

1 **Title:** A systematic method for detecting abnormal mRNA splicing and assessing its clinical
2 impact in individuals undergoing genetic testing for hereditary cancer syndromes

3

4 **Authors:**

5 Nick Kamps-Hughes,¹ Victoria E.H. Carlton,¹ Laure Fresard,¹ Steve Osazuwa,¹ Elizabeth
6 Starks,¹ John J. Vincent,¹ Sarah Albritton,¹ Robert L. Nussbaum,¹ Keith Nykamp^{1*}

7 ¹Invitae Corporation, San Francisco, CA, 94103, USA

8

9 ***Correspondence:**

10 Keith Nykamp, PhD

11 1400 16th Street, San Francisco, CA 94103

12 Ph: (608) 332-9750

13 Fax: (415) 276-4164

14 Email: keith.nykamp@invitae.com

15

16 **Declaration of Interests**

17 All authors are employed by and shareholders of Invitae, Inc.

18 **Number of text pages: 19**

19 **Number of Figures: 4**

20 **Number of Tables: 3**

21 **Running head: Gauging Impact of altered mRNA splicing**

22

23

24 **KEYWORDS:** RNA sequencing; splicing; variant interpretation; diagnostic testing; splice site
25 prediction

26 **ABSTRACT**

27

28 Nearly 14% of disease-causing germline variants result from disruption of mRNA splicing. Most
29 (67%) DNA variants predicted *in silico* to disrupt splicing end up classified as variants of
30 uncertain significance (VUS). We developed and validated an analytic workflow — Splice Effect
31 Event Resolver (SPEER) — that uses mRNA sequencing to reveal significant deviations in
32 splicing, pinpoints the DNA variants potentially responsible, and measures the deleterious effect
33 of the altered splicing on mRNA transcripts, providing evidence to assess the pathogenicity of
34 the variant. SPEER was used to analyze leukocyte RNA encoding 63 hereditary cancer
35 syndrome genes in 20,317 individuals undergoing clinical genetic testing. Among 3,563 (17.5%)
36 individuals with at least one DNA variant predicted to affect splicing, 971 (4.8%) had altered
37 splicing with a deleterious effect on the transcript and 31 had altered splicing due to a DNA
38 variant located outside our laboratory's reportable range. Integrating SPEER results into variant
39 interpretation allowed reclassification of VUS to P/LP in 0.4% and to B/LB in 5.9% of the 20,317
40 patients. SPEER evidence had a significantly higher impact on allowing P/LP and B/LB
41 interpretations in non-White individuals than in non-Hispanic White individuals, illustrating that
42 evidence derived from RNA splicing analysis may reduce ethnic/ancestral disparities in genetic
43 testing.

44

45 **INTRODUCTION**

46

47 Disruption of normal mRNA splicing is a common cause of genetic disease. Approximately 14%
48 of germline pathogenic or likely pathogenic (P/LP) variants cause disease through misplicing¹,
49 with the vast majority (>90%) of these P/LP splicing variants disrupting the canonical donor and
50 acceptor splice sites (first 1-2 bp flanking an exon) (referred to as CSS). In contrast, many DNA
51 variants other than in the CSS dinucleotides are predicted by commonly used algorithms to

52 affect splicing, but most (69%) of these potential splicing variants (PSpVs) are classified as
53 variants of uncertain significance (VUS)¹, demonstrating the challenge of classifying non-CSS
54 PSpVs in the absence of confirmatory RNA testing. Knowing which of these PSpVs have a
55 clinically significant impact on splicing could inform variant interpretation, resulting in fewer VUS
56 and increased actionability for genetic testing.

57

58 Here, we describe a novel method, the Splice Effect Event Resolver (SPEER), that uses patient
59 mRNA sequencing to determine whether variants found during DNA sequencing cause aberrant
60 mRNA splicing and have a deleterious impact on transcript structure and function. SPEER
61 accomplishes this task in three steps, first by determining whether there is abnormal splicing
62 compared to controls, then by quantifying by how much normal splicing at a critical splice
63 junction has been reduced, and finally by examining the consequences of abnormal splicing
64 events on mRNA structure and function. SPEER begins with short-read sequencing of cDNA
65 and several overlapping RNA analysis methods²⁻⁶ to analyze exon-exon junctions and
66 determine whether observed alterations in the mRNA splicing pattern of a gene containing a
67 PSpV are statistically significant relative to a panel of control individuals. In this way, SPEER
68 distinguishes alterations in splicing from the naturally occurring alternative splicing that
69 generates protein diversity and functional specificity across tissue types.⁷⁻⁹ Next, it examines
70 the canonical splice junction or junctions most likely impacted by the PSpV and quantifies the
71 extent of loss of normal splicing in the patient compared to normal controls. Finally, SPEER
72 assesses how deleterious the impact of the abnormal splicing of particular mRNA transcripts
73 would be on mRNA stability and function by collecting all the alterations in the transcripts
74 together into an “abnormal splicing event group”, which is then evaluated for reading frame
75 shifts and potential nonsense mediated decay. By assessing the deleterious impact of a DNA
76 variant on transcript structure and function, the evidence generated by SPEER can be used for

77 variant interpretation within a system, such as Sherloc ¹⁰, that combines many other types of
78 evidence to ultimately assess pathogenicity of a variant.

79

80 In this manuscript, we report how we validated SPEER's ability to detect aberrant splicing
81 events and then applied it to a cohort of more than 20,000 individuals undergoing clinical testing
82 of hereditary cancer syndrome genes to identify which PSpVs detected during DNA sequencing
83 significantly altered splicing and had a deleterious effect on transcript structure and function.
84 SPEER also detected abnormal splicing changes in a small number of patients, which allowed
85 for the detection and confirmation of DNA variants located outside the reportable range of our
86 next-generation sequencing (NGS) DNA test. When SPEER evidence was used in Sherloc for
87 variant interpretation, a significant fraction of PSpVs could be interpreted definitively as
88 Pathogenic/Likely Pathogenic (P/LP) or Benign/Likely Benign (B/LB); most notably, SPEER
89 allowed an even greater rate of definitive classification of PSpVs among individuals who self-
90 reported as non-White compared to those who self-reported as non-Hispanic White.

91

92 MATERIAL AND METHODS

93 Cohorts

94 In phase 1 of this two-phase study, we ascertained a retrospective cohort of 532 research
95 participants to be used for SPEER validation. Of these 532 participants, 342 had prior genetic
96 testing for hereditary cancer syndromes performed at Invitae and had a germline DNA variant
97 that was known or predicted to alter splicing (PSpV), and 190 did not have a PSpV, but had a
98 personal or family history that was strongly suggestive of a particular hereditary cancer
99 syndrome, e.g. Familial Adenomatous Polyposis (McK #175100). Informed written consent was
100 obtained under a protocol approved by the WCG Institutional Review Board (#20190811). As a
101 reference panel, we used 273 anonymous samples from presumed healthy male and female
102 blood donors (BiolVT, NewYork) that we oversampled for self-reported ancestries

103 underrepresented in genetic studies, including African American (51.2%) and Hispanic (30.4%)
104 individuals. This sampling strategy was designed to guard against mistakenly inferring aberrant
105 splicing when comparing splicing in non-White versus White individuals by failing to take into
106 account potential variation in splicing of germline transcripts among individuals of different
107 ancestries, as has been seen in tumor samples in The Cancer Genome Atlas ¹¹.

108

109 In Phase 2, a prospective cohort of 20,317 individuals referred to Invitae for germline hereditary
110 cancer gene testing underwent paired DNA and RNA sequencing between July 2021 and May
111 2022. SPEER was used to analyze the leukocyte RNA of 63 hereditary cancer genes in these
112 individuals. Use of de-identified samples and data was approved by an independent institutional
113 review board (WCG IRB #20161796).

114

115 **Selection of genes for RNA analysis**

116 A total of 85 hereditary cancer genes were initially considered for RNA analysis (Table S1).
117 Twenty-two of these were ultimately excluded from the final assay because 1) they are
118 expressed at too low a level in leukocyte transcripts to allow statistically significant
119 demonstration of a splicing change, 2) they are genes for which loss-of-function, the usual effect
120 of abnormal splicing, is not a known mechanism for an increased risk for cancer, or 3) they have
121 only a single known loss-of-function missense variant associated with an increased risk for
122 cancer.

123

124 **DNA Sequencing**

125 NGS of gene panels were performed as previously described ^{1,12,13} using oligonucleotide baits
126 (Twist Bioscience, South San Francisco, CA; Integrated DNA Technologies, Coralville, IA) to
127 capture coding exon sequences \pm 20 bases of flanking intronic sequences, and certain non-
128 coding regions of clinical interest, defined as our reportable range (RR). Targeted regions were

129 sequenced to a minimum depth of 50x and an average depth of 350x read coverage at each
130 nucleotide position within the RR. Full gene sequencing, deletion/duplication analysis, and
131 variant interpretation were performed at Invitae (San Francisco, CA), as previously described
132 ^{10,13}.

133

134 **Identification of potential splicing variants (PSpV) in DNA**

135 PSpVs were predicted initially using MaxEntScan¹⁴, SpliceSiteFinder-Like¹⁵, and the Alamut
136 Splicing Module (Interactive Biosoftware, Rouen, France, version 1.4.4_2016.02.03) and later
137 using SpliceAI¹⁶.

138

139 **RNA Sequencing**

140 RNA was extracted from whole blood in PaxGene RNA tubes (762165, BD, New Jersey)
141 containing additives that inhibit RNA degradation, including nonsense mediated decay (NMD),
142 using RNAdvance Blood (A35604, Beckman Coulter, Indianapolis) and quantified by
143 fluorometry. Residual DNA contamination was removed by DNasel treatment (M0303L, New
144 England Biolabs, Massachusetts). Indexed cDNA libraries were prepared using the KAPA hyper
145 RNA kit (KK8541, Roche, Switzerland), substituting proprietary adapters and indexing primers.
146 Transcripts of interest were enriched via hybridization with custom-designed biotinylated
147 oligonucleotide baits (Integrated DNA Technologies, Iowa) followed by Streptavidin bead
148 capture. Illumina compatible P5 P7 sequences were added during post capture amplification
149 and libraries were submitted for 2 x 150bp paired-end next generation sequencing (Illumina,
150 San Diego, CA), targeting 15 million clusters per sample. Adapters were trimmed sequencing
151 reads and UMIs were extracted. Trimmed reads were aligned on the GRCh37 human genome
152 assembly with STAR¹⁷, using a RefSeq- based transcript annotation. Duplicate reads were
153 removed using unique molecular identifier sequences (umi-tools,¹⁸). Raw split read counts were

154 extracted from the deduplicated BAM files using Leafcutter scripts sam2bed.pl and bed2junc.pl

155 ².

156

157 **Detection of statistically significant splicing changes**

158 SPEER uses targeted sequencing of RNA isolated from blood samples to determine splice

159 junction counts across 63 genes of interest (Table S1). To assess the statistical significance of

160 splice junction usage in a patient sample, SPEER (Figure 1 A,B) measured usage of known and

161 novel splice junctions using “percent spliced in” (PSI)^{19,20}. The PSI of each junction is defined

162 as the ratio of the number of reads supporting the junction divided by the total number of reads

163 overlapping the junction (i.e., supporting reads plus non-supporting reads). SPEER assesses

164 the statistical significance of each splicing change in a patient sample by comparing it to the

165 splice junction usage from the 273-sample reference panel using a beta-binomial test described

166 below.. PSI changes with $p \leq 10^{-3}$ were considered statistically significant. SPEER uses these

167 significant junctions as seeds to recursively find other altered ($p \leq 0.05$) junctions that share

168 breakpoints in order to link all junctions participating in the localized splicing event into an

169 “abnormal splicing event group” for downstream interpretation.

170

171 **Beta-binomial model description and parameter estimation**

172 For every junction observed in at least one control, a PSI normal model was calculated using

173 the beta-binomial distribution. In this model, the number of reads overlapping the junction was

174 considered the number of trials and the reads supporting the junction was considered the

175 number of successes. For each junction, the parameters nu (approximately the mean PSI) and

176 rho (a measure of the increased variance relative to the binomial distribution) were fit to their

177 maximum likelihood values and stored as a panel of normal splicing bed file. The control

178 parameters for each junction were then compared to the corresponding PSI for each patient
179 sample to generate a p-value using a beta-binomial likelihood ratio test. This statistical
180 approach was inspired by the ShearwaterML algorithm for detecting low frequency somatic DNA
181 variants from NGS data ²¹.

182

183 **Quantifying the loss of the normal transcript directly impacted by a PSpV**

184 Each abnormal splicing event group observed in a patient sample included a reduction in the
185 PSI for one or more canonical splice junction and an increase in PSI for one or more newly
186 created or non-canonical splice junction (see Figure 1A). To measure the reduction in normal
187 splicing associated with a PSpV, we calculated the ratio of the PSI for the canonical junction
188 determined to be directly impacted by the PSpV over the PSI for that same junction in the
189 control panel. This metric, which we define as PSI-X, is expected to correlate with loss of the
190 normal or most commonly expressed transcript. Moreover, a significant reduction in PSI-X is
191 expected to correlate with pathogenicity for PSpVs in genes known to cause disease with an
192 autosomal dominant, loss-of-function mechanism.

193

194 Directly impacted canonical junctions were defined as the following: for intronic PSpVs, we
195 chose the canonical junction that was normally created by splicing out the intron that contained
196 the PSpV; for exonic PSpVs we chose the canonical junction with the highest PSI in the control
197 panel that also shared a breakpoint with a newly created, non-canonical junction. If the highest
198 PSI value for a canonical junction was less than 2x other canonical junctions with shared
199 breakpoints, the PSI values were averaged across all impacted canonical junctions.

200

201 **Assessing whether abnormal splicing events impact translation and function of the**
202 **protein**

203 Abnormal splicing event groups with a reduction in PSI-X that had at least one breakpoint within
204 50 bp of a PSpV were flagged for review by trained variant scientists (Supplemental Methods).
205 This was an essential step for assessing whether the transcript created by non-canonical
206 junctions may compensate for the reduction in normally spliced mRNA. As an example, a PSpV
207 that abolishes a well annotated acceptor splice may result in substantially decreased PSI-X
208 while also activating a cryptic acceptor splice site three nucleotides upstream, resulting in a
209 novel protein with a single amino acid insertion. It's uncertain whether this novel protein will
210 compensate for the loss of the normally expressed protein, thus warranting a VUS classification
211 for the PSpV. The first step in this review was to label each splice junction in an event group
212 with one of the following tags: (1) *canonical*, a junction formed by adjacent exons in the full-
213 length canonical transcript; (2) *exon skipping*, defined as non-adjacent junctions with one or
214 more exons being skipped; (3) *partial exon exclusion*, in which a portion of a canonical exon was not
215 included in the transcript; (4) *partial intron inclusion*, in which a portion of an intron was included
216 in a transcript; (5) *cryptic exon*, when two non-canonical junctions flanked an intronic sequence.
217 All event groups, other than complex, were labeled according to whether the primary non-
218 canonical junction is expected to cause nonsense-mediated decay (NMD). Event groups with a
219 single non-canonical junction causing a frameshift and/or premature termination codon
220 upstream of the last coding exon were labeled as *NMD+*. Those expected to result in in-frame
221 insertions anywhere in the transcript, or in deletions or premature termination codons
222 downstream of the last exon junction, were labeled as *NMD-*. If an event group had multiple
223 non-canonical junctions, with different predicted effects on protein translation, the event group
224 was labeled as *complex*.

225

226 **Detection and classification of variants outside our test's reportable range**

227 Rare variants located outside our test's reportable range (all coding exons plus 20 bp flanking
228 each exon) are missed by standard panel-based NGS tests. When SPEER identifies an

229 abnormal splicing event group at the variant discovery significance threshold (i.e., $p \leq 10e^{-5}$) and
230 one or more abnormal junctions exhibit a fold-change in PSI $\geq 10,000$, we manually examine the
231 primary NGS data for a DNA variant that may explain the abnormal splicing event. If none is
232 found in the primary data, we perform long-read DNA sequencing (PacBio, CA) throughout the
233 region surrounding the abnormal splicing event. If a PSpV is identified in the region surrounding
234 the abnormal splicing event, it is flagged for interpretation by the variant scientist team. If a
235 PSpV could not be identified, the abnormal splicing change was presumed to be a technical
236 false positive or the result of natural variation in splicing and not included in the clinical report.

237

238 **Integrating deleterious RNA splicing changes as evidence in DNA variant classification**

239 In order to standardize the application of SPEER evidence for variant classification, we created
240 a new category of evidence within our semi-quantitative variant classification framework,
241 Sherloc¹⁰. We referred to this evidence category as *Observed RNA Effects* (see Table S2).
242 Each criterion within this new evidence category was assigned pathogenic (P) or benign (B)
243 point scores. Point scores were assigned and calibrated by applying Observed RNA Effects
244 criteria to more than 300 PSpVs variants observed in the retrospective cohort of 532 research
245 participants in Phase 1. Final classifications in Phase 2 of the study were assigned based on the
246 sum of all available evidence, including the Observed RNA Effects criterion when applicable.
247 Rates of PSpV upgrades (VUS to LP/P) and downgrades (VUS to LB/B) observed during phase
248 2 of the study were calculated by removing Observed RNA effect criteria and asking whether
249 the final classification (and Sherloc score) moved from P/LP or B/LB to a VUS. Differences in
250 these classification rates among self-reported ethnicities were tested using a one-sided Fisher
251 Exact Test by comparing the proportion of individuals with downgrades and upgrades for each
252 ethnicity (Black/African-American, Hispanic, Asian and Other) to the proportion of individuals
253 from the most common self-reported ethnicity (non-Hispanic White).

254

255 **RESULTS**

256

257 **SPEER validation**

258 SPEER was validated using 50 positive control samples containing 46 unique DNA variants as
259 follows: 10 samples with 7 unique variants well documented to alter splicing according to
260 published literature; 13 samples with 12 unique variants in the essential GT or AG dinucleotides
261 but without published functional evidence; and 27 samples with 27 unique variants located
262 within 50 nucleotides of a significant abnormal splicing event ($p \leq 0.001$). False positives were
263 any significant abnormal splicing event ($p \leq 0.001$) detected throughout the 63-gene panel for a
264 canonical junction not within 50 bp of a known PSpV. True negatives (TN) were derived from
265 two sets of samples. The first set were the same 50 samples that had served as *true positives*
266 for one junction-variant pair, repurposed as a source of *true negatives* by analyzing all other
267 splice junctions lacking a nearby PSpV. The second set of true negative samples consisted of
268 16 samples with a PSpV that nonetheless yielded a normal splicing pattern based on a manual
269 review of RNA sequence alignments to establish the absence of a splicing change. Combining
270 the two sets yielded 66 true negative (TN) samples suitable for calculating sensitivity, specificity,
271 accuracy, reproducibility of SPEER's findings between replicates of the same sample analyzed
272 in parallel and in the same sample over time (Figure 1 C,D and Table S3).

273

274 SPEER detected a significant splicing change in 45 of 46 positive control DNA variants in the 50
275 positive control samples (97.8% sensitivity; Figure 1C) while maintaining a specificity of 99.7%.
276 We used two of the remaining four positive control samples, along with eight of the negative
277 control samples, to perform reproducibility and repeatability testing in triplicate across all 10
278 samples. All 30 (100%) of the reproducibility samples and 29 (96.7%) of 30 repeatability

279 samples yielded the expected results (Figure 1C). True positive and true negative calls
280 demonstrated strong separation at the p-value threshold used for detecting splicing effects
281 (Figure 1D), and the same variants found in multiple samples demonstrated consistent PSI
282 values (data not shown). SPEER also enabled the detection of variants outside of the reportable
283 range in four individuals from the phase 1 research cohort, all of whom had presented with a
284 persuasive personal and/or family history of hereditary cancer syndrome.

285

286 **Characterization of DNA variants associated with abnormal splicing event groups**

287 SPEER detected abnormal splicing events associated with PSpVs with very high accuracy
288 (99.7%). The next step was to calculate PSI-X as a measure of the loss of normal splicing at the
289 canonical junction most relevant to the PSpV compared to controls. We plotted the distribution
290 of PSI-X for variants previously classified as P/LP due to a splicing abnormality, and therefore
291 could be confidently considered to have a deleterious effect on the transcript, and those known
292 to be B/LB and therefore could be considered to have no deleterious effect on splicing (Figure
293 2A). We computed a receiver operating characteristic (ROC) curve (Figure 2B) for these data
294 that resulted in an area under the ROC curve (AUROC) of 0.91 for PSI-X, demonstrating that
295 PSI-X has excellent discriminatory power for separating PSpVs known to be either deleterious
296 or not, inferred from their status as either P/LP or B/LB.

297

298 As another line of evidence to validate the PSI-X metric for quantifying the effect of a variant on
299 reducing splicing of the junction most relevant to that variant, we assessed PSI-X for samples in
300 which a heterozygous DNA deletion encompassing one or more exons that would therefore
301 represented complete loss of junction usage for the flanking splice sites. With these deletion
302 variants we found a distribution in PSI-X from 0.3 to 0.75 (Figure 2C), suggesting that a PSI-X
303 <0.8 was strongly correlated with significant reduction in the usage of a canonical splice junction
304 from one allele.

305

306 We then sought to assess how well PSI-X alone could predict what would be the ultimate

307 clinical interpretation of a PSpV as either P/LP or B/LB. If all PSpVs with a PSI-X <0.8 are

308 deleterious to mRNA transcript structure and function and therefore might be naively assumed

309 to be P/LP, and all PSpVs with a PSI-X ≥ 0.8 were considered non-deleterious and therefore

310 taken to be B/LB, a comparison of predicted interpretation based on PSI-X with the known

311 pathogenicity status of these variants would be 100% accurate. This is not the case as PSI-X

312 alone had an accuracy of 86% for the clinical interpretation of variants. Clearly, not all

313 deleterious changes in mRNA structure and function must be pathogenic and not all variants

314 that leave splicing intact are necessarily benign. We therefore included the likelihood that an

315 abnormal splicing event group would lead to NMD, thereby affecting mRNA stability and

316 expression of the translated protein product, in the analysis of PSpVs with PSI-X <0.8. In this

317 way, we recognized that six of nine known B/LB variants with a PSI-X <0.8 affect transcript

318 structure but are unlikely to affect gene function, since the abnormal transcripts created were

319 not expected to result in NMD; five event groups resulted in small in-frame (≤ 6 amino acids)

320 deletions or insertions, while one event group resulted in alternative usage of the first coding

321 exon. By combining a requirement that the PSI-X be <0.8 *with* the requirement that the

322 abnormal transcripts lead to NMD, we could achieve a positive predictive value (PPV) for PSI-X

323 <0.8 of 98.9% for P/LP variants, sufficiently high to be used as evidence for pathogenicity in

324 Sherloc. In contrast, among 42 PSpVs with PSI-X > 0.8, 9 variants were previously known to be

325 P/LP presumably because they disrupted the protein directly through coding sequence changes

326 (i.e., nonsense, missense, in-frame deletion or insertion) and not through abnormal splicing.

327 Therefore, by combining a PSI-X ≥ 0.8 with the requirement that the PSpV not be a missense

328 variant or directly change the coding sequence, we could improve the negative predictive value

329 (NPV) of PSI-X > 0.8 for the variant being B/LB to 61.2%, which we did not consider sufficiently

330 high to be used as evidence for the variant being benign in the Sherloc classification framework.

331 More work needs to be done to increase the specificity of PSI-X ≥ 0.8 for B/LB variants.

332

333 **Prospective analysis of paired DNA and RNA testing**

334 In Phase 2 of the study, 20,317 individual blood samples were processed for DNA sequencing

335 and for RNA extraction and sequencing. Across the entire population, 3,563 (17.5%) of the

336 patients had at least one DNA variant identified by NGS that was a PSpV (Table 1). Abnormal

337 splicing, defined by a statistically significant event group, coincided with 605 unique PSpVs

338 (Table 2, Row 1) in a total of 971 patients (4.8% of all prospective samples) (Table 1). These

339 605 PSpVs were detected in 54 of the 63 genes analyzed by SPEER (Table S4). We observed

340 normal splicing associated with a PSpV in 2,487 patients (73% of patients with a PSpV),

341 illustrating the high false positive rate for the algorithms and heuristics used to identify PSpVs.

342

343 By evaluating the location of PSpVs in relation to the exonic sequence, we found that the largest

344 number of P/LP variants relative to VUS were within the CSS (-1, -2, +1, +2; Figure 3A). In

345 addition, there was an enrichment at positions +3, +4, and +5 from the canonical donor splice

346 site, and a cluster at -11, -10 and -9, upstream of the canonical acceptor site that most often

347 creates a novel acceptor splice site. Overall, we observed abnormal splicing events associated

348 with 605 PSpVs (Table 2), with 93% of these PSpVs located within our test's reportable range of
349 +/- 20 bp flanking the exons.

350

351 **Classification of abnormal splicing events in the prospective cohort**

352 Each PSpV associated with an abnormal splicing event group identified by SPEER was
353 classified using Observed RNA Effects evidence within the Sherloc interpretation framework.
354 Overall, half (56.7%) of predicted splicing variants (PSpVs) observed in this study have been
355 classified as pathogenic or likely pathogenic (P/LP; 20.2%) and benign or likely benign (B/LB;
356 36.5%), while the remaining (43.3%) were classified as variants of uncertain significance (VUS)
357 (Table 2, row 3). As expected, abnormal splicing correlated with a much higher rate of P/LP
358 variants (42.9%) and much lower rate of B/LB variants (11.6%) (Table 2, row 1). Conversely,
359 normal splicing correlated with a much lower rate of P/LP variants (9.4%) and much higher rate
360 of B/LB variants (48.3%) (Table 2, row 2). Importantly, we found that 6.3% of all patients from
361 the phase 2 cohort had a P/LP or B/LB variant that would have been a VUS by our interpretation
362 framework if it were not for the added RNA splicing data from our study: 75 patients (0.4% of all
363 samples) would have received a VUS instead of a P/LP classification, and 1,204 patients (5.9%
364 of all samples) would have received a VUS instead of a B/LB classification (Table 1). When
365 comparing these data across self-reported ancestries, we found that individuals with self-
366 reported Hispanic (9.4%, $p=8.2e-12$), Black/African American (10.4%, $p=1.8e-16$), or Asian
367 (9.1%, $p=1.4e-5$) ancestries had statistically significantly higher rates of definitive classifications
368 (P/LP or B/LB) than Non-Hispanic White populations (4.8%) due to the addition of supplemental
369 RNA splicing data (Table 3).

370

371 The most abundant splicing change in the prospective cohort was exon skipping, with partial
372 exon exclusion and partial intron inclusion events being the next most abundant events. Partial
373 exon exclusion, partial intron inclusion, and complex events displayed the largest discrepancies

374 between PSpV definitive classifications (i.e., P, LP, LB, B) and VUS, indicating that these were
375 the most challenging event groups to interpret (Figure 3B).

376

377 **Detection of variants affecting splicing outside the reportable range**

378 Among the 190 individuals ascertained in the initial research cohort in Phase 1 specifically
379 because no P/LP variants were found through routine clinical testing despite a personal or
380 family history highly suggestive of a hereditary cancer syndrome, 4 (2.1%) were found to have a
381 variant outside our reportable range with a deleterious effect on splicing. In the prospective
382 consecutive cohort of 20,317 patients referred for hereditary cancer testing, 42 (0.2%) patients
383 carried 35 unique variants outside of the reportable range that could be associated with
384 abnormal splicing (Table 1). Of these 35 variants, 6 (17.1%), seen in nine patients, were
385 classified as P/LP, representing a 0.04% yield of P/LP variants not present in the reportable
386 range of our test in the entire cohort (9 of 20,317 patients). An additional two variants, seen in
387 two patients (4.8%), were classified as benign, and 27 of the 35 unique variants, present in 31
388 patients (73.8%), were classified as VUS (Figure 4).

389

390 **DISCUSSION**

391 We describe SPEER, an accurate and scalable approach for detecting and quantifying splicing
392 alterations in peripheral blood leukocyte transcripts of 63 hereditary cancer syndrome genes in
393 patients undergoing genetic testing for these syndromes. We demonstrate that adding RNA
394 analysis to DNA sequencing of hereditary cancer syndrome genes facilitates the interpretation
395 of DNA variants expected or predicted to alter splicing. In addition, of the 605 unique variants
396 identified in the prospective cohort that affected splicing, 35 of them (5.8%) were located outside
397 the reportable range of +/- 20 bp flanking the exons of our NGS panel tests and were detected
398 by SPEER.

399

400 We found that supplemental RNA analysis led to a definitive classification of DNA variants that
401 would have been classified as a VUS without the RNA analysis in 6.3% of individuals in a
402 prospective cohort undergoing testing for hereditary cancer; of these, 0.4% received a P/LP
403 classification while 5.9% of patients tested had a B/LB variant, thereby effectively reducing VUS
404 rates. This fraction of patients with reclassifications due to RNA analysis in our 20,317
405 prospective cohort was higher (6.3%) than what was recently reported in a cohort of 43,524
406 patients undergoing DNA and RNA testing for hereditary cancer (1.3%) ²². This difference is
407 likely because of the larger number of genes (63 genes) tested by RNA in our cohort compared
408 to the recently published cohort (18 genes). Importantly, the rate of definitive classifications (i.e.,
409 P, LP, LB, B) dependent on RNA analysis was significantly higher in Black/African American,
410 Asian, and Hispanic individuals combined than in non-Hispanic White individuals. The
411 preferential impact of RNA analysis on VUS reclassification in these less-studied populations
412 probably resulted from RNA analysis providing direct evidence that was not limited by the
413 insufficient representation of individuals of non-European origin in variant databases or in the
414 published literature. This indicates that including RNA analysis in the interpretation of DNA
415 variants predicted to impact splicing may preferentially reduce VUS rate for less-studied
416 ancestral and ethnic populations, thereby reducing health disparities.

417
418 These results also highlight the nuances and difficulties of incorporating sample-based RNA
419 splicing analysis into variant interpretation frameworks used in routine genetic testing.
420 Alternative splicing is very common, and it can be challenging to pinpoint specific splicing
421 alterations associated with a hereditary disease. For example, greater than 96% of all patient
422 samples in our prospective cohort had at least one statistically significant splicing change at the
423 $p \leq 0.001$ threshold compared to the reference panel of normal samples. This statistical
424 threshold was not multiple hypothesis-corrected because it was meant to accurately determine

425 whether a specific PSpV altered normal splicing. By focusing scientific review on splicing
426 alterations with a PSpV within 50 bp of the nearest altered junction, we reduced the frequency
427 of abnormal splicing event groups to 4.8% of all patient samples, while maintaining 99.7%
428 accuracy for detecting abnormal splicing events previously known to be associated with DNA
429 variants in our validation of SPEER.

430

431 Even with supplemental RNA splicing data, the biological impact and clinical relevance of DNA
432 variants associated with a significant splicing alteration are difficult to assess, often still resulting
433 in VUS classifications. This is particularly true for variants found outside of the reportable range
434 of the test since they are often observed in a single individual and lack the additional
435 corroborating evidence needed to make a definitive classification, such as population frequency
436 data in publicly available databases. Only 9 of 20,317 patients (0.04%) in our prospective cohort
437 had variants outside our +/-20 bp reportable range, caused altered splicing, and would
438 ultimately be classified as P/LP. This rate of P/LP variants that occur >20bp into the introns is
439 consistent with the rate (0.06% or 28/43,524) seen in another large RNA cohort undergoing
440 testing for hereditary cancer ²². Another 2 of 20,317 patients had variants outside our +/-20 bp
441 reportable range, caused altered splicing, but still were ultimately classified as B/LB,
442 underscoring the fact that a variant that has a deleterious effect on splicing may still not cause
443 disease.

444

445 Another complicating factor in connecting a deleterious effect on splicing to pathogenicity is that
446 abnormal splicing can be incomplete. A heterozygous DNA variant may result in a reduction of
447 normal mRNA splicing that ranges from 0% (i.e., no reduction) to 50% (i.e., complete loss of
448 normal splicing from the variant allele), with everything in between considered partial loss, also
449 referred to as 'leakiness'^{23,24}. Importantly, because a PSpV that leads to a complete loss of
450 normal splicing is more likely to cause disease than a PSpV that leads to a partial loss, accurate

451 classification of PSpVs using abnormal splicing data requires a confident measure of the
452 amount of reduction. We developed such a measurement to quantify the reduction in normal
453 mRNA splicing — PSI-X — and determined that splicing alterations in blood samples associated
454 with a PSI-X <0.8 correlate with sufficient loss of normal splicing from one allele to cause
455 disease and qualify as pathogenic evidence for autosomal dominant hereditary cancer
456 syndromes within our variant classification framework. Although a PSI-X threshold of 0.8
457 demonstrates high discriminatory performance (AUROC = 0.91) for PSpVs with abnormal
458 splicing events, we still find that 15% of B/LB variants fall below the threshold and 14% of P/LP
459 variants are above the threshold. To achieve a level of confidence in the final classification of
460 PSpVs associated with abnormal splicing suitable for clinical testing, it is essential that trained
461 variant scientists review the expected effect of abnormal splicing on translation and protein
462 function, and then integrate these findings into a DNA variant interpretation framework. In this
463 way, we demonstrated that by pairing DNA and RNA testing, we can increase the number of
464 patients who have an actionable finding while achieving a PPV of 98.9%. On the other hand,
465 even with a careful review of the abnormal event groups associated with PSI-X ≥ 0.8 , it was still
466 difficult to discriminate between P/LP and B/LB variants, as demonstrated by a much lower NPV
467 (61.2%) when PSI-X is ≥ 0.8 . As a result, to limit the likelihood of a false negative result for our
468 clinical testing patients, we chose not to award benign points in the Sherloc framework even for
469 statistically significant abnormal splicing event groups when PSI-X ≥ 0.8 . PSpVs associated with
470 these higher PSI-X values will generally be VUS unless complementary evidence (i.e., family
471 segregation, population frequency, additional splicing studies) support a more definitive
472 classification.
473

474 Although this study clearly demonstrates that RNA splicing data can aid in variant classification
475 and identification, the results should be interpreted in the context of the following technical and
476 biological limitations. First, the 63 hereditary cancer genes included in this study are tumor
477 suppressor genes that are not highly expressed in whole blood leukocyte RNA. We expect each
478 gene to have tissue-specific expression and alternatively spliced products that differ from what
479 can be detected in a blood sample. As a result, abnormal splicing observed from whole blood
480 leukocytes may not reflect a biological change in the tissue of interest, while the absence of a
481 splicing alteration in whole blood may not always correlate with an absence of abnormal splicing
482 in the disease-relevant tissue. Second, the SPEER algorithm is designed to evaluate changes in
483 junction usage. A small fraction of splicing alterations result in complete intron retention, which
484 escapes detection by the SPEER algorithm in its current form. This likely explains why, in our
485 study, several known P/LP DNA variants had $\text{PSI-X} \geq 0.8$ with transcripts that underwent NMD.
486 Further development is underway to include a method for evaluating the relative frequency of
487 complete intron inclusion in the SPEER algorithm, which will better resolve the uncertainty of
488 variants with high PSI-X . Third, although PSI values and aberrant junctions were highly
489 consistent for the same variant across multiple samples, a few DNA variants showed high levels
490 of variability. Most of these correlated with the presence of *cis*-acting elements, such as
491 secondary DNA variants, suspected of modifying the impact of the primary DNA variant on
492 splicing. Currently it is not possible to predict *a priori* which splicing changes are impacted by
493 modifiers, but with more samples sequenced for the same DNA variants we may be able to
494 identify patterns in the DNA sequence that modulate the PSI and alternative splicing events
495 within these tumor suppressor genes.
496

497 In summary, RNA analysis in whole blood is a valuable tool for finding and assessing the impact
498 of DNA variants suspected of affecting RNA splicing, thereby altering gene expression. It helps
499 to reduce VUS rates in a fraction of individuals who have DNA variants predicted to affect
500 splicing, and supports the identification of deleterious, possibly pathogenic variants outside the
501 test's reportable range. However, interpretation of the splicing information is challenging and
502 there are limitations in the techniques and in our biological understanding of splicing. By
503 combining comprehensive DNA and RNA sequencing with the validated SPEER algorithm, we
504 will continue to collect data individuals referred for hereditary cancer syndrome testing, develop
505 deeper insights into the clinical relevance of splicing alterations, and improve the interpretation
506 of inherited DNA variants — leading to a further reduction in uncertainty for hereditary cancer
507 gene testing.

508 **REFERENCES**

509 1. Truty R, Ouyang K, Rojahn S, Garcia S, Colavin A, Hamlington B, Freivogel M, Nussbaum
510 RL, Nykamp K, Aradhya S. Spectrum of splicing variants in disease genes and the ability of
511 RNA analysis to reduce uncertainty in clinical interpretation. *Am J Hum Genet*, 2021,
512 108:696–708

513 2. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, Pritchard JK.
514 Annotation-free quantification of RNA splicing using LeafCutter. *Nat Genet*, 2018, 50:151–8

515 3. Frésard L, Smail C, Ferraro NM, Teran NA, Li X, Smith KS, Bonner D, Kernohan KD,
516 Marwaha S, Zappala Z, Balliu B, Davis JR, Liu B, Prybol CJ, Kohler JN, Zastrow DB,
517 Reuter CM, Fisk DG, Grove ME, Davidson JM, Hartley T, Joshi R, Strober BJ, Utiramerur
518 S, Lind L, Ingelsson E, Battle A, Bejerano G, Bernstein JA, Ashley EA, Boycott KM, Merker
519 JD, Wheeler MT, Montgomery SB. Identification of rare-disease genes using blood
520 transcriptome sequencing and large control cohorts. *Nat Med*, 2019, 25:911–9

521 4. Mertes C, Scheller IF, Yépez VA, Çelik MH, Liang Y, Kremer LS, Gusic M, Prokisch H,
522 Gagneur J. Detection of aberrant splicing events in RNA-seq data using FRASER. *Nat
523 Commun*, 2021, 12:529

524 5. Jenkinson G, Li YI, Basu S, Cousin MA, Oliver GR, Klee EW. LeafCutterMD: an algorithm
525 for outlier splicing detection in rare diseases. *Bioinformatics*, 2020, 36:4609–15

526 6. Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF, Hogenesch
527 JB, Lynch KW, Barash Y. A new view of transcriptome complexity and regulation through
528 the lens of local splicing variations. *Elife*, 2016, 5:e11752

529 7. Sibley CR, Blazquez L, Ule J. Lessons from non-canonical splicing. *Nat Rev Genet*, 2016,
530 17:407–21

531 8. Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity.
532 *Nat Rev Mol Cell Biol*, 2017, 18:437–51

533 9. Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions, Mechanisms, and
534 Evolution. *Mol Cell*, 2019, 76:329–45

535 10. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho Y-Y, Kobayashi Y, Patil N,
536 Thusberg J, Westbrook M, Invitae Clinical Genomics Group, Topper S. Sherloc: a
537 comprehensive refinement of the ACMG-AMP variant classification criteria. *Genet Med*,
538 2017, 19:1105–17

539 11. Al Abo M, Hyslop T, Qin X, Owzar K, George DJ, Patierno SR, Freedman JA. Differential
540 alternative RNA splicing and transcription events between tumors from African American
541 and White patients in The Cancer Genome Atlas. *Genomics*, 2021, 113:1234–46

542 12. Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E, Nussbaum RL, Aradhya S.
543 Prevalence and properties of intragenic copy-number variation in Mendelian disease genes.
544 *Genet Med*, 2019, 21:114–23

545 13. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, McGuire V,
546 Ladabaum U, Kobayashi Y, Lincoln SE, Cargill M, Ford JM. Clinical evaluation of a
547 multiple-gene sequencing panel for hereditary cancer risk assessment. *J Clin Oncol*, 2014,
548 32:2001–9

549 14. Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to
550 RNA splicing signals. *J Comput Biol*, 2004, 11:377–94

551 15. Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes:
552 sequence statistics and functional implications in gene expression. *Nucleic Acids Res*,
553 1987, 15:7155–74

554 16. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li
555 YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A,
556 Batzoglou S, Sanders SJ, Farh KK-H. Predicting Splicing from Primary Sequence with
557 Deep Learning. *Cell*, 2019, 176:535–48.e24

558 17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,

559 Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 2012, 29:15–21

560 18. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular
561 Identifiers to improve quantification accuracy. *Genome Res*, 2017, 27:491–9

562 19. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing
563 experiments for identifying isoform regulation. *Nat Methods*, 2010, 7:1009–15

564 20. Schafer S, Miao K, Benson CC, Heinig M, Cook SA, Hubner N. Alternative splicing
565 signatures in RNA-seq data: Percent spliced in (PSI). *Curr Protoc Hum Genet*, 2015,
566 87:11.16.1–11.16.14

567 21. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam
568 A, Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH,
569 Campbell PJ. Tumor evolution. High burden and pervasive positive selection of somatic
570 mutations in normal human skin. *Science*, 2015, 348:880–6

571 22. Horton C, Cass A, Conner BR, Hoang L, Zimmermann H, Abualkheir N, Burks D, Qian D,
572 Molparia B, Vuong H, LaDuca H, Grzybowski J, Durda K, Pilarski R, Profato J, Clayback K,
573 Mahoney M, Schroeder C, Torres-Martinez W, Elliott A, Chao EC, Karam R. Mutational and
574 splicing landscape in a cohort of 43,000 patients tested for hereditary cancer. *NPJ Genom
575 Med*, 2022, 7:49

576 23. Schröder S, Wieland B, Ohlenbusch A, Yigit G, Altmüller J, Boltshauser E, Dörk T,
577 Brockmann K. Evidence of Pathogenicity for the Leaky Splice Variant c.1066-6T>G in ATM
578 in a Patient with Variant Ataxia Telangiectasia. Abstracts of the 46th Annual Meeting of the
579 Society for Neuropediatrics, 2021. <https://doi.org/10.1055/s-0041-1739584>

580 24. Bergsma AJ, Kroos M, Hoogeveen-Westerveld M, Halley D, van der Ploeg AT, Pijnappel
581 WW. Identification and characterization of aberrant GAA pre-mRNA splicing in pompe
582 disease using a generic approach. *Hum Mutat*, 2015, 36:57–68

583

584 **FIGURE LEGENDS**

585 **Figure 1. SPEER method and validation.** A) SPEER concept. SPEER quantifies the
586 annotated and unannotated splicing variation in the healthy population by modeling the beta-
587 binomial distribution of junction usage for all junctions observed in the healthy normal samples.
588 Patient junction usage is then tested against this distribution to identify junctions that are
589 aberrantly used, filtering out common but unannotated variation. Significant splice aberrations
590 are then mapped to the canonical transcript to infer protein effects. Canonical junctions are
591 shown in dashed black lines, common alternatively-spliced junctions modeled by the normal
592 reference panel are shown in solid blue lines, and the aberrant splice junction detected in the
593 patient sample is shown with a solid red line. B) Bioinformatic workflow. FASTQ files from RNA-
594 Seq experiments are aligned and split reads are extracted and converted to raw junction counts.
595 SPEER uses the raw junction counts from the normal samples to compute the percent spliced in
596 (PSI) distributions for each junction in the healthy normal samples using a beta binomial count
597 model. Beta binomial parameters for each junction are saved in a panel of normal splicing
598 (PONS) file, which is calculated once and reused for every process-matched patient sample.
599 Patient junction counts are converted to PSI values, which are tested against the panel of
600 normal samples to identify significantly aberrant junction usage. Significant patient junctions are
601 positionally linked to assemble splice variant events. C) Validation metrics. SPEER was
602 validated using a set of positive and negative control blood samples from patients with known
603 and expected splicing events. Anonymous blood samples were used to create the PONS file.
604 SPEER showed high accuracy and reproducibility in detecting abnormal splicing events in
605 patient samples. D) Quantitative features of abnormal splicing events used for validation.
606 SPEER p-value and PSI fold change versus PONS are plotted for known positive and negative
607 control splice junctions. Positive and negative calls are strongly separated and inaccurate calls
608 fall near the p-value threshold. Infinite values are set to 20 on both axes for display purposes
609 and the top right point contains 11 samples with infinite fold change and a p-value of 0.

610

611 **Figure 2. Establishing a PSI-X threshold for interpreting abnormal splice events as**
612 **pathogenic.** A) PSI-X (percent spliced in fold change) distribution for PSpVs (potential splicing
613 variants) classified as pathogenic or likely pathogenic (PLP, beige) or benign or likely benign
614 (BLB, blue). Dotted line represents PSI-X of 0.80. B) Receiver operating characteristic (ROC)
615 curve for the data in panel A. The area under the ROC curve is 0.91. C) PSI-X values for
616 heterozygous exon deletions detected by DNA sequencing. Although the PSI-X for deletions
617 expected to cause NMD (nonsense mediated decay, beige circles, NMD+) is statistically
618 different (one-sided t-test, $p=0.0026$) than the PSI-X for deletions expected to escape NMD (red
619 circles, NMD-), all events are below 0.8, demonstrating the ability to correctly identify them
620 independently of NMD status.

621

622 **Figure 3. Characterization of splicing events observed in the prospective cohort.**

623 A) Position of variants associated with splicing events in regards to the transcript exon (0 is
624 exonic). Although there is a clear enrichment of likely pathogenic and pathogenic variants at +1,
625 +2 and +3, we do observe both benign and pathogenic variants at other positions. Overall, 93%
626 of PSpVs associated with abnormal splicing events are within 20 bps of the exon, corresponding
627 with the reportable range of the NGS DNA test. B) Splicing event types plotted by the number
628 of potential splicing variants (PSpVs) observed. Colors represent classification of PSpVs
629 following interpretation of abnormal splicing events. Most PSpVs classified as pathogenic or
630 likely pathogenic are associated with changes leading to exon-skipping, while PSpVs
631 associated with partial exon exclusion, partial intron inclusion, and complex events show the
632 largest discrepancy between definitive classifications and variants of uncertain significance.

633

634 **Figure 4. Discovery of intronic variants outside our reportable range with SPEER Thirty-**
635 **five** intronic DNA variants outside our reportable range were identified in this study. Five DNA

636 variants were classified as pathogenic or likely pathogenic (orange), two DNA variants were
637 classified as benign or likely benign (purple), and the remaining were classified as variants of
638 uncertain significance (VUS). The affected status of individuals with VUS is represented by
639 color: green = unaffected, blue = affected, and red = unknown due to lack of clinical information
640 provided. The canonical PSI fold change (PSI-X) showed a large distribution for these abnormal
641 splicing events, ranging from 0.23 to 0.9.

642

643

644 **FIGURE LEGENDSS**

645

646 **Figure 1. SPEER method and validation.**

647 **Figure 2. Establishing a PSI-X threshold for interpreting abnormal splice events as**
648 **pathogenic.**

649 **Figure 3. Characterization of splicing events observed in the prospective cohort.**

650 **Figure 4. Discovery of intronic variants outside our reportable range with SPEER**

651 **TABLES**

652

653 **Table 1: Results from Phase 2**

	Unique Individuals	% of All Samples
DNA + RNA sequencing	20,317	100
With a Potential Splicing Variant (PSpV)	3,563	17.5
PSpV & Normal Splicing	2,592	12.8
PSpV & Abnormal Splicing	971	4.8
PSpV upgrade VUS to PLP	75	0.4
PSpV downgrade VUS to BLB	1,204	5.9
Variants outside the reportable range	42	0.2

654

655

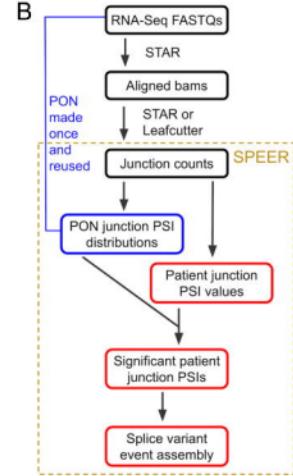
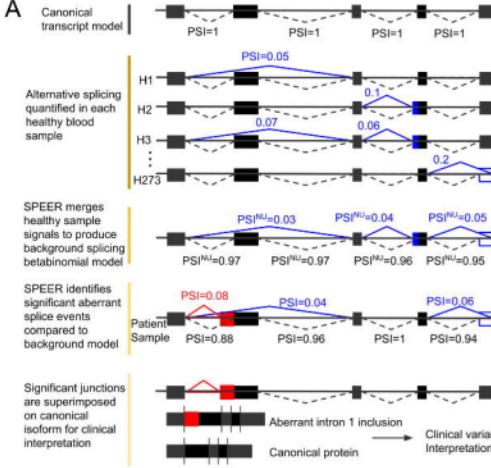
656 **Table 2: Classification of PSpVs in the Phase 2 study**

	PLP	VUS	BLB	Total PSpVs
PSpV & Abnormal splicing	260 (42.9%)	275 (45.5%)	70 (11.6%)	605 (100%)
PSpV & Normal splicing	120 (9.4%)	541 (42.3%)	617 (48.3%)	1278 (100%)
Total PSpVs	380 (20.2%)	816 (43.3%)	687 (36.5%)	1883 (100%)

657

658

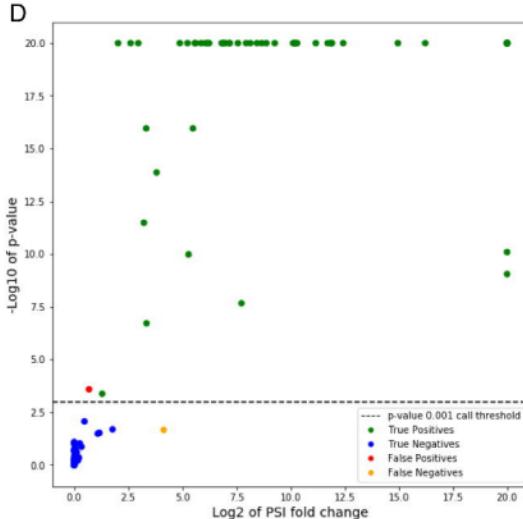
659 **Table 3: Reclassification rates among self-reported ethnic populations**

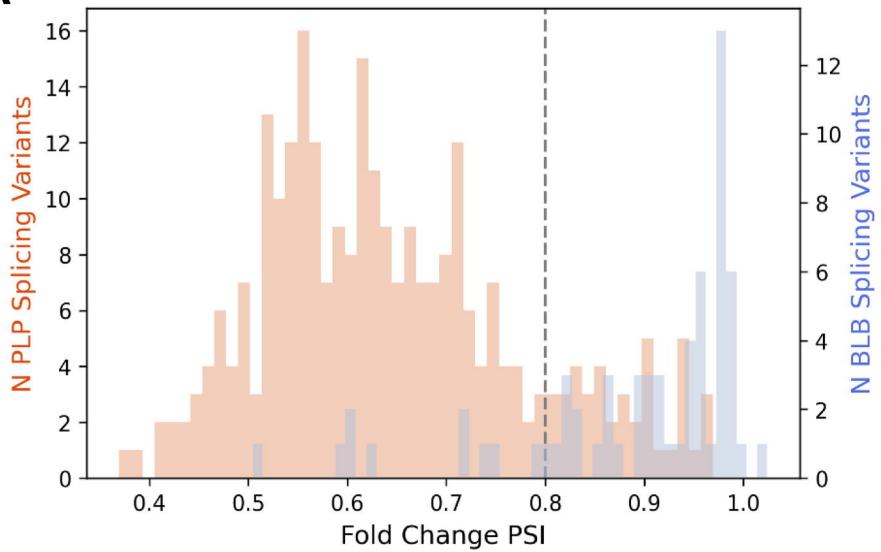
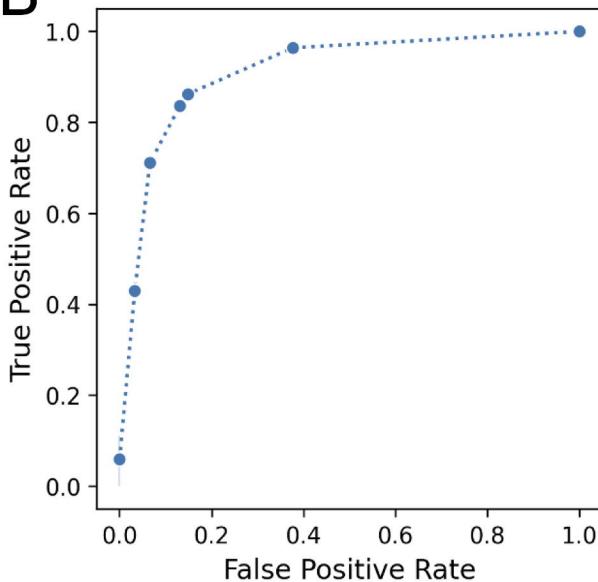
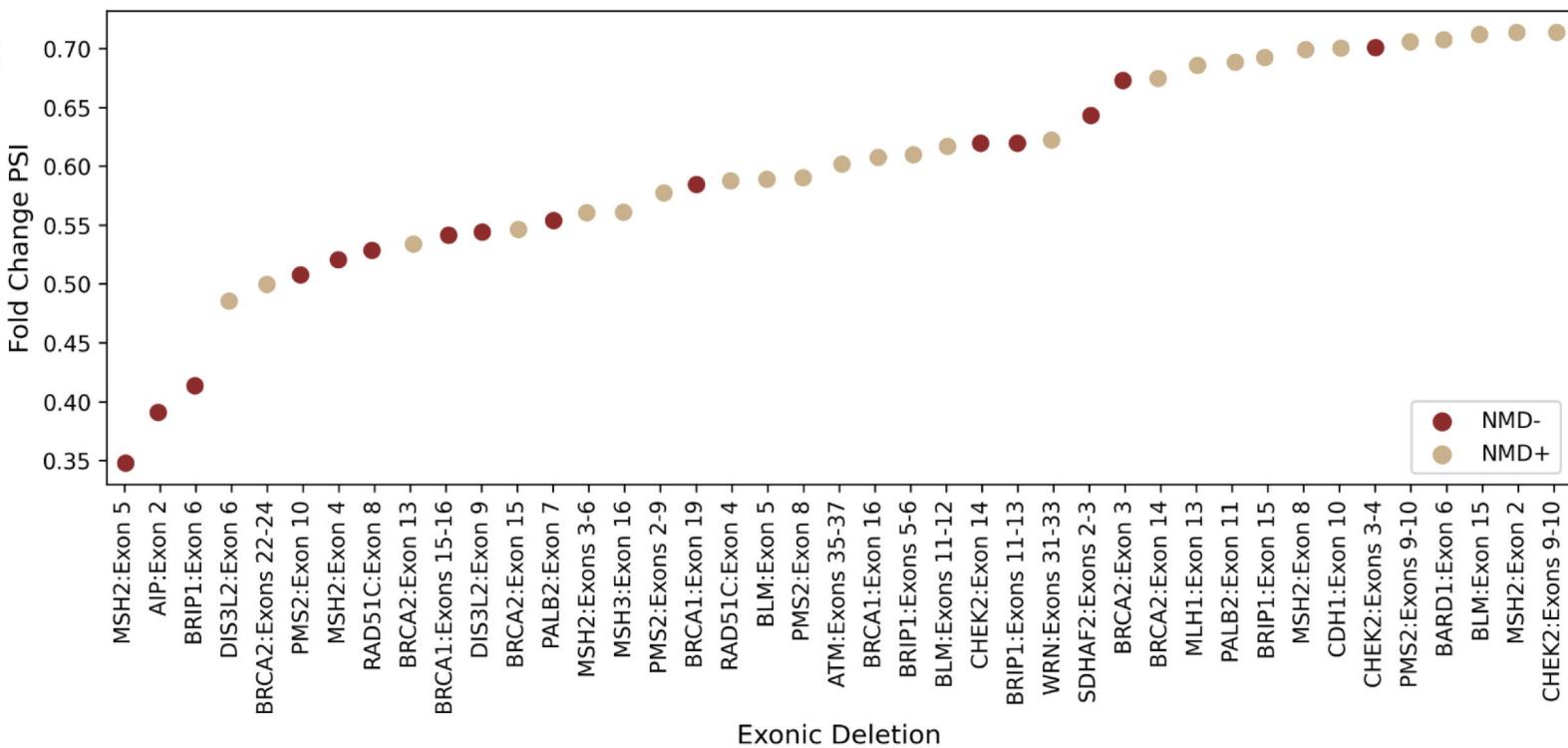


	Unique individuals	% of ethnic population
Non-Hispanic White	608	4.8
Black/African American	158	10.4*
Asian	55	9.12*
Hispanic	137	9.4*
Other**	312	9.7

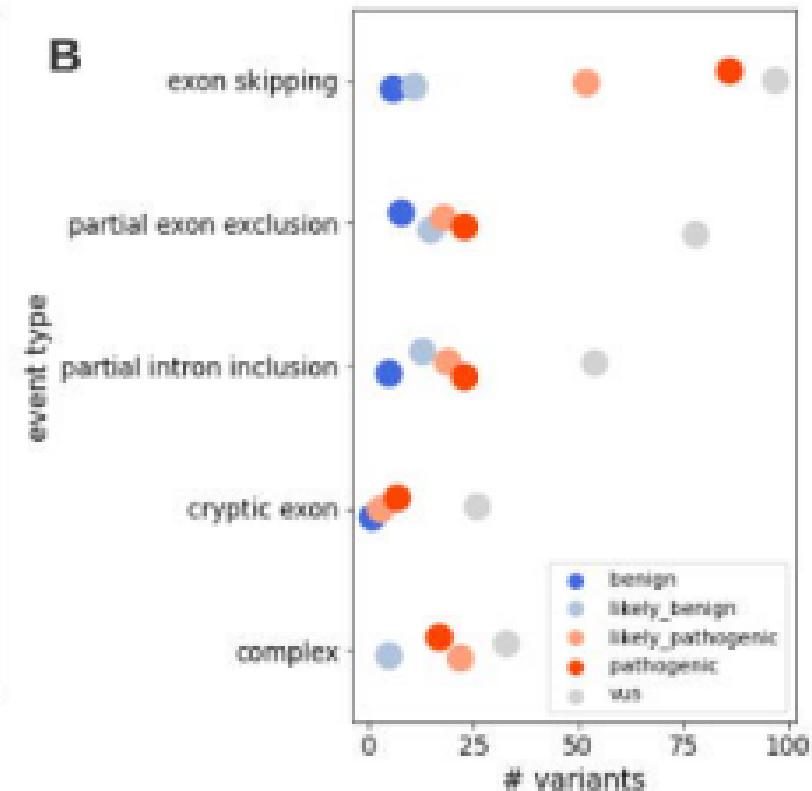
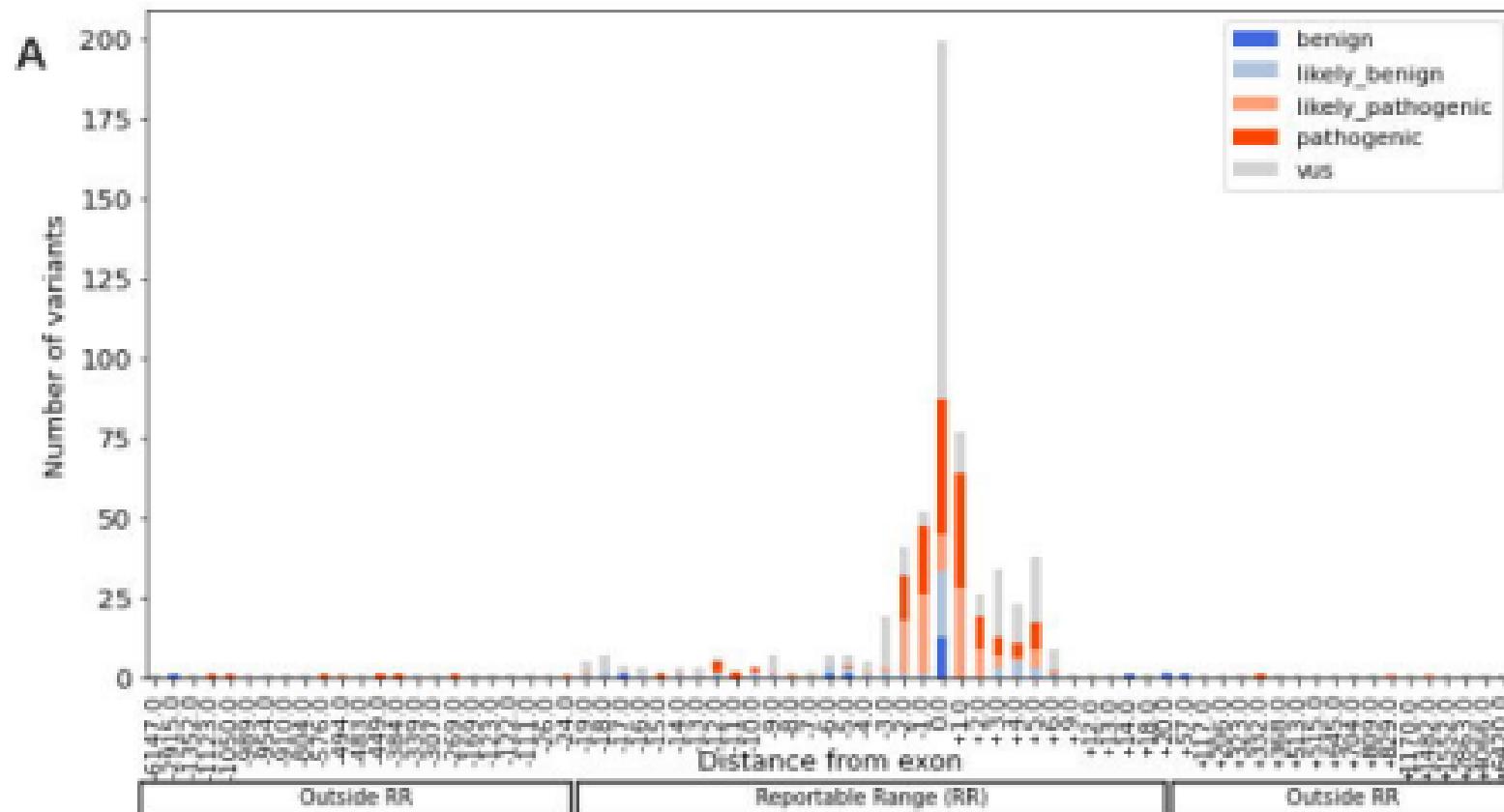
660 *p-value<0.05 after one-sided Fisher Exact test. **Includes Ashkenazi Jewish, Native American,

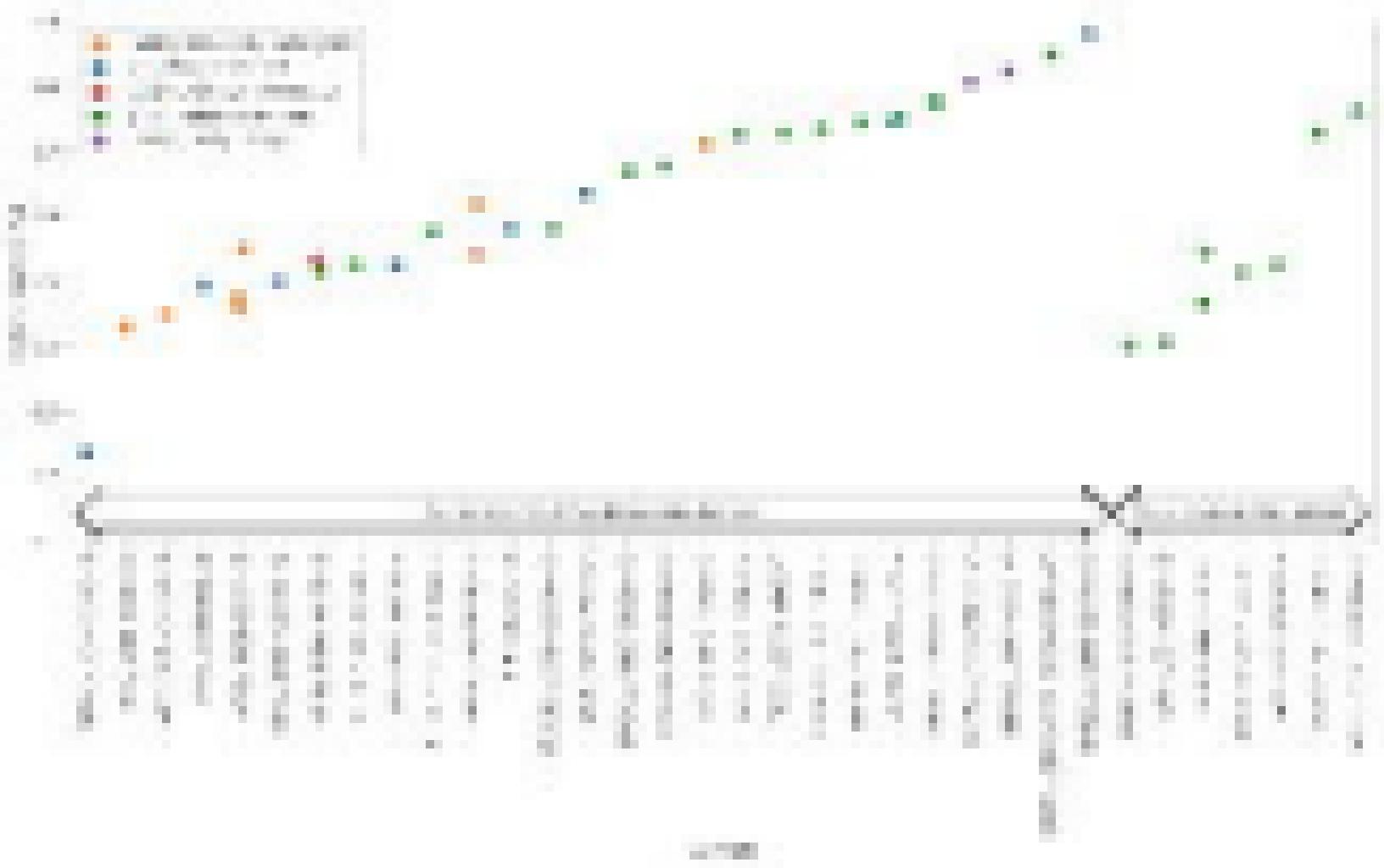
661 Multiple and Unknown.

662


663



C


Validation Metrics

True positive samples	50
True negative samples	66
Anonymous blood samples for PON	273
Accuracy	99.7%
Sensitivity	97.8%
Specificity	99.7%
Repeatability/Reproducibility	98.3%

A**B****C**

