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Abstract:

Complex organisms perceive their surroundings with sensory neurons which encode physical
stimuli into spikes of electrical activities. In the past decade, DNA-based chemical neurons that
mimic neuronal information processing have been reported. Yet, they lack the physical sensing
and temporal coding of sensory biological neurons. Here we report a thermosensory chemical
neuron that spikes when exposed to cold. Surprisingly, the chemical neuron shares deep
mathematical similarities with a toy model of a cold nociceptive neuron: they follow a similar
bifurcation route between rest and oscillations and avoid artefacts associated with canonical
bifurcations (such as irreversibility, damping or untimely spiking). We demonstrate this
robustness by digitally or analogically encoding thermal messages into chemical waveforms.
This chemical neuron could pave the way for implementing in DNA the third generation of
neural network models (spiking networks), and opens the door for associative learning.

One-Sentence Summary: A DNA-based chemical network mathematically mimics the sensing
of cold by a biological neuron.
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Main Text:

Introduction

Animals represent the world around them with spikes of electrical activities (action
potentials) in their nervous system. The spikes are evoked by sensory neurons around the body in
response to chemical or physical stimuli (sound, light, pressure, temperature...), and are
transported to the central nervous system, where they are decoded, processed and integrated with
other sensory signals to elicit a response. A case in point is thermosensation - the sensing of
temperature by thermoreceptors and its coding into trains of spikes!. Thermosensation can be
analog - the firing rates of spikes coding for the ambient temperature®. This graded thermal
response is essential for organisms which cannot regulate their body temperature and resort to
thermal acclimation or thermotaxis to adapt and navigate the thermal constrains set by their
environment . Thermosensation can also be digital like in thermal nociceptors, where
temperature-gated ion channels such as TRPMS receptors generate trains of spikes only when
they are exposed to dangerous levels of hot or cold!, and remain at rest otherwise (Fig 1A). This
neural coding of sensation is sparse in space and time, allowing a fast and accurate response to
be computed from a few transient signals®.

In electronics, the parsimony and efficiency of neural coding has motivated the development of
Spiking Neural Networks, which are electronic oscillators connected by a network of excitory
and inhibitory synapse>®. Departing from the heavily supervised, energy and data hungry
paradigm of deep neural networks, spiking neural networks can in principle learn and operate
much more frugally’: with few neurons and with little supervision, data or power — similarly to
biological neurons*®.

In chemistry, previous works has hinted at the feasibility of programming nonlinear chemical
reactions to emulate neurons’!! Emboldened by the success of DNA as a building!? and
computing!3~!* material, various groups have reported DNA-based neurons capable of
performing linear!®!” and nonlinear classification'® on nucleic acids. However, these DNA
neurons still pale with their biological counterparts. Firstly, they only process chemical stimuli
(concentrations of nucleic acids), and are unable to integrate physical stimuli such as
temperature. Secondly, these DNA neurons are akin to a toggle switch and have no sense of
time. They are incapable of processing information in the time domain and lack the temporal
finesse of biological neurons, which encode their stimulation history into a spike waveform °.
With this temporal coding, the brain can decide if two stimuli are sequential or simultaneous (by
comparing the arrival time of spike trains?’), and learn from this temporal correlation to wire
together neurons that fire together. This is the basis of associative learning, which allows the
brain to store a sparse representation of its environment in its neural topology?!. Chemical
systems that mimic this temporal coding would open the door for associative learning and
enables a novel range of molecular systems that learn from their environment. Encoding with
temperature has very practical benefits: it is easy to implement (using just a PCR thermal
cycler??) and the modulation of temperature to probe and program molecular systems has been
studied for more than a decade®*?’.

Here we report a thermosensory chemical neuron which encodes thermal signals in the
temporal domain. The chemical neuron produces spikes of chemical activity when exposed to
low temperature (Fig. 1B) - similarly to a cold nociceptive neuron?®%°, At high temperature, the
chemical neuron is at rest and does not spike. As temperature is lowered and crosses a threshold,
the neuron bifurcates to an oscillatory regime, turning into a chemical metronome that steadily
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generates pulses of a DNA species - the firing rate coding for the ambient temperature.
Comparing our chemical neuron with a toy-model of a thermosensory biological neuron, we find
that they bifurcate along a similar route. This route reversibly and cleanly switches the neurons
between rest and oscillation, avoiding artefacts of simpler bifurcations (such as irreversibility,
damping or erroneous spiking). Building on this robustness, we operate the chemical neuron in
bulk as a digital communication channel —demonstrating high fidelity and resilience to thermal
noise. Lastly, we miniaturize the chemical neurons and operate tens of thousands of them in an
analog mode, precisely coding the ambient temperature into the firing rates of the neurons. Such
chemical neuron opens an avenue to execute recurrent molecular computations and connect
chemical neurons into a spiking chemical network, which could process information in a manner
similar to the nervous systems of complex organisms.

The spike generator

Spiking neurons can be conceptualized as oscillators that produce rhythmic pulses of
activity’?. We selected a predator-prey chemical oscillator®! to generate chemical spikes.
Although this DNA oscillator is simple, it is one of the most robust reported®?% and oscillates
for days on end?’. It can be wired to other DNA circuits, for instance to rhythmically induce
colloidal aggregation and disaggregation®. This enzymatic oscillator comprises two DNA
strands, a prey and a predator, which live and die according to rules set in their sequences and
enforced by 3 enzymes (polymerase, nickase, exonuclease). Briefly, a prey replicates by binding
to a grass template, an event which recruits a polymerase and a nickase and produces a new prey
as an output (Fig. 1C). This self-replication produces an exponential growth in the population of
prey (prey growth). At the same time, the predators replicate by “eating” the preys, by converting
them into predators through an enzymatic reaction that produces one new predator for each prey
consumed by a predator. This predation triggers an exponential growth of the population of
predators at the expense of preys whose population then decays exponentially. Once the
exonuclease has cleared the population of predators, the remaining preys resume their
exponential growth, and the cycle of growth and predation restarts - resulting in rhythmic
oscillations with a typical period of ~1 h.

We first took a phenomenological approach and investigated how this oscillator
depended on temperature. We found that it behaves similarly to a cold sensory neuron - being
inactive over a temperature threshold and suddenly becoming active below (Fig. 1D). At 52.4 °C
or above, oscillations are silenced and the system is locked in a stable steady state with a low
level of preys. But as temperature is lowered near 51°C, the system suddenly bifurcates and
enters an oscillatory regime. At 51.1°C, oscillations emerge after a lag of dozens of hours. At
49°C, oscillations quickly kick in and the system adopts a rhythmic pattern. The firing rate varies
non-monotonically with temperature: it increases from 49°C to 46.3 °C, at which point it
decreases. By contrast, the amplitude of oscillations remains comparatively stable with
temperature.

Although the oscillator bifurcates between rest and oscillations in a manner similar to a
cold sensory neuron, this phenomenological approach fails to precisely explain why and how it
does so. The net effect of temperature on oscillations is difficult to predict from chemical
network of the oscillator, as temperature affects the thermodynamic and kinetic of all chemical
reactions. An increase in temperature is expected to accelerate the melting of DNA duplexes, and
thus speeds up the separation of predators (predator growth) and the melting of preys from their
template (prey growth). But heating up also destabilizes the binding of predators to preys, and
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the binding of preys to their templates. Increasing temperatures also affects the kinetic balance of
enzymes, and thermophilic enzymes like the exonuclease are expected to become more active
with increasing temperature

We then took a reductionist approach to understand the molecular basis of why and how
the neuron bifurcates with temperature. We work with a robust model of the oscillator®!, which is
two dimensional (tracking the dynamics of preys and predators) and nonlinear (accounting for
the saturation of enzymatic kinetics through Michaelis-Menten equation). We isolated each of its
reaction module (prey growth, predation, degradation of preys and predators) and quantified their
temperature dependence (SI 2.2). Prey replication varies weakly (and non-monotonically) with
temperature. By contrast, predation accelerates more than 5-fold from 40 °C to 54 °C. This
suggests that the separation of predators - promoted by heating - is the rate-determining step in
predation. Lastly, the degradation of preys and predators speeds up more than 10-fold over this
temperature range - which is consistent with our exonuclease being thermophilic®.

We factored those temperature-dependences in a simple 1D linearized model to predict a
priori the temperature of bifurcation (i.e., without using the knowledge of Figure 1D). We
postulated that oscillations emerge once the steady state at high-temperature loses its stability (SI
2.4). In this steady state, the level of predators is low, and the level of preys is mainly set by the
balance between their replication and degradation by the polymerase — which essentially reduces
the dynamics of predators to a one dimensional linear different equation. Knowing the steady-
state level of preys, we then computed the net growth rate of predators as the outcome of two
linear processes: replication by predation of the preys and degradation by the exonuclease. At
high temperatures, the exonuclease is highly active and there are not enough preys to feed the
predators and counter their degradation by the exonuclease. The net growth of predators is
negative and the steady state remains stable. But as temperature decreases, the exonuclease slows
down, which has compounding effects on the growth of predators. First, it raises the steady-state
level of preys, which promotes the replication of predators by predation, and it also attenuates
the degradation of predators. Overall, the model predicts that replication and degradation cancel
out at ~51°C (Fig. 1G) — a theoretical prediction that agrees within less than 1°C with the
temperature measured experimentally for the bifurcation (Fig. 1D).

In addition, we confronted the full model (2D and nonlinear) to an experimental
bifurcation diagram- varying temperature and exonuclease. The model satisfyingly predicts the
onset on experimental bifurcations (Fig. S5)
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Figure 1: Cold sensation by a chemical neuron. (A) A cold sensory neuron switches between a
rest state at high temperature to a spiking state at low temperature. The bifurcation is controlled at
the molecular level by temperature-sensitive ion channels. (B) Our neuron switches between a rest
state at high temperature to a spiking state at low temperature. The bifurcation is controlled at the
molecular level by temperature-sensitive enzymes and the melting of DNA duplexes. (C) The
chemical neuron is based on a DNA-based predator-prey oscillator, which comprises three reaction
modules (prey replication, predation and degradation) that are actuated by three DNA-processing
enzymes. (D) Empirical dependence of the oscillator on temperature. The fluorescent traces are
measured in bulk and mainly reflect the level of preys. (E) Individual measurements of the reaction
rates of the three modules with temperature (SI 2.2). For sake of comparison, rates are normalized
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by their value at 46.5 °C. (F) Predicted and measured frequency of spiking against temperature.
The black plain line shows the prediction of a nonlinear enzymatic model, and the green plain line
shows the prediction its linearized version (Lotka-Voltera model) (SI 2.3). The red dots show the
experimental measurements. (E) Prediction of the net rate of predator growth in the rest state (low
predator) (SI 2.4). This rate includes the effect of predation, prey growth and predator decay. When
the net rate is negative, the rest state is stable. When the rate becomes positive, the system
bifurcates the rest state disappears and oscillations emerge.

Bifurcation routes

Comforted by the predictive power of model, we visualized the bifurcation route of the
neurons from rest to oscillation (Fig. 2A). We consider the prey nullcline (green) and predator
nullcline (blue). At high temperature, trajectories are attracted to the stable steady state with few
predators (black point near the x axis) and the neuron rests. As temperature is lowered, the steady
level of prey increases, dragging the tip of the prey nullcline to the right of the plot. When the tip
intersects the predator nullcline, a first saddle-node bifurcation occurs - creating an unstable state
and a stable state, which quickly transitions to a stable spiral state - generating damped
oscillations in its vicinity. Yet a generic trajectory (pink curve) cannot reach this spiral state
because it is attracted by the stable state with low predators, and this saddle-node bifurcation is
not apparent from a generic time trace. But as temperature decreases, the unstable and stable
states keep sliding along the nullclines and eventually annihilate each other. This is the situation
mentioned above where the net growth rate of predators enters the positive zone (i.e. the region
on the right of the predator nullcline). This second saddle-node bifurcation clears the way for a
generic trajectory to reach the spiral. It manifests in the time trace as damped oscillations that
start after a long time-lag, which is due to the remnant of the stable state (i.e., the growth rate of
preys and predators near this point is positive, but still close to 0 by continuity). Lastly, as
temperature decreases again, a Hopf bifurcation destabilizes the spiral state and gives birth to a
limit cycle. This manifests in the time trace as sustained oscillations that set in quickly from
generic trajectories. The 3 bifurcations occur in a narrow temperature range (~0.1°C) (Fig. 2A &
SI 2.6). While the ordering of the last two bifurcations (the second saddle-node and Hopf
bifurcations) is sensitive to parameters, the general bifurcation path (destruction of a resting
state and creation of a limit cycle) remains the same.
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Figure 2. Bifurcation routes of our chemical neuron and a toy model of a thermosensory
biological neuron (A) 2D phase portraits of the chemical neuron for decreasing temperatures.
Thick green and blue lines are the nullclines for preys and predators respectively. The thin pink
line shows a generic trajectory. Steady states — located at the intersection of nullclines — are shown
as disks, color-coded by their nature and stability (see SI 2.6) (B) 2D phase portraits of a toy model
of biological thermosensory neuron, which has 2 variables (membrane potential and spiking
variable), and is parametrized by temperature through its excitation current (see SI 3.1).The blue
curve is the nullcline of the membrane potential, and the green curve is the nullcline of the spiking
variable.


https://doi.org/10.1101/2022.07.06.498929
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

35

40

45

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.06.498929; this version posted July 6, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We then compared our chemical neuron with a toy model of a cold sensory neuron. While the
mechanical basis of temperature sensing in neurons has been known for more than a decade, only
a few mathematical models have attempted to explain how this temperature-dependence impacts
bifurcations between rest and spikes.***? These models are typically based on a Hodgkin-
Huxley-type model** (with a thermal dependence of the current to model the influence of
temperature on thermoreceptors). Yet this model is four dimensional, which makes the
visualization and analysis of bifurcations delicate. The FitzHugh-Nagumo model simplifies the
dynamic of spiking by reducing the number of variables from four to two, which makes it
analytically tractable and easier to visualize 7. Yet, this model is limited to describing a
certain class of neurons (those with class 2 excitability) due to the linear shape of one its
nullcline (the nullcline for the recovery variable, also called spiking variable).

For the sake of generality, visualization and comparison with our chemical neuron, we selected a
generalization of the FitzHugh-Nagamo model with a quadratic nonlinearity in the spiking
variable*® (which makes it mathematically equivalent to the 2D Hindmarsh-rose model*’). Being
2D, this model retains the ease of visualization and analysis of the FitzZHugh-Nagamo model,
while covering more classes of neuronal excitability thanks to its quadratic term. The model
features only two variables (the membrane potential x and the spiking variable y), and four
parameters (of which only three are freely tunable, because changing the parameter a has the
same effect as changing the current). We set two parameters (¢ and d) to fall in a regime where
bifurcations have been analytically studied in details (corresponding to a Class 2 excitability and
Class 1 spiking®® 4%). We fix the remaining free parameter b to 0.7 to analyze and plot the
bifurcations, and compare them with our chemical neuron (but the conclusions remain broadly
similar with other values of b). Lastly, to capture the effect of temperature, we added a sigmoidal
dependence of the excitation current / on the temperature 7, which qualitatively agrees with the
shape of measurements of /(7) in thermosensitive ion channels such as TRPM8 (SI 3.1).

Since this model is a toy model, it does not pretend to describe how any chemosensory neuron
will bifurcate with temperature. But it provides one plausible route for bifurcations, a route that
is generic, analytically tractable and easily visualizable — allowing a qualitative and visual
comparison with our chemical neuron. At high temperature, the biological neuron is at rest,
attracted by a stable steady state (Fig. 2B). As temperature decreases, the tip of the y nullcline
intersects the x nullcline — a saddle-node bifurcation that creates two steady states: one stable and
one unstable. Lowering the temperature again, two bifurcations occur. A saddle-separatrix loop
bifurcation creates a limit cycle to support oscillations, and a second saddle-node bifurcation
annihilates the rest state. This clears the way for the biological neuron to reach its limit cycles
from a generic point in the phase space.

The biological and chemical neurons follow a similar route from rest to oscillation (or
from oscillation to rest), by destroying (creating) their rest state and creating (destroying) the
limit cycle that supports their oscillations. This sequential bifurcation route offers several
advantages for spike-encoded sensing compared to more traditional bifurcations (Fig. 3 & SI
3.2). Among the canonical bifurcations between rest and oscillations (Saddle-Node, SNIC,
homoclinic, supercritical and subcritical Hopf, Fold Limit cycle), only the SNIC and
supercritical Hopf bifurcation are reversible — in the sense that they do not suffer from hysteresis
when the control parameter is repeatedly swept across the bifurcation’!

Similar to SNIC and Hopf bifurcations, our chemical and biological neurons are
reversible and do not exhibit hysteresis. This is because their rest state and limit cycle do not
coexist — except within a narrow temperature range. Outside this temperature range, the state of
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the neuron is unambiguous and only determined by temperature — not by the history of the
neuron or its stimulation. This prevents the memory effect or hysteresis which occurs with say
homoclinic bifurcation (SI 4.1).

Like in a Hopf bifurcation, the chemical and biological neurons create and destroy their
limit cycles. But unlike a Hopf bifurcation, they enter or leave the oscillatory regime in a clean
and undamped manner because, similarly to a SNIC bifurcation, they create and destroy their
steady states — removing the spiral state that pollutes the transitions between rest and oscillations
(SI4.3). Since steady states can only typically be created or destroyed in pair, this route needs
an auxiliary saddle steady state, which is used to destroy the rest state (when temperature is
lowered and the system is switched from OFF to ON), or to destroy the steady state in which the
limit cycle is shrunk (when temperature is raised and the system is switched from ON to OFF).

In other words, the bifurcation route of the chemical and biological neurons is hybrid and
combines the destruction (creation) of a stable node with the creation (destruction) of a limit
cycle. This combination enables the neurons to robustly sense temperature — reversibly and
cleanly switching between ON and OFF states. This is confirmed by numerical simulations of
toy models of canonical bifurcations: Homoclinic, Hopf and SNIC bifurcation are subject to
artefacts when their control parameter is repeatedly turned ON and OFF, while the chemical and
biological neurons do not suffer from such artefacts (Fig. 3). We experimentally verified this
robustness for the chemical neuron, and we additionally confirmed that it resisted severe thermal
noise.
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Figure 3. Response of canonical dynamical systems, and chemical and biological neurons to
periodic stimulations. These dynamical systems are subjected to periodical switching of their
bifurcation parameter, causing bifurcations between a rest state (OFF) and a limit cycle (ON).
Some systems bifurcate by creating and destroying their rest state (e.g., SNIC), others by creating
and destroying their limit cycle (e.g. Hopf). But only the biological or chemical neurons create and
destroy both their limit cycles and their resting state. This allows them to switch between spiking
and rest state without artefacts and reversibly (contrary to the canonical bifurcations).

Passing of thermal messages

Equipped with this theoretical grounding, we operated our neuron as a coding channel and
encoded digital profiles of temperature (thermal messages) in which the neuron is switched
between ON and OFF states. Each thermal message was divided in ten intervals of time, each
interval carrying one bit of information. During each interval, the temperature is set to either hot
if the bit is 0 (which causes the neuron to rest, being OFF), or cold if the bit is 1 (which causes
the neuron to spike, being ON).

We first optimized the hot and cold temperatures (SI 5). The hottest temperature achievable is
dictated by the emergence of parasites, which are DNA species that have evolved to resist
degradation by the exonuclease, and which poison the system by monopolizing enzymatic
resources >2. While the precise mechanism for the emergence of parasites is unclear, it is
activated by temperature and is thought to involve breathing and partial melting of DNA strands.
We thus set the hot temperature (52°C) for the OFF state, only slightly above the bifurcation
temperature (~51°C) to mitigate the emergence of parasites. On the other side, the cold
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temperature (ON) was dictated by the timescale of our experiment. We found that below 43°C,
the priming of spikes was too slow to be practical and we chose this temperature as the cold
temperature. Noticeably the hot and cold temperature are not symmetric with respect to the
bifurcation.

After optimization, we passed thermal messages of 10 bits. Experimental results confirm
theoretical insights from the model: the neuron does not damp when temperature is switched (an
artefact of Hopf bifurcations), and it does not spike extraneously when turned OFF (an artefact of
SNIC bifurcations). The state of the neuron mostly depended on the inputted temperature, not its
history (Fig. 4B). More than 90% of the bits were correctly coded (Fig. 4C) and most errors were
false positives (e.g., spikes at high temperature, light blue boxes in Fig.4) that occurred after long
stretches of Os during which the neuron remained at high temperature for a long time. This is
consistent with the view that parasitic species emerge at high temperature and interfere with the
normal functioning of the neuron. Working at the microscale could mitigate the emergence of
parasites, since it is a stochastic event that scales with the volume of the system.
Compartmentalization in micrometric droplets has been shows to suppress parasitic species in
other species,>*4, and it could drastically extend the length of messages that can be passed in our
system.

In a separate experiment, we further challenged the neuron by shrinking the thermal amplitude
(the difference between the hot and cold temperature) and adding thermal noise (Fig. 5). Rather
than keeping the cold or hot temperature constant, we swept it around the mean hot or cold
temperature, adding noise to the input temperature. For a cold temperature of 46 (+/- 2) °C and a
hot temperature of 49 (+/- 2) °C (giving a signal to noise ratio of 3°C/2°C=1.5), the neuron was
still able to encode a message of 5 bits. Such a thermal window is sufficiently narrow so as not to
perturb significantly downstream processes, and would allow the integration of the neurons with
DNA-based logic circuits or neural networks!® .
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Figure 4. Modulation of 10-bits spike trains with thermal messages. (A) The predator-prey

system is subjected to various digital profiles of temperature. For each interval, the temperature

is set either to hot (52°C) if the bit is 0 or cold (43°C) if the bit is 1. Experiments are performed

5 in triplicate and the fluorescence of the system tracked. The consensus output is the consensus

sequence obtained by majority voting on the three replicates. Erroneously transmitted bits are

highlighted in light blue. (B) Time traces of 38 random messages. Messages are grouped

according to their number of 0 bits. Magenta and cyan frames denote respectively an error on

a 1 bit or a 0 bit. (C) Accuracy of transmission against the number of 0 bits in the message.

10 The accuracy for each group is measured (defined as the number of correct bits transmitted,
averaged over all bits of all the triplicates of all the message of a given group).
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Message passing of a noisy signal
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Figure 5. Response of the chemical neuron to noisy temperature stimuli. During each interval,
the temperature oscillates 2°C above and below the nominal temperature with a 3 min period. The
zone corresponding to successful passing of the message is highlighted in green with the exception
of the 50°C/27nM message which contains some errors.

Analog encoding of temperature

After operating the chemical neuron in a digital mode, we asked if it could be operated
analogically, i.e. encoding the ambient temperature in the spiking frequency? This analog mode
of operation is used by some organisms to track changes in temperature, enabling for instance
thermotaxis.

To that end, we miniaturized the chemical neuron and mapped en masse its dependence
on temperature and exonuclease. Briefly, we prepared ~30,000 micrometric droplets containing
the chemical mix and varying concentrations of exonuclease, which we incubated in a silicon
chamber (a material with excellent thermal properties) placed in a thermal gradient (the
temperature range being selected to fall in the oscillatory regime) (Fig. 6A). This microfluidic
mapping reveals a temperature range where the firing rate of spikes varies linearly with
temperature (Fig. 6C), and where the amplitude of spikes remains roughly constant (Fig. 6F).
This range is ideal to operate the chemical neuron as a temperature sensor, as it mimics the linear
encoding of temperature seen with some thermosensory neurons?. Interestingly, temperature and
exonuclease mostly compensate each other: the same firing rate can be obtained by
compensating an increase in temperature by a decrease in the concentration of exonuclease,
which facilitates the adjustment of parameters.

We plotted Peristimulus Time Histograms (PSTH) to compare the oscillation of droplets
with the same content and incubated at the same temperature (which is inspired by PSTH
diagram for biological neurons exposed to the same stimuli). Like their bulk counterpart, the
chemical neurons in droplets oscillate rhythmically (Fig. 6D). But micrometric
compartmentalization reveals features that are invisible in bulk, namely stochastic effects. At
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high temperature, the droplets oscillate synchronously, but at lower temperature, they
progressively desynchronize (which is visible from the spreading of the spikes). We posit that
this desynchronization likely emerges from the low copy number of species in droplets. When
the concentrations of prey reach the sub picomolar range, their copy number goes below ~100
copies, and their chemistry cannot be correctly modeled with deterministic equations. Rare
events may be amplified by the nonlinear chemistry, giving rise to large deviations from the
deterministic equations. For instance, a template (which is normally in a close hairpin
conformation) may transiently open up, allowing a prey to bind and replicate. Or two preys that
bind fleetingly may be extended by the polymerase, giving rise to two predators that replicate
exponentially. Enzyme fatigue (i.e. the partial unfolding and loss of activity of enzymes)
accelerates at higher temperature. This may explain how droplets in the 45-48 °C range remain
synchronized.

Overall, this shows that in principle the thermal history of the neuron could be recorded
into the temporal profile of its chemical spikes and reconstructed by playing back the time course
and measuring how the firing rate of spikes change with time.
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Figure 6. [Exonuclease]-Temperature phase diagrams of the chemical neurons. (A) Time-
lapse of encapsulated chemical neurons in a temperature gradient. Varying the concentration
of exonuclease - given by a fluorescent barcoding (left) — changes the frequency of the
oscillations. scale bar: 100 um (B) Experimental frequency phase diagram. The zone
corresponding to low temperature and low concentration of exonuclease is populated of
neurons that oscillate poorly (< 3 oscillations). For [Exonuclease] >30 nM the variation of
frequency with increasing temperature is non monotonous and a maximum can be observed
around 47°C. (C) In the 39°C - 45°C range the frequency increases linearly with temperature
and its level can be offset by varying the exonuclease. (D) Peristimulus Time Histograms at
different temperatures. In the 46°C - 48°C, droplets are very synchronized compared to
droplets at lower temperatures. (E) Experimental amplitude phase diagram. (F) Evolution of
prey amplitude with temperature for 3 concentrations of exonuclease.

Discussion

We have built a chemical neuron that spikes when exposed to cold — similarly to a cold sensory
neuron. At a fundamental level, this chemical coding is temporally sparse: the signal is localized
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in time because the neuron only activates when stimulated. This reduces power consumptions
and opportunities for chemical “cacophony” (i.e. cross-talks between unrelated chemical
systems). Sparse encoding also allows spike to be compared and sorted according to their timing
and frequency, which forms the basis of information processing in the brain *.

In principle, the dynamics of a single chemical neuron is already rich enough to support
advanced computations like reservoir computing 2>°°, In this paradigm, a chemical neuron would
be programmed to accept a time-varying signal as an input, and return for instance the time-
lagged or time-averaged version of this signal as its output. More generally, the neuron could
also fire when it recognizes a specific temporal pattern.

Yet the full benefits of temporal coding will only be unlocked once neurons are connected into a
network. For instance, warmth could be represented by integrating signals emanating from cold
and hot sensory neurons (similarly to the biological sensation of warmth 2%). Here we
encapsulated millions of neurons in vesicles with microfluidics, but they remain to be wired with
chemical synapses that traffic DNA between vesicles. Water-in-oil droplets are impermeable to
DNA, but semi-permeable vesicles, or liposomes equipped with pores *6°7) could form the basis
of such chemical synapses.

Once the chemical neurons are connected together, their weights (i.e. the rate of chemical
exchange between two neurons) could be learned experimentally by reinforcing links between
neurons that spike synchronously when exposed to the same stimuli. This Hebbian learning rule
(“neuron that fire together wire together) is already used to learn weight in electronic spiking
networks 2!,

Chemical networks of thermosensory neurons could be integrated with locomotion to perform
thermotaxis, by detecting change in the frequencies (i.e., the ascent of descent of a thermal
gradient) and adjusting locomotion accordingly. More generally, networks of spiking chemical
neurons could perform phototaxis, chemotaxis or tasks which require the integration of sensing,
computation and locomotion at the molecular scale.
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