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 23 
 24 
Earth’s biodiversity continues to change rapidly through the Anthropocene1, including 25 

widespread reordering of species in space2,3 and time4,5. A common expectation of this 26 

reordering is that the species composition of sites is becoming increasingly similar across 27 

space, known as biotic homogenization, due to anthropogenic pressures and invasive 28 

species6,7. While many have argued that homogenisationis a common phenomenon (e.g., 29 
6–10), it is equally plausible that communities can become more different through time, 30 

known as differentiation, including through human impacts11,12. Here, we used a novel 31 

adaptation of Whittaker’s (1960)13 spatial-scale explicit diversity partition to assess the 32 

prevalence of biotic homogenisation and differentiation, and associated changes in 33 

species richness at smaller and larger spatial scales. We applied this approach to a 34 

compilation of species assemblages from 205 metacommunities that were surveyed for 35 

10-64 years, and 54 ‘checklists’ that spanned 50-500+ years. Scale-dependent changes of 36 

species richness were highly heterogeneous, with approximately equal evidence for 37 

homogenisation(i.e., lower 𝛽-diversity) and differentiation (i.e., higher 𝛽-diversity) 38 
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through time across all regions, taxa and data types. Homogenisation was most often 39 

due to increased numbers of widespread species, which tended to increase both local and 40 

regional richness through time. These results emphasise that an explicit consideration of 41 

spatial scale is needed to fully understand biodiversity change in the Anthropocene. 42 

 43 

Humans are fundamentally altering the Earth’s climate, water and nutrient cycles, and are 44 

appropriating over 50% of the Earth's terrestrial net primary production14. With this 45 

increasing human footprint, consequent changes in Earth’s biodiversity are inevitable. There 46 

is substantial evidence that humans are accelerating the global extinction rate15. However, 47 

diversity declines at local scales have not been prevalent, with several syntheses indicating 48 

little directional trends amidst substantial variability4,5,16,17, though not without controversy18. 49 

It has also been proposed that spatially distinct locations are becoming more similar to one 50 

another in species composition through time, commonly called biotic homogenization6,7. 51 

Homogenisationcan occur, for example, when widespread species replace rare species 52 

through mechanisms such as introduction of invasive species, loss of rare species, and 53 

homogenisation of landscapes via anthropogenic pressures (e.g., agricultural practices or 54 

urbanisation). While homogenisation is frequently reported in empirical studies8–10,19, it is not 55 

clear how common it is relative to other types of scale-explicit biodiversity change12. For 56 

example, the opposite of biotic homogenization, known as biotic differentiation, can occur 57 

when landscapes are fragmented or otherwise made more heterogeneous via human activities, 58 

or when exotic species are introduced but do not become widespread11,12,20. A comprehensive 59 

empirical assessment of the relative frequency of homogenisation, differentiation, or no 60 

directional change is lacking. 61 

 62 

Change in spatial differentiation of community composition is logically equivalent to 63 

differential rates of change in diversity at two spatial scales11,12. This can be clearly seen with 64 

Whittaker’s (1960)13 diversity partition where the diversity of a single site is 𝛼-diversity and 65 

the sum of the diversity of several local sites (i.e., a region) is 𝛾-diversity. Variation in local 66 

community composition is referred to as 𝛽-diversity, and given by: 𝛽 = 𝛾/𝛼&  (where 𝛼& is the 67 

average local diversity across sites in a region). Whenever rates of change in 𝛼- and 𝛾-68 

diversity are not equal through time, there will be some change in 𝛽-diversity. Here, we adapt 69 

Whittaker’s framework such that change in 𝛽-diversity emerges naturally when changes at 𝛼- 70 

and 𝛾-scales are considered jointly (Figure 1). Moreover, these changes in 𝛽-diversity can be 71 

mathematically linked to changes in the number of sites species occupy. Average occupancy, 72 
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 3 

or the fraction of sites within a region occupied by species i (oi), is related to Whittaker’s 73 

formula by 𝛽 = 𝛾/𝛼& = 𝛾/(𝛴𝑜*) = 𝛾/(𝛾𝑜̅) = 1/𝑜̅ 21. This allows us to connect 𝛼- and 𝛾-74 

diversity change with changes in 𝛽-diversity and the underlying processes of colonisation and 75 

extinction that drive changes in average occupancy.  76 

Six qualitatively distinct scenarios emerge in the intersecting space of changing 𝛼- and 𝛾-77 

diversity (Figure 1). The 1:1 line (i.e., ∆𝛾 = ∆𝛼) represents equal log-proportional changes at 78 

both scales (i.e. log[𝛾t2/𝛾t1] = log[𝛼t2/𝛼t1]), and delineates the boundary between 79 

homogenisation and differentiation (Figure 1). When ∆𝛼>∆𝛾 (i.e., below the 1:1 line), 80 

homogenisation occurs. One such scenario involves 𝛼-diversity increasing proportionately 81 

more than 𝛾-diversity increases via increase of high occupancy species (Figure 1i). Increases 82 

in high occupancy species can accompany anthropogenic changes that favour widespread, 83 

generalist and/or non-native species. Another scenario involves widespread species replacing 84 

low occupancy species causing average occupancy increases and thus homogenisation which 85 

would be associated with 𝛼-diversity increases, but 𝛾-diversity decreases (Figure 1ii). 86 

However, homogenisation can also accompany simultaneously decreasing 𝛼- and 𝛾-diversity, 87 

as would occur when low occupancy species, such as endemic species or those restricted to 88 

only a few sites, go regionally extinct, for example, due to habitat loss or degradation (Figure 89 

1iii). These distinct scenarios all describe decreasing 𝛽-diversity and biotic homogenisation, 90 

but the outcomes for 𝛼- and 𝛾-diversity, and the implications for policy and conservation, are 91 

very different. Parallel distinct scenarios of differentiation are also possible. If increasing 92 

habitat heterogeneity results in fewer widespread or high occupancy species, increased 𝛽-93 

diversity would be associated with lower 𝛼- and 𝛾-diversity (Figure 1iv). Increased habitat 94 

heterogeneity could also lead to increases in 𝛾-diversity, accompanied by either 𝛼-diversity 95 

declines (Figure 1v) or increases (Figure 1vi).  96 

 97 
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 98 

Figure 1: Mechanisms that underpin spatial changes in spatial differentiation in 99 

composition can be understood by examining the relationship between changes in 100 

regional- and local-scale species richness through time. When richness changes at regional 101 

(∆𝛾) and local (∆𝛼) scales are calculated as proportional changes, assemblages below the 102 

dashed 1:1 line, i.e., ∆𝛾 < ∆𝛼, are being homogenised, and 𝛽-diversity is decreasing. 103 

Conversely, assemblages above the diagonal dashed 1:1 line, i.e., ∆𝛾 > ∆𝛼, are differentiating, 104 

and 𝛽-diversity is increasing. These changes can be linked to changes in species occupancy, 105 

for regions where (i) ∆𝛾 < ∆𝛼, and ∆𝛾 >0, ∆𝛼 > 0, the number of species with high occupancy 106 

(i.e., that occupy the majority of sites in the region) is increasing; (ii) ∆𝛾 < ∆𝛼, ∆𝛾 < 0 and ∆𝛼 107 

> 0, average occupancy is increasing, e.g., due to species with low occupancy being replaced 108 

by those with high occupancy; (iii) ∆𝛾 < ∆𝛼 and ∆𝛾, ∆𝛼 < 0, the number of species with low 109 

occupancy is decreasing; (iv) ∆𝛾 > ∆𝛼 and ∆𝛾, ∆𝛼 < 0, the number of species with high 110 

occupancy is decreasing; (v) ∆𝛾 > ∆𝛼, ∆𝛾 > 0 and ∆𝛼 < 0, species with low occupancy (i.e., 111 

occupy few sites in the region) are replacing those with high occupancy; (vi) ∆𝛾 > ∆𝛼 and ∆𝛾, 112 

∆𝛼 > 0, the number of species with low occupancy (i.e., occupy relatively few sites in the 113 

region) is increasing. 114 

 115 

Here, we use the framework of Figure 1 to: i) estimate the overall change in 𝛽-diversity 116 

(above or below the 1:1 line) observed in empirical studies, and ii) classify changes in 𝛽-117 
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diversity into six distinct scenarios. To do so, we required data that recorded species richness 118 

at a minimum of two time points across multiple locations. First, we compiled a total of 205 119 

studies that had data on species abundances (or occurrences) through time from at least four 120 

locations and at least ten years between the first and last samples. One hundred and thirty-121 

eight of these studies came from already published compiled databases (e.g., 22–24) and 67 122 

datasets had a similar structure (e.g., species abundances from samples through time), but 123 

were not included in these previous compilations and are compiled for the first time here. 124 

Second, we used 54 studies that were based on ‘checklists’ where species occurrence was 125 

recorded for sites at historical and contemporary time periods. We chose to include species 126 

checklist data here despite their coarse nature, as they have made key contributions to our 127 

understanding of long-term trends in introductions and extinctions25,26, as well biotic 128 

homogenisation27,28. We analysed whether these distinct data types affected the results.  129 

In total, our analysis on 259 datasets with a total of 16,359 locations is the largest compilation 130 

of data sources, ecosystem types, and taxon groups used to examine the question of changes 131 

in 𝛽-diversity through time to date (Extended Data Figure 1). We estimated temporal changes 132 

in species richness for every dataset at the smaller, 𝛼-scale, where a sample was taken, and a 133 

larger 𝛾-scale, where richness was estimated as the sum of species in all of the local samples. 134 

The grain of the 𝛼-scale and extent of 𝛾-scales varied among datasets; ranging, for example, 135 

from quadrat samples of plant communities collected over small spatial extents (< 1km2) to 136 

species checklists of birds on islands distributed across several oceans. For both the 𝛼- and 𝛾-137 

scales, we quantified change through time as the log-ratio of species richness in the most 138 

recent time point over the species richness in the initial sample for every location (for 𝛼-139 

diversity) or the sum of all locations (for 𝛾-diversity) within each dataset, and then divided 140 

that by the number of years between the two samples to get a standardised annual rate of 141 

change independent of time series length. We then fit a multilevel model for each scale that 142 

estimated the average change occurring (i.e., a non-varying intercept only), which also 143 

included a random term for variation between datasets (i.e., varying intercepts). For results 144 

presented in the main text, species richness in the initial and final time point were calculated 145 

using a single year. However, we repeated all analyses using multiple years to estimate the 146 

average richness for two periods (data permitting) so as to verify that starting or ending 147 

periods were not having undue influence, and found that results were qualitatively consistent 148 

(see Materials and Methods and Extended Data Figure 2). 149 
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Overall across datasets, we found many instances for each of the six scenarios identified in 150 

Figure 1 (Figure 2a, 2b). Averaged over the entire data set, 𝛽-diversity change showed a weak 151 

trend towards homogenisation but with the 90% credible interval for this trend clearly 152 

overlapping an average 𝛽-diversity change of zero (Figure 2c). The weak trend (-0.001) is the 153 

equivalent of the loss per decade of 1 out of 100 entirely distinct (i.e., no shared species) 154 

communities29. Moreover, few individual datasets showed strong evidence for changes in 𝛽-155 

diversity in either direction (Figure 2f). Qualitatively, when we count the number of empirical 156 

estimates that fall into each outcome, the commonly hypothesised homogenisation scenario6,7  157 

of high occupancy species causing extinction and replacement of low occupancy species and 158 

a concomitant decline in regional diversity is among the least frequent pathways (sector ii in 159 

Figure 2b). Where differentiation is occurring (i.e., increases of 𝛽-diversity through time), the 160 

prevalence of increases in both 𝛼- and 𝛾-diversity (sector vi) were approximately balanced by 161 

declines at both scales (sector iv in Figure 2b). A common scenario is increases in diversity at 162 

both the local and regional scale (sectors i and vi), with small changes in average occupancy 163 

(i.e., increasing or decreasing) tipping a given system towards homogenisation or 164 

differentiation. 165 
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 166 
Figure 2: Patterns of homogenisation and differentiation are approximately balanced at 167 

the global scale. (a) Empirical estimates of 𝛾-scale changes as a function of 𝛼-scale changes, 168 

both axes show log-ratios standardised by the number of years between the estimates; the 169 

black point shows the 𝛾- and 𝛼-scale intercepts and the 90% credible interval from multi-level 170 

models fit separately to these data at each scale; colour represents categories of change from 171 

Figure 1, shape represents sample type (circle = resurvey, triangles = checklist). Dashed lines 172 

show x = 0, y = 0, and x = y. (b) Count of the number of regions in each of the different 173 

qualitative outcomes depicted on Figure 1. (c) Kernel density plot of change in 𝛽-diversity per 174 

year calculated as the distance from 1:1 line (left = homogenisation, right = differentiation) of 175 

1000 draws of 𝛼- and 𝛾-scale intercept posterior distributions; black point shows median, bar 176 

represents 50% (thick) and 90% (thin) credible intervals. Estimates of change for each region 177 

at the (d) 𝛼-, (e) 𝛾-, and (f) 𝛽-scales; each point represents a single region, with the bar 178 

showing the 90% credible interval; regions are in the same order on panels d-f, arranged by 179 

the magnitude of the 𝛼-scale estimate.  180 
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We detected the strongest signature of biotic homogenisation in the freshwater realm, and this 181 

was primarily driven by increased average occupancy (i.e., increases in 𝛼-diversity and a 182 

weaker decrease in 𝛾-diversity; Figure 3a). This is not unexpected since freshwater systems 183 

are often regarded as among the most low-connectivity, dispersal-limited ecological 184 

systems30,31.  Indeed, human introductions of non-native species in lakes and rivers are among 185 

the most well-known examples of biotic homogenisation (e.g., 32–35). Homogenisation and 186 

differentiation were approximately balanced among terrestrial assemblages (Figure 3a), and 187 

associated with weak gains in species richness that did not differ from zero at 𝛼- and 𝛾-scales. 188 

In contrast, we found that there was a slight tendency towards differentiation in the marine 189 

realm (Figure 3a), which was associated with gains in 𝛾-diversity. One possible reason for 190 

this is that marine assemblages are typically highly fluid and dynamic, with high connectivity 191 

across locations, which might allow species favoured by global change conditions to colonise 192 

new regions more readily than in the other realms. Across latitudinal bands (Figure 3b), 193 

tropical, subtropical and temperate latitudes showed a trend towards homogenisation driven 194 

by relatively large gains in 𝛼-diversity, while polar regions showed a trend to differentiation 195 

driven by gains in 𝛾-diversity with comparatively small changes in 𝛼-diversity, though 196 

confidence intervals overlapped no change and sample sizes were small. Data type (resurvey 197 

vs checklist), and spatial and temporal scale did not show substantial effects on our results 198 

(Figure 3c, Extended Data Figure 2), although larger spatial and temporal scales, including 199 

checklist data, were slightly more likely to show homogenisation. Lastly, across taxa, 200 

mammals tended towards differentiation driven by declines in 𝛼-diversity that were 201 

proportionately larger than declines in 𝛾-diversity, while fish tended towards homogenisation 202 

due to small 𝛾-scale richness increases of high occupancy species (Figure 3d). As 55/80 fish 203 

studies were from freshwater, this parallels our findings for the freshwater realm. But again, 204 

𝛽-diversity effect sizes by taxonomic group, latitudinal band, and realm were small and 205 

confidence intervals all overlapped with no change with the exception of the freshwater realm 206 

(Figure 3).  207 
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 208 
Figure 3: 𝛼- and 𝛾-scale species richness changes, and patterns of homogenisation and 209 

differentiation varied among sample types, realms, latitudinal bands and taxon groups. 210 

𝛾-scale estimates of the log-ratio as a function of 𝛼-scale estimates (left) and distance from 211 

1:1 line (right) for comparisons between (a) realms, (b) latitudinal bands, (c) sample types: 212 

checklists and resurveys; and (d) taxon groups.  Distances from the 1:1 line were calculated 213 

using 1000 draws from posterior distributions, where each x,y coordinate was a single draw 214 
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 10 

from the population-level (fixed effect) parameters of 𝛼- and 𝛾-scale models, respectively. 215 

Points and whiskers show median, 50 and 90% credible intervals.  216 

 217 

Our results suggest that 𝛽-diversity trends show considerable variability across locations, 218 

taxa, and time, with differentiation slightly less likely than homogenisation. This matches 219 

findings on local diversity4,5,16, and population trends36, where variation in the direction of 220 

change means that the strength of overall net trends up or down are weak, and most often 221 

statistically indistinguishable from zero. This should not be surprising. While humans are 222 

having many impacts that could lead to homogenisation including transporting species and 223 

recreating urban or high intensity agricultural landscapes repeatedly, many other impacts 224 

could lead to differentiation, including: substantial fragmentation of the landscape, the 225 

creation of strong spatial gradients of human impact intensity, applying spatially varying 226 

resource management practices and land use regulations, and causing climate change, which 227 

induces species to shift at different rates, all leading to spatial heterogeneity11,37.  In this 228 

context, we stress that the lack of prevalence of homogenisation should not in any way be 229 

taken to indicate that humans are not having a large impact on biodiversity. Changes in 𝛽-230 

diversity either negatively, as in homogenisation, or positively, as in differentiation, are likely 231 

often a result of humans modifying nature. 232 

Most published tests of the frequency of homogenisation use pairwise comparisons of sites 233 

and then averages across all possible pairs, and thus only addresses the 𝛼-scale, but not 234 

changes at the 𝛾-scale. For example, previous tests of biotic homogenisation concluding that 235 

homogenisation was driven by loss of rare species used pairwise averages that are only able to 236 

capture single site extirpations, not landscape or regional scale extinctions, and thus can 237 

exaggerate the perception of loss. We found that the hypothesised mechanism of widespread 238 

species, like invasive species, replacing locally rare species (orange sector ii in Figure 1) is 239 

among the rarest pathways of spatial homogenisation. Similarly, efforts to use 𝛽-diversity to 240 

link changes at local scales (e.g., 5) to regional or global scale changes (e.g., 38) also cannot be 241 

based on pairwise metrics, which have no representation of the larger scale. Although 242 

Whittaker’s 𝛽-diversity measures and pairwise 𝛽-diversity measures (e.g., 1-Jaccard’s index) 243 

are equivalent for two sites, the two metrics can give very different answers when more than 244 

two sites are examined39,40. Thus, it is essential to directly estimate changes at each of smaller 245 

and larger scales, rather than relying on pairwise similarity metrics that can give misleading 246 

answers to how 𝛾-diversity might change through time. For all of these reasons, we believe 247 
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that using a perspective based on the Whittaker diversity partition, combined with the new 248 

classification we propose, provides a more accurate and constructive way of measuring 𝛽-249 

diversity to inform policy. 250 

In summary, we propose moving beyond a belief in the predominance of homogenisation, and 251 

instead working to understand the variability in how spatial 𝛽-diversity changes through time, 252 

embracing the multiscale nature of biodiversity change. Specifically, our conceptual 253 

classification emphasises that different long-term studies are experiencing fundamentally 254 

different types of temporal change in spatial 𝛽-diversity (via changes in the number of species 255 

with relatively high or low occupancy). We found that homogenisation was most often 256 

characterised by gains in the number of widespread species. This suggests that there is still 257 

time to protect many rare and narrow-ranged species before they ultimately contribute to 258 

homogenisation, and that efforts to slow the spread of widespread (possibly non-native) 259 

species are vital for preventing biotic homogenisation. Furthermore, by simultaneously 260 

considering change in 𝛼-, 𝛽- and 𝛾-diversity through time, we show how conservation 261 

practice can embrace a multiscale approach. It is increasingly recognised that many species 262 

require protection across multiple sites or at landscape (or larger) spatial scales for effective 263 

conservation41,42. The framework introduced here can be used to detect the occupancy 264 

changes that underpin 𝛽-diversity change, and provides links back to changes in species 265 

richness across spatial scales.  266 

  267 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.05.498812doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.05.498812
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 268 

 269 

270 
Extended Data Figure 1: Counts of locations in hexagonal grid cells (cell area = 69,968 271 

km2). The data include 259 regions (i.e., 𝛾-scale) and 16,359 locations (i.e., 𝛼-scale). 272 

 273 

 274 
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 275 

 276 

 277 

Extended Data Figure 2: Results were qualitatively consistent when multiple years were 278 

used to determine richness in the two periods. Parameter estimates of models fit to changes 279 

calculated using first and last year only (as per main text results) as a function of those 280 

estimated when richness was averaged over multiple years in two periods. (a) Intercept 281 

estimates for changes at each scale, (b) Realm estimates for each scale, (c) Latitudinal band 282 

estimates for each scale, (d) Sample type estimates for each scale, and (e) Taxon group 283 

estimates for each scale. Diagonal dashed line is 1:1 line in all panels; points show median of 284 

the posterior distribution, and whiskers show 90% credible interval. 285 
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286 
Extended Data Figure 3: Changes in 𝛽-diversity as a function temporal and spatial 287 

scales. (a) Temporal duration and spatial extent for all datasets in our analysis; and, empirical 288 

estimates of (b) 𝛼-scale and (c) 𝛾-scale richness change as a function of temporal duration, 289 

and (d) 𝛼-scale and (e) 𝛾-scale richness change as a function of spatial extent. Points are 290 

coloured according to whether the empirical estimates indicated differentiation or 291 

homogenisation (i.e., above or below the 1:1 line in our conceptual figure 1); shapes denote 292 

sample type (checklist or resurvey). Dashed vertical lines on (a) show the land area of 293 

Germany and continental USA for reference. Two datasets where empirical estimates of 𝛼- 294 

and 𝛾-scale richness change were equal to zero (and hence neither homogenising or 295 

differentiating) are not shown. 296 

 297 

  298 
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Methods 299 

Data compilation: Our conceptual framework requires estimates of species richness changes 300 

at two scales. We refer to them as local (𝛼)	and regional (𝛾), the exact definition of which 301 

varies among data sources. To make our data search and synthesis as comprehensive as 302 

possible, we searched broadly for data that met these criteria, where regions had at least four 303 

plots or locations, and where richness changes were estimated over a period of at least ten 304 

years. We started by identifying 80 relevant datasets within the BioTIME database22 that 305 

monitored patterns of species abundances within assemblages. To this, we added: (1) similar 306 

assemblage-level time series of studies not (yet) included in BioTIME (e.g., 23,24); (2) data 307 

from studies using ‘resurveys’, where sites associated with a historical dataset were revisited 308 

and re-surveyed using similar methodology in more recent times; (3) data from ‘checklist’ 309 

studies where species known to be present in a given locality (and region) at a ‘historical’ 310 

point in time were indicated together with species present in that locality at a later point in 311 

time (minus those that went extinct from a site plus those that newly colonised that site); and, 312 

(4) data from studies that reported changes in species richness at two spatial scales, but for 313 

which the underlying raw data were not available. Because of the relatively specific data 314 

requirements, literature searches were conducted in an ad-hoc fashion, rather than using a 315 

formal literature search. In all, we compiled a total of 259 regions and a total of 16,359 316 

locations that met our criteria (Extended Data Figure 1); 205 regions documented repeated 317 

samples of species assemblages through time; 54 regions were compiled from checklist 318 

studies. 319 

Exploratory variables: In addition to differentiating sample types as either a resurvey or a 320 

checklist, we retained metadata to use in subsequent analyses that included:   321 

- realm (freshwater, marine and terrestrial),  322 

- geographic coordinates of all locations,  323 

- spatial extent (km2). Extent was calculated in two ways: most often, as the area of 324 

a convex hull (or bounding box) around all locations within a region, or for some 325 

checklist data as the sum of the area of each location within a region (e.g., sum of 326 

island areas for birds on islands distributed across the Pacific, Indian, Atlantic 327 

Oceans and the Caribbean Sea). 328 

- the following taxon groups: mammals, herpetofauna (reptiles, amphibians), plants, 329 

birds, fish, invertebrates. For studies in BioTIME labelled as having multiple taxa, 330 

we identified the dominant taxon group (using the same groups listed above). 331 
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Data standardisation: To quantify changes in 𝛽-diversity that emerged from combined 332 

changes occurring at the local- and regional-scale, we required that the starting and end years 333 

for all locations within a given region were the same. This ensured that change estimated 334 

across the different locations within a region covered the same period of time, and meant that 335 

regional changes estimated by aggregating all species across all locations within regions also 336 

covered the same time period. Additionally, to ensure that our analyses did not quantify 337 

changes in species richness due to variation in sampling effort, we needed to standardise 338 

sampling effort (e.g., the number of plots or transects) across all locations for each time point 339 

within regions. The heterogeneous nature of the data that we compiled meant that we needed 340 

slightly different procedures to identify combinations of locations and years for different data 341 

sources. For clarity, we delineate broad categories of data structures, and describe separately 342 

how locations and years were selected and sample-effort standardised for the different 343 

structures. 344 

 345 

Checklist data: Checklist data typically consisted of species lists for locations within regions, 346 

compiled for two time periods, historical and contemporary. These lists were compiled either 347 

from samples and/or observations collected during the two periods, or more frequently, by 348 

counting native species only to determine the richness of the historical period, with the 349 

contemporary species richness calculated as the sum of native and introduced species (minus 350 

any species that went extinct). For our analyses, we selected regions with at least four 351 

locations, removed locations that documented species lists for only one period, and finally, 352 

ensured that all locations within each region had the same year for both the historical and 353 

contemporary species lists.  354 

 355 

Resurvey data: We distinguish three different data structures that we refer collectively to as 356 

resurvey data: 357 

(i) data that document repeated samples of assemblages, e.g., BioTIME 22, 358 

RivFishTime23, and InsectChange24, and similar data that we compiled for this 359 

study. We first filtered data to ensure that samples from all locations within 360 

regions had a temporal duration of at least ten years, and that at least four 361 

locations were sampled per year. Locations within regions were identified 362 

using geographic coordinates in the data, although we also regions with only 363 

one geographic coordinate where discrete, unique samples could be identified, 364 

e.g., plots within a site.  365 
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 366 

After applying these filters, the number of locations sampled per year often 367 

varied considerably within regions, and we sought to identify locations, as well 368 

as start and end years that balanced a trade-off between the number of 369 

locations and the duration of the sampling period for each region. To do this 370 

we first identified all year-pairs -- combinations of start and end year with at 371 

least ten years separating them -- for all locations within a given region. We 372 

then determined different thresholds for what proportion of the total number of 373 

locations we wanted to retain, using a combination of the total number of 374 

locations in a region, and visual inspection of locations sampled in each year. 375 

For example, for resurvey data newly collated for this study, we selected 376 

starting and end years where the proportion of the maximum locations was at 377 

least 90% for regions with fewer than 20 locations, 50% for regions with more 378 

than 20 locations, and 25% for the NERC Countryside survey data43–47, which 379 

had between 60 and 300 locations across the UK (and where the lower 380 

threshold meant that the duration of the region increased by more than ten 381 

years). For regions in the BioTIME and RivFishTime databases, we identified 382 

year-pairs with at least 75% and 90% of the maximum number of locations, 383 

respectively. Multiple year-pairs often remained following this, and we 384 

selected the pair of years with the longest duration, and finally, broke any 385 

remaining ties by selecting the pair of years with the most locations. For other 386 

data, specifically mosquito data sourced from Vectorbase 387 

(https://vectorbase.org/vectorbase/app), this process of selecting locations and 388 

the start and end years for each region was done visually.  389 

 390 

Next, we ensured that sampling effort was consistent across all years and 391 

locations within regions, using sample-based rarefaction48 where required to 392 

standardise effort. Note that for many data (e.g., InsectChange and other 393 

invertebrate data) where sampling took place across multiple months within 394 

years, we used sample-based rarefaction to resample equal numbers of samples 395 

across the same months for all locations within a region, which were then 396 

compiled to provide one sample per year for each location. Additionally, for 397 

data collected using multiple sampling methodologies (e.g., mosquitoes 398 

sampled using different attractants, or freshwater fishes collected with different 399 
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techniques), we identified the methodology that ensured the maximum number 400 

of time series, and standardised sampling effort using data collected with one 401 

methodology only. 402 

 403 

(ii) We collated data from studies where sites associated with a historical dataset 404 

were revisited and re-surveyed using the same methodology in more recent 405 

times, sometimes referred to as “legacy” studies (e.g., 49). Again, we required 406 

each region to have at least four locations and ten years or more between the 407 

historical and contemporary samples.  408 

 409 

(iii) Finally, we collated studies that estimated species richness changes at two 410 

scales, where there were at least four sites at the smaller scale and ten years 411 

between the first and last sample. For these studies raw data were not available 412 

(n = 15), and we extracted an estimate of the average local richness at two time 413 

points, and a single value for regional richness at two time points.  414 

 415 

Estimating richness and its change: For the majority of the data, we calculated species 416 

richness from the effort-standardised locations and years as the number of distinct species, 417 

though higher classifications, such as genera, were sometimes used where studies only 418 

classified organisms to genus. We calculated species richness for each location within each 419 

region for every available year to document changes in local-scale species richness. Regional-420 

scale richness was calculated as the number of species in all sites combined for each region 421 

and each year. However, because this method of calculating regional richness yields a single 422 

number for each region at each time point, which limited our ability to fit statistical models to 423 

these data, we additionally calculated two types of resamples of regional richness: jackknife 424 

or bootstrap. Jackknife resamples were calculated by systematically leaving each location out 425 

of the regional richness calculation once, and we retained all (nlocations) resamples for our 426 

regional scale analyses. For some datasets where effort-standardisation was more complex 427 

and required the use of sample-based rarefaction, we used 200 bootstrap resamples (i.e., 428 

richness was estimated using all locations, not nlocations-1); to prevent these resampled data 429 

dominating the data to which models were fit, we subsampled the bootstrap resamples down 430 

to the same size as a jackknife would have been (i.e., we used a random subset of the 431 

bootstrap resamples equal to nlocations for the given dataset). 432 

 433 
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Many data sources, e.g., the fifty-four regions documented by checklist data, had only two 434 

years of data available. So, to maximise the number of regions in our analysis, we calculated 435 

richness change using the log-ratio of species richness in the most recent time point and 436 

species richness in the initial sample, divided by the number of years between the two 437 

samples (i.e., 𝑙𝑜𝑔	 1234
235
6	 . 𝑡9:, where St2 is species richness in the most recent sample (t2 = 438 

year), St1 is species richness in the first sample (t1 = year), and t = t2 – t1 + 1 is the number of 439 

years between the samples. This was done separately for each location in each region.  These 440 

same data were aggregated and used to calculate concomitant changes in regional diversity 441 

through time, quantified as the log-ratio of jackknife resamples of species richness at the 442 

regional scale (i.e., the species richness of (n-1) locations within a region) in the most recent 443 

sample and jackknife resamples of species richness in the initial sample, divided by the 444 

number of years between the two samples.  445 

 446 

Statistical models: To estimate local- and regional-scale richness changes, we fit multilevel 447 

(also called mixed effects or hierarchical) models to data from each scale separately. These 448 

models took the form: 449 

𝐸𝑆*= 	~	𝑁(µ, 𝜎), 450 

µ = 	𝛼 +	𝛼*, 451 

where ESij is assumed to have a Gaussian error distribution and is either the jth local-scale or 452 

jackknife regional-scale estimate of species richness change in region i, 𝛼 is the overall 453 

intercept and average rate of change estimated for each scale, and 𝛼i is the departure from the 454 

overall intercept for each region (i.e., the varying intercept for regions). Models were fit using 455 

Bayesian methods and we assumed the following, weakly regularising priors:  456 

𝛼~𝑁(0,1), 457 

𝛼*~𝑁(0,1), 458 

𝜎~𝑁(0,1). 459 

In addition to these models to estimate the overall rate of change at the local- and regional-460 

scales, we also used models of a similar structure to examine variation between the different 461 

sample types (i.e., resurveys and checklists), realms (freshwater, marine and terrestrial), 462 

latitudinal bands (polar: |latitude| > 60º, temperate: 35º < |latitude| < 60º, subtropical: 23.5º < 463 

|latitude| < 35º, tropical: |latitude| < 23.5º), and taxon groups (birds, fish, herpetofauna, 464 

invertebrates, mammals, multiple taxa, and plants). These models replaced the single overall 465 

intercept estimated in the initial model with a parameter for each category. All models were 466 

fit using the Hamiltonian Monte Carlo (HMC) sampler Stan50, and coded using the brms 467 
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package51. Models were fit with four chains and 20,000 iterations, with 10,000 used a 468 

warmup and further thinned by 10, resulting in 4000 samples of the posterior distribution. 469 

Visual inspection of the HMC chains showed excellent convergence. 470 

 471 

To quantify changes in 𝛽-diversity (∆𝛽) using these models, we combined overall estimates 472 

of changes at the local- (∆𝛼) and regional-scale (∆𝛾) as x- and y-coordinates, respectively, 473 

and calculated the distance of these points from the 1:1 line. Specifically, 1000 draws from 474 

the posterior distribution of the local-scale estimate were designated as the x-coordinate, and 475 

combined with 1000 draws from the corresponding regional-scale estimate as the y-476 

coordinate, and the distance from the 1:1 line calculated. Accordingly, changes in 𝛽-diversity 477 

are in units of effective numbers of communities29. 478 

 479 

To visualise counts of the different scenarios of change, we counted the empirical effect sizes 480 

(i.e., the log-ratio standardised by duration [ES] defined above) that fell into each category; 481 

empirical estimates that fell on the border between different scenarios (e.g., when ∆𝛾 = 0), the 482 

count was divided between the different scenarios (i.e., we added fractions to counts when 483 

estimates fell on the border between scenarios). To visualise scale-dependence of our 484 

estimates of local- and regional-scale richness changes, we plotted the empirical effect sizes 485 

as a function of spatial and temporal extent (Extended Data Figure 2). Note that to show 486 

local-scale estimates as a single point on these figures, we used the mean of the local scale ES 487 

for each region.  488 

 489 

Sensitivity analysis: To examine whether our results were sensitive to our use of two time 490 

points only in the main analyses, we repeated all analyses using multiple years to estimate the 491 

average richness for two periods where the data permitted. Specifically, for time series where 492 

more than three years were sampled, we split each time series into two halves, standardised 493 

sampling effort in each of the two periods, and calculated the average species richness in each 494 

period. Then, similar to our main analyses, we used the log-ratio of richness in the second 495 

period divided by richness in the first period, standardised by the duration of sampling in the 496 

region as our estimate of diversity changes occurring at each scale. We fit the same statistical 497 

models to these data, and our results were qualitatively consistent (Extended Data Figure 3). 498 

 499 

 500 

 501 
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