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ABSTRACT

Background

As genome sequencing becomes a more integral part of scientific research, government policy,
and personalized medicine, the primary challenge for researchers is shifting from generating raw
datato analyzing these vast datasets. Although much work has been done to reduce compute
times using various configurations of traditional CPU computing infrastructures, Graphics
Processing Units (GPUs) offer the opportunity to accel erate genomic workflows by severa
orders of magnitude. Here we benchmark one GPU-accel erated software suite called NVIDIA
Parabricks on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA

DGX cluster. We benchmarked six variant calling pipelines, including two germline callers
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(HaplotypeCaller and DeepV ariant) and four somatic callers (Mutect2, Muse, LoFreq,
SomaticSniper).

Results

For germline callers, we achieved up to 65x acceleration, bringing HaplotypeCaller runtime
down from 36 hours to 33 minutes on AWS, 35 minutes on GCP, and 24 minutes on the
NVIDIA DGX. Somatic callers exhibited more variation between the number of GPUs and
computing platforms. On cloud platforms, GPU-accelerated germline callers resulted in cost
savings compared with CPU runs, whereas somatic callers were often more expensive than CPU
runs because their GPU acceleration was not sufficient to overcome the increased GPU cost.
Conclusions

Germline variant callers scaled with the number of GPUs across platforms, whereas somatic
variant callers exhibited more variation in the number of GPUs with the fastest runtimes,
suggesting that these workflows are less GPU optimized and require benchmarking on the
platform of choice before being deployed at production scales. Our study demonstrates that
GPUs can be used to greatly accelerate genomic workflows, thus bringing closer to grasp urgent
societal advances in the areas of biosurveillance and personalized medicine.

Keywords

GPU acceleration, NVIDIA Parabricks, Cloud Computing, Amazon Web Services, Google
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Asthe cost of genome sequencing continues to decrease, genomic datasets grow in both
size and generation speed (Langmead & Nellore, 2018). These processes will greatly enhance
aims such as whole genome biosurveillance and personalized medicine (Nwadiugwu &
Monteiro, 2022; Zhao et al., 2020). However, one challenge to attaining these goalsis the
computational burden of analyzing large amounts of genomic sequence data (Liu et al., 2014).
Two trends (among others) are helping to ameliorate this burden. The first is the migration to the
cloud for data analysis and storage, and the second is the use of Graphics Processing Units
(GPUs) to accelerate data processing and analysis (Cole & Moore, 2018); (Franke & Crowgey,
2020). We address each of these trends in this article.

Cloud computing addresses many of the challenges associated with large whole genome
seguencing projects, which can suffer from siloed data, long download times, and slow
worlkflow runtimes (Tanjo et al., 2021). Several papers have reviewed the potential of cloud
platforms for sequence data storage, sharing, and analysis (Augustyn et al., 2021; Cole & Moore,
2018; Grossman, 2019; Grzesik et al., 2021; Koppad et al., 2021; Langmead & Nellore, 2018;
Leonard et al., 2019), thus here we focus on one cloud computing challenge, how to select the
right compute configuration to optimize both cost and performance (Krissaane et al., 2020; Ray
et a., 2021).

GPU acceleration in either acloud or High Performance Computing (HPC) environment
makes rapid genomic analysis possible at a scale previously not possible. While these are still
early days for GPU-acceleration in the ‘omics fields, several studies have begun benchmarking
various algorithmic and hardware configurations to find the balance between cost and
performance. Franke & Crowgey, (2020) and Rosati, (2020) both benchmarked GATK

HaplotypeCaller using the original CPU algorithm and the GPU-accel erated version from


https://doi.org/10.1101/2022.07.20.498972
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.498972; this version posted July 21, 2022. The copyright holder for this preprint (which

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NVIDIA Clara™ Parabricks (https.//www.parabricks.com/; hereafter Parabricks) on HPC

platforms and found notable acceleration (8x and 21x speedups respectively) when using GPUs.
They also inferred high concordance of SNP calls (~99.5%) between the CPU and GPU
algorithms suggesting no loss of accuracy with the GPU-configured algorithms, for both
germline and somatic variant callers (Benchmarking NVIDIA Clara Parabricks Somatic Variant
Calling Pipeline on AWS, 2022). Likewise, Zhang et al., (2021) introduced a new GPU-
accelerated pipeline called BaseNumber, which achieved runtimes slightly faster than previous
benchmarks using Parabricks.

While the aforementioned studies conducted benchmarking using on-premises computing
clusters, some studies have begun benchmarking GPU-accelerated algorithms in the cloud. The
Parabricks team at NVIDIA benchmarked GATK HaplotypeCaller using Parabricks on Amazon
Web Services (AWS) and achieved runtimes as low as 28 minutes for a 30x genome with eight
A100 NVIDIA GPUs (Benchmarking the NVIDIA Clara Parabricks Germline Pipeline on AWS,
2021), and speedups ranging from 4x to 42x for somatic callers (Benchmarking NVIDIA Clara
Parabricks Somatic Variant Calling Pipeline on AWS, 2022). Relatedly, Krissaane et al., (2020)
benchmarked GWAS workflows using Spark Clusters (not NVIDIA Parabricks) on both Google
Cloud Platform (GCP) and Amazon Web Services (AWS) and found identical performance
between cloud platforms. While these studies have shed light on the performance of GATK
HaplotypeCaller using Parabricks, fewer studies have compared CPU and GPU performance for
additional germline and somatic variant callers, or compared performance across AWS, GCP and
an NVIDIA DGX cluster.

Here, we benchmark two germline variant callers and four somatic variant callers

comparing traditional x86 CPU algorithms with GPU-accelerated algorithms implemented with
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NVIDIA Parabricks on AWS and GCP, and benchmark GPU-accelerated algorithms on an
NVIDIA DGX cluster. In the case of GPU-accelerated algorithms, we compare 2, 4, and 8 GPU
configurations. For germline callers, we observed speedups of up to 65x (GATK
HaplotypeCaller) and found that performance scaled linearly with the number of GPUs. We also
found that because GPUs run so quickly, researchers can save money by using them for germline
variant callers. Alternatively, somatic variant callers achieved speedups up to 56.8x for the
Mutect2 algorithm, but surprisingly, did not scale linearly with the number of GPUs,

emphasizing the need for algorithmic benchmarking before embarking on large-scale projects.

RESULTS

CPU baseline acr oss cloud platforms

CPU machine performance varied considerably between AWS/GCP for most analyses.
For germline analyses, GCP performed faster for DeepVariant (18.8 hrs) compared with AWS
(22 hrs), whereas AWS performed faster for HaplotypeCaller (36.2 hrs) compared with GCP
(38.8 hrs; Table 1, Fig. 1). Somatic runtimes favored AWS, with the exception of Mutect2,

where GCP ran in 8.1 hrs compared with 16.9 hrson AWS (Table 1, Fig. 1).

GPU perfor mance acr oss cloud platforms

For germline callers, 8-GPU runtimes were below 45 minutes for HaplotypeCaller and
DeepVariant across both cloud platforms. On AWS, we observed faster runtimes for the A100
compared with the V100 GPU machines (p4 vs p3 machine families), but the differences with 8
GPUs, where the number of CPUs were equal, were small for most workflows. Further,

comparisons between the 2 and 4 A100 GPU machines on GCP/AWS was not precise because
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we were unable to limit the number of CPUs available for all workflows, thus differencesin
times between the two cloud platforms were biased towards AWS for some algorithms.
Although the two germline workflows scaled linearly with the number of GPUs (Fig. 2), somatic
calersran faster with 4 vs. 8 GPUs for

Muse on AWS (but not GCP), Mutect2 on AWS and GCP, and for SomaticSniper on AWS and
GCP (Fig. 2; S1). Compared with the CPU basdlines, GPU runs on AWS (with A100 GPU) led
to acceleration of HaplotypeCaller up to 65.1x, DeegpVariant up to 30.7x, Mutect2 up to 56.8x,
SomaticSniper up to 7.7x, Muse up to 18.9x, and Lofreq up to 3.7x (Table 1). On GCP, GPUs
resulted in acceleration of HaplotypeCaller up to 65.8x, DeepVariant up to 26.5x, Mutect2 up to
29.3x, SomaticSniper up to 7.0x, Muse up to 21.8x, and LoFreq up to 4.5x.

Although GPU machines are much more expensive than CPU machines, the accelerated
runtimes result in cost savings for most algorithms (Fig. 4). Leveraging GPUs on AWS with the
A100 machine resulted in cost savings up to 63% for HaplotypeCaller with 8 GPUs, 33% for
DeepVariant with 4 GPUs, and up to 57.6% for Mutect2 with 4 GPUs. Using the A100 GPU
machine resulted in even greater savings of 63% for HaplotypeCaller with 4 GPUs, 21% for
DeepVariant with 8 GPUs, and 80% for Mutect2 with 4 GPUs (Table S1).

On GCP GPU runs resulted in cost savings of up to 80.1% for HaplotypeCaller with 2
GPUs, 44.4% for DeepVariant with 4 GPUs, 71.6% for Mutect2 with 4 GPUs, 26.2% for
SomaticSniper with 2 GPUs, and up to 70.1% for Muse with 2 GPUs. However, on both
platforms, algorithms that were not well optimized actually cost much more to run with GPUs
rather than CPUs because the difference in runtimes was not enough to offset the extra GPU cost

(Fig. 4, $4). For example, CPU runs of LoFreq cost less than $10/sample to run on both
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137  platforms, but as much as $30 with GPUs (Fig. S2). Likewise, CPU runs of Somatic Sniper cost
138  lessthan $15 per sample on both platforms, but as much as $75 on AWS with 8 GPUs.

139 For well optimized algorithms, results varied between variant callers on which numbers
140 of GPUswerethe fastest (ranging from 2-8); subsequently cost savings reflect a balance

141  between speed and cost of a particular machine type that is not consistent between algorithms or
142 cloud providers. For example, A100 GPU runs were expensive on AWS because the

143  p4d.24xlarge machine type on demand price is $32.8/hr, whereas the A100 machine type ranges
144  from $12.24/hr for a4 GPU machine, to $24.5/hr for an 8 GPU machine. On GCP, the a2-

145  highgpu machine types range from $7.4/hr (2 GPUSs) to $29.4.00/hr (8 GPUs). Alternatively,
146  CPU runswere dlightly cheaper on AWS with an on demand price of $1.36/hr compared with
147  $1.75 on GCP. Prices here are given for the northern Virginiaregion calculated (at the time of
148  writing) using the pricing calculators from the respective cloud service providers. As time goes
149  on, these machine types will likely become less expensive with greater adoption.

150

151  GPU performance on the DGX

152  Germline workflows ran considerably faster on the DGX than on the cloud platforms, with

153  HaplotypeCaller finishing in 24.4 min and DeepVariant finishing in 27.1 min with 8 GPUs (Fig.
154  2; S1). Somatic variant callers were not faster in most cases than the cloud platforms, and in one
155 case, ran slower than on the cloud (Somatic Sniper; Fig. 2; S1). Interestingly, the pattern we
156  observed in the cloud where the 4 GPU runtimes were the fastest for Muse and Somatic Sniper
157  did not manifest on the DGX, where the 8 GPU runs were the fastest for all algorithms, with the
158  exception of Mutect2 (Fig. 2; S1). For Mutect2, the 4 GPU run was still the fastest on the DGX,

159  but the 8 GPU run was faster on the DGX than on both AWS/GCP (Fig. S1).
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We also tested the effect of CPU number on performance of GPU runs. On AWS and
GCP the GPU machine types are preconfigured with 12 CPUS'1 GPU, but on the DGX we were
able to modify the number of CPUs for each run. We found that adding CPUs does decrease
runtimes (increase performance), but that reduction of runtimes plateaued after 48 CPUs (Fig.

S5).

DISCUSSION

The acceleration provided by GPU-accelerated algorithms confers several advantages to
researchers. First, GPU-accel eration enables researchers to rapidly run multiple algorithms
(Crowgey et al., 2021). Different variant callers exhibit biases leading to dightly different variant
calls (Zhao et al., 2020). Combining calls across algorithms can lead to higher accuracy, albeit
with aslightly higher type one error. Future studies could compare false positive and negative
rates for different strategies of combining calls across algorithms such as majority rule vs.
consensus site calls. Another advantage of GPU-accel erated genomic workflows is that they
allow researchers to process more samples with afixed budget. Academic research programs are
often constrained by limited funding; the use GPU-acceleration may allow researchers to reduce
compute costs (and labor overhead) and thus process more samples for the same amount of
money. Finally, GPU-acce erated algorithms enable near-real-time decision making. Pathogen
biosurveillance benefits from rapid data processing to identify novel pathogens and allow

policymakers to act before an outbreak spreads (Gardy & Loman, 2018).

Cloud platform considerations

CPU only runs
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As more research programs migrate to cloud platforms, researchers will need to make
decisions about which platform provides the most advantages for both performance and cost
considerations. CPU runs were faster on the AWS c6i.8xlarge machine than on the GCP n2-32
for four algorithms, while DeepVariant and Mutect2 ran faster on GCP (Fig. 1). Both of these
machine types use the newest Intel Xeon Scalable processors (Ice Lake), but seem to have
inherent differences that would be difficult to identify without benchmarking particular
algorithms as we have done here. Regardless of cloud platform however, past work within our
research group showed that reduced runtimes driven by using the latest CPU processors
outwei ghs the increased per second cost (TC unpublished).

Another consideration that researchers should be aware of in the near term is that AWSis
migrating to newer ARM-based machine types, rather than x86 architectures. We had trouble
installing existing software on the ARM-based machines, and thus used the c6i.8xlarge machine.
This could present challenges for researchersin the future on AWS as the platform migrates
more machine types to ARM-based architectures, necessitating the rewriting and/or compiling of
common software. On GCP, we chose the N2 machine family as a balance between performance
and cost. GCP does offer the compute-optimized C2 machine family, which may run faster than

the N2 machines, but we did not benchmark those machines here.

GPU consderations on the cloud

For germline workflows, AWS and GCP performed very similarly for both speed and
cost when using 8 A100 GPUs, although the 2 and 4 GPUs runs exhibited more variation (Fig.
2,4). In an effort to quantify the balance between cost and performance on each cloud platform,

we calculated a cost ratio metric by dividing the cost of the workflow by the xSpeedup for a
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206  GPU run when compared to the CPU run for that workflow. Thus, alower cost ratio indicates a
207  Dbetter value for agiven GPU configuration (Table 1; Fig. 5). For the germline variant callers, the
208  best cost ratio on both platforms used 8 GPUs, and the ratio for AWS and GCP was similar

209  enough that we feel it should not impact the choice between cloud providers. For somatic variant
210  workflows, the best cost ratio was usually 2—4 GPUs, as these workflows were not well

211  optimized to use 8 GPUs on the cloud. Further, because LoFreq and Somatic Sniper were not
212  very accelerated with Parabricks, their high cost ratio suggests that it is not worth the extra cost
213  to run these workflows using GPUs. It should be noted that we only benchmarked using on

214  demand instances, and bioinformaticians could save additional costs by leveraging spot

215  instances.

216 GPU-accelerated bioinformatic workflows are still relatively new to the cloud, and as
217  such, not al tools are readily available everywhere. For example, at the time of writing,

218  Parabricksdid not offer a Marketplace solution for GCP, although their team was working on
219 releasing one (G. Burnett pers. comm). Likewise, the Marketplace solution on AWS offered a
220  user-friendly way to access the Parabricks software suite without purchasing an annual license,
221 but this machine image did not support the p4 machine family with the A100 GPUs.

222  Nonethedess, although we were able to install Parabricks on the A100 machine on AWS, this
223  machine type was not readily available (at the time of writing) in most regions, and it was

224 difficult to procure this machine type to conduct our benchmarking. Perhaps using spot instances
225  would have been a better solution for these difficult to procure machine types. Finally, we

226  observed some decreases in runtime between the A100 and V100 GPU machines on AWS (Fig.
227  3). However, differences were relatively minor when using 8 GPUs — less than a minute for

228 DeepVariant and eight minutes for HaplotypeCaller. Aslong as the A100 machine typeis
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difficult to obtain and is not available with the Marketplace machine image, we recommend

using the V100 GPU machine without much cost to performance (Table 1, S1; Fig. S3).

On-premises computing clusters

For amyriad of reasons, some bioinformatic analyses will not migrate to the cloud, thus
requiring on-premises infrastructure. Although not every institution will have a DGX cluster
with A100 GPUs available, we show here that Parabricks runs well in an on-premises
environment. For those looking to achieve the fastest possible runtimesin a production
environment, the DGX ran considerably faster than AWS or GCP for germline callers, reducing
runtimes for HaplotypeCaller by 8 min and DeepVariant by 15 min, differences that could be
significant at large enough scales. We attribute these differences to the network communication
between GPUs and CPUs on the machines, which is better optimized on the DGX compared with

cloud-based instances, where GPUs may not be located in as close of proximity

CONCLUSIONS

We found that germline variant callers were well optimized with Parabricks and that GPU-
accelerated workflows can result in substantial savings of both time and costs. Alternatively,
somatic callers were accelerated, but exhibited substantial variation between algorithms, number
of GPUs, and computing platform, suggesting that benchmarking algorithms with a reduced
dataset isimportant before scaling up to an entire study. Though early days for GPU-accelerated
bioinformatic pipelines, ever faster computing processors bring us closer to important societal
aims such as tracking pathogens in near real-time to monitor emerging pandemics or enabling

milestones in the field of personalized medicine.

10


https://doi.org/10.1101/2022.07.20.498972
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.498972; this version posted July 21, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

252

253 MATERIALSAND METHODS

254  Sampling and Algorithms

255 We benchmarked six variant callers for CPU and GPU speed and cost. We conducted all
256  benchmarking on the individual ‘HG002' from the Genome in a Bottle Consortium (Krusche et
257 4., 2019; Zook et al., 2016) hosted by the National Institute of Standards and Technology, and
258 made available as part of the Precison FDA Truth Challenge V2

259  (https://precision.fda.gov/challenges/10). We downsampled the fastq files to 30x coverage using
260  Samtools (Li et al., 2009). We used Grch38 as our reference genome downloaded from the GATK
261 Reference Bundle. Our germline variant calling pipeline evaluated two germline variant callers:
262  HaplotypeCaller (Poplin, Chang, et al., 2018; Van der Auwera & O’ Connor, 2020) and DeepV ariant
263  (Poplin, Ruano-Rubio, et al., 2018). GPU benchmarking used Parabricks. For germline callers we
264  used ‘Germline Pipeline for GATK HaplotypeCaller, and for DeepVariant we used

265 ‘DeepVariant Germline Pipeline . Each of these pipelines take fastq files as inputs and output
266  unfiltered variant call format (VCF) files. CPU benchmarking was conducted by writing custom
267  workflows using Snakemake (Molder et al., 2021), following best practices for each tool and

268  exactly matching the workflows used by Parabricks (Data Accessibility).

269 Our somatic variant calling pipeline evaluated four somatic variant callers. Mutect2 (Van
270  der Auwera & O’ Connor, 2020), SomaticSniper (Larson et al., 2012), Muse (Fan et al., 2016),
271  and LoFreg (Wilm et al., 2012). We generated synthetic somatic tumor data using SomatoSim
272  (Hawari et al., 2021). We added 198 single nucleotide polymorphisms (SNPs) at random variant
273  dlelefrequenciesranging from 0.001 to 0.4 (randomly generated using custom python scripts).

274  Siteswere selected from the ICGC Data Portal ovarian cancer patient DO32536

11
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275  (https://dcc.icge.org/donors/DO325362mutati ons=%7B %225 ze%622:50,%22from%22:151%7D).
276  Weused the BAM file from the HaplotypeCaller pipdine (i.e., MarkDuplicates,

277  BaseRecalibration, and ApplyBQSR were run prior to the mutation process) as the input for

278  SomatoSim. For somatic variant callers, we used the Parabricks variant caller scripts

279  (‘mutectcaller’, ‘somaticsniper_workflow’, ‘muse’, ‘lofreq’) which take BAM files as input and
280 output VCF files. Each Parabricks tool was compared to a compatible CPU command as listed in
281  the Parabricks 3.7 documentation. We used Snakemake scripts as described for germline callers.
282  For benchmarking of MUSE, we used version v2.0 and set the number of threadsto 1 to replicate
283  MuUSE v1.0 lack of parallel computing because of version conflicts with MuSE v1 in our

284  compute environment. We created a conda environment before running each workflow because
285  wefound that using the "--with conda flag in Snakemake dramatically increased run times.

286  Complete workflows are described in the Supporting Information and all scripts necessary to
287  repeat our analyses are available at (https://github.com/kyleoconnell/gpu-acclerated-genomics).
288

289  GCP Configuration

290 Benchmarking on GCP leveraged virtual machines that were launched programmatically
291  for CPU machines, or manually for GPU machines. CPU workflows used the ‘ n2-standard-32’
292  machinetype with Intel Xeon Cascade Lake processors with 32 vCPUs and128 GB of RAM. We
293 assigned 1 TB of EBS storage to our instance. We launched these machines using a startup script
294  that installed the conda environment, then ran the snakemake workflows. All data was already
295 loaded on a machineimage, and runtimes were concatenated from each snakemake rule using a
296  custom script. We also benchmarked the older generation E2 family of processors, but found the

297  runtimesto be much slower and thus only present the results for N2 processors here.
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GPU benchmarking on GCP used the accelerator optimized a2-highgpu machine types with two
A100 GPUs, 24 vCPUs and 170GB RAM , four A100 GPUs with 48 vCPUs and 340 GB RAM,
and eight A100 GPUs with 96 vCPUs and 680 GB RAM. One virtual machine was utilized with

4 TB storage, which we stopped and resi zed between runs.

AWS Configuration

Benchmarking on AWS also used multiple virtual machines for CPU and GPU
benchmarking. CPU benchmarking used the C6i.8xlarge machine type, which has a 3rd
generation Intel Xeon Scalable processor with 32 vCPUs and 64 GiB RAM. We assigned 800
GB of EBS storage to our instance. We did some preliminary testing with the new ARM-based
processors but had issues with installing several of the dependencies (particularly with
mamba/conda), suggesting that a migration to ARM-based processors may prove problematic for
bioinformatics in the cloud.

We benchmarked two GPU machine families. First, we benchmarked the p4 machine
family which is similar to GCP a2-highgpu machines utilizing the latest NVIDIA A100 Tensor
Core GPUs with 8 GPUs with 96 vCPUs and 1152 GiB RAM. AWS currently only has one
machine type with A100 GPUs, the p4d.24xlarge, which only runs with 8 GPUs. To ensure
consistency with GCP, we ran the 8 GPU machine, but specified the number of GPUsto usein
our Parabricks commands for the smaller numbers of GPU runs. Because this machine type was
not compatible with the marketplace image (see below) we installed Parabricks manually using
scripts provided by NVIDIA. When possible (--cpu flag available) we limited the number of

CPUs available with the p4 machine, but some analysis used more CPUs on AWS than on GCP.
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To compare GPU and CPU configurations directly with GCP, we further benchmarked
the p3 machine family using the ‘NVIDIA Clara Parabricks Pipelines AWS Marketplace image.
At the time of writing the image supported V100 GPUs (but not A100 GPUs), which are an older
model of Tensor Core GPU, on machine types p3.8xlarge with 4 GPUs and p3dn.24xlarge with 8
GPUs. The Marketplace image also had Parabricks preinstalled at a cost of $0.30 for the
software. This configuration allowed us to directly compare 4, and 8 GPU machines with equal
CPU numbers between AWS and GCP. Again, we limited the number of CPUs available to the 2

GPU runs when possible. After we finished our analyses, NVIDIA wrote a helpful somatic

benchmarking guide (https://github.com/clara-parabricks/NV IDIA-Clara-Parabricks-Somatic-

Variant-Calling-AWS-Blog).

DGX Configuration

We also conducted GPU benchmarking on an NVIDIA DGX Cluster (DGX SuperPOD), which
isacomputing cluster with six DGX A100s, each of which contains eight NVIDIA A100 GPUs.
Although the cluster technically has 48 A100 GPUs available, Parabricksisonly ableto run on a
single DGX A100 system, thus limiting any Parabricks analyses to 8 GPUs. Jobs were launched
using a Kubernetes-based scheduler, allocating a max memory of 300 GB, and matching the
GPU and CPU configurations of the GCP/AWS runs, with the exception of GATK
HaplotypeCaller. For this workflow, we benchmarked times for 8 GPUs using 24, 48, 96, and

124 CPUs.
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461  Table 1: Results of benchmarking for AWS, GCP and NVIDIA DGX workflow runs. AWS results presented here
462  arefor the p3 family with the NVIDIA TeslaV 100 GPU, results for the p4 family with the A100 GPU are shown in

463  TableSlL.

Platform Pipeline VM-Type Variant-Caller  Time(min) Time (hours) Cost ($) Fold Acceleration % Cost-Savings

AWS Germline C6i.8xlarge DeepVariant 1317.3 21.96 29.9 _ _
GPU2 145.16 242 29.61 9.07 0.83
GPU4 97.07 1.62 19.80 13.57 33.68
GPUS8 42.19 0.7 21.95 31.22 26.49

GCP n2-32 1128 18.8 329 - -
GPU2 156 2.6 194 7.2 41.03
GPU4 72 12 18.3 15.7 44.38
GPU8 42.6 0.71 20.9 26.5 36.47

DGX GPU2 87.9 1.47 B B B
GPU4 49.1 0.82 _ _ _
GPU8 27.05 0.45
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Platform Pipeline VM-Type Variant-Caller  Time(min) Time (hours) Cost ($) Fold Acceleration % Cost-Savings
AWS Germline C6i.8xlarge HaplotypeCaller 2175.9 36.26 49.32 _
GPU2 131.99 22 26.93 16.49 45.41
GPU4 88.27 1.47 18 24.65 63.49
GPU8 41.51 0.69 21.60 52.42 56.21
GCP n2-32 2328 38.8 67.9 _ _
GPU2 118.8 1.98 135 19.6 80.12
GPU4 57.6 0.96 14.1 40 79.23
GPU8 354 0.59 175 65.8 74.23
DGX GPU2 64.6 1.08 _ B B
GPU4 39 0.65 _ _ _
GPUS 24.4 0.41 B B B
AWS Somatic  C6i.8xlarge LoFreq 180.2 3 4.1 _ _
GPU2 145.14 242 29.61 124 -625.07
GPU4 109.23 1.82 22.28 1.65 -445.68
GPU8 57.18 0.95 29.75 3.15 -628.55
GCP N2-32 277.8 4.63 8.1 _ _
GPU2 155.2 2.59 19 18 -134.5
GPU4 110.9 1.85 271 25 -235
GPU8 61.4 1.02 30.1 45 -271
DGX GPU2 113.71 1.9 _ B B
GPU4 70.41 1.18 _ _ _
GPU8 49.5 0.83
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Variant-Caller

Time (min)

Time (hours) Cost (%)

Fold Acceleration % Cost-Savings

AWS

GCP

DGX

AWS

GCP

DGX

Somatic

Somatic

C6i.8xlarge Muse

GPU2

GPU4

GPU8

N2_32

GPU2

GPU4

GPU8

GPU2

GPU4

GPUS8

C6i.8xlarge Mutect2

GPU2

GPU4

GPUS8

N2_32

GPU2

GPU4

GPU8

GPU2

GPU4

GPUS8

425.1

65.17

61.35

22.27

621.8

44.2

324

28.5

36

23.84

227

414.51

28.4

21.54

28.6

487.7

32.9

16.7

31

19.17

17.2

234

7.09

1.09

1.02

0.37

10.36

0.74

0.54

0.48

0.6

04

0.38

6.91

0.47

0.36

0.48

8.13

0.55

0.28

0.52

0.32

0.29

0.39

9.6

13.29

12.52

11.59

181

54

7.9

14

9.40

579

4.39

14.88

14.2

4.03

41

15.2

6.52

6.93

19.09

141

19.2

21.8

14.60

19.24

14.50

14.8

29.3

15.7

-37.97

-29.88

-20.23

70.1

56.2

22.9

38.34

53.23

-58.36

71.63

71.29

-7.06
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Platform Pipeline VM-Type Variant-Caller  Time(min) Time (hours) Cost ($) Fold Acceleration % Cost-Savings

AWS Somatic  C6i.8xlarge SomaticSniper  391.9 6.53 8.88 _ _
GPU2 83.7 14 17.07 4.68 -02.28
GPU4 134.12 224 27.36 2.92 -208.11
GPUS8 144.48 241 75.17 2.71 -746.54

GCP N2_32 482.8 8.05 14.1 - -
GPU2 84.8 141 10.4 57 26.18
GPU4 69.1 1.15 16.9 7 -20.33
GPU8 100.5 1.68 49.3 48 -250.2

DGX GPU2 77.54 1.29 _ _ _
GPU4 65 1.08 _ _ —
GPU8 63.5 1.06

FIGURE CAPTIONS

Figure 1: Comparison of execution times of variant calling algorithms on CPU and GPU
environments between AWS and GCP. A 32 vCPU machine with the latest processors was used
for CPU benchmarking on both cloud platforms. Here we show results for varying numbers of
NVIDIA Teda V100 GPUs running the Parabricks bioinformatics suite for AWS, and NVIDIA
Tesla A100 GPUs for GCP.

Figure 2. GPU benchmarking results for NVIDIA Tesla GPUs. On GCP and the DGX results are
shown for A100 GPUs, whereas AWS results are shown for the V100 GPU runs.

Figure 3: Comparison of runtimes between V100 and A100 GPU machineson AWS

Figure 4. Comparison of AWS (V100 GPU machine) vs. GCP GPU cost savings per variant
caller. Percentage of total cost savings shows a mgjority of higher cost savings using GPUs in
algorithms optimized for GPU-acceleration, but |osses when algorithms are not well optimized

Figure 5. Comparison of AWS V100 vs. GCP A100 GPU cost ratio per variant caller. Cost ratio
being the ratio between cost per hour and fold speed-up. Cost per fold-speedup shows the benefit
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480  of harnessing GPU over CPU in select algorithms, while other algorithms are more cost-efficient
481  with CPUs.
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