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Abstract

Microbial strains have closely related genomes but may have different phenotypes in the same
environment. Shotgun metagenomic sequencing can capture the genomes of all strains presentin a
community but strain-resolved analysis from shotgun sequencing alone remains difficult. We
developed an approach to identify and interrogate strain-level differences in groups of metagenomes.
We use this approach to perform a meta-analysis of stool microbiomes from individuals with and
without inflammatory bowel disease (IBD; Crohn's disease, ulcerative colitis; n = 605), a disease for
which there are not specific microbial biomarkers but some evidence that microbial strain variation
may stratify by disease state. We first developed a machine learning classifier based on compressed
representations of complete metagenomes (FracMinHash sketches) and identified genomes that
correlate with IBD subtype. To rescue variation that may not have been present in the genomes, we
then used assembly graph genome queries to recover strain variation for correlated genomes. Lastly,
we developed a novel differential abundance framework that works directly on the assembly graph to
uncover all sequence variants correlated with IBD. We refer to this approach as dominating set
differential abundance analysis and have implemented it in the spacegraphcats software package.
Using this approach, we identified five bacterial strains that are associated with Crohn’s disease. Our
method captures variation within the entire sequencing data set, allowing for discovery of previously
hidden disease associations.

Introduction

Sub-species groupings of microorganisms have functional differences that govern important genome-
environment interactions across diverse ecosystems. For example, ecotypes of Escherichia colihave
different gene complements that allow each group to thrive in diverse environments like the gut, soil,
and freshwater [1]. Metagenomic sequencing data from communities of microorganisms contain
information about specific strains present in a sample, but strain-resolved insights are lacking due to
incomplete references or inability of current tools to retrieve such information [2]. Here we use strain
to refer to within-species variation that generates taxonomic grouping below the species level.

Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic
inflammation of the intestines which may in part be the result of host-mediated inflammatory
responses to microorganisms [3]. IBD classically manifests in three subtypes depending on clinical
presentation, including Crohn'’s disease (CD), which presents as discontinuous patches of
inflammation throughout the gastrointestinal tract, ulcerative colitis (UC), which presents as
continuous inflammation isolated to the colon and rectum, and undetermined subtype, which cannot
be clinically or biologically distinguished as CD or UC. Diagnosis can be clinically difficult, with
ramifications associated with incorrect treatment resulting in unnecessary patient morbidity.
Detection of microbial signatures associated with IBD subtype may lead to improved diagnostic
criteria and therapeutics that extend periods of remission. However, such signatures have thus far
remained elusive [4].

The microbiome of CD and UC is heterogeneous, and studies that characterize the microbiome often
produce conflicting results [4]. This is likely in part driven by large inter- and intra-individual variation
[5], but is also attributable to non-standardized laboratory, sequencing, and analysis techniques used
to profile the gut microbiome [4]. Dysbiosis is frequently observed in IBD, particularly in CD

gut microbial diversity that results in an imbalance between protective and harmful microorganisms,
leading to intestinal inflammation [11].
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Strain-level differences may account for some heterogeneity in IBD gut microbiome profiles. A recent
investigation of time-series gut microbiome metagenomes found that one clade of Ruminococcus
gnawvus is enriched in CD [12]. Further, this clade produces an inflammatory polysaccharide [13,14].
While this clade is enriched in CD, its enrichment was previously masked from computational
discovery by concomitant decreases in other Ruminococcus species in IBD [12], highlighting the need
for strain-resolved analysis of metagenomic sequencing in the exploration of IBD gut microbiomes.

Given these features of the IBD gut microbiome, strain-resolved analysis may yield insights into the
dynamics of these communities. The two biggest obstacles to strain-level analysis of short read data
are the lack of strain representation in databases together with the challenge of haplotype-level
resolution in assembly and binning. While long reads have made strides toward resolving the latter
issue [15], in habitats like the gut where communities are dominated by single strains of microbes [16]
the largest barrier to strain-level analysis is the exclusion of data that does not match to reference
databases. New data analysis techniques are needed to make full use of strain level data.

K-mers, words of length kin nucleotide sequences, have previously been used for annotation-free
characterization of sequencing data [17,18,19]. K-mers are suitable for strain-resolved metagenome
analysis because their absence in reference databases does not preclude their analysis. Moreover, k-
mer analysis does not rely on marker genes which are largely conserved at the strain level, and k-mers
are suitable for species- and strain-level classification [20,21]. Investigating all k-mers in metagenomes
is more computationally intensive than reference-based approaches [22], but data-reduction
techniques like FracMinHash sketching make k-mer-based analysis scalable to large-scale sequence
comparisons [23,24]. FracMinHash sketching sacrifices the fine-scaled resolution of reference-based
techniques but is representative of the full sequencing sample and can make use of all available
genomes [21], thus including strain-variable accessory elements that may be associated with diseases

Like sketches, assembly graphs also represent k-mers in a metagenome, but assembly graphs retain
important sequencing context and can aggregate known functional and taxonomic annotations,
recovering critical information lost through sketching approaches [25,26]. While assembly graphs have
been leveraged in metagenome analyses [28], their large size precludes analysis at scale. The
spacegraphcats tool is designed to tackle this issue, implementing algorithms that efficiently reduce
the size of an assembly graph and enabling rapid querying and sequence retrieval [25]. These
algorithms center around dominating sets, which partition the graph into pieces by assigning every
node to a graph-localized neighborhood [25]. This simplified graph enables efficient queries: querying
with a sequence that overlaps any k-mer in a compact de Bruijn graph (cDBG) node returns all k-mers
(or all reads containing those k-mers) from the graph neighborhood. Genome queries often recover
sequences not in reference databases or de novo assemblies, which disproportionately include
sequences from both low coverage regions and highly variable portions of the graph (e.g. sequencing
reads that neither assemble nor bin) [25]. When a query has a containment index between 10 and
1073 with the assembly graph, 20-40% of a target genome sequence is recovered from a metagenome
query, and for containment indices above 107" this increases to >80% [25]. Containment index is
calculated by comparing the relative size of the intersection to the union between k-mers in a query
and k-mers in a metagenome [29].

Here, we develop k-mer- and assembly graph-based techniques to perform a meta-analysis of stool
Using these approaches, we detect a consistent signature of IBD subtype in fecal microbiome
metagenomes. We identify a small set of k-mers that are predictive of UC and CD, and find that these
k-mers originate from a core set of microbial genomes. We find that a stochastic loss of diversity in
this core set of microbial genomes is a hallmark of CD, and to a lesser extent, UC, as has been
previously demonstrated [4]. While reduced diversity is responsible for the majority of disease
signatures, we also find signatures of strains present in the disease state. Sequences associated with
these strains occurred more frequently in IBD metagenomes but are present in low abundance in
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nonIBD metagenomes as well. Our approach provides a solution for strain-level analysis of short read
metagenomic data sets, and our findings provide future avenues for research into IBD therapeutics.

Results

We developed a computational approach to resolve sub-species level differences between groups of
short read shotgun metagenomes (Figure 1). While our pipeline relies on many published algorithms,
we developed two new approaches that, when combined with existing tools, generated insights into
microbial sequences associated with IBD subtype. After consistent pre-processing, we used
FracMinHash sketching to produce subsampled k-mer abundance profiles of metagenomes that
reflected the sequence diversity in a sample [21,23], and used these profiles to perform metagenome-
wide k-mer association with IBD subtype. We refer to FracMinHash sketches as sketches or k-mer
abundance profiles, and for simplicity, continue referring to the sub-sampled k-mers in a sketch as k-
mers. Retaining only k-mers associated with IBD, we used a minimum set cover approach to identify
the genomes that best encompassed these k-mers [21].

Next, we developed an approach to perform differential abundance analysis directly on assembly
graphs in order to recover all sequences that were differentially abundant in each IBD subtype when
compared to nonIBD. Using the genomes identified by our k-mer association analysis, we first
performed assembly graph genome queries to recover all sequences associated with a given species
within a metagenome. For each genome query, we combined these sequences into a single assembly
graph, which we refer to as a metapangenome graph. We estimated the abundance of each piece in
this graph within each metagenome, and used these abundances to perform differential abundance
analysis.
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Figure 1: Overview of the metagenome analysis technique. Steps that are outlined in grey were developed in this
paper. Step 1: Using quality controlled sequencing reads from many metagenomes, we decomposed reads into k-mers
and subsample these k-mers using FracMinHash, thereby selecting k-mers that evenly represent the sequence diversity
within a sample. We then identified interesting k-mers using random forests, and associated these k-mers with genomes
in reference databases. Step 2: For each metagenome, we constructed a compact de Bruijn assembly graph (cDBG) that
contains all k-mers from a metagenome. We used dominating sets to carve the graph into pieces. We queried this graph
with genomes associated with interesting k-mers identified in Step 1, recovering sequence diversity nearby in the
assembly graph. We refer to these sequences as genome query neighborhoods. Step 2 is the workflow published in [25].
Step 3: We combined genome query neighborhoods for a single genome from all metagenomes. We constructed a
cDBG from these sequences, and used a dominating set with a large radius to carve the graph into large pieces. Here,
we diagram construction of =2 dominating set pieces, but in practice we used r=10. We estimated the abundance of k-
mers in each metagenome for each dominating set piece, and used these abundances to perform differential

abundance analysis.

We applied this approach to the analysis of IBD gut microbiomes via meta-analysis. Meta-analyses
have recently shown success in improving the power to detect microbial signatures of colorectal
cancer [32,33,34]. To this end, we identified studies that performed metagenomic sequencing of
individuals with CD, UC, or nonIBD and combined these to perform a meta-analysis (Table 1, Table
S1). All studies profiled fecal gut microbiomes via Illumina shotgun metagenome sequencing.
Individuals were from five distinct countries and seven cohorts (Table 1). In many studies, samples
were taken in time series to profile disease progression or individual response to treatment. In these
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cases we included only the first sample in the time series so organized interventions would not skew
our results. In addition, many of the nonIBD samples, particularly those from the iHMP, profiled sick
individuals that were not diagnosed with IBD, meaning some of these samples are not healthy
controls.

Table 1: Six IBD shotgun metagenome sequencing cohorts used in this meta-cohort analysis.

Cohort Name Country Total (o)) UC | nonIBD | Reference
iHMP IBDMDB USA 106 50 30 26 | [5]
PRJEB2054 MetaHIT Denmark, Spain 124 4 21 99 | [10]
SRP057027 NA Canada, USA 112 87 0 25 [8]
PRJNA385949 PRISM, STiNKi USA 17 9 5 31 [12]
PRINA400072 aPrT(ljSI\N/III_ILBLDD €P UsA, Netherlands 218 87 76 55 [30]
PRJNA237362 RISK North America 28 23 0 51 [31]

Total 605 260 132 213

K-mers are weakly predictive of IBD subtype

We first sought an approach to compare many metagenomes without relying on reference databases,
de novo assembly, or annotations. We reasoned that FracMinHash sketches randomly subsample k-
mers to allow comparisons, which may provide an unbiased approach to quickly compare across
many metagenomes. In total, we profiled 7,376,151 subsampled k-mers across all samples in all
cohorts, representing approximately 14 billion distinct k-mers in the original samples.

We detected variation correlated with IBD diagnosis in k-mer profiles of gut metagenomes from
different cohorts. We calculated a pairwise distance matrix using angular distance between k-mer
abundance profiles to assess sample diversity. We performed principle coordinate analysis and
PERMANOVA with this distance matrix (Figure 2 A, B), using the variables study accession, diagnosis,
library size, and number of k-mers observed in a sample (Figure 2 B). Study accounted for highest
variation, emphasizing that technical artifacts or cohort diversity can introduce strong signals that
may influence heterogeneity in results across IBD microbiome studies but that can be mitigated
through meta-analysis [32]. The number of k-mers observed in a sample accounted for the second
highest variation, possibly reflecting reduced diversity in stool metagenomes of CD and UC patients
(reviewed in [35]). Diagnosis accounted for a substantial amount of variation as well, indicating that
there is a small but detectable signal of IBD subtype in stool metagenomes.

To evaluate whether the variation captured by diagnosis is predictive of IBD subtype, we built random
forest classifiers to predict CD, UC, or nonIBD subtype. To assess whether disease signatures
generalize across study populations, we used a leave-one-study-out cross-validation approach where
we built and optimized a classifier using five cohorts and validated on the sixth. We built each model
six times to hone in on cross-study and cross-model signal. Given the high-dimensional structure of
this data set (e.g. many more k-mers than metagenomes), we first used the vita method of variable
selection to narrow the set of predictive k-mers in the training set [36,37]. Variable selection reduced
the number of k-mers used in each model by two orders of magnitude, from 7,376,151 to 28,684-
41,701 (mean = 35,673.1, sd = 4090.3) (Figure 2 C).

Using this reduced set of k-mers, we optimized each random forests classifier on the training set,
producing 36 optimized models. We validated each model on the left-out study. The accuracy on the
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validation studies ranged from 49%-77% (Figure 2 D), outperforming a previously published model
built on metagenomic data alone [30].

A study B
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Figure 2: Long nucleotide k-mers retain information about IBD subtype classification. A. Principal coordinate
analysis of distance matrices obtained from comparing FracMinHash sketches with abundances and B. PERMANOVA
results that explain the variance in the principal coordinate analysis. Number of k-mers refers to the number of k-mers
in a sketch, while library size refers to the number of raw reads per sample. All tests were significant at p <.001. C. Box
plots indicating the number of k-mers used to build each random forests model. Variable selection using the vita
method reduced the number of k-mers used to build each model. D. Heatmap indicating accuracy of each model on the
left-out validation study. Model performance varied by validation study, but models predicted IBD subtype better than
chance (1/3).

To understand which genomes were responsible for disease signatures detected by our models, we
anchored k-mers in the models against genomes in reference databases using sourmash gather [21].
Sourmash gather determines the minimum set of genomes in a database necessary to cover all of the
k-mers in a query [21]. We used the GTDB rs202 representatives database, which contains bacterial
and archaeal genomes, and the GenBank viral, fungal, and protozoa databases. We found that a
substantial fraction of genomes were shared between models, indicating there is a consistent
biological signal captured among classifiers: of 3,889 total genomes detected across all classifiers, 360
genomes were shared between all classifiers (Figure 3, Figure S1, Table S2). The presence of shared
k-mers between classifiers indicates that there is a consistent biological signal in metagenomes for
IBD subtype between cohorts.
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K-mers that anchored to these shared genomes represented 65% of all k-mers used to build the
optimized classifiers, but accounted for an outsize proportion of variable importance in the optimized
classifiers. After normalizing variable importance across classifiers, 74% of the total variable
importance was held by these k-mers. These k-mers contribute a large fraction of predictive power for
classification of IBD subtype, and the genomes in which they are found represent a microbial core
that contains predictive power in IBD subtype classification.

Given that 360 genomes anchored the majority of k-mers and variable importance across all models,
we were curious whether a smaller number of genomes could still retain the majority of variable
importance. Limiting genomes to those that could hold at least 1% of the normalized variable
importance, we found that 54 genomes accounted for 50% of the variable importance (Figure 3,
Figure S1, Figure S2, Table S2). We assumed these genomes represent the strongest candidates for
discriminating IBD subtype and focused on them for the remainder of our analyses.
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Figure 3: Tree of bacterial species that were predictive of IBD subtype in all models. Nodes are summarized to the
genus level. All taxa up to the class level are labelled. Taxa that could account for at least 1% of the normalized variable
importance across random forests models are colored and labelled. Node size and node color reflect potential
normalized variable importance attributable to each taxonomic lineage with larger node sizes and darker color
representing larger variable importance; while normalized variable importance across models sums to one, some
sequences are shared across genomes making the total potential variable importance across all genomes larger than
one.

Genome queries into metagenome assembly graphs recover
neighborhoods of sequence variation and establish species
umbrellas
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While we were able to identify the majority of k-mers that were important for predicting IBD subtype,
26% of k-mers remained unannotated. We hypothesized that these k-mers represented strain variable
sequences not in reference databases but belonging to species represented by annotated k-mers. To
investigate this hypothesis, we performed genome queries on assembly graphs of each metagenome
using the 54 candidate genomes that discriminated IBD subtype (Figure 1). Assembly graph genome
queries recover sequences in a metagenome that match the query, as well as those that are nearby in
the assembly graph, making queries akin to but more general than read mapping against reference
genomes (Figure 1) [25]. The resulting genome query neighborhood represents a species-level
umbrella that contains sequence variation from the metagenome associated with a query.

After performing genome queries, we re-anchored k-mers against the resulting query neighborhoods
as well as the databases used previously. We observed that the fraction of unassigned k-mers
decreased from 26% to 8% (Figure 4), supporting our hypothesis that many of these k-mers are
sequence variants belonging to species identified in k-mers important for predicting IBD subtype. We
further observed that many other k-mers previously anchored by other genomes were reassigned to
the genome query neighborhoods (Figure 4). This suggests that the genome queries create species
umbrellas that represent sequence variation for the query genome itself as well as other closely
related genomes that occur within a metagenome.
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Figure 4: Alluvial plot depicting the set of genomes that anchored k-mers that were important for predicting
IBD subtype. The blocks on the left represent the breakdown of k-mer assignations from greedy exact matching against
databases alone, while the blocks on the right represent k-mer assignations after metagenome assembly graph queries.

IBD gut microbiomes have decreased diversity in strict
anaerobes that is punctuated by strain switches for some
facultative anaerobes

After recovering all sequences in metagenomes in the neighborhoods of the species that discriminate
IBD subtypes, we next sought to determine the specific genome segments that were differentially
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abundant in IBD. Differential abundance analysis is a common step in metagenome analysis, however
it is typically applied to gene counts [38,39], which requires assembly or mapping prior to abundance
estimation. To avoid assembly or mapping and the accompanying loss of reads [40], we developed an
abundance estimation approach that works directly on the assembly graphs, enabling differential
abundance analysis from the assembly graph. Our abundance estimation approach was based on r-
dominating sets, an algorithm introduced in [25] that efficiently computes the dominating nodes in a
cDBG so that every node is no more that distance rfrom a dominator. The dominating set is used to
carve the graph into pieces, each of which contains one dominating node. Here, we first build a
species-level assembly graph that contains neighborhood sequences for a given genome across all
metagenomes, which we call a metapangenome graph. We then partition the graph into pieces using
a large radius (r=10). The large radius carves the graph into pieces that average 103 k-mers in size.
We next estimated the abundance of each piece within each metagenome using average k-mer
abundance. We also annotated the graph pieces using using k-mer overlap between genes of known
function and graph pieces. Using this information, we performed dominating set differential
abundance analysis using corncob [41], a statistical package that tests for differential relative
abundance in the presence of variable sequencing depth and excessive zeroes for unobserved
observations, conditions which occur in abundances from dominating sets. We tested differential
abundance at the 5% significance level after correcting for multiple testing (see methods).

We applied this method for each of our genome queries, building 54 metapangenome graphs and
performing dominating set differential abundance analysis on each. We tested for differential
abundance in pieces that occurred in at least 100 metagenomes, since we sought differences that
characterized the majority of our samples within a group. Note that corncob fits a model for each
dominating set piece and therefore does not require abundance information for all pieces [41]. On
average, this condition was met in 6.4% of dominating set pieces. Focusing on pieces that occurred in
many metagenomes increased the average piece size to 1088 k-mers, which is similar to the average
bacterial gene length of approximately 1000 base pairs [42] and should enable biologically meaningful
comparisons across groups.


https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

(@]
O

ucC

Faecalibacterium sp900539885
Faecalibacterium prausnitzii_D
Faecalibacterium prausnitzii_F
Faecalibacterium sp900539945
Faecalibacterium praushitzii
Faecalibacterium prausnitzii_J
Faecalibacterium prausnitzii_A
Faecalibacterium sp900765705
Faecalibacterium prausnitzii_H
Faecalibacterium prausnitzii_E
Faecalibacterium prausnitzii_C
Faecalibacterium sp900758465
Faecalibacterium prausnitzii_G
Gemmiger qucibialis

Gemmiger formicilis
Angelakisella massiliensis
Ruminococcus_D bicirculans
Ruminococcus_E bromii_B
Ruminococcus_E bromii
Anaeromassilibacillus sp002159845

—
_— Flavonifractor sp000508885
Flavonifractor plautii

family

® Acutalibacteraceae

® Bacteroidaceae

® [ achnospiraceae
Lawsonibacter sp900066825
NK3BS8 sp900758315
Dysosmobacter welbionis
ER4 sp000765235
CAG-170 sp900556635
CAG-170 sp900545925
Agathobacter sp900557055
Agathobacter faecis
Agathobacter sp000434275
Agathobacter rectalis
Roseburia hominis
Roseburia inulinivorans
Roseburia intestinalis
RUG115 sp900066395
Acetatifactor sp900066565
Acetatifactor sp900772845
Acetatifactor sp003447295
Acetatifactor sp900066365
Ruminococcus_B gnavus
Lachnospira sp900316325
Lachnospira eligens_A
TFO1-11 sp003529475
Enterocloster clostridioformis
Enterocloster clostridioformis_A
Enterocloster bolteae
Enterocloster sp005845215
CAG-81 sp900066785
CAG-81 sp900066535

® QOscillospiraceae

®  Peptostreptococcaceae

Ruminococcaceae

abundance

increased

decreased

no statistically
significant change

a—— ] Romboutsia timonensis
I_! Bacteroides ovatus
Bacteroides xylanisolvens

Le Phocaeicola sp900554435 |

00255075 00255075
percent of dominating set pieces

Figure 5: Dominating set differential abundance analysis revealed genome segments that were significantly

different in CD and UC compared to nonIBD. Results are organized by GTDB taxonomy, with a tree representing the
54 species and colored by family on the far left. The percent of dominating set pieces tested is labelled in grey, and the
percent of significantly differentially abundant pieces are colored by increased (blue) or decreased (brown) abundance.

We found that the majority of species decreased in abundance in CD, and to a lesser extent, UC
(Figure 5). Many of these species are generally regarded as beneficial bacteria. For example, nine of
the 54 genomes we investigated were Faecalibacterium prausnitzii, the phylogroups of which are
separated in the GTDB taxonomy but combined into a single species in the NCBI taxonomy. F.
prausnitziiis a key butyrate producer in the gut and plays a crucial role in reducing intestinal
inflammation [43]. Similarly, Acetatifactor is a bile-acid producing bacteria associated with a healthy
gut, but limited evidence has associated it with decreased abundance in IBD [44]. These species, as
well as others that decreased in abundance in IBD, are strictly anaerobic (Figure 5), so these observed


https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

trends are consistent with a shift toward oxidative stress during disease that is intolerable for many
gut microbes [45].

A substantial fraction of dominating set pieces were more abundant in CD than nonIBD in five
metapangenome graphs (Figure 5). These graphs represented sequences from species R. gnavus,
Enterocloster bolteae, Enterocloster sp005845215, Enterocloster clostridioformis, and Enterocloster
clostridioformis_A. We posit that the increased abundance in some genomic segments amid the
decrease in abundance of others represents strain switching that occurs in CD.

In support of this, when we annotated the differentially abundant pieces using KEGG orthologs, we
found that in some cases pieces that were increased in abundance and pieces that were decreased in
abundance were annotated with the same ortholog (mean = 1453.8, sd = 727.2 pieces representing
mean = 64, sd = 23.8 orthologs per graph, Figure S3, Table S3). These genes likely represent the
portion of the core genome shared by the strain(s) that is more abundant in CD and the strain(s) that
is more abundant in nonIBD, but that is encoded by distinct sequences. Some shared annotations
encoded single copy marker genes [46]. To confirm that multiple strains of the same species were
represented by these sequences, we queried with these marker gene sequences, extracted the reads
associated with those graph pieces, and mapped the reads back to the marker gene sequence. We
then selected reads that aligned to the same portion of the marker gene and contained single
nucleotide variants, and BLASTed those reads against the NCBI nr database. For the subset of reads
that we tested, we confirmed that different strains of the same species were the best matches. This
demonstrates that mulitple strains of the same species were present in each species graph, and that
these strains were differentially abundant in CD compared to nonIBD.

In contrast to the annotations that were identified among sequences that were increased and
decreased in abundance, many orthologs were only annotated among the pieces that were increased
in abundance in CD (mean = 1193.4, SD = 155.7, Table S4). Many of the same pathways were enriched
among these orthologs across the five species, including those associated with oxidative stress
response (cysteine and methionine metabolism, the pentose phosphate pathway) (Figure S3). The
oxidative branch of the pentose phosphate pathway regenerates NADPH, while cysteine is a precursor
for the antioxidant glutathione. Given this, we investigated the presence of reactive oxygen species-
scavenging orthologs [47]; sequences encoding superoxide dismutase (K04565), thioredoxin
reductase (K0O0384), and peroxiredoxin (K03386) were increased in abundance in CD for all five
species. Additionally, many enriched pathways were associated with virulence (quorum sensing,
flagellar assembly, bacterial chemotaxis, vancomycin resistance). Enrichment of specific metabolic
pathways is consistent with functional specialization of strains in different environmental niches [48].

Table 2: Maximum containment between sequences that were increased in abundance in CD and isolate genomes.

Metapangenome graph species Closest strain match con“::ixr::::::
Enterocloster clostridioformis Enterocloster clostridioformis MSK.2.78 0.71
Enterocloster bolteae [Clostridium] bolteae 90A5 0.68
Ruminococcus_B gnavus [Ruminococcus] gnavus RJX1122 0.66
Enterocloster clostridioformis_A [Clostridium] clostridioforme AGR2157 0.61
Enterocloster sp005845215 Enterocloster clostridioformis MSK.2.78 0.50

While dominating set differential abundance analysis identified genomic sequences that were more
abundant in CD, the nature of short shotgun metagenomic sequencing reads precludes haplotype
phasing or lineage resolution [15], meaning our results likely represent genomic variants from many
distinct genomes that would not all naturally occur together in a single isolate genome. Therefore, to
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identify isolate genomes that contain the genomic sequences that were more abundant in CD, we
searched the GTDB rs202 database with the significantly differentially abundant sequences. On
average, the top matching isolate genome contained 63% of the sequences that were more abundant
in CD (Table 2).

One aerotolerant clade of R. gnavus was previously identified as being enriched in CD [12], and has
been shown to produce a polysaccharide that induces the inflammatory cytokine TNF-alpha [13]. The
three isolate genomes we identified as containing the highest amount of sequences that were
increased in abundance in CD were among those that have been shown to induce TNF-alpha secretion
(RJX1122, RIX1127, RJX1128) [14]. This suggests our method identified the same strain switch
previously discovered to occur in IBD [12,13,14]. In further support of this, we found that 17 of the 23
genes in the operon that encodes the proteins responsible for producing the inflammatory
polysaccharide were annotated in the dominating set pieces that were more abundant in CD. These
genes were encoded across 66 dominating set pieces, with multiple neighboring genes in the operon
annotated in 6 of these dominating set pieces.

For two of the four Enterocloster species, the top matching isolate sequence was the same
(Enterocloster clostridioformis MSK.2.78). This points to overlap in the genomic sequences we
identified as differentially abundant across these metapangenome graphs. Indeed, the average
Jaccard similarity between the sequences that were increased in CD in the Enterocloster graphs was
0.53, while the average max containment was 0.74. Given that a Jaccard similarity of 0.1 is required to
recover at least 80% of a genome via assembly graph query, which approximately corresponds to an
average nucleotide identity of 93% [49], and that species boundaries in GTDB are drawn at 95%
average nucleotide identity [50], the metapangenome graphs likely store genomic sequences
associated with both the query genome species and closely related species. However, the
metapangenome graphs presented here, as well as the differentially abundant sequences, contain
both common and distinct nucleotide sequences, suggesting that multiple closely related
Enterocloster species/genomes are associated with CD. Taken together, our ability to recover a
previously validated sub-species association with IBD (R. gnavus) suggests that the three new
Enteroclosterisolates we identified should be further investigated for their potential role in eliciting
CD-like symptoms in the gut.

Genomic sequences that are differentially abundant in IBD are
not exclusive to IBD

Since genome sequences belonging to many species were differentially abundant from nonIBD in CD
and UC, we next investigated whether there was a disease-specific microbiome in CD or UC - i.e.,
whether there are sequences from a species that were only observed in IBD. Using FracMinHash
sketches from the differentially abundant sequences, we identified the differentially abundant
sequences in each metagenome and compared their occurrence and distribution across diagnoses.

In general, we found no evidence for disease-specific sequences among the 54 species we
investigated. Using FracMinHash sketches of the differentially abundant sequences for each species,
we counted the number of k-mers that were observed in different sets of diagnoses. We observed
almost all sequences in at least some CD, UC, and nonIBD metagenomes (Figure 6, Figure S4). Across
all species, an average of 14.9% differentially abundant k-mers were unobserved in either CD, UC, or
nonlBD. These results in part explain heterogeneous study findings in previous IBD gut microbiome
investigations.
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Figure 6: Most differentially abundant sequences occur in metagenomes of individuals diagnosed with CD, UC
and non-IBD. Upset plot of k-mers that were increased in abundance in CD and their occurrence in CD, UC, and nonIBD
metagenomes. The bottom half of the plot highlights which diagnoses are included in each set, while the bar chart in the
top half of the plot shows the number of k-mers that were observed in that set. The bar chart is colored by the
metapangenome species graph in which the sequence was differentially abundant.

Discussion

In this paper, we present an assembly-free metagenome analysis framework for group association
discovery that is minimally reliant on reference databases. Our approach uses k-mers to discover
genomes associated with groups of metagenomes, and then recovers sequence variation from those
genomes and closely related genomes in the metagenomes. These sequences are organized in a
“metapangenome graph” which is then used to perform differential abundance analysis to discover
specific genomic sequences that differ between groups.

We applied this method to perform a meta-analysis of fecal gut microbiome metagenomes from
individuals with CD, UC, and nonIBD and uncovered cross-study microbial signatures of IBD subtype.
The underlying etiology of IBD remains poorly understood with inconsistent microbiological findings
produced from different studies [4]. The signatures we identified demonstrate consistent loss of
diversity of specific microorganisms, particularly in CD. Among the background of generalized loss of
diversity, we observed that some genomic sequences increased in abundance while others decreased
in abundance for five species in CD. This pattern is consistent with strain switching, where one strain
is more abundant in CD and another is more abundant in nonIBD. For one species we identified, R.
gnavus, this strain switching behavior was previously discovered via isolate sequencing and
metagenome mapping [12]. Our recovery of this pattern demonstrates the utility of our approach for
discovering sub-species level associations from metagenomic sequences alone, and opens the door
for additional discovery. Indeed, we identified four additional species where strain switching occurred
in CD.
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While our approach identified genomic sequences that were more abundant in CD than nonIBD, the
nature of short read sequences precludes haplotype or lineage resolution directly from the
metagenomic data analyzed here. To circumvent this issue, we identified isolate genomes that
encoded all of the genomic sequences that were more abundant in CD. These isolate genomes
represent candidate organisms for further research into the microbial component of CD
pathophysiology. As high fidelity long read sequencing of microbiomes becomes increasingly common
[15], long reads can be integrated into the approaches introduced here, enabling lineage-resolved
association detection directly from sequencing data.

While we found conserved signatures in IBD subtype, we found no evidence for disease-specific
sequences within the gut microbiome. The observation that almost all differentially abundant
sequences for a given species occur in CD, UC, and nonIBD suggests the presence of ecotypes -
subspecies that are adapted to different environments - rather than pathotypes - subspecies
associated with a specific disease. These patterns in part explain the inconsistent results generated in
IBD subtype characterization, where no consistent microbiological signal has emerged in human gut
microbiomes other than loss of diversity [4].

Our models consistently performed the most poorly on the iHMP cohort. The iHMP tracked the
emergence and diagnosis of IBD through time series profiling of emergent cases [5]. We selected the
first sample in each time series for this analysis, and given the relatively poor performance of these
models, this may suggest that disease onset is a distinct biological process. However, the inclusion of
the iIHMP cohort in this analysis ensured that not all nonIBD samples were healthy controls and some
fraction were symptomatic cases that did not result in an IBD diagnosis [5].

While we apply our pipeline to IBD classification, it is extensible to other large meta cohorts of
metagenomic sequencing data. This method may be particularly suitable for diseases such as
colorectal cancer, where a recent meta-analysis using a marker gene approach was successful in
classifying colorectal samples from healthy controls [32]. Beyond classification of disease, our method
may bring strain-level resolution and generate hypotheses for further research. This may be
particularly useful in the context of tumor microbiomes as previous research has demonstrated that
strain-specific Helicobacter pyloriand human papillomaviruses are risk factors for or directly transmit
certain cancers [51]. Strain-resolved methods may further this area of research.

The methods we used to perform the k-mer association analysis are modular and may be improved
by substituting parts of the pipeline with different approaches. For example, we used abundances
from long nucleotide k-mers (k= 31) - which capture species-level sequence similarity [20] - as our
features. K-mers constructed from protein or other reduced alphabets may improve accuracy, as we
would expect more shared sequence content between metagenomes as well as a better
representation of functional content [52]. While this may improve classification accuracy, switching to
reduced alphabet k-mers may not be desirable in the context of strain-specific differences which may
be obscured by these degenerate representations. Similarly, while we used random forests to to
perform k-mer association analysis, other machine learning or statistical techniques may improve
classification accuracy. These approaches remain areas of future research.

The first part of the pipeline is disconnectable from the second part of the pipeline - that is, the
discovery of discriminatory genomes between groups is not a prerequisite for dominating set
differential abundance analysis as query genomes could be selected arbitrarily. Therefore, the
assembly graph differential abundance approach presented here could be applied to metagenomes
for samples originating from diverse environments. The requirements for the application of
dominating set differential abundance are threefold. First, there must be sufficient samples for
comparison (e.g., a minimum of three cases and three controls, with the typical caveats for small
sample sizes [53]). Second, we must have a genome with which to query the graph. And third, we
must have sufficient compute resources to run spacegraphcats [25]. These requirements make the
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application of dominating set differential abundance analysis available to metagenomes from diverse
environments, not just the well-studied human gut microbiome.

While we present an initial pipeline that enables differential abundance analysis directly on assembly
graphs, we identified several areas where our approach could be improved. First, implementing
approaches to better control graph piece size would be beneficial. We heuristically selected r=10 to
build the metapangenome graphs because this radius produced dominating set pieces with
approximately the same number of k-mers as the average bacterial gene for pieces that were present
in many metagenomes. However, the radius needed to meet this condition may change depending on
the diversity of the sequencing reads used to build the metapangenome graph. Diversity increases
with the complexity of the sequenced community, sequencing depth, and the number of communities
observed. Algorithms that either automatically select a radius that achieves a user-specified average
piece size, or that produce more consistent piece sizes independent of diversity of the sequencing
data would provide finer control of the graph structure and subsequent sequence comparisons.
Further, switching from a cDBG to a de Bruijn graph as the base spacegraphcats graph structure could
lead to more consistent piece sizes; cDBGs have variable node sizes because they combine nodes
without branching paths, while every node in a de Bruijn graph contains one k-mer. Second,
improving RAM efficiency at high radii would enable more diversity to be represented in individual
graphs. In order to build the metapangenome graphs, we first hard-trimmed the input sequences to
remove low abundance k-mers, thereby decreasing the RAM needed to construct each graph.
Algorithmic changes that improve RAM efficiency at high radii would obviate the need for hard
trimming, and increase the amount of diversity that could be represented in a single graph. Similarly,
improved performance would allow dominating set differential abundance analysis to be performed
directly on groups of metagenomes without the need to first identify species of interest via genome
queries.

Methods

All code associated with our analyses is available at github.com/dib-lab/2020-ibd (DOI:
10.5281/zen0do.6783208). An example repository for dominating set differential abundance analysis
is available at github.com/dib-lab/2022-dominating-set-differential-abundance-example (DOI:
10.5281/zen0do.6783363).

IBD metagenome data acquisition and processing

We searched the NCBI Sequence Read Archive and BioProject databases for shotgun metagenome
studies that sequenced fecal samples from humans with Crohn'’s disease, ulcerative colitis, and
healthy controls. We included studies sequenced on Illlumina platforms with paired-end chemistries
and with sample libraries that contained greater than one million reads. For time series intervention
cohorts, we selected the first time point to ensure all metagenomes came from treatment-naive
subjects.

We downloaded metagenomic FASTQ files from the European Nucleotide Archive using the “fastq_ftp”
link and concatenated fast files annotated as the same library into single files. We also downloaded
iHMP samples from idbmdb.org. We used Trimmomatic (version 0.39) to adapter trim reads using all
default Trimmomatic paired-end adapter sequences ( ILLUMINACLIP:
{inputs/adapters.fa}:2:0:15) and lightly quality-trimmed the reads (MINLEN:31 LEADING:2
TRAILING:2 SLIDINGWINDOW:4:2)[54]. We then removed human DNA using BBMap and a masked
version of hg19 [55]. Next, we trimmed low-abundance k-mers from sequences with high coverage
using khmer's trim-low-abund.py [56].
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Using these trimmed reads, we generated FracMinHash signatures for each library using sourmash (k-
size 31, scaled 2000, abundance tracking on) [57]. FracMinHash sketching produces compressed
representations of k-mers in a metagenome while retaining the sequence diversity in a sample
[21,23]. This approach creates a consistent set of k-mers across samples by retaining the same k-mers
when the same k-mers were observed. This enables comparisons between metagenomes. We refer to
FracMinHash sketches as signatures, and to each sub-sampled k-mer in a signature as a k-mer. At a
scaled value of 2000, an average of one k-mer will be detected in each 2000 base pair window, and
99.8% of 10,000 base pair windows will have at least one k-mer representative. We selected a k-mer
size of 31 because of its species-level specificity [20]. We retained all k-mers that were presentin
multiple samples.

Principle Coordinate Analysis

We used Jaccard distance and angular similarity as implemented in sourmash compare to pairwise
compare FracMinHash signatures. We then used the dist() function in base R to compute distance
matrices. We used the cmdscale() function to perform principle coordinate analysis [58]. We used
ggplot2 and ggMarginal to visualize the principle coordinate analysis [59]. To test for sources of
variation in these distance matrices, we performed PERMANOVA using the adonis functionin the R
vegan package [60]. The PERMANOVA was modeled as ~ diagnosis + study accession +
library size + number of k-mers.

Random forests classifiers

We built random forests classifiers to predict CD, UC, and non-IBD status using FracMinHash
signatures. We transformed sourmash signatures into a k-mer (hash) abundance table where each
metagenome was a sample, each k-mer was a feature, and abundances were recorded for each k-mer
for each sample. We normalized abundances by dividing by the total number of k-mers in each
FracMinHash signature. We then used a leave-one-study-out validation approach where we trained six
models, each of which was trained on five studies and validated on the sixth. We built each model six
times, each time using a different random seed. To build each model, we first performed vita variable
selection on the training set as implemented in the Pomona and ranger packages [37,61]. Vita variable
selection reduces the number of variables (e.g. k-mers) to a smaller set of predictive variables through
selection of variables with high cross-validated permutation variable importance [36]. It is based on
permutation of variable importance, where p-values for variable importance are calculated against a
null distribution that is built from variables that are estimated as non-important [36]. This approach
retains important variables that are correlated [36,62], which is desirable in omics-settings where
correlated features are often involved in a coordinated biological response, e.g. part of the same
operon, pathways, or genome [63,64]. Using this smaller set of k-mers, we then built an optimized
random forests model using tuneRanger [65]. We evaluated each validation set using the optimal
model, and extracted variable importance measures for each k-mer for subsequent analysis. To make
variable importance measures comparable across models, we normalized importance to 1 by dividing
variable importance by the total number of k-mers in a model and the total number of models.

Anchoring predictive k-mers to genomes

We used sourmash gather with parameters k 31 and --scaled 2000 to anchor predictive k-
mers to known genomes [57]. Sourmash gather searches a database of known k-mers for matches
with a query [21]. We used the sourmash GTDB rs202 representatives data base
(https://osf.io/w4dbcm/download). To calculate the cumulative variable importance attributable to a
single genome, we used an iterative winner-takes-all approach. The genome with the largest fraction
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of predictive k-mers won the variable importance for all k-mers contained within its genome. These k-
mers were then removed, and we repeated the process for the genome with the next largest fraction
of predictive k-mers. To genomes that were predictive in all models, we took the union of predictive
genomes from the 36 models. We filtered this set of genomes to contain only those genomes with a
cumulative normalized variable importance greater than 1%.

r-dominating sets

The original spacegraphcats publication defined the dominating set as a set of nodes in the compact
de Bruijn graph (cDBG) such that every node is a distance-1 neighbor of a node in the dominating set
[25]. However, the algorithms as implemented allow this distance to be flexible and tunable [25]. We
refer to the largest distance that any node may be from a member of the dominating set as the
radius, r. Increasing the radius increases the average piece size while reducing the total number of
pieces in the graph.

Genome neighborhood queries with spacegraphcats

To recover sequence variation associated with genomes that were correlated with IBD subtype, we
used spacegraphcats search to retrieve k-mers in the compact de Bruijn graph neighborhood of
each genomes (r=1, k=31) [25]. We then used spacegraphcats extract_reads to retrieve the
reads and extract_contigs to retrieve unitigs in the cDBG that contained those k-mers,
respectively.

Construction of the metapangenome graph

After retrieving genome neighborhood sequences from each metagenome, we combined these
sequences to build a single metapangenome graph (r= 10, k= 31). We increased the radius of the
metapangenome graph to produce larger level 1 dominating set pieces and to overcome highly
articulated cDBGs resulting from an abundance of sequencing data. While working with single-species
metapangenome graphs from many metagenomes reduced the graph size compared working with
complete metapangenome graphs, we performed two preprocessing steps prior to the
metapangenome graph generation. We combined all genome query neighborhood reads and
performed digital normalization and then truncated reads at k-mer that was not present in the data
set at least 4 times. These are heuristic steps that we believe are unlikely to remove biologically
important sequences.

Annotating the metapangenome graph

We implemented an approach to annotate dominating set pieces in spacegraphcats assembly graph.
This approach is implemented in spacegraphcats as multifasta_queries . This approach relies on
k-mer overlap between sequences in a reference multifasta file and nodes in the cDBG and is
executed in a two-step approach. First, search.index_cdbg_by_multifasta.py identifies all
cDBG nodes that match to the k-mers in a FASTA sequence and promotes those annotations to all
cDBG records in the dominating set piece. Then, search/extract_cdbg_by_multifasta.py
extracts and summarizes information about these annotations and outputs it to a CSV file.

We applied this annotation approach to the metapangenome graphs for species that were more
abundant in CD. To generate a reference multifasta gene file to transfer annotations from, we first
downloaded all genomes of the species represented in the metapangenome graph and in the GTDB
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rs202 database. We annotated open reading frames (ORFs) in these genomes using bakta [66],
combined and clustered predicted ORFs using cdhit-est [67], and performed ortholog annotation
using eggnog [68].

Calculating abundances metagenome abundances of
dominating set nodes in the metapangenome graph

We implemented an approach to calculate k-mer abundances for each graph piece in the level 1
dominating set. This approach is implemented in spacegraphcats in
search/count_dominator_abundance.py . Using a spacegraphcats assembly graph and a set of
reads from a metagenome, the abundance of each dominating set piece is calculated by summing the
abundance of every k-mer in that piece within the metagenome.

We applied this abundance estimation approach to each metapangenome graph, estimating the
abundance of each dominating set piece within each metagenome.

Performing dominating set differential abundance analysis

We used Corncob to perform dominating set differential abundance analysis [41]. Corncob tests for
differential relative abundance in the presence of variable sequencing depth and excessive zeroes for
unobserved observations, conditions which occur in abundances from dominating sets [41]. To focus
on the most common sequencing variants and to reduce runtimes, we first filtered to dominating set
pieces that were present in at least 100 (16.5%) metagenomes; corncob fits a model to each
dominating set piece, so it does not require abundance information for all pieces. We performed
differential abundance testing using the bbdml() function using a likelihood ratio test with formula
= ~ study_accession + diagnosis and formula_null = ~study_accession.We estimated
the number of k-mers in the quality controlled metagenome reads using ntcard and used this as the
denominator. We performed Bonferroni p value correction and used a significance cut off of 0.05.

To analyze the results of dominating set differential abundance analysis, we combined the
significantly differentially abundant piece information with the results from the mulitfasta query
annotations, and with the ortholog annotations for the multifasta query genomes. We focused our
analysis on KEGG orthologs. When a single gene was annotated by eggnog with multiple KEGG
orthologs, we selected the first match. We identified the set of KEGG orthologs that were annotated
among pieces that increased in abundance and pieces decreased in abundance in CD compared to
nonIBD. To identify single copy marker genes within this set, we used the marker gene sequences with
an average copy of one in [46]. We then selected at least one marker gene for each species, focusing
on rpl sequences that were only annotated on two differentially abundant pieces in the graph
(Enterocloster clostridioformis, rplT, Ruminococcus_B gnavus, rplQ; Enterocloster clostridioformis_A,
rplO, rplC; Enterocloster sp005845215, rplO; Enterocloster bolteae, rplC). We queried with the marker
gene sequence that was used to perform the multifasta annotation and extracted the reads
associated with that graph piece using spacegraphcats extract_reads . We then mapped the
extracted reads back to the query sequence using bwa mem [69]. We visualized alignments in the
Integrative Genomics Viewer [70] and selected reads that overlapped the same coordinates in the
reference gene but that had different complements of single nucleotide polymorphisms. We BLASTed
these reads using blastn against the NCBI nr database and found the best strain-level matches.

We next identified KEGG orthologs that were only annotated in the either the pieces that were
increased or decreased in abundance in CD compared to nonIBD. We performed KEGG enrichment
analysis using clusterProfiler enricher [71], using TERM2GENE as all KEGG orthologs with pathway
mappings and with argument maxGSSize = 500 . We considered pathways enriched to be enriched
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which had adjusted p values < 0 .05. Lastly, we searched for the presence of KEGG orthologs that
quench reactive oxygen species using orthologs defined in [47].

Searching for isolates that contained differentially abundant
genomic sequences

To identify isolate genomes that contained sequences that were in CD, we searched the GTDB rs202
database. We generated FracMinHash signatures (k = 31, scaled = 2000) of differentially abundant
sequences using sourmash sketch . We searched GTDB rs202 using sourmash search, using
parameter --max-containment . We filtered results to only include isolate genome sequences (e.g.,
removed metagenome-assembled genomes) and selected the top match as the best match.

Searching for metagenomes that contained differentially
abundant genome sequences

We intersected FracMinHash signatures (k= 31, scaled = 2000) of differentially abundant sequences
and query neighborhoods for each genome query, producing hashes that were differentially
abundant and observed within each metagenome. We combined these hashes across diagnosis
conditions (CD, UC, and nonIBD) and used the complexUpset R package to visualize the intersection
size across conditions.


https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

References

1. Genome sequencing of environmental <i>Escherichia coli</i> expands understanding of
the ecology and speciation of the model bacterial species
Chengwei Luo, Seth T Walk, David M Gordon, Michael Feldgarden, James M Tiedje, Konstantinos
T Konstantinidis
Proceedings of the National Academy of Sciences (2011-04-26) https://doi.org/cvhvmz
DOI: 10.1073/pnas.1015622108 - PMID: 21482770 - PMCID: PM(C3084108

2. Multiple levels of the unknown in microbiome research
Andrew Maltez Thomas, Nicola Segata
BMC Biology (2019-12) https://doi.org/gnm4t/
DOI: 10.1186/512915-019-0667-z - PMID: 31189463 - PMCID: PMC6560723

3. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead
Aleksandar D Kostic, Ramnik ] Xavier, Dirk Gevers
Gastroenterology (2014-05) https://doi.org/f2rgg]
DOI: 10.1053/j.gastro.2014.02.009 - PMID: 24560869 - PMCID: PMC4034132

4. Integrating omics for a better understanding of Inflammatory Bowel Disease: a step
towards personalized medicine
Manoj Kumar, Mathieu Garand, Souhaila Al Khodor
Journal of Translational Medicine (2019-12) https://doi.org/gnm4t8
DOI: 10.1186/512967-019-02174-1 - PMID: 31836022 - PMCID: PMC6909475

5. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
IBDMDB Investigators, Jason Lloyd-Price, Cesar Arze, Ashwin N Ananthakrishnan, Melanie
Schirmer, Julian Avila-Pacheco, Tiffany W Poon, Elizabeth Andrews, Nadim J Ajami, Kevin S
Bonham, ... Curtis Huttenhower
Nature (2019-05) https://doi.org/ggdbwc
DOI: 10.1038/s41586-019-1237-9 - PMID: 31142855 - PMCID: PMC6650278

6. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom
phylogenetic microarray:
Seungha Kang, Stuart E Denman, Mark Morrison, Zhongtang Yu, Joel Dore, Marion Leclerc, Chris
S McSweeney
Inflammatory Bowel Diseases (2010-12) https://doi.org/ckh8bd
DOI: 10.1002/ibd.21319 - PMID: 20848492

7. A decrease of the butyrate-producing species <i>Roseburia hominis</i> and
<i>Faecalibacterium prausnitzii</i> defines dysbiosis in patients with ulcerative colitis
Kathleen Machiels, Marie Joossens, Jodo Sabino, Vicky De Preter, Ingrid Arijs, Venessa Eeckhaut,
Vera Ballet, Karolien Claes, Filip Van Immerseel, Kristin Verbeke, ... Séverine Vermeire
Gut (2014-08) https://doi.org/f59nf3
DOI: 10.1136/gutjnl-2013-304833 - PMID: 24021287

8. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in
Pediatric Crohn’s Disease
James D Lewis, Eric Z Chen, Robert N Baldassano, Anthony R Otley, Anne M Griffiths, Dale Lee,
Kyle Bittinger, Aubrey Bailey, Elliot S Friedman, Christian Hoffmann, ... Frederic D Bushman
Cell Host & Microbe (2015-10) https://doi.org/f7zp6n
DOI: 10.1016/].chom.2015.09.008 - PMID: 26468751 - PMCID: PMC4633303



https://doi.org/cvhvmz
https://doi.org/10.1073/pnas.1015622108
https://www.ncbi.nlm.nih.gov/pubmed/21482770
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084108
https://doi.org/gnm4t7
https://doi.org/10.1186/s12915-019-0667-z
https://www.ncbi.nlm.nih.gov/pubmed/31189463
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560723
https://doi.org/f2rggj
https://doi.org/10.1053/j.gastro.2014.02.009
https://www.ncbi.nlm.nih.gov/pubmed/24560869
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034132
https://doi.org/gnm4t8
https://doi.org/10.1186/s12967-019-02174-1
https://www.ncbi.nlm.nih.gov/pubmed/31836022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909475
https://doi.org/ggd6wc
https://doi.org/10.1038/s41586-019-1237-9
https://www.ncbi.nlm.nih.gov/pubmed/31142855
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650278
https://doi.org/ckh8bd
https://doi.org/10.1002/ibd.21319
https://www.ncbi.nlm.nih.gov/pubmed/20848492
https://doi.org/f59nf3
https://doi.org/10.1136/gutjnl-2013-304833
https://www.ncbi.nlm.nih.gov/pubmed/24021287
https://doi.org/f7zp6n
https://doi.org/10.1016/j.chom.2015.09.008
https://www.ncbi.nlm.nih.gov/pubmed/26468751
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633303
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

10.

11.

12.

13.

14.

15.

16.

17.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Genetic risk, dysbiosis, and treatment stratification using host genome and gut
microbiome in inflammatory bowel disease

Ahmed Moustafa, Weizhong Li, Ericka L Anderson, Emily HM Wong, Parambir S Dulai, William |
Sandborn, William Biggs, Shibu Yooseph, Marcus B Jones, Craig ] Venter, ... Brigid S Boland
Clinical and Translational Gastroenterology (2018-01) https://doi.org/gcttdv

DOI: 10.1038/ctg.2017.58 - PMID: 29345635 - PMCID: PMC5795019

A human gut microbial gene catalogue established by metagenomic sequencing

MetaHIT Consortium, Junjie Qin, Ruigiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer
Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, Nicolas Pons, Florence Levenez, ...
Jun Wang

Nature (2010-03) https://doi.org/dpw2s3

DOI: 10.1038/nature08821 - PMID: 20203603 - PMCID: PMC3779803

Mechanisms and consequences of intestinal dysbiosis
GAdrienne Weiss, Thierry Hennet

Cellular and Molecular Life Sciences (2017-08) https://doi.org/gj9fxf
DOI: 10.1007/s00018-017-2509-x - PMID: 28352996

A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients
Andrew Brantley Hall, Moran Yassour, Jenny Sauk, Ashley Garner, Xiaofang Jiang, Timothy
Arthur, Georgia K Lagoudas, Tommi Vatanen, Nadine Fornelos, Robin Wilson, ... Curtis
Huttenhower

Genome Medicine (2017-12) https://doi.org/gnm4t9

DOI: 10.1186/s13073-017-0490-5 - PMID: 29183332 - PMCID: PMC5704459

<i>Ruminococcus gnavus</i>, a member of the human gut microbiome associated with
Crohn’s disease, produces an inflammatory polysaccharide

Matthew T Henke, Douglas ] Kenny, Chelsi D Cassilly, Hera Vlamakis, Ramnik J Xavier, Jon Clardy
Proceedings of the National Academy of Sciences (2019-06-25) https://doi.org/ghzzmg

DOI: 10.1073/pnas.1904099116 - PMID: 31182571 - PMCID: PMC6601261

Capsular polysaccharide correlates with immune response to the human gut microbe
<i>Ruminococcus gnavus</i>

Matthew T Henke, Eric M Brown, Chelsi D Cassilly, Hera Vlamakis, Ramnik ] Xavier, Jon Clardy
Proceedings of the National Academy of Sciences (2021-05-18) https://doi.org/gnq78g

DOI: 10.1073/pnas.2007595118 - PMID: 33972416 - PMCID: PMC8157926

Generating lineage-resolved, complete metagenome-assembled genomes from complex
microbial communities

Derek M Bickhart, Mikhail Kolmogorov, Elizabeth Tseng, Daniel M Portik, Anton Korobeynikov,
Ilvan Tolstoganov, Gherman Uritskiy, lvan Liachko, Shawn T Sullivan, Sung Bong Shin, ... Timothy
PL Smith

Nature Biotechnology (2022-05) https://doi.org/gn3fkx

DOI: 10.1038/s41587-021-01130-z - PMID: 34980911

Genomic variation landscape of the human gut microbiome

Siegfried Schloissnig, Manimozhiyan Arumugam, Shinichi Sunagawa, Makedonka Mitreva, Julien
Tap, Ana Zhu, Alison Waller, Daniel R Mende, Jens Roat Kultima, John Martin, ... Peer Bork
Nature (2013-01) https://doi.org/j5d

DOI: 10.1038/nature11711 - PMID: 23222524 - PMCID: PMC3536929

Genome-wide association study identifies vitamin B <sub>5</sub> biosynthesis as a host
specificity factor in <i>Campylobacter</i>


https://doi.org/gctt4v
https://doi.org/10.1038/ctg.2017.58
https://www.ncbi.nlm.nih.gov/pubmed/29345635
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795019
https://doi.org/dpw2s3
https://doi.org/10.1038/nature08821
https://www.ncbi.nlm.nih.gov/pubmed/20203603
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779803
https://doi.org/gj9fxf
https://doi.org/10.1007/s00018-017-2509-x
https://www.ncbi.nlm.nih.gov/pubmed/28352996
https://doi.org/gnm4t9
https://doi.org/10.1186/s13073-017-0490-5
https://www.ncbi.nlm.nih.gov/pubmed/29183332
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704459
https://doi.org/ghzzmg
https://doi.org/10.1073/pnas.1904099116
https://www.ncbi.nlm.nih.gov/pubmed/31182571
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601261
https://doi.org/gnq78g
https://doi.org/10.1073/pnas.2007595118
https://www.ncbi.nlm.nih.gov/pubmed/33972416
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157926
https://doi.org/gn3fkx
https://doi.org/10.1038/s41587-021-01130-z
https://www.ncbi.nlm.nih.gov/pubmed/34980911
https://doi.org/j5d
https://doi.org/10.1038/nature11711
https://www.ncbi.nlm.nih.gov/pubmed/23222524
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536929
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

18.

19.

20.

21.

22.

23.

24.

25.

26.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Samuel K Sheppard, Xavier Didelot, Guillaume Meric, Alicia Torralbo, Keith A Jolley, David ] Kelly,
Stephen D Bentley, Martin CJ Maiden, Julian Parkhill, Daniel Falush

Proceedings of the National Academy of Sciences (2013-07-16) https://doi.org/f4562b

DOI: 10.1073/pnas.1305559110 - PMID: 23818615 - PMCID: PMC3718156

Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis
Veronika B Dubinkina, Dmitry S Ischenko, Vladimir | Ulyantsev, Alexander V Tyakht, Dmitry G
Alexeev

BMC Bioinformatics (2016-12) https://doi.org/gk7ks3

DOI: 10.1186/s12859-015-0875-7 - PMID: 26774270 - PMCID: PMC4715287

Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants
Daniel S Standage, CTitus Brown, Fereydoun Hormozdiari

iScience (2019-08) https://doi.org/ghfc63

DOI: 10.1016/).isci.2019.07.032 - PMID: 31377530 - PMCID: PMC6682328

MetaPalette: a <i>k</i> -mer Painting Approach for Metagenomic Taxonomic Profiling
and Quantification of Novel Strain Variation

David Koslicki, Daniel Falush

mSystems (2016-06-28) https://doi.org/gg3ghd

DOI: 10.1128/msystems.00020-16 - PMID: 27822531 - PMCID: PMC5069763

Lightweight compositional analysis of metagenomes with FracMinHash and minimum
metagenome covers

Luiz Irber, Phillip T Brooks, Taylor Reiter, NTessa Pierce-Ward, Mahmudur Rahman Hera, David
Koslicki, CTitus Brown

Bioinformatics (2022-01-12) https://doi.org/gn34zt

DOI: 10.1101/2022.01.11.475838

Multiple comparative metagenomics using multiset <i>k</i> -mer counting

Gaétan Benoit, Pierre Peterlongo, Mahendra Mariadassou, Erwan Drezen, Sophie Schbath,
Dominique Lavenier, Claire Lemaitre

Peer] Computer Science (2016-11-14) https://doi.org/gnm4vb

DOI: 10.7717/peerj-cs.94

Large-scale sequence comparisons with sourmash

NTessa Pierce, Luiz Irber, Taylor Reiter, Phillip Brooks, CTitus Brown
F1000Research (2019-07-04) https://doi.org/gfov84

DOI: 10.12688/f1000research.19675.1 - PMID: 31508216 - PMCID: PMC6720031

When the levee breaks: a practical guide to sketching algorithms for processing the flood
of genomic data

Will PM Rowe

Genome Biology (2019-12) https://doi.org/gf8bf]

DOI: 10.1186/s13059-019-1809-x - PMID: 31519212 - PMCID: PMC6744645

Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats
reveals hidden sequence diversity

CTitus Brown, Dominik Moritz, Michael P O'Brien, Felix Reidl, Taylor Reiter, Blair D Sullivan
Genome Biology (2020-12) https://doi.org/d4bb

DOI: 10.1186/s13059-020-02066-4 - PMID: 32631445 - PMCID: PMC7336657

A fast and agnostic method for bacterial genome-wide association studies: Bridging the
gap between k-mers and genetic events


https://doi.org/f4562b
https://doi.org/10.1073/pnas.1305559110
https://www.ncbi.nlm.nih.gov/pubmed/23818615
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718156
https://doi.org/gk7ks3
https://doi.org/10.1186/s12859-015-0875-7
https://www.ncbi.nlm.nih.gov/pubmed/26774270
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715287
https://doi.org/ghfc63
https://doi.org/10.1016/j.isci.2019.07.032
https://www.ncbi.nlm.nih.gov/pubmed/31377530
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682328
https://doi.org/gg3gbd
https://doi.org/10.1128/msystems.00020-16
https://www.ncbi.nlm.nih.gov/pubmed/27822531
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069763
https://doi.org/gn34zt
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/gnm4vb
https://doi.org/10.7717/peerj-cs.94
https://doi.org/gf9v84
https://doi.org/10.12688/f1000research.19675.1
https://www.ncbi.nlm.nih.gov/pubmed/31508216
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720031
https://doi.org/gf8bfj
https://doi.org/10.1186/s13059-019-1809-x
https://www.ncbi.nlm.nih.gov/pubmed/31519212
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744645
https://doi.org/d4bb
https://doi.org/10.1186/s13059-020-02066-4
https://www.ncbi.nlm.nih.gov/pubmed/32631445
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336657
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

27.

28.

29.

30.

31.

32.

33.

34.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre Mahé, Alex van Belkum, Vincent Lacroix,
Laurent Jacob

PLOS Genetics (2018-11-12) https://doi.org/gjjs4c

DOI: 10.1371/journal.pgen.1007758 - PMID: 30419019 - PMCID: PMC6258240

Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and
unexpected diversity in perchlorate-reducing communities

Tyler P Barnum, Israel A Figueroa, Charlotte | Carlstréom, Lauren N Lucas, Anna L Engelbrektson,
John D Coates

The ISME Journal (2018-06) https://doi.org/gdms93

DOI: 10.1038/s41396-018-0081-5 - PMID: 29476141 - PMCID: PM(C5955982

MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut
microbiota

Evgenii | Olekhnovich, Artem T Vasilyev, Vladimir | Ulyantsev, Elena S Kostryukova, Alexander V
Tyakht

DOI: 10.1093/bioinformatics/btx681 - PMID: 29092015

Improving MinHash via the containment index with applications to metagenomic
analysis

David Koslicki, Hooman Zabeti

Applied Mathematics and Computation (2019-08) https://doi.org/ghtgrv

DOI: 10.1016/j.amc.2019.02.018

Gut microbiome structure and metabolic activity in inflammatory bowel disease

Eric A Franzosa, Alexandra Sirota-Madi, Julian Avila-Pacheco, Nadine Fornelos, Henry | Haiser,
Stefan Reinker, Tommi Vatanen, ABrantley Hall, Himel Mallick, Lauren ] Mclver, ... Ramnik |
Xavier

Nature Microbiology (2019-02) https://doi.org/gf9727

DOI: 10.1038/541564-018-0306-4 - PMID: 30531976 - PMCID: PMC6342642

The Treatment-Naive Microbiome in New-Onset Crohn’s Disease

Dirk Gevers, Subra Kugathasan, Lee A Denson, Yoshiki Vazquez-Baeza, Will Van Treuren, Boyu
Ren, Emma Schwager, Dan Knights, Se Jin Song, Moran Yassour, ... Ramnik ] Xavier

Cell Host & Microbe (2014-03) https://doi.org/f5vq7x

DOI: 10.1016/j.chom.2014.02.005 - PMID: 24629344 - PMCID: PMC4059512

Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific
for colorectal cancer

Jakob Wirbel, Paul Theodor Pyl, Ece Kartal, Konrad Zych, Alireza Kashani, Alessio Milanese, Jonas
S Fleck, Anita Y Voigt, Albert Palleja, Ruby Ponnudurai, ... Georg Zeller

Nature Medicine (2019-04) https://doi.org/gfxrv9

DOI: 10.1038/s41591-019-0406-6 - PMID: 30936547 - PMCID: PMC7984229

Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial
diagnostic signatures and a link with choline degradation

Andrew Maltez Thomas, Paolo Manghi, Francesco Asnicar, Edoardo Pasolli, Federica Armanini,
Moreno Zolfo, Francesco Beghini, Serena Manara, Nicolai Karcher, Chiara Pozzi, ... Nicola Segata
Nature Medicine (2019-04) https://doi.org/gfxrvé

DOI: 10.1038/s41591-019-0405-7 - PMID: 30936548

A Metagenomic Meta-analysis Reveals Functional Signatures of Health and Disease in the
Human Gut Microbiome
Courtney R Armour, Stephen Nayfach, Katherine S Pollard, Thomas ] Sharpton


https://doi.org/gjjs4c
https://doi.org/10.1371/journal.pgen.1007758
https://www.ncbi.nlm.nih.gov/pubmed/30419019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258240
https://doi.org/gdms93
https://doi.org/10.1038/s41396-018-0081-5
https://www.ncbi.nlm.nih.gov/pubmed/29476141
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955982
https://doi.org/gcg2gv
https://doi.org/10.1093/bioinformatics/btx681
https://www.ncbi.nlm.nih.gov/pubmed/29092015
https://doi.org/ghtqrv
https://doi.org/10.1016/j.amc.2019.02.018
https://doi.org/gf9727
https://doi.org/10.1038/s41564-018-0306-4
https://www.ncbi.nlm.nih.gov/pubmed/30531976
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342642
https://doi.org/f5vq7x
https://doi.org/10.1016/j.chom.2014.02.005
https://www.ncbi.nlm.nih.gov/pubmed/24629344
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059512
https://doi.org/gfxrv9
https://doi.org/10.1038/s41591-019-0406-6
https://www.ncbi.nlm.nih.gov/pubmed/30936547
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984229
https://doi.org/gfxrv6
https://doi.org/10.1038/s41591-019-0405-7
https://www.ncbi.nlm.nih.gov/pubmed/30936548
https://doi.org/ggrn32
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

mSystems (2019-08-27) https://doi.org/ggrn32
DOI: 10.1128/msystems.00332-18 - PMID: 31098399 - PMCID: PMC6517693

Microbial genes and pathways in inflammatory bowel disease
Melanie Schirmer, Ashley Garner, Hera Vlamakis, Ramnik ] Xavier

Nature Reviews Microbiology (2019-08) https://doi.org/gf8tk6

DOI: 10.1038/s41579-019-0213-6 - PMID: 31249397 - PMCID: PMC6759048

A computationally fast variable importance test for random forests for high-dimensional

data

Silke Janitza, Ender Celik, Anne-Laure Boulesteix

Advances in Data Analysis and Classification (2018-12) https://doi.org/gd|8zn
DOI: 10.1007/s11634-016-0276-4

Evaluation of variable selection methods for random forests and omics data sets
Frauke Degenhardt, Stephan Seifert, Silke Szymczak

Briefings in Bioinformatics (2019-03-25) https://doi.org/gdz6nz

DOI: 10.1093/bib/bbx124 - PMID: 29045534 - PMCID: PMC6433899

Comparison of normalization methods for the analysis of metagenomic gene abundance

data

Mariana Buongermino Pereira, Mikael Wallroth, Viktor Jonsson, Erik Kristiansson
BMC Genomics (2018-12) https://doi.org/gdmzhp

DOI: 10.1186/512864-018-4637-6 - PMID: 29678163 - PMCID: PMC5910605

Statistical evaluation of methods for identification of differentially abundant genes in
comparative metagenomics

Viktor Jonsson, Tobias Osterlund, Olle Nerman, Erik Kristiansson

BMC Genomics (2016-12) https://doi.org/f3p6xv

DOI: 10.1186/s12864-016-2386-y - PMID: 26810311 - PMCID: PMC4727335

Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats
reveals hidden sequence diversity

CTitus Brown, Dominik Moritz, Michael P O'Brien, Felix Reidl, Taylor Reiter, Blair D Sullivan
Genome Biology (2020-12) https://doi.org/d4bb

DOI: doi.org/10.1186/513059-020-02066-4

Modeling microbial abundances and dysbiosis with beta-binomial regression
Bryan D Martin, Daniela Witten, Amy D Willis

The Annals of Applied Statistics (2020-03-01) https://doi.org/gg6825

DOI: 10.1214/19-a0as1283 - PMID: 32983313 - PMCID: PMC7514055

MetaGeneAnnotator: Detecting Species-Specific Patterns of Ribosomal Binding Site for
Precise Gene Prediction in Anonymous Prokaryotic and Phage Genomes
H Noguchi, T Taniguchi, T Itoh

DNA Research (2008-10-17) https://doi.org/frz7bm

DOI: 10.1093/dnares/dsn027 - PMID: 18940874 - PMCID: PMC2608843

Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics
Mireia Lopez-Siles, Sylvia H Duncan, LJesus Garcia-Gil, Margarita Martinez-Medina
The ISME Journal (2017-04) https://doi.org/f9kfz3

DOI: 10.1038/ismej.2016.176 - PMID: 28045459 - PMCID: PMC5364359

Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid

receptor-1 signaling to improve metabolism


https://doi.org/ggrn32
https://doi.org/10.1128/msystems.00332-18
https://www.ncbi.nlm.nih.gov/pubmed/31098399
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517693
https://doi.org/gf8tk6
https://doi.org/10.1038/s41579-019-0213-6
https://www.ncbi.nlm.nih.gov/pubmed/31249397
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759048
https://doi.org/gdj8zn
https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/gdz6nz
https://doi.org/10.1093/bib/bbx124
https://www.ncbi.nlm.nih.gov/pubmed/29045534
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433899
https://doi.org/gdmzhp
https://doi.org/10.1186/s12864-018-4637-6
https://www.ncbi.nlm.nih.gov/pubmed/29678163
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910605
https://doi.org/f3p6xv
https://doi.org/10.1186/s12864-016-2386-y
https://www.ncbi.nlm.nih.gov/pubmed/26810311
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727335
https://doi.org/d4bb
https://doi.org/doi.org/10.1186/s13059-020-02066-4
https://doi.org/gg6825
https://doi.org/10.1214/19-aoas1283
https://www.ncbi.nlm.nih.gov/pubmed/32983313
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514055
https://doi.org/frz7bm
https://doi.org/10.1093/dnares/dsn027
https://www.ncbi.nlm.nih.gov/pubmed/18940874
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2608843
https://doi.org/f9kfz3
https://doi.org/10.1038/ismej.2016.176
https://www.ncbi.nlm.nih.gov/pubmed/28045459
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364359
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

45.

46.

47.

48.

49.

50.

51.

52.

53.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.
Preeti Pathak, Cen Xie, Robert G Nichols, Jessica M Ferrell, Shannon Boehme, Kristopher W
Krausz, Andrew D Patterson, Frank ] Gonzalez, John YL Chiang
Hepatology (2018-10) https://doi.org/gkx66p
DOI: 10.1002/hep.29857 - PMID: 29486523 - PMCID: PMC6111007

Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis
Lionel Rigottier-Gois

The ISME Journal (2013-07) https://doi.org/fA3frf

DOI: 10.1038/ismej.2013.80 - PMID: 23677008 - PMCID: PMC3695303

MUSICC: a marker genes based framework for metagenomic normalization and accurate
profiling of gene abundances in the microbiome

Ohad Manor, Elhanan Borenstein

Genome Biology (2015-12) https://doi.org/gp79v6

DOI: 10.1186/s13059-015-0610-8 - PMID: 25885687 - PMCID: PMC4391136

Distribution of reactive oxygen species defense mechanisms across domain bacteria
Lisa A Johnson, Laura A Hug

Free Radical Biology and Medicine (2019-08) https://doi.org/gf2s5]

DOI: 10.1016/j.freeradbiomed.2019.03.032 - PMID: 30930298

Subspecies in the global human gut microbiome

Paul | Costea, Luis Pedro Coelho, Shinichi Sunagawa, Robin Munch, Jaime Huerta-Cepas,
Kristoffer Forslund, Falk Hildebrand, AlImagul Kushugulova, Georg Zeller, Peer Bork
Molecular Systems Biology (2017-12) https://doi.org/gcpk4dk

DOI: 10.15252/msb.20177589 - PMID: 29242367 - PMCID: PMC5740502

Protein k-mer analyses for assembly- and alighment-free sequence analysis
NTessa Pierce-Ward, Taylor E Reiter, CTitus Brown
Manubot (2022-06-22) https://bluegenes.github.io/2022-paper-protein-kmers/

GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically
consistent, rank normalized and complete genome-based taxonomy

Donovan H Parks, Maria Chuvochina, Christian Rinke, Aaron ] Mussig, Pierre-Alain Chaumeil,
Philip Hugenholtz

Nucleic Acids Research (2022-01-07) https://doi.org/gm97d8

DOI: 10.1093/nar/gkab776 - PMID: 34520557 - PMCID: PMC8728215

New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of
Discoveries

Tejeshwar Jain, Prateek Sharma, Abhi C Are, Selwyn M Vickers, Vikas Dudeja

Frontiers in Immunology (2021-02-23) https://doi.org/gmjrdg

DOI: 10.3389/fimmu.2021.622064 - PMID: 33708214 - PMCID: PMC7940198

Protein k-mers enable assembly-free microbial metapangenomics

Taylor E Reiter, NTessa Pierce-Ward, Luiz Irber, Olga Borisovna Botvinnik, CTitus Brown
Bioinformatics (2022-06-27) https://doi.org/gqgfibh

DOI: 10.1101/2022.06.27.497795

How many biological replicates are needed in an RNA-seq experiment and which
differential expression tool should you use?

Nicholas ] Schurch, Pieta Schofield, Marek Gierlinski, Christian Cole, Alexander Sherstnev,
Vijender Singh, Nicola Wrobel, Karim Gharbi, Gordon G Simpson, Tom Owen-Hughes, ...
Geoffrey J Barton

RNA (2016-06) https://doi.org/f8mrmk



https://doi.org/gkx66p
https://doi.org/10.1002/hep.29857
https://www.ncbi.nlm.nih.gov/pubmed/29486523
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111007
https://doi.org/f43frf
https://doi.org/10.1038/ismej.2013.80
https://www.ncbi.nlm.nih.gov/pubmed/23677008
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695303
https://doi.org/gp79v6
https://doi.org/10.1186/s13059-015-0610-8
https://www.ncbi.nlm.nih.gov/pubmed/25885687
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391136
https://doi.org/gf2s5j
https://doi.org/10.1016/j.freeradbiomed.2019.03.032
https://www.ncbi.nlm.nih.gov/pubmed/30930298
https://doi.org/gcpk4k
https://doi.org/10.15252/msb.20177589
https://www.ncbi.nlm.nih.gov/pubmed/29242367
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740502
https://bluegenes.github.io/2022-paper-protein-kmers/
https://doi.org/gm97d8
https://doi.org/10.1093/nar/gkab776
https://www.ncbi.nlm.nih.gov/pubmed/34520557
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728215
https://doi.org/gmjrdg
https://doi.org/10.3389/fimmu.2021.622064
https://www.ncbi.nlm.nih.gov/pubmed/33708214
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940198
https://doi.org/gqfjbh
https://doi.org/10.1101/2022.06.27.497795
https://doi.org/f8mrmk
https://doi.org/10.1261/rna.053959.115
https://www.ncbi.nlm.nih.gov/pubmed/27022035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

DOI: 10.1261/rna.053959.115 - PMID: 27022035 - PMCID: PMC4878611

Trimmomatic: a flexible trimmer for lllumina sequence data

Anthony M Bolger, Marc Lohse, Bjoern Usadel

Bioinformatics (2014-08-01) https://doi.org/f6cj5w

DOI: 10.1093/bioinformatics/btu170 - PMID: 24695404 - PMCID: PMC4103590

Introducing RemoveHuman: Human Contaminant Removal

SEQanswers
https://www.seganswers.com/forum/bioinformatics/bioinformatics-aa/37175-introducing-
removehuman-human-contaminant-removal

The khmer software package: enabling efficient nucleotide sequence analysis

Michael R Crusoe, Hussien F Alameldin, Sherine Awad, Elmar Boucher, Adam Caldwell, Reed
Cartwright, Amanda Charbonneau, Bede Constantinides, Greg Edvenson, Scott Fay, ... CTitus
Brown

F1000Research (2015-09-25) https://doi.org/9gp

DOI: 10.12688/f1000research.6924.1 - PMID: 26535114 - PMCID: PMC4608353

sourmash: a library for MinHash sketching of DNA

C Titus Brown, Luiz Irber

The Journal of Open Source Software (2016-09-14) https://doi.org/ghdrk5
DOI: 10.21105/joss.00027

Some Distance Properties of Latent Root and Vector Methods Used in Multivariate
Analysis

JC Gower

Biometrika (1966-12) https://doi.org/ch3msp

DOI: 10.2307/2333639

Welcome to the Tidyverse

Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy McGowan, Romain
Francois, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, ... Hiroaki Yutani
Journal of Open Source Software (2019-11-21) https://doi.org/ggddk]

DOI: 10.21105/j0ss.01686

vegan: Community Ecology Package

Jari Oksanen, Gavin L Simpson, FGuillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R
Minchin, RB O'Hara, Peter Solymos, MHenry H Stevens, Eduard Szoecs, ... James Weedon
(2022-04-17) https://CRAN.R-project.org/package=vegan

<b>ranger</b>: A Fast Implementation of Random Forests for High Dimensional Data in
<i>C++</i> and <i>R</i>

Marvin N Wright, Andreas Ziegler

Journal of Statistical Software (2017) https://doi.org/b8g3

DOI: 10.18637/jss.v077.i01

Surrogate minimal depth as an importance measure for variables in random forests
Stephan Seifert, Sven Gundlach, Silke Szymczak

Bioinformatics (2019-10-01) https://doi.org/gmmrnk

DOI: 10.1093/bioinformatics/btz149 - PMID: 30824905 - PMCID: PMC6761946

A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules
Joshua M Stuart, Eran Segal, Daphne Koller, Stuart K Kim

Science (2003-10-10) https://doi.org/bkfpd8

DOI: 10.1126/science.1087447 - PMID: 12934013



https://doi.org/10.1261/rna.053959.115
https://www.ncbi.nlm.nih.gov/pubmed/27022035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611
https://doi.org/f6cj5w
https://doi.org/10.1093/bioinformatics/btu170
https://www.ncbi.nlm.nih.gov/pubmed/24695404
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103590
https://www.seqanswers.com/forum/bioinformatics/bioinformatics-aa/37175-introducing-removehuman-human-contaminant-removal
https://doi.org/9qp
https://doi.org/10.12688/f1000research.6924.1
https://www.ncbi.nlm.nih.gov/pubmed/26535114
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608353
https://doi.org/ghdrk5
https://doi.org/10.21105/joss.00027
https://doi.org/ch3msp
https://doi.org/10.2307/2333639
https://doi.org/ggddkj
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=vegan
https://doi.org/b8q3
https://doi.org/10.18637/jss.v077.i01
https://doi.org/gmmrnk
https://doi.org/10.1093/bioinformatics/btz149
https://www.ncbi.nlm.nih.gov/pubmed/30824905
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761946
https://doi.org/bkfpd8
https://doi.org/10.1126/science.1087447
https://www.ncbi.nlm.nih.gov/pubmed/12934013
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

64.

65.

66.

67.

68.

69.

70.

71.

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Co-expression pattern from DNA microarray experiments as a tool for operon prediction
C Sabatti

Nucleic Acids Research (2002-07-01) https://doi.org/d8zkdv

DOI: 10.1093/nar/gkf388 - PMID: 12087173 - PMCID: PMC117043

Hyperparameters and tuning strategies for random forest

Philipp Probst, Marvin N Wright, Anne-Laure Boulesteix

WIREs Data Mining and Knowledge Discovery (2019-05) https://doi.org/gf3sz2
DOI: 10.1002/widm.1301

Bakta: rapid and standardized annotation of bacterial genomes via alignment-free
sequence identification

Oliver Schwengers, Lukas Jelonek, Marius Alfred Dieckmann, Sebastian Beyvers, Jochen Blom,
Alexander Goesmann

Microbial Genomics (2021-11-05) https://doi.org/gnfrj7

DOI: 10.1099/mgen.0.000685 - PMID: 34739369 - PMCID: PM(C8743544

Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide
sequences

W Li, A Godzik

Bioinformatics (2006-07-01) https://doi.org/ct8g72

DOI: 10.1093/bioinformatics/btl158 - PMID: 16731699

eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology
resource based on 5090 organisms and 2502 viruses

Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernandez-Plaza, Sofia K Forslund,
Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, ... Peer Bork

Nucleic Acids Research (2019-01-08) https://doi.org/gg8bdg

DOI: 10.1093/nar/gky1085 - PMID: 30418610 - PMCID: PMC6324079

Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
Heng Li

arXiv(2013) https://doi.org/gpswnw

DOI: 10.48550/arxiv.1303.3997

Integrative Genomics Viewer (IGV): high-performance genomics data visualization and
exploration

H Thorvaldsdottir, JT Robinson, JP Mesirov

Briefings in Bioinformatics (2013-03-01) https://doi.org/f4sc43

DOI: 10.1093/bib/bbs017 - PMID: 22517427 - PMCID: PMC3603213

clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters
Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He

OMICS: A Journal of Integrative Biology (2012-05) https://doi.org/gdf33f

DOI: 10.1089/0mi.2011.0118 - PMID: 22455463 - PMCID: PMC3339379

Supplementary information


https://doi.org/d8zkdv
https://doi.org/10.1093/nar/gkf388
https://www.ncbi.nlm.nih.gov/pubmed/12087173
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC117043
https://doi.org/gf3sz2
https://doi.org/10.1002/widm.1301
https://doi.org/gnfrj7
https://doi.org/10.1099/mgen.0.000685
https://www.ncbi.nlm.nih.gov/pubmed/34739369
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743544
https://doi.org/ct8g72
https://doi.org/10.1093/bioinformatics/btl158
https://www.ncbi.nlm.nih.gov/pubmed/16731699
https://doi.org/gg8bdg
https://doi.org/10.1093/nar/gky1085
https://www.ncbi.nlm.nih.gov/pubmed/30418610
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324079
https://doi.org/gpswnw
https://doi.org/10.48550/arxiv.1303.3997
https://doi.org/f4sc43
https://doi.org/10.1093/bib/bbs017
https://www.ncbi.nlm.nih.gov/pubmed/22517427
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603213
https://doi.org/gdf33f
https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339379
https://doi.org/10.1101/2022.06.30.498290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498290; this version posted July 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

o
3 =
H N o
g B s
i SEedRite ..
ig Biogides ,
H H s SR8 8 "
13 SESE8% % ggqge’\,\,\'\
RS RIBITE
= 33 3 883 3 $ Iy
Sin 3888 83335753388 ¢ y
sigignes §§§§3§§§§§§§§§§§§§§§§£§S$§§& 4
a2 3 S0l FSeegee §5585 o/
33 R3F O IRGagIeSTIESSITeSEe ST80 S
2 B & SRS eTSESTELOSEE S
ISR L 5 1 L PR R )
BaeUsBERBIENERESe o ap ﬂ’f@’@?ﬁ@*@?gﬁg 208, 0o S0
CES 3 IV OLLS K Ty b oS
I s FEEF S8 S ST SN
PR N L 1 e L y&o
58508 I F SO0 0 K S wdly
Eon, ERESE S ELE S
86> L PP L0
e SL S o
R el
Q""?fé\ Q\:?“VO\* M¢@&t‘>\° Q\\‘b*a«,%‘;ﬂ .
PR @ p
$So THASET ol g0
T S I00T (O (o
T, et F g P ol
TN S o "(\‘as“?\&“‘ﬁeee S
Lo geaengsolio e e
B W% e o®
"D, OB“\Q z(d\ R 5\950
S, Cetood e e
2, %000 S
B, ottt g1t
B e o
o P&dm 08 N
T, Congnttnes Gkt
o eog“ fetion)
32y e el e
BN F,;\l\sm"; o0
AoB iR ipe% (08"
o Niges SomTyiis 4009
) \lis! S red! 02!
s RistiP% UD o0
250 PistiP®es AN s
oad NNistipe iyt i ot
"o, PSSl ARITS
o WS\Gipes Jop6952 Cighi
3, phit2 Fansia sy nenss
328 Pt wadelornend® s
33 une,eﬂa ella exmemog5
o1 SUlrasuterolt 5760
%g“ xalohia
agscnerchiacoy, o
% Esc;esnf:s’w svumg:nfa‘n%
59 Gilophila wadswor'
302 Bifidobacterium long
3 5 Bifidobacterium bifidum )
z i terium adolescentis
326  Bifidobact
339 Slﬂp!omycssd;akarl:ns,s
| : — izia celatus_
= 271 _Adlercreut
= spgo_os“ug,:g" ;ﬁg 192 Eggerthella lenta
An172 sp002160515 303 v
Ruminococcus_E sp003526955 134 :gg Bﬂﬂ;gﬂ;ﬁ/zﬁi:eoyss
Ruminacocous_E bromi 404 =
ccus_E bromii_B 2 | : :
RZ”\)"Z‘;%” 5P900542375 252 7' aslaslllrau"}A =
| 3 241 g i
mas ;
e ”5"“’;’330435395 ®
acutabacter SPO00435005 B
Uania17 0”43
ocous_D DG callidus Nga
uminocooets. DG callds® g
oinocoscus o5 B
amocous G SP900ssa150° ot
Ruminoe0SeG 115 B0Cgt95 | 20
um ESPIY g giaedts 3
rigium-E S E Si7
incos i dun Sooe TS Ty
AU inic0% s sPO0LcsiensSs o1
""gal'wxw"”“‘"ufna assios s, a0,
A lakis® g cole 47180, 2%
ANGC U900 sijene” %
GerorUrt sp%0 pslior
numeSQhu e; 006‘5633“5. " 21
\eum“ﬁﬁ,m\"O‘,ﬂucg‘e"gas %
02
u\her\\‘":; dev\“"(‘_’a n\;%;}osz h"f\c\\\i RS
ee\“(“;ge%ﬂ\\l\‘\‘ie 5
AP, S
oo 8T 5
A RS N
WO e o X
e St
W“S‘,\\W:;,bc\e‘e‘\uﬂ‘ﬂ e ¥
L N e e %
%.Beﬂb\‘\\v"“\e"‘ “(\‘e? v""\a“‘ g%‘\\ W q\
¢ 5503‘@56 o (\\\c‘ & (\\\2 g’W ’
S o
ORI IR TGS
@@aﬂ‘afv\;&u‘ a‘\oﬁ‘“\ao Q@ e“@ha 0\\0 \{h N \‘&VQD
W B TS
@ N WSS e APREA
Sl e, e
@ap\\&@e‘\o S, e
@ P A Q&Q@%@ o &, 5o
5% ¥ %
L T
P O S rﬁ’&@e@@@g‘&@@% Epr
2 SELIFET Lo "~V
p &)
RIS gfgy&%n% LS
£ 9 2 ¥
& TSRS &é;;? “§4‘é§}~,.¢ 558
O L A T N P
& QR N 2 ROInvnn
SEF SRS TS S84E IR S0l
S I PSS LGS EITT 0000, TPREE2EBR20Y253Y &
@§@Y§m§§¢a§ b"?:?é,f@g.‘}?ss‘. i B )
3 LIREFS s <8 -
§ 05‘;5&{763 S8 888 é’aé%?,gx ;ngfé’s’g;"gemgmgmﬁ
FEFTIETFSER Se§ss8sRe LITLE
RN N R P EDEE R LR
NI SE58 8.7 & by 3333338
wwfé%@swé‘ 9] §§§s§f§§§§§%ﬁu
¢ SESILSNESEREES TRt
§ h(?g RSd §&’s§§§§;%",a i 32%%@
¢ § $8583855859000888388%
§§  S8FTRETESgsf 88ERRE
LGS SF §% §555§55Eangad
§a § 3 FEggesiatasy
N SEIZEER 8%
g 388557 o
< qdaq

cumulative variable importance greater than 1%
no e yes

Figure S1: Phylogenetic tree of 360 bacterial species that were predictive of IBD subtype in all models. Tree was

built from the GTDB rs202 tree with all tips except those represented by the 360 genomes removed. Tree tips are

labelled by genomes that anchored at least 1% of the normalized variable importance. The inner ring annotates the rank

of the genomes, with the genome holding the most normalized variable importance across models ranked as 1. The
outer ring is the species name within the GTDB database.
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Figure S2: Fifty-four genomes are important across models and anchor the majority of variable importance..
The bottom panel depicts a heat map of the scale variable importance contributed by k-mers that anchored to each of
the top 54 genomes that were important for predicting IBD subtype. Models are labelled by the validation study and by
the random seed used to build the model.Rank corresponds to the genome that anchored the most variable
importance. Rank:species can be decoded using the tree in Figure S1. The top panels depict bar charts that correspond
to the minimum (lower) or maximum (upper) variable importance a genome could anchor. The minimum variable
importance was estimated following the sourmash gather algorithm, where each important k-mer was assigned to only
one genome, and the genome it was assigned to was determined by a greedy winner-takes-all approach. Therefore, in
the minimum bar chart, variable importance attributable to a k-mer was only summed once per k-mer, even if that k-
mer occurred in multiple genomes. The maximum variable importance was estimated by allowing k-mers to be
anchored to multiple genomes, so all k-mers were assigned to all possible genomes even if that meant a k-mer was
assigned multiple times.
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Figure S3: Pathways that were enriched among sets of differentially abundant sequences in CD compared to
nonIBD. The x axis represents the number of orthologs identified in the pathway, while the y axis annotates the
pathway. Top: Some dominating set pieces that significantly increased in abundance were annotated as the same KEGG
orthologs as dominating set pieces that were significantly decreased in abundance. Many of these pathways encode
core functions. Middle: KEGG pathway enrichment from KEGG ortholog annotations that were only observed in
dominating set pieces that were significantly increased in abundance in CD. Bottom: KEGG pathway enrichment from
KEGG ortholog annotations that were only observed in dominating set pieces that were significantly decreased in

abundance in CD.
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Figure S4: Most differentially abundant sequences occur in metagenomes of individuals diagnosed with CD, UC
and non-IBD. Upset plot of k-mers that were decreased in abundance in CD and their occurrence in CD, UC, and nonIBD
metagenomes. The bottom half of the plot highlights which diagnoses are included in each set, while the bar chart in the
top half of the plot shows the number of k-mers that were observed in that set. The bar chart is colored by the
metapangenome species graph in which the sequence was differentially abundant.
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