

1 Integrating analog and digital modes of 2 gene expression at *Arabidopsis FLC*

3
4 Rea L. Antoniou-Kourounioti^{1,†}, Anis Meschichi^{2,†}, Svenja Reeck^{3,†}, Scott Berry⁴, Govind
5 Menon¹, Yusheng Zhao⁵, John A. Fozard¹, Terri L. Holmes⁶, Huamei Wang⁷, Matthew
6 Hartley⁸, Caroline Dean^{3,*}, Stefanie Rosa^{2,*}, Martin Howard^{1,*}

7
8 ¹Department of Computational and Systems Biology, John Innes Centre, Norwich Research
9 Park NR4 7UH, UK

10 ²Swedish University of Agricultural Sciences, Plant Biology Department, Uppsala, Sweden

11 ³Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park
12 NR4 7UH, UK

13 ⁴EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of
14 New South Wales, Australia

15 ⁵State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and
16 Developmental Biology, Chinese Academy of Sciences, Beijing, China

17 ⁶Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,
18 Norwich NR4 7UQ, UK

19 ⁷College of Life Sciences, Wuhan University, Wuhan, 430072, China

20 ⁸European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
21 Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK

22
23 [†]These authors contributed equally to this work

24
25 ^{*}Co-corresponding authors: caroline.dean@jic.ac.uk, stefanie.rosa@slu.se,
26 martin.howard@jic.ac.uk

27 Abstract

28 Quantitative gene regulation at the cell population-level can be achieved by two fundamentally
29 different modes of regulation at individual gene copies. A “digital” mode involves binary ON/OFF
30 expression states, with population-level variation arising from the proportion of gene copies in each
31 state, while an “analog” mode involves graded expression levels at each gene copy. At the
32 *Arabidopsis* floral repressor *FLOWERING LOCUS C* (*FLC*), “digital” Polycomb silencing is known to
33 facilitate quantitative epigenetic memory in response to cold. However, whether *FLC* regulation
34 before cold involves analog or digital modes is unknown. Using quantitative fluorescent imaging of
35 *FLC* mRNA and protein, together with mathematical modelling, we find that *FLC* expression before
36 cold is regulated by both analog and digital modes. We observe a temporal separation between the
37 two modes, with analog preceding digital. The analog mode can maintain intermediate expression
38 levels at individual *FLC* gene copies, before subsequent digital silencing, consistent with the copies
39 switching OFF stochastically and heritably without cold. This switch leads to a slow reduction in *FLC*
40 expression at the cell population-level. These data present a new paradigm for gradual repression,
41 elucidating how analog transcriptional and digital epigenetic memory pathways can be integrated.

42
43

44 Introduction

45 One of the most fundamental questions in molecular biology is how quantitative gene expression is
46 achieved. Traditionally, such regulation is ascribed to sequence-specific transcription factors that
47 bind to regulatory DNA elements. According to the concentration of the transcription factors, gene
48 expression can then be quantitatively up or down-regulated. While such regulation undoubtedly
49 occurs in many systems, it has become abundantly clear in recent years that this paradigm is
50 fundamentally incomplete. This is especially so in eukaryotes where quantitative transcriptional
51 regulation can arise from modulation of the local chromatin environment of a gene. For example, by
52 varying the type and level of histone modifications, DNA accessibility can be radically altered
53 (Ahmad, Henikoff et al. 2022). In one scenario, nucleosome positioning affects the ability of
54 transcription factors to bind. Another possibility is that alteration of the chromatin environment
55 directly affects the kinetics of transcription (Coulon, Ferguson et al. 2014) by altering how fast the
56 RNA polymerase elongates.

57

58 For the *Arabidopsis* floral repressor gene *FLOWERING LOCUS C* (*FLC*), it has been shown that
59 expression levels are quantitatively reduced by a prolonged duration of cold. This quantitative
60 response is achieved through individual *FLC* gene copies making a *cis*-mediated, digital switch from
61 an “ON” (expressing) state to an “OFF” (silenced) state. This switch is asynchronous between loci,
62 even in the same cell, with the number of switched OFF gene copies increasing over time in the cold.
63 This results in a gradual decrease of *FLC* expression over time at a whole plant level (Angel, Song et
64 al. 2011) with silenced gene copies covered by high levels of the silencing histone mark H3K27me3
65 controlled by the Polycomb system through Polycomb Repressive Complex 2 (PRC2). This mode of
66 regulation is called “digital”, to highlight the discrete ON/OFF states for each gene copy (Fig. 1A –
67 Digital Regulation, (Munsky and Neuert 2015)). Such digital regulation has also been observed in
68 many other systems, both natural (Saxton and Rine 2022) and engineered (Bintu, Yong et al. 2016).

69

70 An alternative mode of quantitative gene regulation is one that allows graded expression levels to be
71 maintained at each gene copy, rather than just an ON or an OFF state. Quantitative regulation at the
72 cell population-level can then be achieved by tuning the expression level uniformly at all gene
73 copies, as in inducible gene expression systems. A well-characterized example of such behaviour is in
74 the level of stress-responsive gene expression as controlled by the transcription factor *Msn2* in
75 budding yeast (Stewart-Ornstein, Nelson et al. 2013). This graded mode of regulation is called
76 “analog” (Fig. 1A – Analog Regulation, (Munsky and Neuert 2015)), in contrast to the digital
77 alternative.

78

79 While *FLC* loci are known to have digital behaviour during and after a cold treatment, allowing them
80 to robustly hold epigenetic memory of cold exposure, it remains unknown how the starting
81 expression levels (prior to cold) are regulated quantitatively in terms of analog versus digital control.
82 After plants germinate, they grow as seedlings that have not experienced any cold exposure, or
83 digital Polycomb switching, so quantitative variation in *FLC* expression seen in young seedlings could
84 represent different cellular proportions of digitally regulated *FLC*, as well as graded transcriptional
85 changes. More generally, elucidating the interplay between analog and digital control is essential for
86 a more in-depth understanding of quantitative gene regulation. Although digital and analog modes
87 of repression have been separately studied in the past (see, e.g. (Munsky and Neuert 2015)), how
88 these two fundamentally different modes of regulation might be combined has not been considered.
89 *FLC* is an ideal system to study this question, due to its digital control after cold, as well as the wealth
90 of knowledge about its regulation at all stages (Berry and Dean 2015, Wu, Fang et al. 2019).

91

92 *FLC* levels are set during embryogenesis by competition between an *FLC* activator called *FRIGIDA*
93 (*FRI*) and the so-called autonomous repressive pathway (Fig. 1B, (Li, Jiang et al. 2018, Schon, Baxter
94 et al. 2021)). The commonly used *Arabidopsis* accessions Ler and Col-0, have mutations in the *FRI*

95 gene, allowing the autonomous pathway to dominate, thereby repressing *FLC* during vegetative
96 development and resulting in a rapidly cycling summer annual lifestyle (Johanson, West et al. 2000).
97 On the other hand, introgressing an active *FRI* allele (Col*FRI* (Lee and Amasino 1995)), generates an
98 initially high *FLC* expression state, which then requires cold for *FLC* repression and subsequent
99 flowering. However, both these cases, with high (Col*FRI*) or low (Ler, Col-0) *FLC* expression, are
100 extreme examples, where essentially all *FLC* loci are either expressed to a high level or not, before
101 cold. It is therefore difficult to use these genotypes to understand any possible interplay between
102 digital and analog control, as only the extremes are exhibited. Instead, what is required is a genotype
103 with intermediate *FLC* expression at a cell population-level during embryogenesis. Such a genotype
104 at a single gene copy level might exhibit either a graded (analog) or all-or-nothing (digital) *FLC*
105 expression before cold, thereby allowing dissection of whether analog or digital regulation is at
106 work.
107

108 In this work, we exploited two mutant alleles in *FLOWERING CONTROL LOCUS A* (*FCA*), which is part
109 of the *FLC*-repressive autonomous pathway, thereby systematically varying overall *FLC* levels. One of
110 these mutants, *fca-1* (Koornneef, Hanhart et al. 1991), is a complete loss of function and therefore
111 exhibits late flowering (Fig. 1S1A) and high *FLC* expression before cold (Fig. 1C, 1S1B-D), similar to
112 Col*FRI*. The wildtype, Ler, has a fully functional autonomous pathway and so exhibits low *FLC* levels
113 before cold (Fig. 1C, 1S1B-D) and early flowering (Fig. 1S1A), with the *FLC* gene covered by the
114 silencing histone mark H3K27me3 (Wu, Fang et al. 2019). Crucially, however, the *fca-3* mutant
115 (Koornneef, Hanhart et al. 1991) displays intermediate cell population-level *FLC* expression (Fig. 1C,
116 1S1B-D) and flowering time (Fig. 1S1A). This property allows us to systematically dissect the interplay
117 of analog and digital regulation at *FLC* before cold using a combination of single cell and whole plant
118 assays, together with mathematical modelling, revealing a temporal separation between the two
119 regulatory modes.
120

121 Results

122 Analysis of *fca* alleles reveals both analog and digital regulation at *FLC*

123 To investigate the mode of repression arising from regulation by the autonomous pathway, we
124 utilized the *fca-1* and *fca-3* mutants, as well as the parental Ler genotype, and assayed how
125 individual cells varied in their *FLC* expression in these three genotypes at 7 days after sowing. We
126 quantified the number of individual mRNAs per cell using single molecule Fluorescence *in situ*
127 Hybridization (smFISH) (Fig. 2A,B, 2S1A-B). The endogenous Ler *FLC* carries a Mutator transposable
128 element (TE) in intron 1, silencing *FLC* expression (Gazzani, Gendall et al. 2003, Michaels, He et al.
129 2003). Possibly because of the TE, we observed *FLC* mRNA accumulation in the nucleolus in this
130 background (Fig. 2S1A). To avoid this complication, we transformed a Venus-tagged *FLC* into Ler and
131 crossed that into our mutant genotypes (*fca-1*, *fca-3*) (Fig. 2A, (Berry, Hartley et al. 2015)). The
132 transgenic *FLC* sequence was from Col-0, which does not contain the TE. We used smFISH probes for
133 the Venus and *FLC* sequence. These probes generated a signal specific to the transgenic *FLC* copy in
134 these plants, since we observed no signal in lines without the transgenic *FLC* (Fig. 2S1B). Comparison
135 of whole-plant gene expression showed similar behaviour in the mutants for both the endogenous
136 and transformed *FLC* (Fig. 1S1C,D). Focusing on the *Venus* sequence conferred the additional
137 advantage that we were able to use the same lines for both mRNA and protein level quantifications
138 (see below).
139

140 We observed that the average number of *FLC* mRNA transcripts per cell was highest in *fca-1*, lowest
141 in Ler, and intermediate in *fca-3* (Fig. 2C, all differences are significant with $p \leq 1.5 \cdot 10^{-5}$), with
142 89% of *fca-1* cells having higher expression than the 95th percentile of *fca-3* cells. Furthermore,
143 when looking only at the ON cells (defined as cells with appreciable *FLC* expression, specifically more
144 than one mRNA counted), the mRNA numbers in *fca-3* were only around 1/7 of those in *fca-1* (Fig.

145 2S1C), much less than one-half, ruling out that the reduced levels in *fca-3* were solely due to
146 silencing of one of the two gene copies. Nevertheless, mRNA numbers in many *fca-3* cells were close
147 to zero, suggesting that digital silencing may also be relevant in this case. Hence, the differences in
148 overall expression between these three genotypes appeared to have two components. Firstly, there
149 were different fractions of apparently silenced cells (digitally OFF) without any appreciable
150 expression (one or no mRNAs counted): 62% in Ler, 51% in *fca-3* and 0.5% in *fca-1*. Secondly, in cells
151 that did express *FLC* (digitally ON), the *FCA* mutations lead to an analog change in their expression
152 levels, so that there was more *FLC* mRNA in *fca-1* ON cells than in the *fca-3* ON cells (Fig. 2S1C). This
153 behaviour clearly differed from the digital regulation observed at *FLC* after cold treatment (Fig. 1A,
154 (Angel, Song et al. 2011, Rosa, Duncan et al. 2016)).

155
156 We additionally used confocal live imaging to investigate *FLC* protein levels in individual cells (Fig.
157 2D, 2S2). After cell segmentation, we quantified the *FLC*-Venus intensity within the nuclei,
158 comparing the different genotypes (Fig. 2E, 2S3A, all differences are significant with $p < 10^{-8}$). This
159 procedure allowed us to combine information of relative protein levels with the cell positions in the
160 root. Mean intensity levels of *FLC*-Venus per cell and the overall histogram distribution, revealed
161 again intermediate levels of *FLC* protein in *fca-3*, relative to Ler and *fca-1*. Mean levels in cells with
162 appreciable protein amounts (ON cells) in *fca-3* were lower than half that in *fca-1* (Fig. 2D(i)-(iii), E,
163 2S3B), further supporting an analog regulatory component. At the same time, there was again strong
164 evidence in favour of a digital component for *FLC* regulation (Fig. 2D(v)): in cells with the lowest
165 protein levels, these levels were similar in *fca-3* and in Ler, again supporting a digital OFF state.
166 Furthermore, we could see a mix of distinct ON and OFF cells by enhancing the *fca-3* images to
167 increase the Venus intensity to a similar level as in *fca-1*. By contrast, in *fca-1* all cells were ON,
168 whereas in Ler, cells appeared OFF even with an equivalent adjustment in this root (Fig. 2D(iv)), as
169 did most other roots imaged, with only 15% of cells being ON in total (Fig. 2S3B). We could also infer
170 a potentially heritable component in the ON/OFF states, as short files of ON cells could be observed
171 in *fca-3* (Fig. 2D(v) white box). We additionally noticed a difference in *FLC* levels depending on the
172 tissue, with *fca-3* epidermis cells having lower intensity on average than cells from the cortex (Fig.
173 2S3C). Overall, our results support a combination of analog and digital regulation for *FLC*: in Ler most
174 cells were digitally OFF, in *fca-1* all cells were digitally ON, while in *fca-3* a fraction of cells were OFF,
175 but for those cells that were ON, the level of *FLC* expression was reduced in an analog way relative
176 to *fca-1*.
177

178 *FLC* RNA and protein are degraded quickly relative to the cell cycle duration

179 Our results strongly pointed towards a digital switching component being important for *FLC*
180 regulation by the autonomous pathway, but with an analog component too for those loci that
181 remain ON. A study in yeast previously reported on the expected RNA distributions for the two cases
182 of analog and digital control (Goodnight and Rine 2020). An important additional consideration
183 when interpreting the analog/digital nature of the regulation concerns the half-lives of the mRNA
184 and protein. In a digital scenario, long half-lives are expected to broaden histograms of
185 mRNA/protein levels due to the extended times needed for mRNA/protein levels to
186 increase/decrease after state switching. This could lead to a possible misinterpretation of analog
187 regulation. In contrast, short half-lives will lead to clearer bimodality. Furthermore, what might look
188 like a heritable transcription state could also appear due to slow dilution of a stable protein, as
189 observed in other cases (Kueh, Champhekar et al. 2013, Zhao, Antoniou-Kourounioti et al. 2020). We
190 therefore needed to measure the half-lives of the mRNA and protein to interpret our observations
191 appropriately.
192

193 *FLC* mRNA has previously been shown to have a half-life of approximately 6 hours (Ietswaart, Rosa et
194 al. 2017) in a different genotype (*ColFRI*) to that used here. We measured the half-lives of both RNA
195 and protein in our highly expressing *FLC* line, *fca-1* (Fig. 3S1). The RNA half-life measurement used

196 Actinomycin D treatment, inhibiting transcription, whereas the protein measurement used
197 cycloheximide, arresting protein synthesis. The half-lives were then extracted from the subsequent
198 decay in mRNA/protein levels. We found that both degradation rates were fast relative to the cell
199 cycle duration, with half-lives of ~5 and ~1.5 hours respectively for the mRNA and protein (Fig. 3S1).
200 Therefore, slow degradation is unlikely to be the cause of the apparent analog regulation and of the
201 observed heritability seen in our root images. Furthermore, the short protein half-life indicates that
202 any potential effects from growth causing dilution, and thus a reduction in protein concentrations,
203 will also be small.

204

205 One-way switching of *FLC* loci to an OFF state over time in *fca-3*

206 To understand the nature of potential digital switching, it is important to determine whether
207 switching occurs from ON to OFF, OFF to ON, or in both directions. If all loci are switching one-way
208 only, in either direction, this would lead to a gradual change of overall *FLC* expression over time.
209 Alternatively, two-way switching or non-switching in at least a few cells would be necessary to have
210 a constant concentration of *FLC* mRNA/protein over time. These considerations therefore raised the
211 related question of whether cell population-level silencing is at steady state at the time of
212 observation, or whether we are capturing a snapshot of a transient behaviour, with cells continuing
213 to switch over developmental time.

214

215 To test if *FLC* expression is changing over time, we sampled *FLC* expression in the intermediate *fca-3*
216 mutant, as well as *fca-1* and Ler, at 7, 15 and 21 days after sowing. This experiment revealed a
217 decreasing trend in *fca-3* and Ler (Fig. 3A), which did not seem to be due to a change in *FCA*
218 expression over the same timescale (Fig. 3B, compare particularly between 7 and 15 days). We
219 therefore concluded that the most likely explanation was one-way switching from an otherwise
220 heritable *FLC* ON state, to the heritable silenced OFF state occurring digitally and independently at
221 individual loci in *fca-3* and Ler. In *fca-1* the trend was not statistically significant ($p = 0.12$). The
222 potential absence of such a decrease in *fca-1* could be due to the high analog expression in *fca-1*
223 preventing silencing in the majority of cells (see Discussion).

224

225 By imaging FLC-Venus we observed that the fraction of ON cells was indeed decreasing in *fca-3*, over
226 the time course (Fig. 3C,D, 3S2). In fact, after 21 days the pattern of ON/OFF cells in the *fca-3* roots
227 was very similar to that of plants that had experienced cold leading to partial cell population-level
228 *FLC* shutdown, with the majority of cell files being stably repressed, but still with some long files of
229 cells in which *FLC* was ON (compare timepoint 21 in Fig. 3C and figures in (Berry, Hartley et al.
230 2015)). It remains possible that there is a low level of switching in the opposite direction, from OFF
231 to ON, in *fca-3*. The other genotypes did not show this statistically significant decreasing trend in the
232 FLC-Venus data. In *fca-1*, the fraction of ON cells did not show a consistent pattern, while the qPCR
233 data showed a non-statistically significant decrease (Fig. 3A), indicating an overall lack of switching.
234 In Ler, the fraction of ON cells remained essentially constant (at a very low level), differing from the
235 qPCR data, where a statistically significant reduction was observed (Fig. 3A). This result suggests that
236 root tip cells in Ler could switch off early, while ON cells still remain at the whole plant level that
237 continue to switch off, thereby explaining the decrease in the qPCR experiment (Fig. 3A).

238

239 We also examined whether the change over time in *fca-3* could be due to an analog change in the
240 expression of the ON cells rather than a decreasing number of ON cells. By setting a fixed threshold
241 at 0.5 intensity, separating ON and OFF cells, we found that the histogram of *fca-3* cells with
242 intensities above that threshold (normalised by the total number of these cells in each condition)
243 (Fig. 3S3) was similar at all timepoints. This finding is consistent with digital regulation: a decrease in
244 the number of ON cells, but with all remaining ON cells expressing *FLC* at similarly high levels over
245 time. Overall, our results are consistent with a progressive one-way digital switch to OFF for *FLC* loci
246 in *fca-3*.

247

248 Mathematical model incorporating one-way switching can recapitulate the *FLC* 249 distribution over time in *fca-3*

250 We finally developed a mathematical model for *FLC* RNA/protein levels in the root (Fig. 4A, 4S1,
251 Materials and Methods), to test if the analog and digital components inferred from the data were
252 sufficient to reproduce the experimentally observed patterns. The model incorporated digital *FLC*
253 state switching embedded in simulated dividing cells in the root. Construction of the model took
254 account of many of the above results on *FLC* dynamics, including rapid turnover of the RNA and
255 protein (giving sharp switching) and directionality of the switching (ON to OFF). We focused on
256 modelling the ON to OFF switching dynamic and used distributions for the protein levels in cells with
257 two ON loci, one ON and one OFF, and two OFF empirically fitted to our data (Fig. 4A, Materials and
258 Methods). These empirical distributions will include any possible effects from cell size and
259 burstiness.

260

261 Another potentially confounding issue is that in the plant root there is a mix of dividing and
262 differentiated cells. Our experimental observations capture cells primarily in the division zone of the
263 root, but even within this region, cell cycle times are not the same in all cells (Rahni and Birnbaum
264 2019). Incorporating this heterogeneity is important as digital chromatin inheritance is affected by
265 DNA replication (Baxter, Šviković et al. 2021) and therefore switching is likely to be different
266 between dividing and differentiated cells, and to occur during/after replication. In our model, we
267 assumed that stochastic ON to OFF switching occurred during cell division to capture this effect of
268 the cell cycle, and we used cell cycle lengths based on the literature (Rahni and Birnbaum 2019).

269

270 With these assumptions, our model could be fit (Materials and Methods) to replicate the observed
271 pattern of increasing OFF cells in *fca-3* roots, as well as the quantitative histograms for protein levels
272 in *fca-3* (Fig. 4B). In addition, the model could also capture the longer files present in the later
273 timepoints in the data (T21, Fig. 3C, 4S1), although the prevalence of this effect in the data may
274 suggest additional developmental influence on the heritability of the ON/OFF state at later times.
275 Overall, however, the model incorporating one way ON to OFF switching can faithfully recapitulate
276 the developmental dynamics of *FLC* in *fca-3*.

277 Discussion

278 In this work we have uncovered a combination of analog and digital transcriptional regulation for the
279 gene *FLC*: analog regulation arises through the autonomous pathway, as illustrated by the *fca*
280 mutants, before digital switching into a Polycomb silenced state. In the case of *fca-3* with
281 intermediate *FLC* expression, this digital switching occurs slowly and so can be observed in our time
282 series experiment, underlining a clear temporal separation of analog and digital transcriptional
283 control. However, for Ler, the switch appears to mostly occur already before our first experimental
284 measurements at 7 days, whereas in *fca-1* the switch does not occur at all.

285

286 The analog autonomous pathway component of *FLC* regulation controls transcription through an
287 FCA-mediated mechanism. Based on previous studies on the interplay between transcription and
288 PRC2 silencing (Beltran, Yates et al. 2016, Berry, Dean et al. 2017, Holoch, Wassef et al. 2021,
289 Lövkvist, Mikulski et al. 2021), we propose that digital Polycomb silencing is prevented by high
290 transcription in *fca-1*, while low transcription is not sufficient to significantly oppose silencing in Ler.
291 In *fca-3*, the dynamical antagonism between Polycomb silencing and an intermediate level of
292 transcription is still ongoing at our experimentally accessible timepoints. In this mutant, an initial
293 transcriptionally active ON state with intermediate transcription levels controlled by an analog mode
294 of autonomous pathway regulation is eventually overcome and stochastically switched at each gene
295 copy into a digital Polycomb silenced OFF state. In this way, both analog and digital regulation are
296 combined at *FLC*, with the timescale for one-way switching between these modes controlled by the

297 strength of initial analog transcription. In *fca-3* such switching to the OFF state causes a gradual
298 reduction in *FLC* expression at the whole plant level. Interestingly, we found that the mRNA
299 levels/FLC-Venus intensities of ON cells in Ler and *fca-3* are similar (Fig. 2S1C, 2S3B). This result could
300 be due to a more rapid switch-off of loci which happen to have lower levels of transcription, leaving
301 only more highly expressing cells that are able to stay ON, even in Ler. Furthermore, we emphasise
302 that there may be additional developmentally regulated processes occurring at *FLC* in addition to a
303 simple one-way OFF switch with a constant probability in each genotype. This possibility is
304 underscored by the model not completely recapitulating the long cell files we observe
305 experimentally at the 21-day timepoint.
306

307 A prolonged environmental cold signal can also result in a switch from cells expressing *FLC* to non-
308 expressing OFF cells, a process which occurs independently at each gene copy of *FLC* (Berry, Hartley
309 et al. 2015). These ON/OFF states are then maintained through cell divisions leading to epigenetic
310 memory. Here, we have addressed how *FLC* is regulated in the absence of cold and we show that a
311 similar mode of regulation occurs. Furthermore, at least in the case of *fca-3* with initially
312 intermediate transcription levels, silencing at the cell population-level also happens gradually over
313 many cell cycles, similar to the behaviour over prolonged periods of cold. Moreover, images of roots
314 at 21 days after sowing without cold, with fluorescently labelled FLC, are visually strikingly similar to
315 images of vernalized roots, where in both cases we find whole files of either all ON or all OFF cells.
316 These comparisons suggest similarities in the molecular characteristics of the Polycomb silenced
317 state at *FLC* generated either with or without cold treatment.
318

319 The main antagonist of the autonomous pathway is the *FRIGIDA* gene, a transcriptional activator of
320 *FLC* (Fig. 1B), which was not present in the lines used in this study. For future work, it would be
321 interesting to investigate transcriptional responses in a *FRI* allelic series. This could be particularly
322 important because natural accessions show mutations in *FRI* rather than in autonomous pathway
323 components, possibly because the autonomous components regulate many more target genes.
324

325 Overall, our work has revealed a combination of both analog and digital modes of regulation at
326 *Arabidopsis FLC* before cold, with analog preceding digital. We further propose it is the strength of
327 the initial analog, autonomous pathway transcriptional level that controls the timescale for the
328 switch into the subsequent digital, Polycomb silenced state.

329 Materials and Methods

330 Plant growth

331 Seeds were surface sterilized in 5% v/v sodium hypochlorite for 5 min and rinsed three times in
332 sterile distilled water. Seeds were stratified for 2 days at 4°C in petri dishes containing MS media
333 without glucose. The plates were placed vertically in a growth cabinet (16 hours light, 22°C) for
334 1 week.

335 Gene expression analysis

336 For gene expression time series, 20+ plants were harvested at each timepoint (7, 15, 21 days old
337 plants). Plant material was snap frozen with liquid nitrogen, ground and RNA was extracted using the
338 Phenol:Chloroform:Isoamyl alcohol (25:24:1) protocol (Yang, Howard et al. 2014). RNA was purified
339 with the TurboDNase (Ambion) kit to remove DNA contamination and reverse transcribed into cDNA
340 using SuperScript IV Reverse transcriptase (Invitrogen) and RT primers for genes of interest. Gene
341 expression was measured by qPCR, data was normalized to PP2A and UBC. Primer sequences are
342 summarized in Supplementary Table 1.

343 [Actinomycin D treatment](#)

344 For Actinomycin D (ActD) experiments, 6-day-old plants were initially germinated in non-
345 supplemented media and were transferred to new plates containing ActD. Stock solution of ActD
346 (1mg/mL dissolved in DMSO) was added to molten MS media to a final concentration of 20 μ g/mL.
347 ActD was obtained from SigmaTM (catalogue # A4262-2MG).

348 [Cycloheximide \(CHX\) treatment](#)

349 FLC-Venus protein stability was assayed with the de novo protein synthesis inhibitor cycloheximide
350 (C1988, Sigma-Aldrich) following the procedures in (Zhao, Antoniou-Kourounioti et al. 2020). Briefly,
351 7-day old *fca-1* seedlings carrying the *FLC-Venus* transgene were treated in liquid MS medium
352 containing 100 μ M CHX. The seedlings were sampled after 0, 1.5, 3, 6, 12 and 24 hours of treatment.
353 A non-treatment control is also included, in which seedlings were soaked in liquid MS medium
354 without the inhibitor CHX for 24 hours. Approximately 1.0ng seedlings were ground to a fine powder
355 with Geno/Grinder. Total protein was extracted with 1.5 mL buffer (50 mM Tris-Cl pH 8.0, 15 4mM
356 NaCl, 5 mM MgCl₂, 10% glycerol, 0.3% NP-40, 1% Triton-100, 5 mM DTT and protease inhibitor).
357 Then each sample was cleaned by centrifugation at 16,000g at 4°C for 15 min, 50 μ l total protein was
358 taken as input before enrichment with magnetic GFP-trap beads (GTMA-20, Chromo Tek). The input
359 samples were run on a separate gel and used as a processing loading control for the starting level for
360 each sample. The enriched FLC-Venus protein was detected by western blot assay with the antibody
361 anti-GFP (11814460001, Roche). Signals were visualized with chemiluminescence (34095, Pierce)
362 with a secondary antibody conjugated to Horseradish peroxidase (NXA931V, GE Healthcare). The
363 chemiluminescence signal was obtained by the FUJI Medical X-ray film (4741019289, FUJI).
364 Quantification was performed with ImageJ after the films were scanned with a printer scanner
365 (RICOH). Ponceau staining was performed with commercial Ponceau buffer (P7170, Sigma-Aldrich)
366 and used as the processing controls. All of the western blot assays were performed with equal
367 weight of whole seedlings.

368 [smFISH on root squashes](#)

369 smFISH was carried out as described by Duncan et al. 2016. Briefly, root tips from 7-day-old
370 seedlings were cut using a razor blade and placed into glass wells containing 4% paraformaldehyde
371 and fixed for 30 min. Roots were then removed from the fixative and washed twice with nuclease
372 free 1X PBS. Several roots were then arranged on a microscope slide and squashed between the
373 slide and coverslip. Slides were submerged (together with the coverslips) for a few seconds in liquid
374 nitrogen until frozen. The coverslips were then removed, and the roots were left to dry at room
375 temperature for 30 min.

376 Tissue permeabilization and clearing were achieved by immersing sequentially the samples in 100%
377 methanol for 1h, 100% ethanol for 1h and 70% ethanol for a minimum of one hour. The ethanol was
378 left to evaporate at room temperature for 5 min and slides were then washed with Stellaris RNA
379 FISH Wash Buffer A (Biosearch Technologies Cat# SMF-WA1-60). 100 μ L of hybridization solution
380 (containing 10% dextran sulfate, 2x SSC and 10% formamide), with each probe set at a final
381 concentration of 125 nM, was then added to each slide. The slides were left to hybridize at 37°C
382 overnight in the dark.

383 The hybridization solution containing unbound probes was pipetted out the following morning. Each
384 sample was then washed twice with Stellaris RNA FISH Wash Buffer B (Biosearch Technologies Cat#
385 SMF-WB1-20) with the second wash left to incubate for 30 min at 37°C. 100 μ L of the nuclear stain
386 DAPI (100 ng/mL) was then added to each slide and left to incubate at 37°C for 10 minutes. Slides
387 were then quickly washed with 2xSSC. 100 μ L GLOX buffer minus enzymes (0.4% glucose in 10 mM
388 Tris, 2X SSC) was added to the slides and left to equilibrate for 2 min. Finally, this was removed and
389 replaced with 100 μ L of GLOX buffer (containing 1 μ L of each of the enzymes glucose oxidase

390 (#G0543 from Sigma) and catalase (#C3155 from Sigma)). The samples were then covered by 22 mm
391 x 22 mm No.1,5 coverslips (VWR), sealed with nail varnish and immediately imaged.

392 smFISH Probe synthesis

393 We used the online program Stellaris Probe Designer version 2.0 from Biosearch Technologies to
394 design probe sequences for *FLC-Venus* and unspliced *PP2A*. For probe sequences, see
395 Supplementary Tables 2 and 3.

396 Image Acquisition

397 The smFISH slides were imaged using a Zeiss LSM800 inverted microscope, with a 63x water-
398 immersion objective (1.20 NA) and Microscopy Camera Axiocam 503 mono. The following
399 wavelengths were used for fluorescence detection: for probes labelled with Quasar570 an excitation
400 filter 533-558 nm was used and signal was detected at 570-640 nm; for probes labelled with
401 Quasar670 an excitation filter 625-655 nm was used and signal was detected at 665-715 nm; for
402 DAPI an excitation filter 335-383 nm was used and signal was detected at 420-470 nm; for GFP an
403 excitation filter 450-490 nm was used and signal was detected at 500-550 nm.

404 For the FLC-Venus protein level quantification, optical sections of roots were collected with a Zeiss
405 LSM780 microscope equipped with a Channel Spectral GaAsP detector with a 20x objective (0.8 NA).
406 For z-stacks, the step size was 0.5 μ m with a pinhole aperture of 1.5 AU. The overall Z size varied
407 between 45 to 75 slices depending on the orientation of the root. Roots from FLC-Venus lines were
408 immersed in 1 μ g/mL propidium iodide (PI, Sigma-Aldrich, P4864) to label the cell wall. For
409 visualization of roots stained with propidium iodide, an excitation line of 514 nm was used and signal
410 was detected at wavelengths of 611 to 656 nm. For observation of Venus signal, we used a 514 nm
411 excitation line and detected from 518 to 535 nm. To allow comparison between treatments, the
412 same laser power and detector settings were used for all FLC-Venus images.

413 In FLC-Venus time course imaging of epidermal root meristems, the Leica SP8X or Stellaris 8 were
414 used with 20x multi-immersion objective (0.75 NA). The Argon (SP8X) or OPLS 514 (Stellaris 8) lasers
415 were used at 5% to excite FLC-Venus and PI at a 514 nm wavelength in bidirectional mode (PI signal
416 was used for set-up). Venus was detected between 518-550 nm with the HyD SMD2 detector in
417 photon counting mode; PI was detected at 600-675 nm. Epidermal images were obtained in photon-
418 counting mode with laser speed 200, line accumulation of 6 (pixel dwell time of 2.43 μ s) and a Z-step
419 size of 0.95 μ m and a pinhole size of 1 AU.

420 For representative images, these were projected such that one single middle slice from the PI
421 channel was used to show the cell outline, onto which 10 slices of FLC-Venus channel were average
422 intensity projected (T7, LSM780 imaging, Fig. 2) or sum projected for time-course
423 imaging (T7/T15/T21, SP8X imaging, Fig. 3). The dynamic range of the FLC-Venus signal was pushed
424 from 0-255 to 4-22 (for LSM780 images, Fig.2) and 0-20 (for SP8X images, Fig. 3) for all images apart
425 from where enhanced. In enhanced *fca-3*/Ler images, the dynamic range was further pushed to 5-
426 10 (for LSM780 images, Fig.2) and to 0-6 (for SP8X images, Fig. 3) to obtain a similarly strong signal
427 as observed in *fca-1*.

428

429 Image analysis

430 FISH analysis

431 Quantification of FISH probes took place in two stages:

432

433 1) Identification of probe locations in the whole 3D image, excluding the top and bottom z-slice from
434 each z-stack due to light reflection at the plant cell wall.
435 2) Assignment of identified probes to specific cells via segmentation of the image into regions.

436
437 To detect probes, a white tophat filter was applied to the probe channel, followed by image
438 normalisation and thresholding. Individual probes were then identified by connected component
439 segmentation. The centroids of each segmented region were assigned as the probe's location.
440
441 Images were manually annotated with markers to indicate positions of nuclei and whether cells
442 were fully visible or occluded. A combination of the visibility markers and nuclei were used to seed a
443 watershed segmentation of the image, thus dividing the image into regions representing individual
444 cells. Probes within each region were counted to generate the per-cell counts. Occluded cells were
445 excluded from the analysis (probe counts for those regions were ignored).
446
447 Custom code is available from: <https://github.com/JIC-Image-Analysis/fishtools>.
448
449 **FLC-Venus fluorescence intensity**
450 To measure per-cell FLC-Venus intensities, we developed a custom image analysis pipeline to extract
451 cell structure information from the PI cell well information and use this to measure per-cell nuclear
452 fluorescence. Images were initially segmented using the SimpleITK (Beare and Lehmann 2006)
453 implementation of the morphological watershed algorithm. Reconstructed regions touching the
454 image boundaries and those below a certain size threshold were removed. Segmentations were then
455 manually curated to merge over-segmented regions, and to assign file identities to the resulting
456 segmented cells. This curation was performed using custom software, able to merge segmented
457 cells, resegment cells from specified seeds, and split cells along user-defined planes. To approximate
458 the nuclear position, we fitted a fixed size spherical volume of 15 voxels radius to the point of
459 maximal FLC-Venus intensity in each reconstructed cell. Per-voxel mean FLC-Venus intensities were
460 then calculated by dividing the summed intensity within the spherical region by the sphere volume.
461
462 Custom code for initial segmentation and Venus intensity measurement is written in the Python
463 language (Python), and is available at https://github.com/JIC-Image-Analysis/root_measurement.
464
465 The code for the segmentation curation software is available at
466 <https://github.com/fozard/segcorrect>.
467
468 **Mathematical model**
469 We constructed a model for *FLC* chromatin states and protein levels in the root (Fig. 4A) and used it
470 to simulate root cell files and generate simulated protein level histograms (Fig. 4B, 4S1).
471
472 The root was represented as a collection of cell files (such as the 12 representative cell files shown in
473 Fig. 4S1), and 500 cell files were simulated in total. Each cell file consisted of a list of 30 cells
474 (Supplementary Table 4), ordered from the root tip toward the rest of the plant. This region was
475 intended to approximately match the division zone and imaging region. Cells were able to divide,
476 giving rise to two daughter cell and pushing cells that were further from the tip upwards. Cells
477 escaping the 30-cell limit were removed from the simulation. Cells in a given file were clonally
478 related to each other, and eventually all originated from divisions of the “initial cells” (the first cells
479 of the cell file, which are adjacent to the quiescent centre (QC) of the root apical meristem). Each
480 cell was described by its index along the cell file, its digital chromatin state, its protein concentration
481 (expressed as the Venus intensity to match experimental observations) and its remaining cell cycle
482 duration.
483
484 With regards to the digital chromatin state, a cell could be in an ON/ON (both *FLC* copies in the
485 active chromatin state), ON/OFF (one active and one inactive) or OFF/OFF state (both inactive). All
486 cells at the start of the simulation at 0 days are in the ON/ON configuration. The model also included

487 a 1-way switching process from a heritable ON state to a heritable OFF state that occurs in a cell-
488 cycle dependent manner (Baxter, Šviković et al. 2021). The assumption of one-way switching from
489 ON to OFF was motivated by our data (Fig. 3), as well as the fact that wildtype Ler loci are primarily
490 OFF, and therefore the presence of ON cells in the *fca* mutants might be explained by a disruption of
491 the OFF switch. A single *FLC* copy could switch from an ON to an OFF state during division with a
492 probability $p = 0.25$ (Supplementary Table 4). The possible transitions of the combined two copies
493 in a cell, and their probabilities, are shown in Fig. 4A. A natural consequence of one-way switching is
494 that, over time, the *FLC* levels decrease in the simulated root for *fca-3* as more and more loci switch
495 to OFF (Fig. 4B), as was observed experimentally (Fig. 3).

496
497 In order to compare the simulated cell states against the FLC-Venus data, we processed the model
498 outputs using an additional step. This step gave each ON *FLC* copy an associated protein level, which
499 was sampled from a log-normal distribution with parameters: μ_{ON}, σ_{ON}^2 . The background within each
500 cell was sampled from a log-normal distribution with parameters: $\mu_{OFF}, \sigma_{OFF}^2$. These four
501 parameters and the switch-off probability p were manually fitted to the experimental Venus
502 distributions for *fca-3* at 7, 15 and 21 days (Fig. 3D, 4, Supplementary Table 4). Protein levels for
503 each cell, according to the combination of ON and OFF *FLC* copies (Fig. 4A), were given by
504 appropriate combinations of random variables, specifically,

505 for ON/ON cells: $2e^{X_{ON}} + e^{X_{OFF}}$

506 for ON/OFF cells: $e^{X_{ON}} + e^{X_{OFF}}$

507 and for OFF/OFF cells: $e^{X_{OFF}}$

508 where $X_{ON} \sim N(\mu_{ON}, \sigma_{ON}^2)$ and $X_{OFF} \sim N(\mu_{OFF}, \sigma_{OFF}^2)$. The noisy nucleus background signal (X_{OFF}),
509 was assumed to be higher than any real signal originating from OFF *FLC* copies.

510
511 The duration of the cell cycle of each cell was determined by the cell's position along the cell file at
512 the time of the division that created it. These cell cycle times according to position were based on
513 the literature (Rahni and Birnbaum 2019). We used a truncated normal distribution with the mean
514 and standard deviation matching the measured values for epidermis cells. A minimum value was set
515 such that the cell cycle could not be shorter than 13 hours (the lowest value observed for epidermis
516 or cortex cells in (Rahni and Birnbaum 2019)).

517

518 Custom code is available from: https://github.com/ReaAntKour/fca_alleles_root_model.

519 Acknowledgements

520 We thank all members of the Dean, Rosa and Howard groups for excellent discussions. Special
521 thanks to Dr. Silvia Costa for imaging advice and Dr. Cecilia Lökvist for project coordination. This
522 work was supported by BBSRC Institute Strategic Programme GEN (BB/P013511/1), BBSRC grant
523 BB/P020380/1 to C.D. and M.H., European Union's Horizon 2020 research and innovation
524 programme (Marie Skłodowska-Curie grant No. 813282) to Sv.R. and M.H. and Vetenskapsrådet
525 grant 2018-04101 to A.M. and S.R.

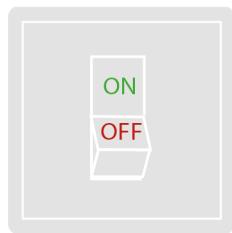
526

527 Author Contributions

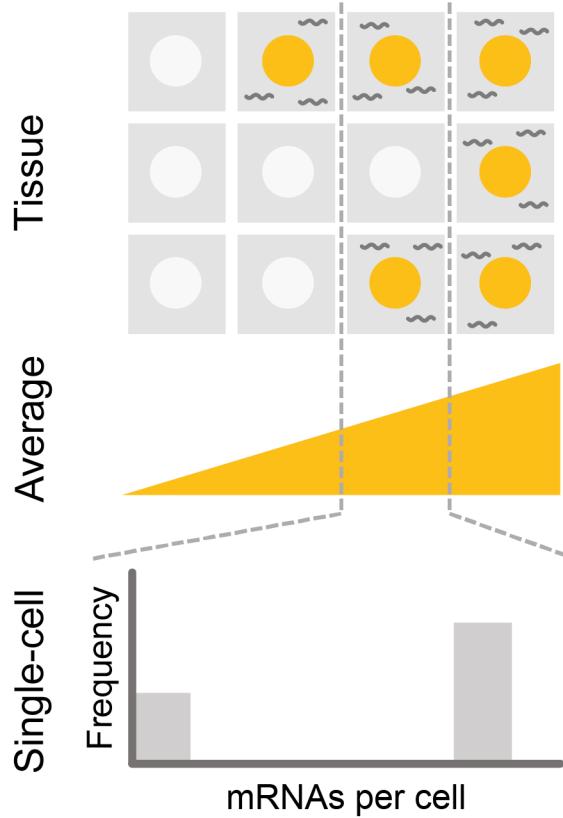
528 MH, CD, SR, RAK, AM, SvR, GM, SB designed research, AM, SvR, SB, YZ, HW performed research,
529 MH built image analysis pipeline with modifications by RAK, JF built python script for cell
530 segmentations, RAK, SvR, AM, TH analysed data, RAK built mathematical model, RAK, AM, SvR and
531 MH wrote the manuscript with help from all authors. All authors agreed on the final version.

532

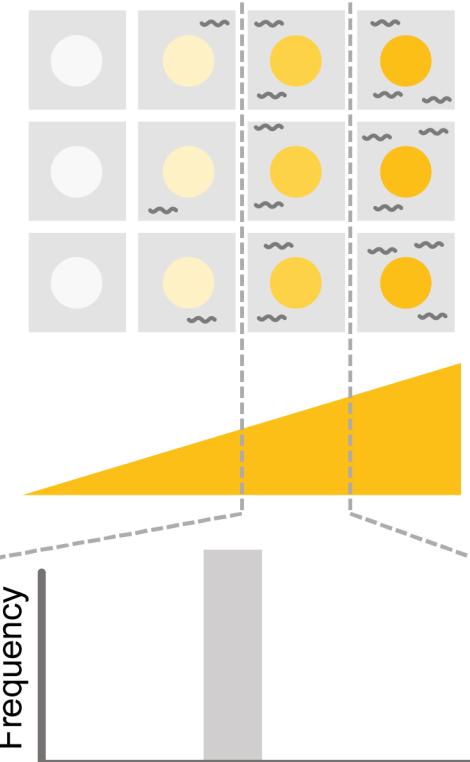
533 [Code availability](#)

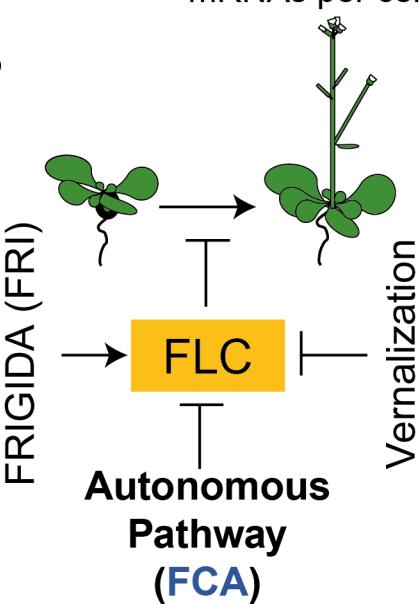

534 All code is available through github repositories, as described in the Materials and Methods.

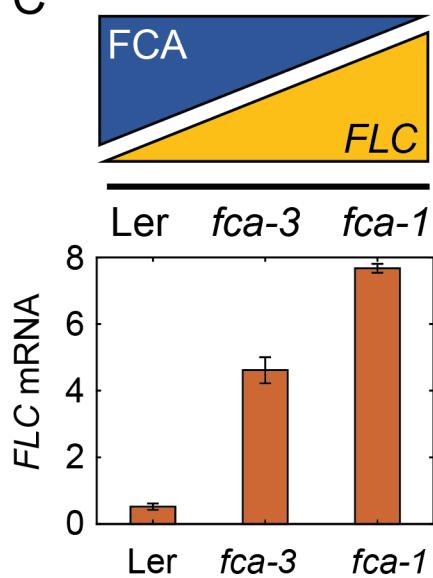
535 [Data availability](#)


536 Image data used in this study are available in the BioImage Archive under accession number S-
537 BIAD425 (<https://www.ebi.ac.uk/biostudies/studies/S-BIAD425>). Derived quantification data from
538 images, as well as qPCR data, are provided as Supplementary file 1.

539 Figures

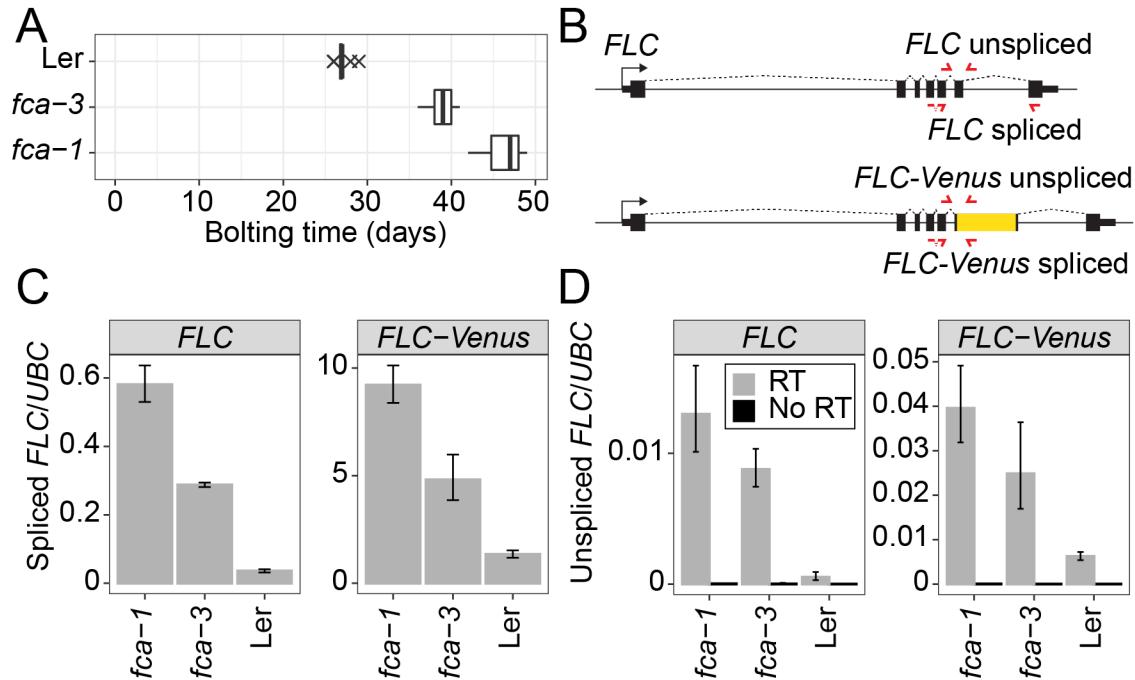

A


Digital regulation


Analog regulation

B

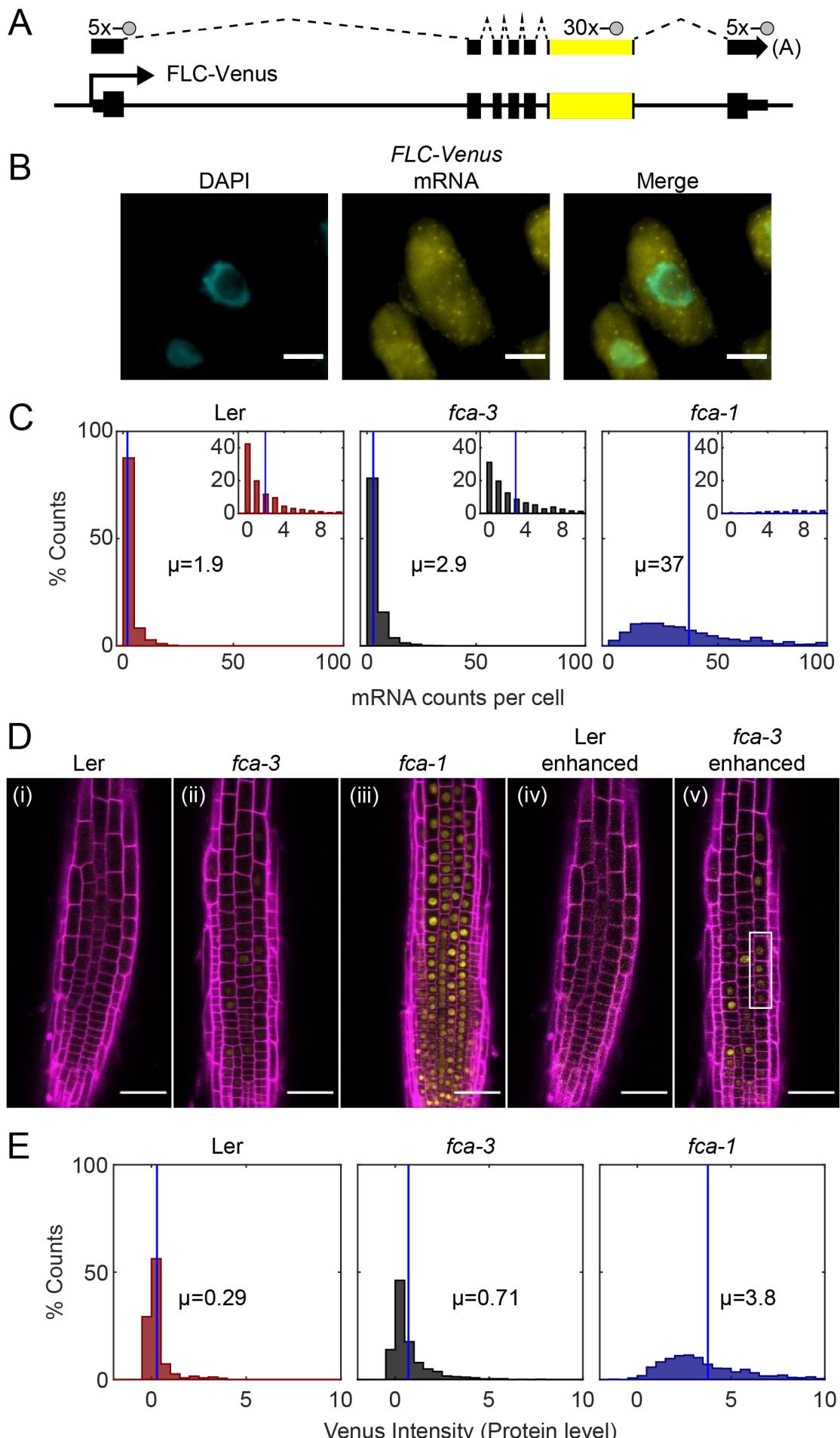
C



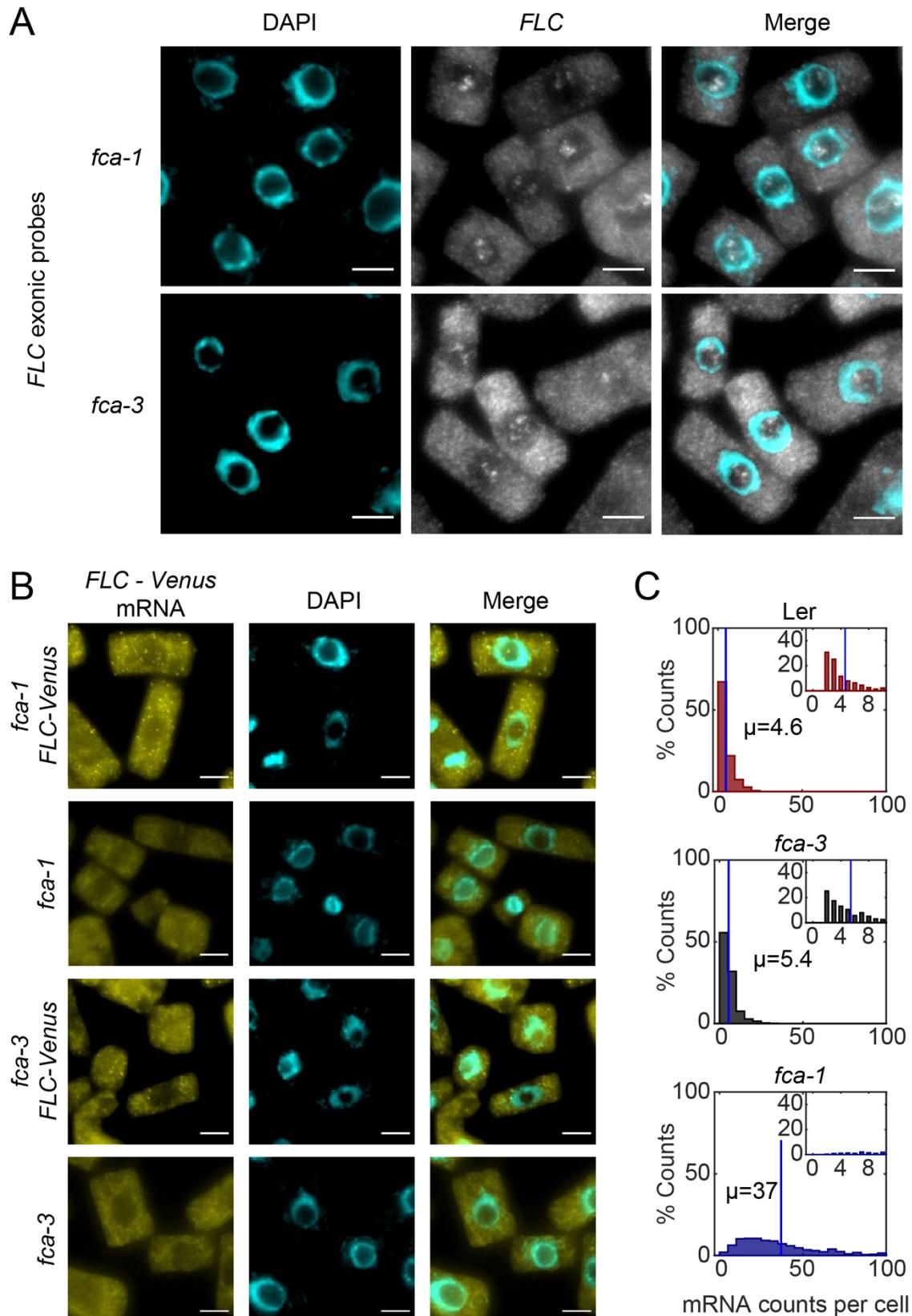
541

542 **Figure 1. Schematic of digital and analog gene regulation.**

543 (A) Digital regulation (left) corresponds to loci being in an 'ON' state (yellow) or 'OFF' state (white),
544 where we assume for simplicity that there is only one gene copy per cell. At the tissue level, moving
545 from low to high average expression (columns left to right) is achieved by a change in the fraction of
546 cells in each of the two states. This mode is distinct from analog regulation (right), where each cell
547 has a graded expression level that roughly corresponds to the overall population average. (B) *FLC*
548 represses the transition to flowering and is controlled by *FRIGIDA*, the autonomous pathway and the
549 vernalization pathway (inducing digital epigenetic silencing in the cold). (C) Reduced *FCA* activity
550 leads to higher cell population-level *FLC* expression in *fca* mutants. Wild-type Ler has lowest *FLC*
551 expression, *fca-3* intermediate and *fca-1* highest. Expression is measured by qPCR relative to the
552 house-keeping gene index (geometric mean of *PP2A* and *UBC*). Error bars show SEM of n=3
553 biological replicates measured 7 days after sowing.


554

555
556
557
558
559
560
561
562
563


Figure 1 - Supplementary 1. Characterisation of *fca* alleles and *FLC*-Venus transgene.

(A) Flowering time measured in days from sowing until first appearance of a floral meristem (bolting). 12 plants were measured for each genotype. Boxplots show median and interquartile range (IQR), with data points outside median ± 1.5 IQR shown as crosses. (B) Diagram showing positions of qPCR primers (red) to quantify spliced and unspliced endogenous *FLC* and transgenic *FLC*-Venus RNA. (C-D) *FLC* and *FLC*-Venus RNA measured by qPCR, relative to *UBC* RNA. No RT (Reverse Transcription) negative control in D shows no expression with same unspliced primers. Error bars show SEM of $n \geq 2$ biological replicates, harvested 14 days after sowing.

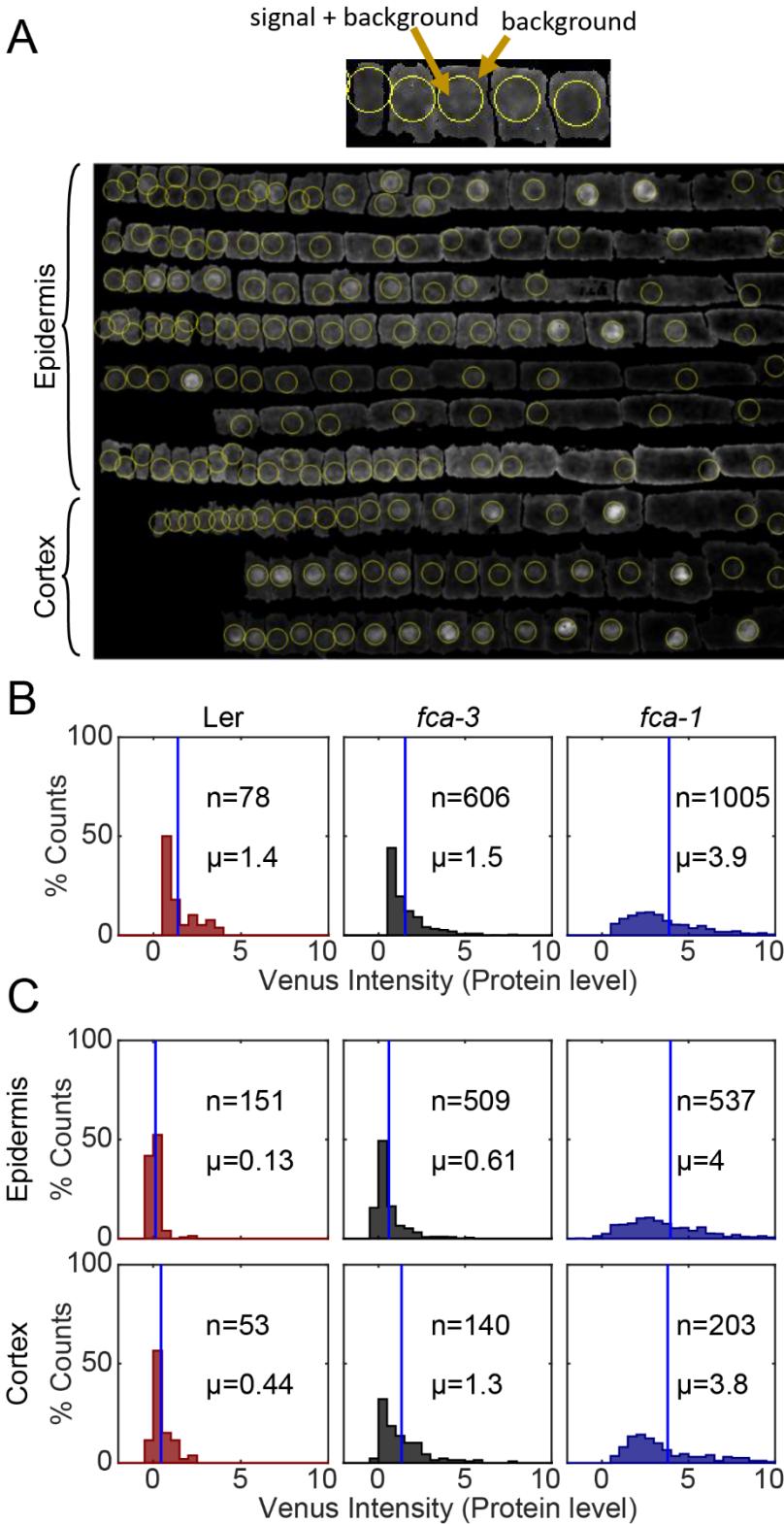
565 **Figure 2. *FLC* expression per cell in *fca* mutants.**

566 **(A)** Schematic diagram of *FLC*-Venus locus with transcript and exonic probe position indicated. A
567 total of 40 probes were designed, 10 against the *FLC* sequence and 30 for the *Venus* sequence. **(B)**
568 Detection of *FLC*-Venus transcripts in single cells. Representative images of a cell with DAPI staining
569 (cyan) and *FLC*-Venus mRNA (yellow) in *Arabidopsis thaliana* root cells. Scale bar, 5 μ m. **(C)**
570 Histograms of smFISH results for each genotype (Ler, *fca*-3, *fca*-1) showing the number of single-
571 molecule *FLC*-Venus RNAs detected per cell. The means of the distributions, μ , are indicated in each
572 panel. Insets show the same data for mRNA counts between 0 and 10 (where 10 is the 95th
573 percentile of the *fca*-3 data). For Ler n=853, *fca*-3 n=1088, *fca*-1 n=792; data from 7 days after
574 sowing. Statistical tests: multiple comparisons following Kruskal-Wallis ($\chi^2(2) = 1611.21$, p-value =
575 0) with Tukey HSD post-hoc tests for *fca*-3 – *fca*-1: p-value < 10^{-8} ; *fca*-3 – Ler: p-value = $1.5 \cdot 10^{-5}$;
576 *fca*-1 – Ler: p-value < 10^{-8} . **(D)** Representative confocal images of roots for each genotype.
577 Magenta shows the PI channel, Yellow is the *FLC*-Venus signal. Same settings were used for imaging
578 and image presentation in (i)-(iii). Images in (iv) and (v) are the same as (ii) and (i), respectively, but
579 adjusted to enhance the *Venus* signal by changing brightness and contrast. Scale bar, 50 μ m. **(E)**
580 Histograms of *FLC*-Venus intensity per cell in each genotype. The means of the distributions, μ , are
581 indicated in each panel. For Ler n=537 cells from 6 roots, *fca*-3 n=1515 cells from 14 roots, *fca*-1
582 n=1031 cells from 11 roots; data from 7 days after sowing. Statistical tests: multiple comparisons
583 following Kruskal-Wallis ($\chi^2(2) = 1607.56$, p-value = 0) with Tukey HSD post-hoc tests for *fca*-3 –
584 *fca*-1: p-value < 10^{-8} ; *fca*-3 – Ler: p-value < 10^{-8} ; *fca*-1 – Ler: p-value < 10^{-8} .
585



586

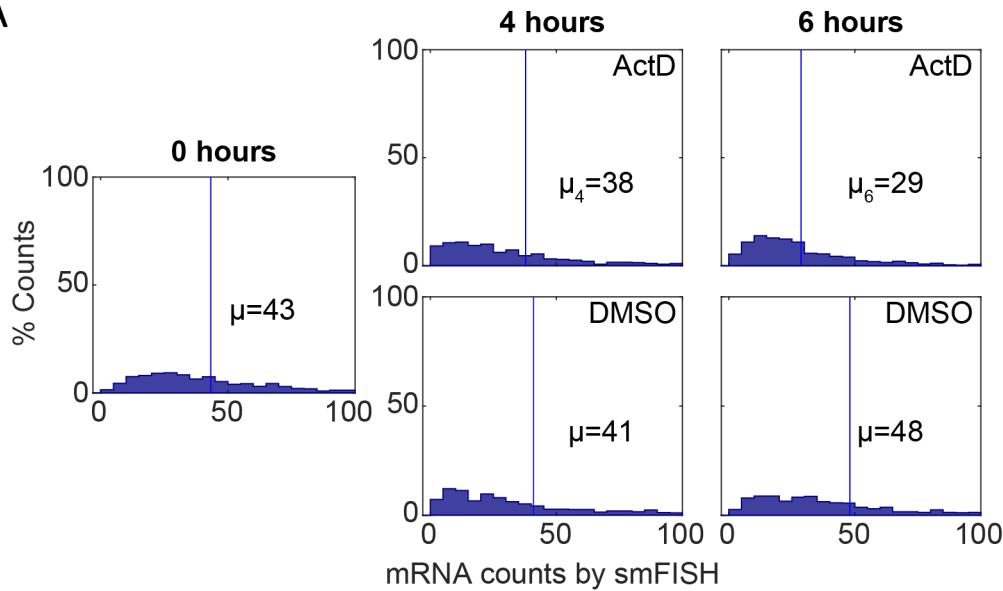
587 **Figure 2 - Supplementary 1. smFISH method for FLC-Venus imaging.**


588 **(A)** Detection of nucleolar signal using *FLC* specific probes in Ler background *fca-1* and *fca-3* plants
589 in *Arabidopsis thaliana* root cells. The nucleus is stained with DAPI (cyan). Scale bar, 5 μ m. **(B)** FLC-
590 Venus probes bind specifically to the transgenic *FLC*-Venus RNA and not to the endogenous *FLC*
591 transcript. All data from seedlings 7 days after sowing. Scale bar, 5 μ m. **(C)** The data of Fig. 2C plotted

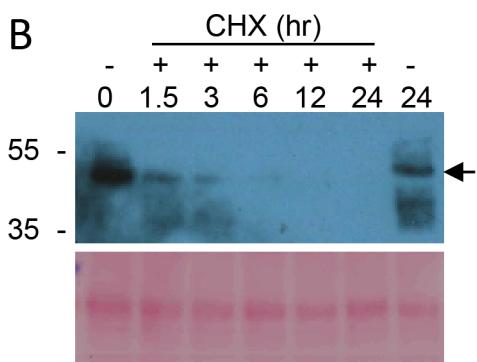
592 for the three genotypes but showing only measurements in “ON cells”. These are defined as cells
593 with more than one *FLC-Venus* mRNA. The means of the distributions, μ , are indicated in each panel.
594 For Ler n=323, *fca-3* n=536, *fca-1* n=788, from 7 days post sowing. Statistical tests: multiple
595 comparisons following Kruskal-Wallis ($\chi^2(2) = 1067.37$, p-value = $1.7 \cdot 10^{-232}$) with Tukey HSD
596 post-hoc tests for *fca-3* – *fca-1*: p-value < 10^{-8} ; *fca-3* – Ler: p-value = 0.12; *fca-1* – Ler: p-value <
597 10^{-8} .
598
599

600
601 **Figure 2 - Supplementary 2. FLC-Venus imaging in *fca* alleles – root replicates.**

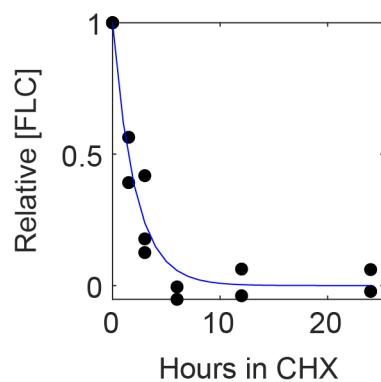
602 Additional representative images of FLC-Venus signal in the three genotypes (Ler, *fca-3*, *fca-1*) from
603 7 days post sowing. Magenta shows the PI channel, Yellow is the FLC-Venus signal. Same settings
604 were used for imaging and image presentation in left three columns. “Enhanced” images (two
605 columns on right) are the same respective images, adjusted to enhance Venus signal by changing
606 brightness and contrast. Scale bar, 50 μ m.


607

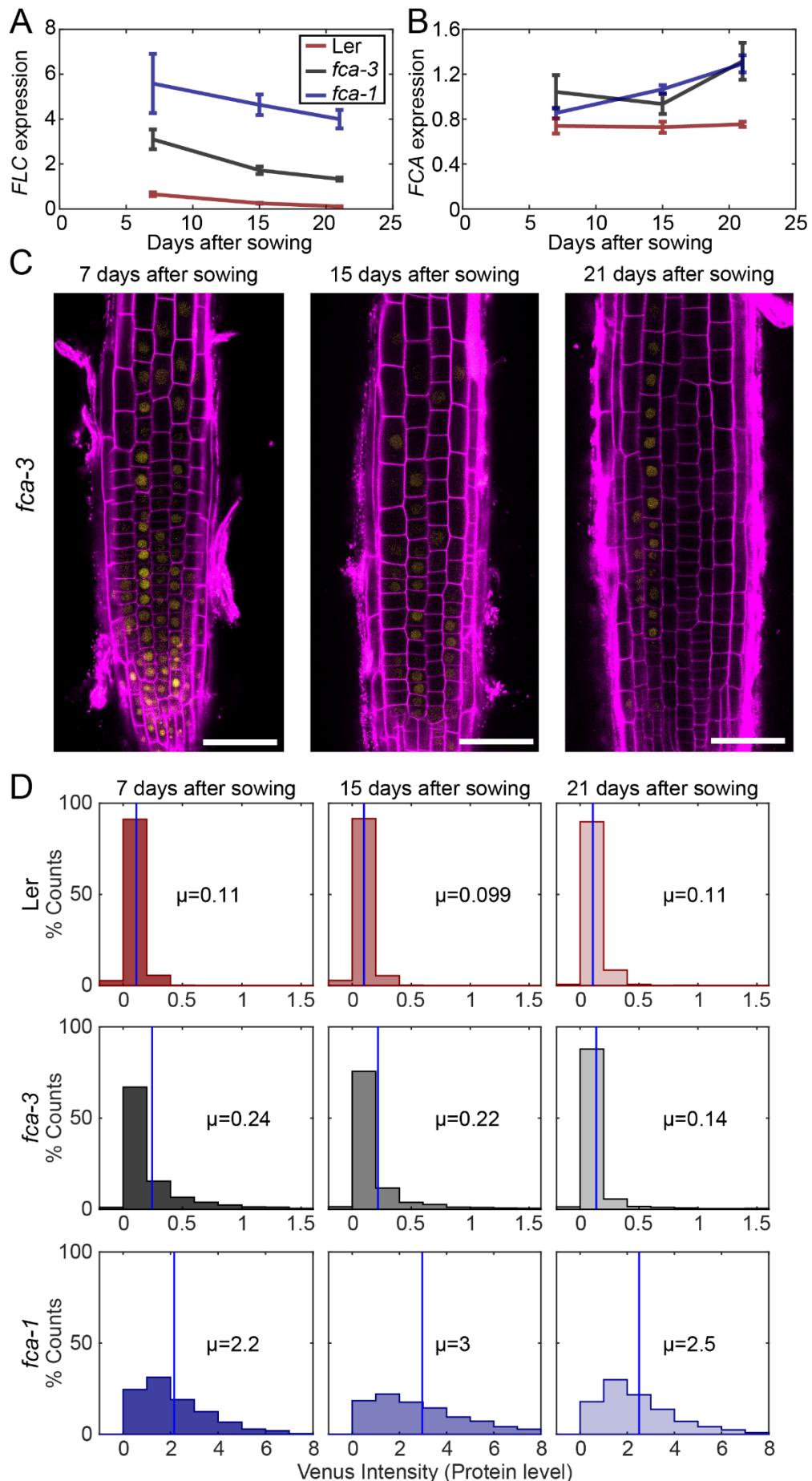
608 **Figure 2 - Supplementary 3. Segmentation and quantification method.**

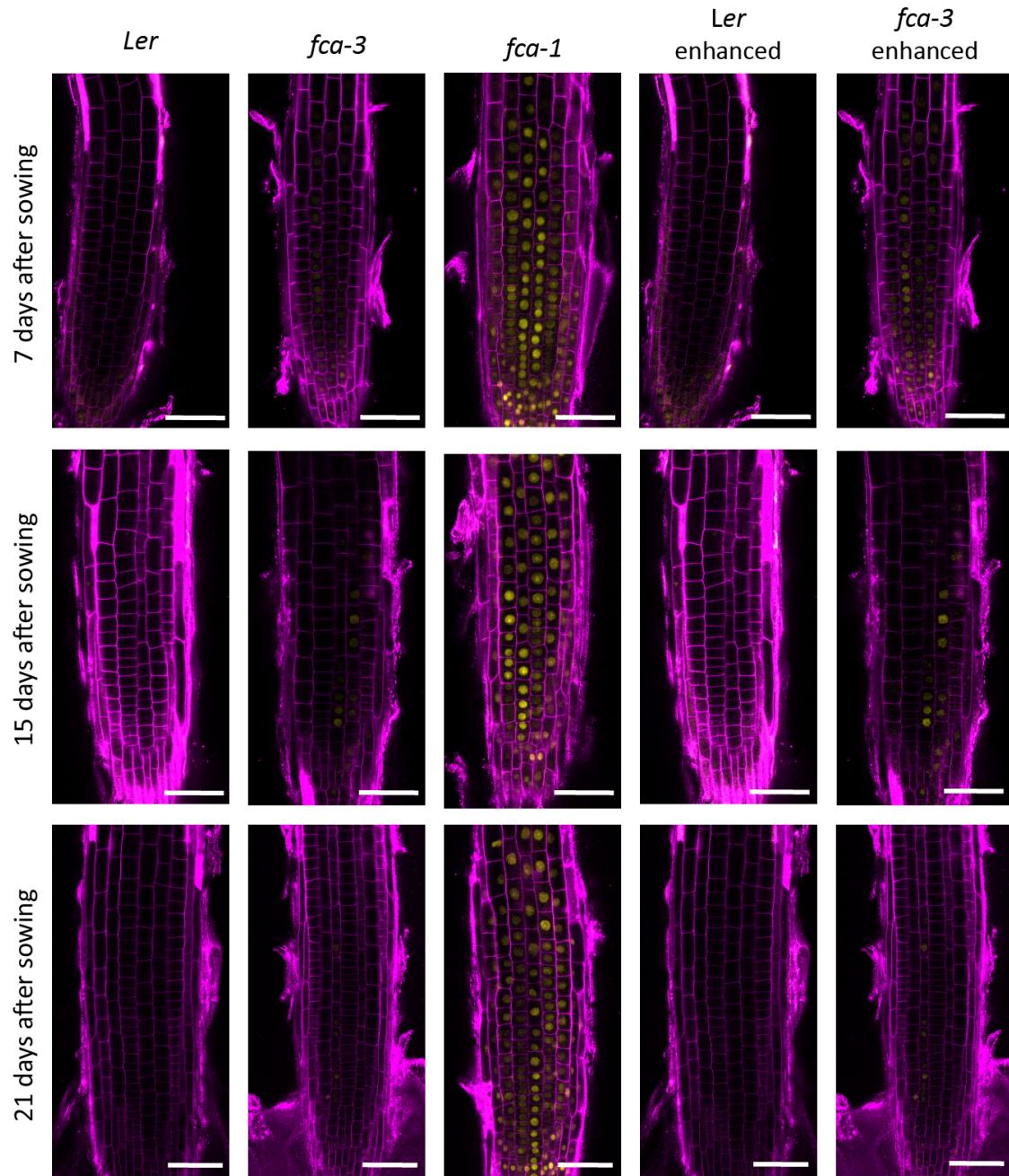

609 **(A)** Custom visualisation and segmentation software was used to manually correct automatic
610 segmentations and annotate cells according to cell file. Top: Diagram explaining quantification of
611 FLC-Venus intensity. In ON cells, the sphere contains the nucleus and therefore the FLC-Venus signal
612 as well as the background signal. In OFF cells, the sphere will contain only background signal. The
613 mean intensity outside the sphere was used as the background signal and this was subtracted from
614 the sphere intensity. Bottom: Cell files from a single root separated according to tissue type

615 demonstrating the result of the nucleus finding algorithm. Longitudinal section shown. In each cell,
616 the sphere of constant radius that maximised fluorescent intensity inside the sphere was
617 determined. For each cell, the position of the sphere is shown, corresponding to the nucleus in ON
618 cells. **(B)** The data of Fig. 2E plotted for the three genotypes but showing only measurements in “ON
619 cells”. These are defined as cells with intensity higher than 0.5. The means of the distributions, μ ,
620 and number of cells, n , are indicated in each panel. Statistical tests: multiple comparisons following
621 Kruskal-Wallis ($\chi^2(2) = 552.88$, $p\text{-value} = 8.8 \cdot 10^{-121}$) with Tukey HSD post-hoc tests for *fca-3* –
622 *fca-1*: $p\text{-value} < 10^{-8}$; *fca-3* – Ler: $p\text{-value} = 0.57$; *fca-1* – Ler: $p\text{-value} < 10^{-8}$. **(C)** Cortex files are
623 more likely to be ON and/or have higher intensity. Histograms showing FLC-Venus intensity in cells
624 separated according to tissue type; data from seedlings 7 days post sowing. The means of the
625 distributions, μ , and number of cells, n , are indicated in each panel. Statistical tests: Two-sample t-
626 test (t-statistic: -7.66, df: 647, $p\text{-value} = 6.7 \cdot 10^{-14}$).
627


A

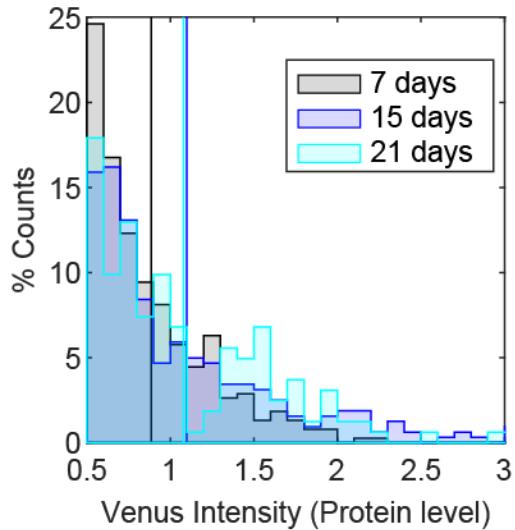
B

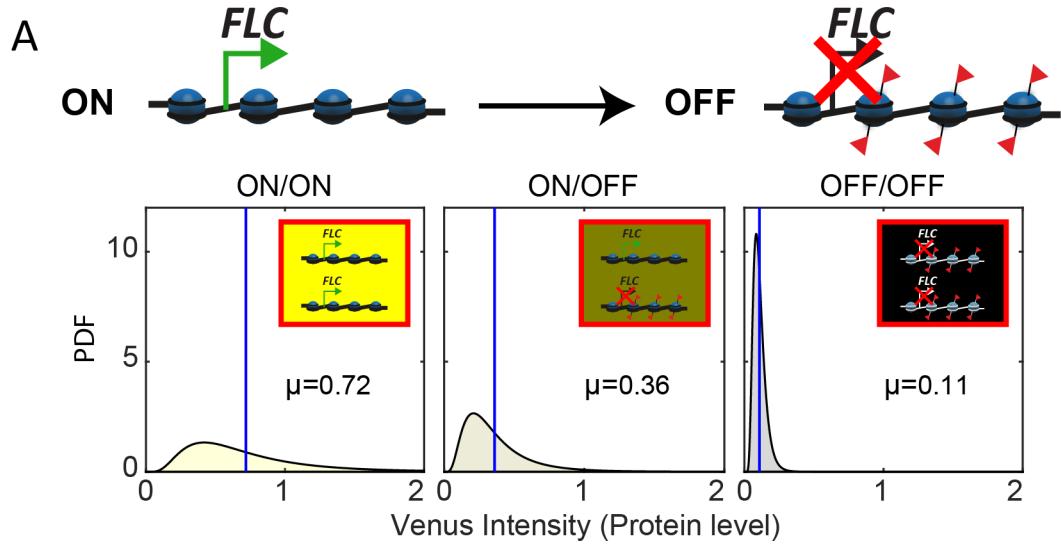

C


628

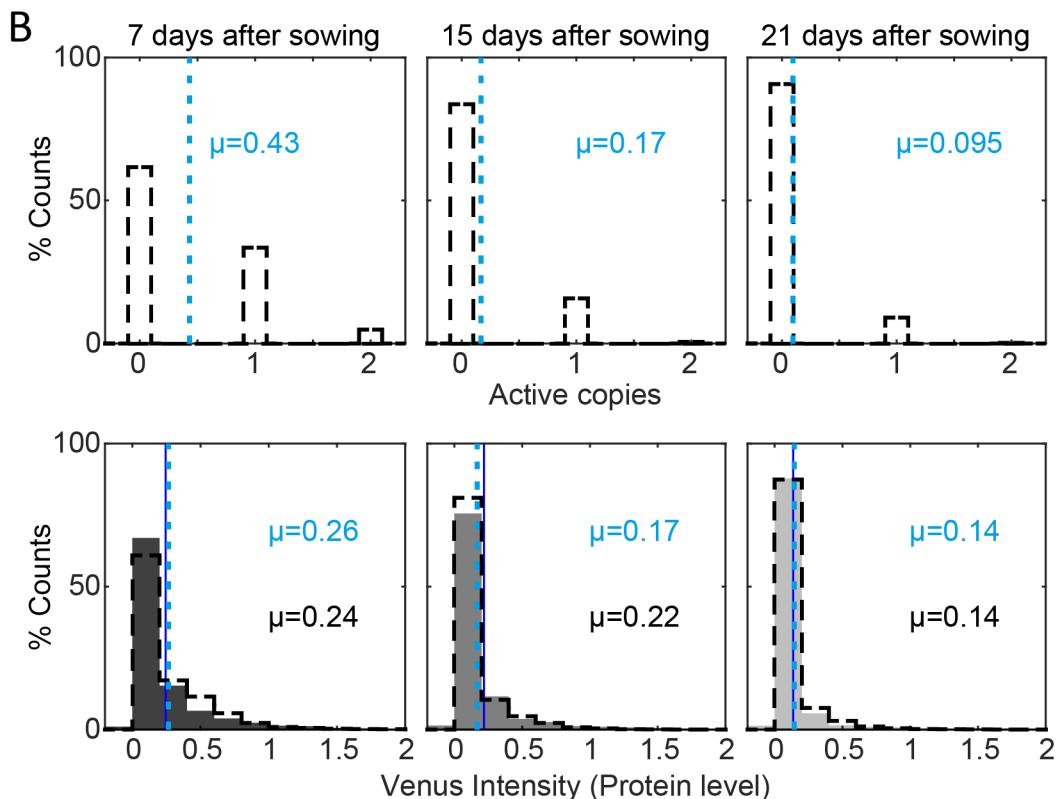
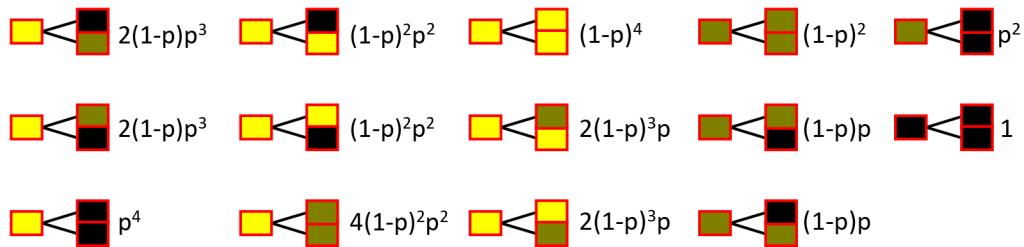
629 **Figure 3 - Supplementary 1. Effect of degradation rate and cell size variability on expected FLC**
630 **levels.**

631 **(A)** Histogram of FLC-Venus mRNAs per cell measured by smFISH after 4 hours or 6 hours of ActD
632 treatment (top) or mock DMSO treatment (bottom). Mean mRNA number per cell, μ , is indicated in
633 each panel. Half-life $t_{1/2}$ of 5 hours calculated as in (letswaart, Rosa et al. 2017) using the formula
634 $t_{1/2} = \ln(2)/d$, with $d = \ln(\mu_4/\mu_6)/2$, where d is the degradation rate and μ_4, μ_6 are the mean
635 RNA counts after 4 and 6 hours respectively. For 0 h, $n=1554$, for ActD 4 h, $n=820$, for ActD 6 h,
636 $n=784$, for DMSO 4 h, $n=759$, for DMSO 6 h, $n=776$, in seedlings 7 days after sowing. **(B)** Analysis of
637 FLC-Venus protein stability with cycloheximide (CHX) treatment. 7-day old seedlings of *fca-1* plants
638 carrying FLC-Venus reporter were subjected to liquid MS solution supplemented with 100 μ M CHX
639 for 0, 1.5, 3, 6, 12, or 24 hours. Blot shows representative replicate. Non treatment control was also
640 included (right-most well). Arrow indicates FLC-Venus. Ponceau staining was used as processing
641 controls. **(C)** Quantification of the FLC-Venus from blot shown in (B) and additional replicates.
642 Combined data from $n=3$ biological replicates are shown with exponential decay profile fitted to first
643 3 timepoints (half-life=1.45hr).

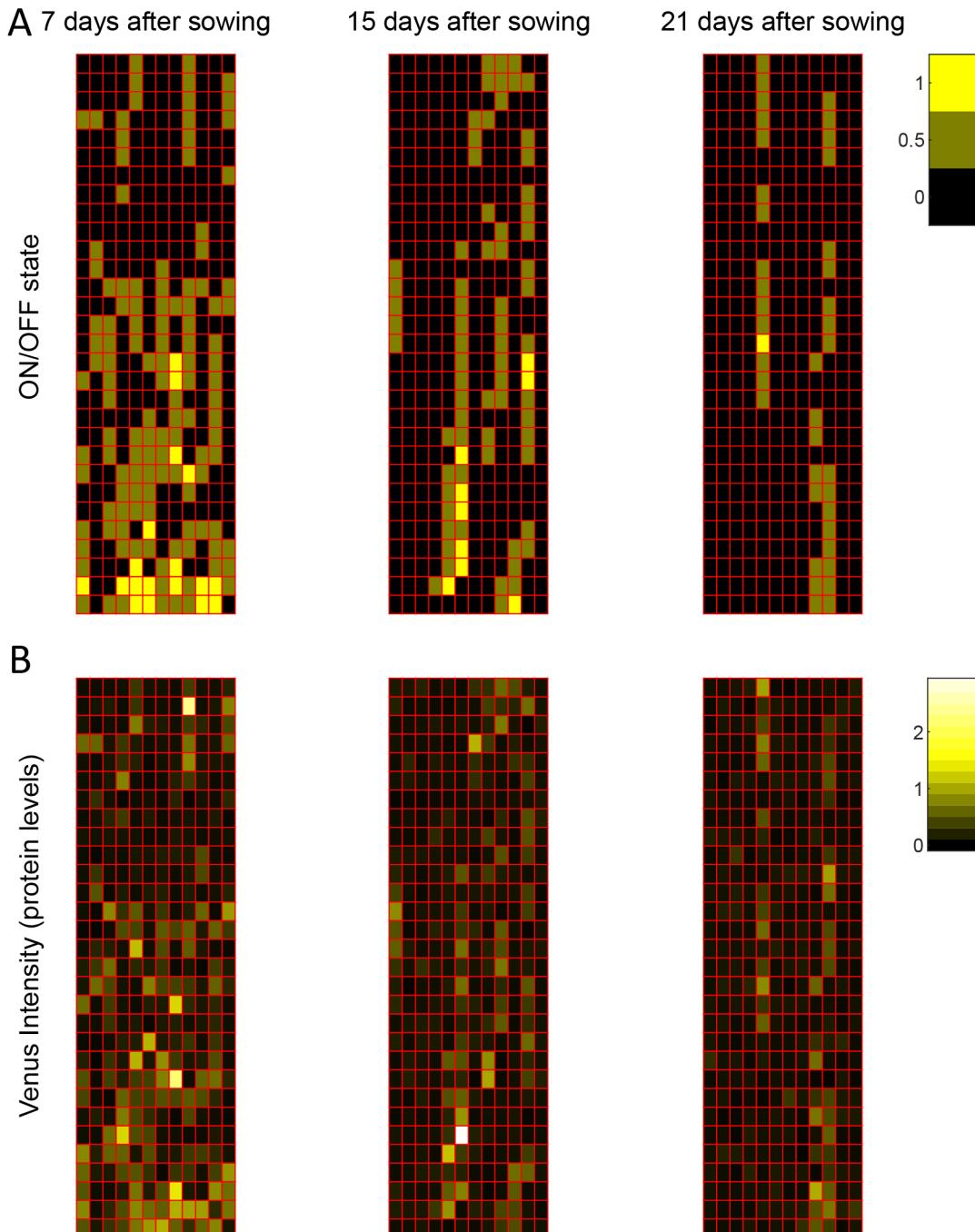

645 **Figure 3. Experimental observation of gradual *FLC* silencing.**
646 **(A)** Timeseries of *FLC* expression in an *fca* mutant alleles transformed with the *FLC*-Venus construct.
647 Expression is measured by qPCR relative to the house-keeping gene index (geometric mean of *PP2A*
648 and *UBC*). Error bars show SEM of n=3 biological replicates. Statistical tests: Linear regression on
649 timeseries for each genotype. Slope for *fca-3* = -0.13, p-value = $2.0 \cdot 10^{-4}$; Slope for *fca-1* = -0.11, p-
650 value = 0.12; Slope for Ler = -0.038, p-value = $4.8 \cdot 10^{-6}$. **(B)** Timeseries of *FCA* expression, otherwise
651 as in (A). **(C)** Representative images of *fca-3* roots by confocal microscopy. Magenta shows the PI
652 channel, Yellow is the *FLC*-Venus signal. Same settings were used for imaging and image
653 presentation. Scale bar, 50 μ m. **(D)** Histograms of *FLC*-Venus intensity per cell in *fca-3* at each
654 timepoint. The means, μ , of the distributions are indicated in each panel. For Ler: 7 days, n=1121
655 cells from 10 roots; 15 days, n=1311 cells from 9 roots; 21 days, n=1679 cells from 12 roots. For *fca-*
656 3: 7 days, n=2875 cells from 24 roots; 15 days, n=3553 cells from 23 roots; 21 days, n=3663 cells
657 from 21 roots. For *fca-1*: 7 days, n=1022 cells from 9 roots; 15 days, n=1770 cells from 12 roots; 21
658 days, n=2124 cells from 12 roots. Statistical tests: Linear regression on timeseries for each genotype.
659 Slope for *fca-3* = -0.0077, p-value = $4.0 \cdot 10^{-46}$; Slope for *fca-1* = 0.018, p-value = 0.00064; Slope for
660 Ler = -0.00015, p-value = 0.44.
661


662

663 **Figure 3 - Supplementary 2. FLC-Venus timecourse replicates in *fca* alleles.**



664 Additional representative images of FLC-Venus signal in the three genotypes (Ler, *fca-3*, *fca-1*) at the
665 three timepoints. Magenta shows the PI channel, Yellow is the FLC-Venus signal. Same settings were
666 used for imaging and image presentation in left three columns. “Enhanced” images (two columns on
667 right) are the same respective images, adjusted to enhance Venus signal to similar level as *fca-1* by
668 changing brightness and contrast. Scale bar, 50 μ m.

669
670 **Figure 3 - Supplementary 3. Experimental intensity of ON cells does not change over time in *fca-3*.**
671 Histogram of ON cells in *fca-3* at three timepoints normalised by the total number of ON cells in
672 each. ON cells were defined as cells with FLC-Venus intensity above 0.5. Vertical lines indicate means
673 of corresponding distribution. For 7 days n=382 cells from 24 roots, 15 days n=321 cells from 19
674 roots, 21 days n=162 cells from 12 roots.
675


Division and Switching

677 **Figure 4. Mathematical model captures *FLC* regulation**

678 **(A)** Diagram of mathematical model. Individual *FLC* gene copies can be ON or OFF, such that a cell
679 can be in one of three states depending on the combination of ON and OFF gene copies within it
680 (ON/ON, ON/OFF, OFF/OFF). Venus intensity (corresponding to amount of protein) within a cell was
681 sampled from the distributions shown (described in Methods section), depending on the cell state.
682 The means of the distributions, μ , are indicated in each panel. Switching of ON *FLC* gene copies to
683 OFF can occur at division (with probability $p = 0.25$ per division): neither, one or both copies can
684 switch OFF in each daughter cell at each division. **(B)** Histograms of active *FLC* copies per cell (top)
685 and Venus intensity per cell (bottom) at the indicated timepoints. Model histograms are plotted with
686 dashed lines around empty bars and experimental data is shown as filled grey histograms with no
687 outline. The means of the distributions, μ , are indicated in each panel for the data (black text and
688 dark blue solid line) and the model (light blue text and dashed line). Model simulated 500 *fca-3* cell
689 files and histograms shown exclude bottom 4 cells of each file, as cells near the QC are also not
690 included in the imaging.

691

701 **Supplementary Table 1. Primers used in this study**

Primer name		Sequence (5'-3')	Purpose
FLC unspliced_LP	Unspliced FLC	CGCAATTTCATAGCCCTTG	qPCR
FLC unspliced_RP		CTTGTAATCAAAGGTGGAGAGC	qPCR + RT
FLC spliced F	Spliced FLC	AGCCAAGAACCGAACTCA	qPCR
FLC spliced R		TTTGTCCAGCAGGTGACATC	qPCR + RT
UBC_qPCR_F	Spliced UBC	CTGCGACTCAGGAAATCTTCTAA	qPCR
UBC_qPCR_R		TTGTGCCATTGAATTGAACCC	qPCR + RT
PP2A F2	Spliced PP2AA3	ACTGCATCTAAAGACAGAGTTCC	qPCR
PP2A R2		CCAAGCATGGCCGTATCATGT	qPCR + RT
gamma.QPCR.F	γFCA	AACTCCAGGGCCAGCCATAATACT	qPCR
gamma.QPCR.R		TGTGTCCGAGCATAATCCTGAGCAT	qPCR + RT

702

703

704 **Supplementary Table 2: smFISH probe sequences used to detect FLC Venus transcripts.**

705 These probes were labelled with Quasar570.

706

Order	Sequences (5'-3')	Venus and FLC Exon 1 and 7 Probes
1	cggtaaacagctccgc	
2	cagctgaccaggatgg	
3	ttgtggccgttacgtcg	
4	ctcgccggacacgctgaa	
5	ttgccgttagtggcatcg	
6	gtggtgcagatcagcttc	
7	agggtggtcacgagggtg	
8	aagcactgcaggccgtag	
9	catgtggtcgggtagcg	
10	tgaagaagtctgtcgct	
11	acgtagccctcgggcatg	
12	agaagatggtgcgctcct	
13	tctttagttggcgtcgt	Venus sequence
14	tgcgacttcacctcgccg	
15	ctcgatcggttcaccag	
16	tgaagtgcgtgcccttca	
17	caggatgtggccgtcctc	
18	ttgtactccagctgtgc	
19	agacgttgtggctgtgt	
20	tgcttgcggcggtgata	
21	gaagtggcctgatgcc	
22	cgatgttgtggcgatct	
23	gtagtggtcggcgagctg	
24	cgatgggggtgtctgct	
25	ttgtcgggcagcagcagc	

26	ggactggtagctcaggta	
27	ttggggtcttgctcagg	
28	catgtgatcgcgcctc	
29	ggtcacgaactccagcag	
30	tccatgccgagagtgatc	
31	actaagcgtttctttct	
32	tcaggtttgggttcaagtgc	
33	gctttgtgccctaattgat	Exon1
34	ctagtttttcttccatg	
35	ttgttctcaattcgcttgat	
36	aggtgacatctccatctcag	
37	agattgtcgagattgtcc	
38	taagtagtggagagtcacc	Exon7
39	tttcaaccgcccatttaagg	
40	cccttattcagcggataatt	

707
708
709
710

Order	Sequences (5'-3')
1	actattaccattcttagact
2	gaactgaaactttgtgcgcgt
3	tgaccattaggcctctaaaa
4	ctttaaactcaattccgcct
5	tgcatacatagacaccatca
6	gtaaaccaggccttatctaac
7	ttgacagagcatggaaagga
8	tcttctgttttagtggctta
9	acaattgacaaaggacccca
10	gcataattccaaactttggg
11	acacctataagggAACACT
12	acttcaaccttaccaatttcc
13	atgttcttttagatcaacca
14	aaagagcgctaaagccagag
15	tcacatacacaaccacaacc
16	acctataccgaggatgttat
17	gcttaagtccgtttcacatt
18	acacaatgacagtgttcagt
19	cccataactaggcttgatga
20	acttgccttattacatcatcg
21	tgttcaatgcagtaacccta
22	gcttaacttcagctaatgg
23	agctgagatgttagacaaccg

24	ctttcccataaagctcatca
25	agcagctcatacatatctgc
26	aacttcaaccatcactgctt
27	acctctgaagtcaagttatct
28	catggacttccaagttaccaa
29	cacactcttcaagttgtgt
30	tggccttgcatatatga
31	cttagcaaacaccgacagta
32	ctacgtgttagatttataaggt
33	atcggttttaattctgctt
34	gtattcatgatatgagaggc
35	cactccaaactatagagcca
36	atctttatctctaagatgct
37	gatgacagtgactaggacga
38	cttccaggcacagttaaa
39	acatagtgaggtttcttat
40	atgccaagttaaaagctgca
41	gagtaacttggtcaatagca
42	acccaatgtcgtacaaagag
43	acagctccttgaacatgt
44	tagtcattgacttgaccaaa
45	ggacaaagaatttgcgtca
46	ctggatgattcaatgaaggt
47	ttcaaggcagtagagacgaca
48	actccaataaccaatagcta

711

712 **Supplementary Table 4. Mathematical model parameters.**

713

Parameter name	Parameter value	Description
p	0.25	Probability of a single <i>FLC</i> gene copy switching from ON to OFF during division.
μ_{ON}	-1.2	μ of log normal distribution e^X , where $X \sim N(\mu, \sigma^2)$ for single ON <i>FLC</i> copy.
μ_{OFF}	-2.3	μ of log normal distribution e^X , where $X \sim N(\mu, \sigma^2)$ for OFF <i>FLC</i> copy.
σ_{ON}	0.6	σ of log normal distribution e^X , where $X \sim N(\mu, \sigma^2)$ for ON <i>FLC</i> copy.
σ_{OFF}	0.4	σ of log normal distribution e^X , where $X \sim N(\mu, \sigma^2)$ for OFF <i>FLC</i> copy.
timestep	1 hour	Simulation time step.
cell file length	30 cells	Length of each simulated cell file, starting with initial cell (first cell after Quiescent Centre).

714

715 References

716 Ahmad, K., S. Henikoff and S. Ramachandran (2022). "Managing the Steady State Chromatin
717 Landscape by Nucleosome Dynamics." *Annu Rev Biochem* **91**.

718 Angel, A., J. Song, C. Dean and M. Howard (2011). "A Polycomb-based switch underlying
719 quantitative epigenetic memory." *Nature* **476**(7358): 105-108.

720 Baxter, C. L., S. Šviković, J. E. Sale, C. Dean and S. Costa (2021). "The intersection of DNA
721 replication with antisense 3' RNA processing in *Arabidopsis FLC* chromatin silencing."
722 *Proceedings of the National Academy of Sciences* **118**(28): e2107483118.

723 Beare, R. and G. Lehmann (2006). "The watershed transform in ITK - discussion and new
724 developments." *The Insight Journal* **202**: 1-24.

725 Beltran, M., C. M. Yates, L. Skalska, M. Dawson, F. P. Reis, K. Viiri, C. L. Fisher, C. R. Sibley, B.
726 M. Foster, T. Bartke, J. Ule and R. G. Jenner (2016). "The interaction of PRC2 with RNA
727 or chromatin is mutually antagonistic." *Genome Res* **26**(7): 896-907.

728 Berry, S. and C. Dean (2015). "Environmental perception and epigenetic memory:
729 mechanistic insight through FLC." *Plant J.*

730 Berry, S., C. Dean and M. Howard (2017). "Slow Chromatin Dynamics Allow Polycomb Target
731 Genes to Filter Fluctuations in Transcription Factor Activity." *Cell Systems* **4**(4): 445-
732 457.e448.

733 Berry, S., M. Hartley, T. S. G. Olsson, C. Dean and M. Howard (2015). "Local chromatin
734 environment of a Polycomb target gene instructs its own epigenetic inheritance." *eLife*
735 **4**: e07205.

736 Bintu, L., J. Yong, Y. E. Antebi, K. McCue, Y. Kazuki, N. Uno, M. Oshimura and M. B. Elowitz
737 (2016). "Dynamics of epigenetic regulation at the single-cell level." *Science* **351**(6274):
738 720-724.

739 Coulon, A., M. L. Ferguson, V. de Turris, M. Palangat, C. C. Chow and D. R. Larson (2014).
740 "Kinetic competition during the transcription cycle results in stochastic RNA
741 processing." *eLife* **3**: e03939.

742 Gazzani, S., A. R. Gendall, C. Lister and C. Dean (2003). "Analysis of the molecular basis of
743 flowering time variation in *Arabidopsis* accessions." *Plant Physiol.* **132**(2): 1107-1114.

744 Goodnight, D. and J. Rine (2020). "S-phase-independent silencing establishment in
745 *Saccharomyces cerevisiae*." *eLife* **9**: e58910.

746 Holoch, D., M. Wassef, C. Lökvist, D. Zielinski, S. Aflaki, B. Lombard, T. Héry, D. Loew, M.
747 Howard and R. Margueron (2021). "A cis-acting mechanism mediates transcriptional
748 memory at Polycomb target genes in mammals." *Nature Genetics* **53**(12): 1686-1697.

749 Ietswaart, R., S. Rosa, Z. Wu, C. Dean and M. Howard (2017). "Cell-size-dependent
750 transcription of *FLC* and its antisense long non-coding RNA *COOLAIR* explain cell-to-cell
751 expression variation." *Cell systems* **4**(6): 622-635. e629.

752 Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino and C. Dean (2000). "Molecular
753 analysis of FRIGIDA, a major determinant of natural variation in *Arabidopsis* flowering
754 time." *Science* **290**(5490): 344-347.

755 Koornneef, M., C. J. Hanhart and J. H. v. d. Veen (1991). "A genetic and physiological analysis
756 of late flowering mutants in *Arabidopsis thaliana*." *Molecular and General Genetics*
757 *MGG* **229**: 57-66.

758 Kueh, H. Y., A. Champhekar, S. L. Nutt, M. B. Elowitz and E. V. Rothenberg (2013). "Positive
759 Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation." *Science*
760 **341**(6146): 670-673.

761 Lee, I. and R. M. Amasino (1995). "Effect of vernalization, photoperiod and light quality on
762 the flowering phenotype of *Arabidopsis* plants containing the *FRIGIDA* gene." *Plant*
763 *Physiol.* **108**: 157-162.

764 Li, Z., D. Jiang and Y. He (2018). "FRIGIDA establishes a local chromosomal environment for
765 *FLOWERING LOCUS C* mRNA production." *Nature Plants* **4**(10): 836-846.

766 Lövkist, C., P. Mikulski, S. Reeck, M. Hartley, C. Dean and M. Howard (2021). "Hybrid
767 protein assembly-histone modification mechanism for PRC2-based epigenetic switching
768 and memory." *eLife* **10**: e66454.

769 Michaels, S. D., Y. He, K. C. Scortecci and R. M. Amasino (2003). "Attenuation of *FLOWERING*
770 *LOCUS C* activity as a mechanism for the evolution of a summer-annual flowering
771 behavior in *Arabidopsis*." *Proc. Natl. Acad. Sci. U.S.A.* **100**(17): 10102-10107.

772 Munsky, B. and G. Neuert (2015). "From analog to digital models of gene regulation." *Phys*
773 *Biol* **12**(4): 045004.

774 Python: Python Software Foundation, Python Language Reference, version 3.8.

775 Rahni, R. and K. D. Birnbaum (2019). "Week-long imaging of cell divisions in the *Arabidopsis*
776 root meristem." *Plant Methods* **15**(1): 30.

777 Rosa, S., S. Duncan and C. Dean (2016). "Mutually exclusive sense-antisense transcription at
778 FLC facilitates environmentally induced gene repression." *Nat Commun* **7**: 13031.

779 Saxton, D. S. and J. Rine (2022). "Distinct silencer states determine epigenetic states of
780 heterochromatin." *bioRxiv*: 2022.2002.2001.478725.

781 Schon, M., C. Baxter, C. Xu, B. Enugutti, M. D. Nodine and C. Dean (2021). "Antagonistic
782 activities of cotranscriptional regulators within an early developmental window set *FLC*
783 expression level." *Proceedings of the National Academy of Sciences* **118**(17):
784 e2102753118.

785 Stewart-Ornstein, J., C. Nelson, J. DeRisi, J. S. Weissman and H. El-Samad (2013). "Msn2
786 coordinates a stoichiometric gene expression program." *Curr Biol* **23**(23): 2336-2345.

787 Wu, Z., X. Fang, D. Zhu and C. Dean (2019). "Autonomous Pathway: *FLOWERING LOCUS C*
788 Repression through an Antisense-Mediated Chromatin-Silencing Mechanism." *Plant*
789 *Physiology* **182**(1): 27-37.

790 Yang, H., M. Howard and C. Dean (2014). "Antagonistic roles for H3K36me3 and H3K27me3
791 in the cold-induced epigenetic switch at *Arabidopsis FLC*." *Curr Biol* **24**(15): 1793-1797.

792 Zhao, Y., R. L. Antoniou-Kourounioti, G. Calder, C. Dean and M. Howard (2020).
793 "Temperature-dependent growth contributes to long-term cold sensing." *Nature*
794 **583**(7818): 825-829.

795