashton et al. 2017). A more efficient approach that 56 

can accommodate hundreds of taxa is to assess the link between rates of molecular and 57 

morphological evolution using phylogenetic comparative methods. If there is a correlation 58 

between rates of molecular and morphological evolution, then phenotypic traits might be 59 

predominantly governed by drift rather than adaptive processes (Halliday et al. 2019), as 60 

demonstrated in the evolution of mandibles in rodents (Renaud et al. 2007) and crania in 61 
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primates (Ackermann and Cheverud 2004). Alternatively, if a species has a high rate of 62 

molecular evolution, then it might also have a high rate of morphological evolution simply 63 

because it will experience larger numbers of phenotype-altering mutations. However, 64 

apparent correlations between molecular and morphological evolutionary rates might be due 65 

to both being driven by a third factor. For example, species with small population sizes might 66 

experience rapid evolutionary change because of the heightened impacts of drift on both 67 

genomic mutations and morphological traits (Combosch et al. 2017).  68 

To date, there have been few explicit tests of the link between molecular and 69 

morphological evolutionary rates (Seligmann 2010). Instead, indirect tests have been carried 70 

out on ‘living fossils’, or taxa with presumed morphological conservatism across long 71 

timescales and high evolutionary distinctiveness (Lidgard and Love 2018; Turner 2019). For 72 

instance, the tuatara (Sphenodon punctatus) diverged from all other squamates ~220 million 73 

years ago (Ma) and is the only extant member of the order Rhynchocephalia (Herrera-Flores 74 

et al. 2017). Despite the inference that the long lineage leading to the tuatara has experienced 75 

little morphological evolution (Herrera-Flores et al. 2017; Simões et al. 2022b), the 76 

mitochondrial control region of the tuatara has been estimated to evolve at a remarkably high 77 

rate (Hay et al. 2008; Subramanian et al. 2009). Earlier work on morphologically conserved 78 

horseshoe crabs showed only modest reductions in the rate of mitochondrial evolution 79 

compared with scorpions and brine shrimp (Avise et al. 1994). Analysis of Ginkgo biloba, the 80 

sole surviving species in its order, showed enrichment in duplicated genes and expansion of 81 

gene families, bolstering complex chemical defence mechanisms against herbivory (Guan et 82 

al. 2016; Šmarda et al. 2016). These results suggest a decoupling of the rates of molecular 83 

and morphological evolution in some taxa. In contrast, however, recent transcriptomic 84 

analyses of ‘living fossils’ have shown reduced rates of molecular evolution across hundreds 85 

of protein-coding genes in Nautilus (Combosch et al. 2017; Zhang et al. 2021; Huang et al. 86 
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2022; Sanchez et al. 2022), the African coelacanth (Amemiya et al. 2013), the tuatara 87 

(Gemmell et al. 2020), and in long-lived sacred lotus (Ming et al. 2013).   88 

 Phylogenetic studies of the relationship between morphological and molecular 89 

evolutionary rates have produced a mixture of results. An analysis of 13 vertebrate data sets 90 

yielded no evidence for an association between rates of molecular and morphological 91 

evolution (Bromham et al. 2002), contradicting the results of an earlier study that detected 92 

such a correlation in seven of the eight diverse data sets analysed (Omland 1997). Although 93 

most studies have tested evolutionary rate correlations in animals, analyses of small data sets 94 

from angiosperms (flowering plants) have found weak but positive correlations between rates 95 

of molecular and phenotypic evolution (Omland 1997; Barraclough and Savolainen 2001; 96 

Davies and Savolainen 2006). These positive correlations have been found across many 97 

angiosperm taxa, including: Sedum (family Crassulaceae), Krigia (family Asteraceae), birch 98 

(family Betuleacae), spindle trees (family Celastraceae), Hypoxidaceae, walnuts (family 99 

Juglandaceae), Protea (family Proteaceae), buckthorns (family Rhamnaceae), and monocots. 100 

By gaining insights into the relationship between molecular and morphological evolution in 101 

such an extraordinarily species-rich and hyperdiverse group (Onstein 2019), we can achieve a 102 

better understanding of the rapid ecological dominance of angiosperms and their evolutionary 103 

dynamics (Sauquet and Magallon 2018).  104 

 The persistent uncertainty about the relationship between molecular and 105 

morphological rates is compounded by the lack of a detailed investigation of the conditions 106 

under which a correlation can be detected (Simpson 1944; Seligmann 2010). Without the use 107 

of post hoc power analyses (e.g., Davies and Savolainen 2006), it is unclear whether 108 

insufficient statistical power in analyses precludes detection of correlated rates or if there is a 109 

genuine lack of an association. This is especially pertinent given that previous broad-scale 110 

studies examined small sets of genetic markers, commonly ‘housekeeping’ genes (Omland 111 
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1997; Barraclough and Savolainen 2001; Davies and Savolainen 2006). These genes might 112 

not be well-suited for comparison with morphological rates, since they are under functional 113 

constraints and are unlikely to be representative of genome-wide patterns (Bromham et al. 114 

2002). In addition, there remain questions about methodology, such as whether terminal 115 

branches of trees inferred with morphological data should be included when testing for 116 

correlations between rates of morphological and molecular evolution, given that they might 117 

underestimate the amount of evolutionary change (Bromham et al. 2002; Seligmann 2010). 118 

This is because autapomorphies (changes that have occurred only in single taxa) are often 119 

excluded when collecting morphological characters (Wright and Hillis 2014). Furthermore, 120 

previously applied approaches such as root-to-tip distance correlations have been criticized 121 

for their time-averaging effect and for the inclusion of non-independent data points, thereby 122 

increasing the risk of spurious positive correlations (Felsenstein 1985; Bromham et al. 2002; 123 

Rambaut et al. 2016; Barba-Montoya et al. 2021). Thus, it remains unclear whether the mixed 124 

results from previous studies have been due to the use of different data sets, insufficient 125 

statistical power, or the use of varied methods to test for rate correlations.  126 

 Here we aim to uncover the conditions under which correlations between molecular 127 

and morphological rates of evolution can be detected. We present a comprehensive 128 

simulation study based on parameters from angiosperms, which lends reality to our estimates. 129 

We evaluate five approaches for detecting correlated rates of evolution under these 130 

conditions, including root-to-tip distance correlations, independent sister-pairs contrasts, 131 

likelihood-based model selection, correlations of Bayesian branch rates inferred using relaxed 132 

clocks, and Bayesian model selection. Using the insights provided by the simulation study, 133 

we test for evolutionary rate correlations between angiosperm floral characters and genomic 134 

DNA. Our analyses have implications for understanding the relationship between genotypic 135 
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and phenotypic change and inform practical recommendations for detecting correlated 136 

evolutionary rates.  137 

 138 

MATERIALS AND METHODS 139 

Simulations of Molecular and Morphological Evolution 140 

 Phylogenetic trees and evolutionary rates.—We performed simulations using 141 

chronograms (branch lengths measured in millions of years, Myr) of three different sizes, 142 

based on a 792-species angiosperm tree from Magallón et al. (2015) used by Sauquet et al. 143 

(2017). From this tree, we sampled 18, 45, or 111 species to represent diverse angiosperm 144 

lineages (Fig. 1a). These three trees had root ages of 139.40 Ma. 145 

We rescaled the branch lengths of the chronograms to produce phylograms (where 146 

branch lengths measured in substitutions/site). To do this, we used the R package NELSI (Ho 147 

et al. 2015) to generate branch lengths according to an uncorrelated lognormal clock 148 

(Drummond et al. 2006). The branch rates had a mean of 9.65´10-4 subs/site/Myr, inferred in 149 

a previous analysis of two nuclear markers (18S and 26S ribosomal DNA) and three plastid 150 

protein-coding genes (atpB, rbcL, and matK) from 792 angiosperm species (Magallón et al. 151 

2015). We generated branch rates with low, moderate, and high levels of variation, with 152 

respective standard deviations of 0.25, 0.75, and 1.25.  153 

We then performed simulations under two scenarios, in which molecular and 154 

morphological evolutionary rates were either correlated or uncorrelated. To generate a 155 

morphological phylogram with branch rates correlated with those of the molecular 156 

phylogram, we scaled the branch lengths of the latter by a factor of 1.90 (Fig. 1a). This 157 

scaling factor was based on a mean rate of morphological evolution of 1.83´10-3 158 

changes/character/Myr, inferred from 27 floral characters for 792 angiosperm species 159 

(Sauquet et al. 2017). 160 
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 For our simulations with branch rates being uncoupled between molecular and 161 

morphological data sets, we simply used NELSI to generate independent sets of branch rates 162 

and used these to rescale the branch lengths of the chronograms (Fig. 1a). Mean evolutionary 163 

rates and standard deviations were as described above for the simulations with correlated 164 

branch rates between molecular and morphological data sets.  165 

 166 

Generating molecular sequence alignments and morphological character matrices.—167 

We used Seq-Gen version 1.3.4 (Rambaut and Grass 1997) to simulate the evolution of 168 

nucleotide sequences on the phylograms produced by the previous step (Fig. 1a). These 169 

simulations produced sequence alignments with lengths of 1000 nucleotides, reflecting 170 

typical sizes of nuclear and plastid protein-coding genes. The nucleotide transition rates, 171 

frequencies, and gamma shape parameters (degree of among-site rate variation) were based 172 

on estimates from Magallón et al. (2015) and are listed in the Supplementary Material.  173 

We generated morphological data matrices consisting of 10, 100, and 1000 characters 174 

(Fig. 1a). Matrices with either two-state (binary) or four-state characters were simulated. 175 

Character evolution was simulated using the R package geiger (Pennell et al. 2014) under the 176 

Mk model (Lewis 2001), a generalization of the Jukes-Cantor (1969) model of molecular 177 

evolution. The relative rate for each character was drawn randomly from a gamma 178 

distribution with a shape parameter of 1.39 inferred via maximum-likelihood analysis of the 179 

floral character data set from Schönenberger et al. (2020), comprising 30 binary and multi-180 

state morphological characters scored for 792 angiosperm species (see Supplementary 181 

Material). This morphological data set was also used in the empirical analyses in this study.  182 
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FIGURE 1. Flowchart of simulation study. a) Generating data sets through simulation. 184 
Molecular phylograms are generated using chronograms with three tree sizes (18, 45, or 111 185 
taxa), with a mean rate of evolution (μ) that has been inferred from an empirical data set, and 186 
standard deviation (σ) representing three levels of among-lineage rate variation (0.25, 0.75 or 187 
1.25). The branch lengths of the molecular phylogram are then multiplied by an empirical 188 
scaling factor to obtain a morphological phylogram with correlated rates of evolution along 189 
each branch. To obtain trees without correlated rates of evolution, morphological phylograms 190 
are simply generated using an independent mean rate of evolution (μ), but on the same 191 
chronogram and with the same standard deviation (σ) as the molecular phylogram. 192 
Simulations were performed under a total of 54 distinct settings each for the scenario with 193 
correlated and uncorrelated rates of evolution, with 20 replicates per setting. b) Phylogenetic 194 
inference. Using a fixed tree topology, molecular and morphological branch lengths were 195 
inferred using maximum-likelihood and Bayesian analyses. Marginal likelihoods were 196 
estimated for the purpose of Bayesian model selection. Five methods were used to test for 197 
correlated rates of evolutionary change, (i) root-to-tip distance correlations, (ii) independent 198 
sister-pairs contrasts, (iii) likelihood-based model selection, (iv) correlations of Bayesian 199 
branch rates, and (v) Bayesian model selection. c) Evaluate performance of methods. We 200 
compared the accuracy and power of the five methods of testing for correlated rates of 201 
evolutionary change. 202 
  203 
 204 

Summary of simulation scenarios.—The settings described above yielded a total of 54 205 

distinct simulation scenarios. Our simulations included trees of three sizes (18, 45, and 111 206 

taxa). Nucleotide sequences consistently had a length of 1000 nucleotides, but we varied the 207 

number of morphological characters (10, 100, and 1000 characters) and the number of 208 

possible morphological character states (either two- or four-state characters). We simulated 209 

three levels of among-lineage rate heterogeneity with standard deviations of 0.25, 0.75, and 210 

1.25 for the molecular and morphological data sets (Fig. 1a). For each of the 54 simulation 211 

settings, we generated 20 replicate data sets. Thus, our simulations produced a total of 1080 212 

pairs of molecular and morphological data sets for each of the ‘correlated’ and ‘uncorrelated’ 213 

settings.  214 

 215 

Phylogenetic Inference 216 

 Maximum-likelihood inference.—We inferred phylograms from the simulated 217 

molecular and morphological data sets using maximum likelihood in IQ-TREE2 (version 218 
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2.0.6; Bui et al. 2020) (Fig. 1b). In each analysis, the tree topology was constrained to match 219 

that used for simulation, with the addition of one outgroup taxon, the gymnosperm 220 

Welwitschia mirabilis. Analyses of the molecular data used the general-time-reversible 221 

model, with gamma rate heterogeneity (four discrete categories) and invariant sites 222 

(GTR+Γ+I). Analyses of the morphological data used the time-homogeneous Mk model, with 223 

empirical state frequencies and gamma rate heterogeneity with four discrete categories 224 

(Mk+Γ) (Supplementary Material). Following maximum-likelihood inference, the 225 

gymnosperm outgroup was removed from each tree. The branch lengths from these 226 

phylograms were used for root-to-tip distance correlations, independent sister-pairs contrasts, 227 

and likelihood-based model selection, which are described in the next section. 228 

 229 

 Bayesian inference.—We analysed the molecular and morphological data using 230 

Bayesian inference in BEAST2 version 2.6.2 (Bouckaert et al. 2019) (Fig. 1b). In each 231 

analysis, the tree topology was constrained to match that used for simulation. Molecular and 232 

morphological data were partitioned so that they were assigned distinct substitution models, 233 

with the GTR+Γ+I model for the molecular data set and the Mk+ Γ model for the 234 

morphological data set. The molecular and morphological data sets were assigned separate 235 

uncorrelated lognormal relaxed clocks, with the mean rate of each of these having a uniform 236 

prior between 0 and 1. The molecular and morphological data subsets shared the same fixed 237 

tree topology, with a birth-death tree prior. We also performed an analysis in which 238 

molecular and morphological data shared the same uncorrelated lognormal relaxed clock, to 239 

allow comparison between linked and unlinked clock models using Bayesian model selection.  240 

For each Bayesian analysis, the posterior distribution was estimated using Markov 241 

chain Monte Carlo (MCMC) sampling. We ran two independent chains, each of 10,000,000 242 

steps, with samples drawn every 1000 steps. The first 10% of samples were discarded as 243 
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burn-in. After checking for convergence and sufficient sampling (effective sample sizes of 244 

parameters greater than 200) using the LogAnalyzer function in BEAST, we combined the 245 

samples from the two chains. The tree samples were summarized using TreeAnnotator, part 246 

of the BEAST package. We obtained the estimates of branch rates from the summarized trees 247 

and used them in our tests of rate correlations, described below.  248 

 249 

Testing for Correlated Rates of Evolution 250 

We evaluated the performance of five methods for testing for correlated evolutionary 251 

rates: (i) root-to-tip distance correlations, (ii) independent sister-pairs contrasts, (iii) 252 

likelihood-based model selection, (iv) correlations of Bayesian branch rates, and (v) Bayesian 253 

model selection (Fig. 1b). The first three methods were performed on maximum-likelihood 254 

trees that were inferred from the simulated data. The last two methods were performed using 255 

the results of our Bayesian phylogenetic analyses.  256 

 257 

(i) Root-to-tip distance correlations.—The first method of testing for correlated rates 258 

was based on examination of the root-to-tip distances in the maximum-likelihood 259 

phylograms. Since all of the tips represent present-day taxa and are separated from the root 260 

node by the same amount of time, any differences in the root-to-tip distances reflect 261 

differences in evolutionary rates (Omland 1997; Bromham et al. 2002; Arab et al. 2020). For 262 

each matched pair of molecular and morphological phylograms, we calculated patristic root-263 

to-tip distances using the distRoot function in the R package adephylo (Jombart et al. 2010) 264 

and tested for a correlation between the molecular and morphological root-to-tip distances. 265 

To address non-independence among the root-to-tip distances, we calculated the p-value 266 

using a permutation test in the R package jmuOutlier (Higgins 2004; Garren 2019), with 267 

20,000 replicates.  268 
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 269 

(ii) Independent sister-pairs contrasts.—The second method of testing for correlated 270 

rates involved taking phylogenetically independent pairs of taxa (sister pairs) and comparing 271 

their relative branch lengths between the molecular and morphological phylograms. We 272 

selected sister species that shared a most recent common ancestor to the exclusion of other 273 

sister pairs, which avoids the problem of phylogenetic non-independence but reduces the 274 

amount of data (Felsenstein 1985; Bromham et al. 2002). We used the R package diverge to 275 

extract sister pairs for each tree (Anderson and Weir 2022). Lists of sister pairs for each tree 276 

size are provided in the Supplementary Material. By definition, the two branches in each 277 

sister pair have been evolving for the same amount of time, such that their phylogram length 278 

reflects their relative evolutionary rate. We computed the difference between the branch 279 

lengths of sister species in the molecular and morphological phylograms inferred using 280 

maximum likelihood. We tested for correlations between the molecular and morphological 281 

contrasts using the non-parametric Spearman’s rank correlation test, to allow for violations of 282 

bivariate normality and homoscedasticity. The contrasts were log-transformed and 283 

standardized following standard guidelines by dividing by the square root of the time since 284 

divergence between sister species (see Supplementary Materials for details; Garland et al. 285 

1992; Freckleton 2000; Welch and Waxman 2008).  286 

 287 

(iii) Likelihood-based model selection.—The third method of testing for correlated 288 

rates involved likelihood-based model selection using information criteria. We analysed the 289 

molecular and morphological data using maximum likelihood in IQ-TREE2 and compared 290 

models in which the branch lengths were either linked (‘proportionate’) or unlinked between 291 

the molecular and morphological trees. These two models reflect correlated and uncorrelated 292 

branch rates, respectively, between molecular and morphological data (Duchêne et al. 2020). 293 
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We compared the models using the corrected Akaike information criterion (AICc) and the 294 

Bayesian information criterion (BIC).  295 

 296 

(iv) Correlations of Bayesian branch rates.—The fourth method of testing for 297 

correlated rates was based on the inferred branch rates from Bayesian phylogenetic analyses. 298 

We tested for correlations between the branch rates inferred using the uncorrelated lognormal 299 

relaxed clock for the molecular and morphological data sets. To compute the significance of 300 

the correlation, we used Spearman’s rank-order correlation test to avoid violations of 301 

bivariate normality and homoscedasticity. For comparison, tests were performed using the 302 

mean and median posterior branch rates. The mean posterior rate is commonly reported in 303 

Bayesian phylogenetic analyses, but the median rate might be more appropriate because the 304 

marginal posterior distributions are skewed.  305 

 306 

(v) Bayesian model selection.—The fifth method of testing for correlated rates 307 

involved the use of Bayesian model selection to compare the support for linked or unlinked 308 

branch rates between molecular and morphological data. Model selection was performed 309 

using Bayes factors, which compare the marginal likelihoods of the two models. The 310 

marginal likelihoods of the linked and unlinked relaxed-clock models were estimated using 311 

the ‘MS’ Model Selection package in BEAST2. We used generalized-stepping-stone 312 

sampling (Baele et al. 2016), with 25 steps and chain lengths of 400,000. The ratio of the 313 

marginal likelihoods was used to compute the Bayes factor, which was then interpreted using 314 

the guidelines of Kass and Raftery (1995).  315 

 316 

Evaluation of performance.—We used two approaches to evaluate the performance of 317 

the five methods of testing for rate correlations. First, we evaluated the methods by their 318 
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power, which is the ability to detect positive correlations under the largest number of 319 

scenarios. Second, we examined the accuracy of the methods, regarded here as the ability to 320 

detect positive correlations without false positives. We do not attempt to evaluate the ability 321 

of the methods to infer the correct degree of rate correlation, i.e., the correlation coefficient. 322 

 323 

Case Study: Flowering Plants 324 

To test for correlated rates of molecular and morphological evolution in empirical 325 

data, we applied the above five methods to large angiosperm data sets. Molecular data were 326 

obtained from the One Thousand Plant Transcriptomes Initiative (2019), hereafter ONEKP. 327 

This data set includes nucleotide sequences from 410 protein-coding nuclear genes from 328 

1,124 green plants, glaucophytes, and red algae. For computational tractability, we analysed a 329 

subset of 111 angiosperm species and one gymnosperm outgroup (Welwitschia mirabilis), 330 

matching the angiosperm species in the morphological data set. We applied the data-331 

partitioning scheme as outlined by ONEKP (2019) and estimated branch lengths on a fixed 332 

tree topology using maximum-likelihood analysis and Bayesian inference. The substitution 333 

model for each data subset was selected using ModelFinder in IQTREE2 (Kalyaanamoorthy 334 

et al. 2017).  335 

  The morphological data set was sourced from Schönenberger et al. (2020), 336 

representing a slightly expanded data set of 30 floral characters for 792 angiosperm species, 337 

initially published by (2017). These are discrete binary and multi-state morphological 338 

characters, including features such as the structural sex of flowers, ovary position, phyllotaxy, 339 

number of reproductive parts, and fusion of ovaries. We used a subset of 111 angiosperm 340 

species for our analyses and partitioned the data according to the number of character states 341 

(i.e., two-, three-, four-, and five-state data were treated as separate subsets). Branch lengths 342 

were estimated on a fixed tree topology using maximum-likelihood analysis and Bayesian 343 
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inference, using the Mk+Γ model of evolution with correction for ascertainment bias. The 344 

model was selected using ModelFinder in IQ-TREE2.  345 

 We performed Bayesian phylogenetic analyses of the genomic data and floral 346 

characters with and without calibrations. In the former case, we implemented secondary 347 

calibrations on the ages of key angiosperm groups. The secondary calibrations were sourced 348 

from Ramírez-Barahona et al. (2020) and applied as normal priors on node ages (Ho and 349 

Phillips 2009). To estimate the posterior distribution, we sampled from five independent 350 

MCMC runs with chain lengths of either 50 or 70 million steps. Samples were drawn every 351 

1000 steps. After checking for convergence and sufficient sampling in Tracer, we removed a 352 

burn-in fraction of between 40% and 60%, depending on the analysis, leaving a total of 353 

170,000 sampled trees. Further details of the angiosperm case study, including settings and 354 

secondary calibrations, are available in the Supplementary Material.  355 

 We tested for correlations between rates of nuclear genomic evolution and floral 356 

character evolution using (i) root-to-tip distance correlations, (ii) independent sister-pairs 357 

contrasts, (iii) likelihood-based model selection, (iv) correlations of Bayesian branch rates, 358 

and (v) Bayesian model selection. We checked assumptions for each of these tests, as 359 

described in the Supplementary Material.  360 

 361 

RESULTS 362 

Performance in Detecting Correlated Evolutionary Rates 363 

Using data generated by simulation, we compared five methods for testing for 364 

correlations in evolutionary rates between molecular sequences and morphological 365 

characters. Correlations of branch rates from Bayesian relaxed-clock inference were able to 366 

detect correlated rates between molecular and morphological data under the widest range of 367 

simulation settings (Fig. 2 and 3). Under this method, the mean and median posterior branch 368 
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rates were equally effective, with an average detection of correlated evolutionary rates of 369 

85.8% and 85.6%, respectively. The performance of this method was closely followed by 370 

root-to-tip distance correlations (84.9%), Bayesian model selection (64.4%), and independent 371 

sister-pairs contrasts (48.2%) (Fig. 2; and 3). Likelihood-based model selection had very high 372 

detection of correlated evolutionary rates across scenarios (97.0% with AICc and 100% with 373 

BIC) but had an unacceptably high frequency of false positives.  374 

When we analysed molecular and morphological data sets that had been generated 375 

without correlated rates, we found low false-positive rates when using correlations of 376 

Bayesian branch rates (1.20% and 2.96% for mean and median posterior branch rates, 377 

respectively), root-to-tip distance correlations (7.96%), independent sister-pairs contrasts 378 

(3.06%), and Bayesian model selection (3.06%) (Fig. 3 and 4). However, likelihood-based 379 

model selection yielded a high frequency of false positives when using either the AICc 380 

(47.3%) or BIC (69.3%).  381 

 382 

Impacts of Varying Simulation Conditions 383 

We tested the effect of tree size, including 18, 45, and 111 taxa in the simulations, to 384 

evaluate its impact on the ability to detect correlated evolutionary rates. The number of taxa 385 

influenced the detection of correlations predictably (Fig. 5a), with performance increasing 386 

with tree size (57.7%, 81.1%, and 82.5% for tree sizes of 18, 45, and 111 taxa, respectively). 387 

Analyses of the 18 taxon-set performed poorly when there were only 10 morphological 388 

characters (Fig. 2). This was especially apparent for independent sister-pairs contrasts, where 389 

analyses of 18-taxon data sets failed to detect rate correlations regardless of the degree of 390 

among-lineage rate variation, number of character states, and numbers of morphological 391 

characters.  392 

 393 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.501330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.501330
http://creativecommons.org/licenses/by-nc/4.0/


Asar, Sauquet, and Ho  

 18 

 394 

 395 
FIGURE 2. Heatmaps showing the performance of five approaches for testing for correlations 396 
between molecular and morphological evolutionary rates, for data produced by simulation 397 
with correlated evolutionary rates: a) root-to-tip distance correlations; b) independent sister-398 
pairs contrasts; c) likelihood-based model selection using the corrected Akaike information 399 
criterion (AICc); correlations of Bayesian branch rates using d) mean posterior branch rates 400 
of branches or e) median posterior branch rates; and f) Bayesian model selection. In each 401 
panel, rows give results under six scenarios, representing combinations of three levels of 402 
among-lineage rate variation [0.25, 0.75, 1.25], and either two- or four-state morphological 403 
characters. In each panel, columns give results for data sets of various sizes, representing 404 
combinations of three numbers of morphological characters [10, 100, 1000] and three 405 
numbers of taxa [18, 45, 111]. For methods (a)–(b) and (d)–(e), colours indicate the 406 
proportion of 20 replicates for each setting that yielded a significant rate correlation (i.e., p < 407 
0.05). For method (c), colours indicate the proportion of 20 replicates for each setting that 408 
yielded ΔAICc > 2, supporting a model of linked rates over a model of unlinked rates. For 409 
method (f), colours indicate the proportion of 20 replicates for each setting that yielded a log 410 
Bayes factor (BF) > 1.0 for a model of linked rates over a model of unlinked rates. For 411 
heatmaps of likelihood-based model selection using the Bayesian information criterion, see 412 
Supplementary Material.  413 
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 414 

 415 
Figure 3. Boxplots showing the frequency of detecting correlated rates of evolution between 416 
simulated molecular and morphological data using different methods. A) Accuracy of the 417 
methods when analysing data simulated with correlated rates. The dashed horizontal line 418 
represents the ideal detection of correlated rates of evolution (100% of scenarios). B) 419 
Propensity of methods to detect correlations when analysing data simulated with uncorrelated 420 
rates (false positive detection). The dashed horizontal line represents the detection of 421 
correlated rates of evolution expected under frequentist statistics with a critical value of 0.05 422 
(false positive rate of 5%).  423 
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 424 

 425 
FIGURE 4. Heatmaps showing the performance of five approaches for testing for correlations 426 
between molecular and morphological evolutionary rates, for data produced by simulation 427 
without correlated evolutionary rates: a) root-to-tip distance correlations; b) independent 428 
sister-pairs contrasts; c) likelihood-based model selection using the corrected Akaike 429 
information criterion; correlations of Bayesian branch rates using d) mean posterior branch 430 
rates of branches or e) median posterior branch rates; and f) Bayesian model selection. In 431 
each panel, rows give results under six scenarios, representing combinations of three levels of 432 
among-lineage rate variation [0.25, 0.75, 1.25], and either two- or four-state morphological 433 
characters. In each panel, columns give results for data sets of various sizes, representing 434 
combinations of three numbers of morphological characters [10, 100, 1000] and three 435 
numbers of taxa [18, 45, 111]. For methods (a)–(b) and (d)–(e), colours indicate the 436 
proportion of 20 replicates for each setting that yielded a significant rate correlation (i.e., p < 437 
0.05). For method (c), colours indicate the proportion of 20 replicates for each setting that 438 
yielded ΔAICc > 2, supporting a model of linked rates over a model of unlinked rates. For 439 
method (f), colours indicate the proportion of 20 replicates for each setting that yielded a log 440 
Bayes factor (BF) > 1.0 for a model of linked rates over a model of unlinked rates. For 441 
heatmaps of likelihood-based model selection using the Bayesian information criterion, see 442 
Supplementary Material.  443 
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FIGURE 5. Boxplots showing the frequency of detecting correlated rates of evolution between 444 
simulated molecular and morphological data using different settings. The left panels show the 445 
performance of methods when data were simulated with correlated rates, with dashed 446 
horizontal lines representing the ideal detection of correlated rates of evolution (100% of 447 
scenarios). The right panels show results when simulated with uncorrelated rates, with dashed 448 
horizontal lines representing the detection of correlated rates of evolution expected under 449 
frequentist statistics with a critical value of 0.05 (false positive rate of 5%). The different 450 
settings used were: a) three tree sizes, b) three sizes of morphological character matrices, c) 451 
two numbers of possible morphological character states, and d) three levels of among-lineage 452 
rate variation. The results were pooled across all methods except for likelihood-based model 453 
selection, since this method had such a high rate of false positives and would unreasonably 454 
skew the detection of correlations. Boxplots calculated with the results from likelihood-based 455 
model selection can be found in the Supplementary Material.  456 
 457 

We varied the number of morphological characters [10, 100, 1000] to evaluate their 458 

impact on the ability of the five methods to detect correlated evolutionary rates. We found 459 

that the average detection of positive correlations increased from 57.6%, 80.6%, to 83.2% for 460 

data sets with 10, 100, and 1000 morphological characters, respectively (Fig. 2 and 5b). We 461 

found that the effect depended on the amount of among-lineage rate variation; where branch 462 

rates had a standard deviation of at least 0.75, the four best approaches were generally able to 463 

detect correlations with any number of morphological characters (Fig. 2). However, when 464 

there was a low degree of among-lineage rate variation, rate correlation could not be detected 465 

when there were only 10 morphological characters. Furthermore, likelihood-based model 466 

selection detected a high rate of false positives, but this was mitigated when there were either 467 

100 or 1000 morphological characters and moderate or high among-lineage rate variation 468 

(Fig. 4c and Supplementary Material). 469 

The number of character states for the morphological data had a minor impact on 470 

detection of correlations. Generally, correlations were more frequently detected when the 471 

morphological data comprised four-state characters, with a positive detection of 75.1% 472 

compared with 72.4% when the data comprised two-state characters (Fig. 2 and 5c), although 473 

this effect was negligible when there were greater than 10 morphological characters and 18 474 

taxa in the data set (Fig. 3).  475 
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Across the four most powerful and accurate methods, the most important factor for 476 

detection of correlated evolutionary rates was among-lineage rate variation (Fig. 2 and 5d). 477 

When we implemented low among-lineage rate variation in the data sets, correlated rates 478 

could only be detected across 50.2% of replicates, whereas medium and high levels increased 479 

detection to 81.9% and 89.2%, respectively. Where there was low among-lineage rate 480 

variation, with branch rates having a standard deviation of 0.25, the four best approaches 481 

were generally unable to detect correlations without sampling at least 100 morphological  482 

characters (Fig. 2). This was especially true for Bayesian model selection, which could not 483 

detect correlated rates of evolution at the lowest level of among-lineage rate variation. 484 

 485 

Case Study: Flowering Plants 486 

In our analyses of genomic DNA and floral characters in angiosperms, we found that 487 

two of the five methods, root-to-tip distance correlations and likelihood-based model 488 

selection, detected a correlation in evolutionary rates. We found evidence of a correlation in 489 

our analysis of root-to-tip distances (p ≈ 0; Fig. 6a). Outliers (data points outside 1.5 times 490 

the interquartile range) were excluded from the permutation test, but root-to-tip distances 491 

were significantly correlated both before and after removal of outliers (see Supplementary 492 

Material). These outliers included the branch leading to the sister taxon to all remaining 493 

angiosperms, Amborella trichopoda, which had a low morphological evolutionary rate of 494 

2.38´10-6 changes/character/Myr. Other ANA-grade angiosperms, such as Austrobaileya 495 

scandens and Illicium floridanum, similarly had low rates of morphological change and were 496 

removed from the test. Likelihood-based model selection also yielded strong support for 497 

linking branch lengths between nuclear sequences and floral characters, when using both 498 

AICc (ΔAICc = 203.4) and BIC scores (ΔBIC = 2504.9). 499 
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 500 

 501 
Figure 6. Comparisons between evolutionary rates of nuclear genomic DNA and floral 502 
characters inferred from angiosperms. The methods used to test for correlated rates of 503 
evolution are a) root-to-tip distance correlation; b) independent-sister pairs contrasts; c) 504 
correlations of Bayesian mean posterior branch rates; and d) correlations of Bayesian median 505 
posterior branch rates. The plot for each comparison has been fit with a linear model, which 506 
is displayed along with the 95% confidence interval.  507 
 508 

 509 

We found no evidence of correlated molecular and morphological rates when we 510 

analysed the data using independent sister-pairs contrasts (rs = 0.0162, p = 0.466; Fig. 6b), 511 

correlations of Bayesian mean posterior branch rates (r = –0.0209, p = 0.617; Fig. 6c), or 512 

correlations of Bayesian median posterior branch rates (rs = –0.0685, p = 0.837; Fig. 6d). The 513 
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Bayes factor gave very strong support to unlinking the clock models between nuclear and 514 

floral characters, with an average log Bayes factor of 51.4. Our Bayesian approaches failed to 515 

detect a correlation regardless of whether fossil calibrations were included or not (see 516 

Supplementary Material for the results of analyses without fossil calibrations).  517 

 518 

DISCUSSION 519 

We have shown through a comprehensive simulation study that correlated rates of 520 

evolution between molecular sequences and morphological characters can be detected under 521 

a variety of circumstances. The best-performing method was correlations of Bayesian branch 522 

rates, followed by root-to-tip distances, Bayesian model selection, independent sister-pairs 523 

contrasts, and lastly likelihood-based model selection. However, when taking computational 524 

burden into account, testing for correlations using root-to-tip distances is the most efficient 525 

method. Overall, methods had more power when the data had a high degree of among-lineage 526 

rate variation, and when at least 45 taxa or 100 morphological characters were sampled. 527 

When we applied these methods to an angiosperm data set, we found limited evidence for 528 

coupled evolutionary rates when analysing nuclear DNA and floral characters. The estimation 529 

of root-to-tip distances might have been misled by missing character data in the floral trait 530 

data set. However, missing data are often unavoidable in morphological data sets, due to 531 

inapplicable characters, i.e., characters that are not common across species, and difficulties in 532 

accessing suitable samples (Scholtz 2010; Wanninger 2015). Although our simulations used 533 

evolutionary parameters that were empirically informed, they still represented an idealized 534 

form of the evolutionary process and yielded complete data sets. Below we discuss the results 535 

and implications of the simulation study before returning to the case study of angiosperms.  536 

 537 

 538 
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Detecting Correlations Between Rates of Molecular and Morphological Evolution 539 

Our simulation study has provided detailed evaluations of five methods of testing for 540 

correlations between rates of molecular and morphological evolution. We found that the three 541 

methods that used inferences from maximum-likelihood phylogenetic analysis required at 542 

least 100 morphological characters for accurate detection of rate correlations. We found that 543 

correlations of root-to-tip distances performed well, with a low rate of false positives. While 544 

statistical analyses of root-to-tip distances are hindered by the non-independence of the data 545 

points (Rambaut et al. 2016), appropriate p-values can be computed using a permutation test 546 

(Higgins 2004; Garren 2019). Analysis using independent sister-pair contrasts was able to 547 

detect rate correlations less frequently than the other methods that we evaluated, and this is 548 

likely to be due to the reduced number of data points that are sampled. For instance, for the 549 

tree including 111 species, root-to-tip distance correlations are based on 111 data points, 550 

whereas independent sister-pairs contrasts use only 35 data points.  551 

When we used likelihood-based model selection to compare models with 552 

proportionate (linked) versus unlinked branch lengths, we consistently found support for the 553 

proportionate model even for data that had been generated by simulation with uncorrelated 554 

rates. However, this was probably because the proportionate model captures a substantial 555 

amount of variation while bringing only a modest increase in the number of parameters 556 

(Duchêne et al. 2020). The proportionate model was favoured under almost all simulation 557 

settings, except when there was a large number of morphological characters. Of the two 558 

information criteria that were employed, model selection using the AICc yielded fewer false 559 

positives, since it penalizes model size less harshly than the BIC (Duchêne et al. 2020).  560 

The two Bayesian methods of testing for rate correlations showed highly contrasting 561 

performance in our simulation study. We found that correlations could be detected in our 562 

analyses of Bayesian branch rates even under less informative settings, such as when there 563 
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were only 10 morphological characters. This strong performance was unexpected, given the 564 

typically large uncertainty in estimates of branch rates (e.g., Ho et al. 2005; Drummond et al. 565 

2006), but can perhaps be attributed to the large number of data points sampled by the test 566 

(one comparison per branch). Compared with the likelihood-based approach, Bayesian model 567 

selection performed well when detecting correlated evolutionary rates, except when there was 568 

low among-lineage rate variation. It may be useful to compare the performance of other 569 

methods of marginal-likelihood estimation, such as path sampling or nested sampling 570 

(Skilling 2006; Russel et al. 2019).  571 

 Further evaluations of methods that test for correlations between molecular and 572 

morphological rates of evolution will be valuable, given that the dynamics of morphological 573 

evolution and the relationship to molecular evolution remain poorly understood (Lee and 574 

Palci 2015). In our study, we have not considered processes ‘external’ to coding in DNA 575 

sequences, such as phenotypic plasticity and epigenetics, but these may shape adaptation and 576 

phenotypic changes over time (West-Eberhard 1989; Nylin and Wahlberg 2008). 577 

Furthermore, there is a lack of congruence between phylogenies inferred from different types 578 

of biological data (Oyston et al.), possibly due to the limited size of morphological data sets 579 

or the effect of homoplasy (Keating et al. 2020). However, this might not be pertinent at 580 

higher taxonomic levels (Jablonski and Finarelli 2009), where diagnostic characters tend to 581 

be more informative and can carry strong phylogenetic signal.  582 

By testing for correlations between molecular and morphological evolutionary rates, 583 

we can better understand the dynamics of the ‘morphological clock’. Whilst a broad link 584 

between molecular and morphological change is expected (Simpson 1953), the existence of a 585 

morphological clock has so far been rejected (Beck and Lee 2014; Lee and Palci 2015; 586 

O’Reilly et al. 2015; Lee 2016; Tarasov 2019). This is reinforced by the apparent lack of a 587 
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‘common mechanism’ governing the evolution of morphological characters, with the pattern 588 

of among-character rate variation differing across branches (Goloboff et al. 2019).  589 

The performance of methods is likely to be worse in analyses of real data sets 590 

compared to simulated data sets, because of the complexities of the evolutionary process in 591 

reality and because of the shortcomings of our evolutionary models, particularly models of 592 

morphological evolution. Estimating morphological rates of evolution is fraught with 593 

uncertainty, and the distribution of rates across taxa and over time is largely undescribed 594 

(Simpson 1944; Schopf 1984). Unlike molecular data, the collection of morphological data is 595 

‘infinitely extensible’; there is no upper boundary on the total number of characters and states 596 

that can be considered (Oyston et al.), because there are no objectively defined categories 597 

such as the 20 amino acids or four nucleotides found in molecular data (Dávalos et al. 2014; 598 

Lee and Palci 2015; Barba-Montoya et al. 2021). The morphological characters that are 599 

selected for phylogenetic inference are usually chosen for their diagnostic utility, so invariant 600 

and rapidly evolving characters are typically excluded (Lewis 2001; Wright and Hillis 2014).  601 

Previous work has shown that Bayesian and maximum-parsimony phylogenetic 602 

analyses of morphological data have greater accuracy for data that have been generated under 603 

stochastic processes rather than being subject to selection (Keating et al. 2020). This indicates 604 

that at a macroevolutionary scale, the dynamics of morphological evolution may deviate from 605 

the Mk model, which is a simplified version of the general multiple-rate asymmetrical Mk 606 

model, originally introduced for morphological data (Pagel 1994; Goloboff et al. 2019; 607 

Keating et al. 2020). Although the inadequacy of the Mk model is often assumed to hamper 608 

phylogenetic inference using morphological characters, it might not be a substantial problem 609 

unless homoplasy is particularly extensive (Jablonski and Finarelli 2009) or when rates are 610 

extremely high (Reyes et al. 2018; Klopfstein et al. 2019; Simões et al. 2022a). Apart from 611 

these cases, Bayesian inference using the Mk model seems to be relatively robust and can 612 
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accurately infer topologies and branch lengths under a broad range of conditions (Klopfstein 613 

et al. 2019).  614 

 615 

Evolutionary Rates in Angiosperms 616 

Our analysis of data from 111 angiosperms failed to detect a correlation between the 617 

evolutionary rates of nuclear DNA and floral traits. The 30-character floral data set that we 618 

analysed might not have been sufficiently informative, so our results will require 619 

confirmation using larger data sets comprising at least 100 characters. Additionally, the floral 620 

data set that we examined excluded hypervariable characters, such as floral colour. The 621 

resulting characters in the floral data set were all slowly evolving, at rates below 0.006 622 

changes/Myr. These low rates have been described as ‘optimal’ for phylogenetic inference 623 

(Klopfstein et al. 2019), and were likewise suited to the primary goal of ancestral state 624 

reconstruction for which this data set was assembled (Sauquet et al. 2017). However, 625 

simulating data sets with a broader diversity of rates, including both higher and lower ones, 626 

would be useful. Also, incorporating missing data in the simulations would improve the 627 

realism of the data sets and allow evaluation of the impacts of missing data on detecting 628 

correlations in evolutionary rates.  629 

The molecular data set used to test for correlations between rates of floral and 630 

sequence evolution included 410 protein-coding, single-copy nuclear genes, obtained by 631 

sequencing the vegetative tissue transcriptomes of plant species (ONEKP 2019). These 410 632 

protein-coding genes likely control phenotypic expression across a broad range of characters. 633 

However, the set of 30 curated floral traits only represents a small proportion of the total 634 

phenotypic traits of each flowering plant species. Assessing a larger number of 635 

morphological traits will not only lend more power to the analyses but will also provide a 636 

more accurate reflection of the overall rate of morphological trait evolution. Such a data set is 637 
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not yet available for flowering plants across a broad phylogenetic sample because of the 638 

considerable work required in its assembly. Studies could possibly be done with resources 639 

such as the global ‘TRY’ plant database (Kattge et al. 2020), which is composed mostly of 640 

vegetative traits. Generally, floral traits are under intense sexual selection (Barrett 2010), 641 

which might influence the detection of correlated rates. Indeed, Barraclough and Savolainen 642 

(2001) found a very strong correlation between the evolution of molecular sequences and 643 

floral traits, but a weak correlation when analysing vegetative traits.  644 

 Overall, the result might correctly reflect a more general uncoupling of molecular and 645 

morphological rates in angiosperms. A decoupling of evolutionary rates between the nuclear 646 

genome and floral characters suggests a departure from a model of gradual morphological 647 

change, i.e., that morphological evolution is not proportional to time (Halliday et al. 2019). 648 

This may be because the floral characters exhibit high heterogeneity and deviation from 649 

clocklike evolution. Indeed, from the Bayesian relaxed-clock analysis, the floral characters 650 

exhibited a coefficient of variation of branch rates of 1.53 (95% credible interval 0.896–2.24) 651 

whereas the genomic DNA had a coefficient of variation of 1.35 (95% credible interval 1.27–652 

1.52). Pulses of morphological change have occurred throughout plant evolution, possibly at 653 

speciation events (Eldredge and Gould 1972), with notable episodes corresponding to the 654 

introduction of vascular plants in the Devonian and the diversification of angiosperms in the 655 

Late Cretaceous (Leslie et al. 2021).  656 

A lack of an association between rates of floral character and molecular evolution 657 

would also be consistent with floral evolution being driven by changes at specific loci 658 

(Kimura 1968; Barrier et al. 2001; Davies and Savolainen 2006; Duret 2008; Gaut et al. 659 

2011). The mutations that produce phenotypic change might occur largely in adaptive and 660 

regulatory genes, while many genomic mutations are neutral in their impact on fitness 661 

(Kimura 1968, 1983). Indeed, a large proportion of the morphological diversity amongst 662 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.24.501330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.24.501330
http://creativecommons.org/licenses/by-nc/4.0/


Detecting Correlated Rates of Evolution  

 31 

flowering plants can be attributed to specialized interactions between angiosperms and their 663 

insect pollinators (Darwin 1862; Friis et al. 2006; Benton et al. 2021; Asar et al. 2022). 664 

Furthermore, in our study, we were limited to examining evolutionary change in protein-665 

coding genes, which only included the first two sites of each codon. Testing for correlations 666 

separately using rates of nonsynonymous and synonymous substitution will allow further 667 

insights into the relative importance of selection and drift (Barrier et al. 2001). 668 

 669 

Concluding Remarks 670 

 We have shown that correlations between molecular and morphological evolutionary 671 

rates can be detected under the conditions explored in our simulation study. However, the 672 

complexities of how morphological evolution proceeds, and whether this is effectively 673 

described by current evolutionary models and approaches, will ultimately determine whether 674 

the rates of morphological character evolution and their correlates can be accurately 675 

reconstructed in practice. While we did not find evidence of correlated evolutionary rates 676 

between angiosperm genomic DNA and floral characters, the question of whether the rates of 677 

genotypic and phenotypic evolution are correlated in angiosperms should be addressed with a 678 

larger morphological data set.  679 

Our study has implications for combined analyses of molecular and morphological 680 

data, where branch lengths between data sets are often linked as a default approach (Nylander 681 

et al. 2004; O’Reilly et al. 2015). The results of our simulation study lead us to suggest that 682 

future studies should use morphological character matrices of at least 100 characters; this 683 

would allow for partitioning of the morphological data set, which has been demonstrated to 684 

improve the precision of divergence date estimates and accuracy of branch-length estimates 685 

(Lee 2016; Caldas and Schrago 2019; Neumann et al. 2021). Moreover, increasing the size of 686 

the morphological data set can minimize the impacts of character correlation (Guillerme and 687 
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Brazeau 2018; Simões et al. 2022a). This work should not only be extended to larger data 688 

sets, but should also span across the Tree of Life, to help elucidate the processes that drive 689 

macroevolutionary change. Furthermore, these methods are not restricted to analyses of 690 

molecular and morphological evolution, but can also be used to test for correlations in rates 691 

between symbionts and their hosts or between organellar and nuclear genomes in plants.  692 

 693 

SUPPLEMENTARY MATERIALS 694 

Supplementary material is available online. All text, files and code are available at Dryad 695 

[X].  696 
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