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Abstract 20 

Bipartite network analysis is a powerful tool to study the processes structuring interactions in 21 

antagonistic ecological communities. In applying the method, we assume that the sampled 22 

interactions provide an accurate representation of the actual community. However, acquiring 23 

a representative sample may be difficult as not all species are equally abundant or easily 24 

identifiable. Two potential sampling issues can compromise the conclusions of bipartite 25 

network analyses: failure to capture the full range of interactions of species (sampling 26 

completeness) and failure to identify species correctly (taxonomic resolution). These 27 

sampling issues are likely to co-occur in community ecology studies. We asked how 28 

commonly used descriptors (modularity, nestedness, connectance and specialisation (H2
’)) of 29 

bipartite communities are affected by reduced host sampling completeness, parasite 30 

taxonomic resolution and their crossed effect. We used a quantitative niche model to generate 31 

replicates of simulated weighted bipartite networks that resembled natural host-parasite 32 

communities. The combination of both sampling issues had an additive effect on modularity 33 

and nestedness. The descriptors were more sensitive to uncertainty in parasite taxonomic 34 

resolution than to host sampling completeness. All descriptors in communities capturing less 35 

than 70% of correct taxonomic resolution strongly differed from correctly identified 36 

communities. When only 10% of parasite taxonomic resolution was retained, modularity and 37 

specialisation decreased ~0.3 and ~0.1-fold respectively, and nestedness and connectance 38 

changed ~0.7 and ~3.2-fold respectively. The loss of taxonomic resolution made the 39 

confidence intervals of estimates wider. Reduced taxonomic resolution led to smaller size of 40 

the communities, which emphasised the larger relative effect of taxonomic resolution on 41 

smaller communities. With regards to host sampling completeness, connectance and 42 

specialisation were robust, nestedness was reasonably robust (~0.2-fold overestimation), and 43 

modularity was sensitive (~0.5-fold underestimation). Nonetheless, most of the communities 44 
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with low resolution for both sampling issues were structurally equivalent to correctly sampled 45 

communities (i.e., more modular and less nested than random assemblages). Therefore, 46 

modularity and nestedness were useful as categorical rather than quantitative descriptors of 47 

communities affected by sampling issues. We recommend evaluating both sampling 48 

completeness and taxonomic certainty when conducting bipartite network analyses. We also 49 

advise to apply the most robust descriptors in circumstances of unavoidable sampling issues. 50 

Keywords 51 

Host-parasite interactions; bipartite networks; sampling issues; sampling completeness; 52 

taxonomic resolution; additive effect  53 
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Introduction 54 

Ecological and evolutionary processes occur in networks of interacting species. Species 55 

interactions are diverse, numerous and often asymmetric due to the unequal dependence 56 

between the interacting species (Dormann et al. 2017). These attributes make ecological 57 

networks of interactions complex, hampering our ability to disentangle ecological and 58 

evolutionary dynamics and to understand responses to changing environments. Despite the 59 

complexity of ecological communities, bipartite network analysis has allowed researchers to 60 

tackle fundamental research questions and give advice on biodiversity management (Delmas 61 

et al. 2019). 62 

Bipartite network analysis is based on the assessment of the distribution of 63 

interactions between nodes of different guilds (Blüthgen 2010). For example, in host-parasite 64 

bipartite networks, host and parasite species are nodes. Bipartite network analysis does not 65 

consider interactions among nodes of the same type. For example, parasite-parasite or 66 

host-host interactions are not analysed. Therefore, to make ecological communities tractable, 67 

bipartite network analysis assumes that inter-guild interactions are more relevant for 68 

ecological communities than intra-guild interactions (Poulin 2010). Bipartite interactions can 69 

be weighted (as opposed to simple presence-absence of interactions) to capture a quantitative 70 

description of the processes in the natural environment. For example, host-parasite 71 

interactions can be weighted by the abundance of each parasite species in each host (Cardoso 72 

et al. 2021). 73 

The study of ecological networks not only relies on recording the species composition 74 

but also on obtaining large enough samples to build a fair representation of the interactions in 75 

communities (Henriksen et al. 2019). Representative samples of ecological communities can 76 

be difficult to obtain due to community diversity (Chacoff et al. 2012), temporal and spatial 77 

variation in community structure (Poisot et al. 2015), different level of population and 78 
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community fragmentation (Frankham et al. 2017) or differences in interaction patterns among 79 

individuals of a given species (Guimarães Jr. 2020). Insufficient sampling of both species and 80 

their interactions makes it difficult to tease apart biological processes from methodological 81 

artifacts. Sampling issues may therefore influence the observed network properties and the 82 

conclusions extracted from them (Vizentin-Bugoni et al. 2016). 83 

It is assumed that a sample is a good representative of the actual community when 84 

species richness, interaction richness or even network descriptors reach an asymptote 85 

(Henriksen et al. 2019). However, acquiring an asymptotic sample of the interactions in a 86 

community requires a higher sampling effort than estimating species richness because there 87 

are more combinations of pairwise interactions than species (Henriksen et al. 2019). In 88 

addition, common interactions of abundant species are detected with low effort, but high 89 

sampling effort is required to record rare interactions of less abundant species (Chacoff et al. 90 

2012, Henriksen et al. 2019). 91 

Another confounding factor for bipartite network analysis is the reliability of species 92 

identification (Thompson and Townsend 2000). Although, taxonomic accuracy and 93 

community size usually represent a trade-off (Renaud et al. 2020), small networks may be 94 

more affected by inappropriate identification of a species since it would represent a higher 95 

proportion of taxa than in a large network. Taxonomic resolution can be variable both within 96 

and between communities, which complicates comparative studies. Often, some nodes are 97 

identified as species, whereas other nodes aggregate coarser taxonomic categories or entities 98 

within a community (e.g., detritus) or include hidden diversity (e.g., cryptic species) 99 

(Thompson and Townsend 2000). Furthermore, loss of taxonomic resolution was found to 100 

have a higher impact on the predicted structure of antagonistic insect-plant networks than on 101 

their mutualistic counterparts due to the closer dependence of the consumers on their 102 

resources in the former type (Rodrigues and Boscolo 2020). Opposite to low taxonomic 103 
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resolution is species over-splitting, that is identifying individuals of the same species as 104 

different species due to phenotypic or other differences (Isaac et al. 2004). 105 

Finally, these sampling issues occur independently and may coincide in the same 106 

dataset. For instance, an ecological dataset may present poor sampling completeness 107 

regardless of the taxonomic resolution of the few sampled taxa. Then, researchers must strive 108 

to control all potential sampling issues at the same time to ensure a correct representation of 109 

an ecosystem. Even though sampling issues are known to affect bipartite network descriptors 110 

(Rivera-Hutinel et al. 2012, Rodrigues and Boscolo 2020) and may simultaneously affect the 111 

same survey, we do not yet know how the combined effect of sampling issues can mislead 112 

the interpretation of the structure of ecological communities. We will address this issue by 113 

focussing on host-parasite bipartite networks. However, since sampling issues can occur in 114 

any community study, our approach is not restricted to host-parasite interactions and can be 115 

applied to any bipartite symbiotic interactions. 116 

Parasitic life-history strategies are spread across the whole tree of life. Parasites are 117 

present in all ecosystems and dominate diversity in terms of richness and abundance of 118 

species, and biomass (Carlson et al. 2020). This astonishing diversity makes host-parasite 119 

associations one of the most common types of interactions in ecological communities 120 

(Lafferty et al. 2006). Bipartite network analysis has been a key method for research in 121 

evolutionary ecology of host-parasite interactions over the last decades (Runghen et al. 2021), 122 

including epidemiological and public health issues (Bellekom et al. 2021).  123 

Host individuals are typically the sampling units in ecological and evolutionary 124 

parasitology. Commonly, data from host individuals of the same species are pooled together 125 

to obtain the parasite community of each host species (Morand and Krasnov 2008). As more 126 

host individuals are sampled in a community, the probability of finding an unrecorded 127 

parasite species or a new host-parasite interaction reduces, and parasite species richness or 128 
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number of species interactions approaches an asymptote (Henriksen et al. 2019). At the same 129 

time, studies listing parasite species are often characterised by poor taxonomic resolution at 130 

least for certain taxa. Such inaccurate assessments of parasite diversity seriously hamper our 131 

ability to understand host-parasite dynamics (Poulin and Leung 2010) since it decreases the 132 

variability in the interaction pattern of different species (Delmas et al. 2019). 133 

Our goal was to understand how decreasing gradients of host sampling completeness, 134 

parasite taxonomic resolution and their crossed effect affect four commonly-used descriptors 135 

of host-parasite communities: modularity, nestedness, connectance and specialisation (H2
’) 136 

(Table 1). We generated replicates of a simulated host-parasite community, which are not 137 

usual in empirical datasets. We resampled the replicate simulated communities controlling for 138 

both sampling issues. First, we gradually removed host-parasite interactions to infer the effect 139 

of decreasing host sampling completeness on the four descriptors. Second, we evaluated how 140 

the four descriptors were influenced by decreasing resolution of parasite taxonomy. To do so, 141 

we gradually reduced the number of parasite species in the communities by hierarchically 142 

lumping their interactions according to their overlap in host use, which resembles closely 143 

related cryptic species that have ecologically similar requirements. Finally, we evaluated the 144 

crossed effect of both sampling issues as they are likely to occur simultaneously. 145 

We hypothesised that the descriptors would be more robust to host sampling 146 

completeness than to parasite taxonomic resolution, at least in communities that are not 147 

severely affected by sampling issues (Hypothesis 1). Host individuals of the same species 148 

commonly sustain similar parasite communities and, in this sense, represent biological 149 

replicates of the same system (Llopis-Belenguer et al. 2020). Therefore, when decreasing 150 

host sampling completeness, the overall infection pattern of the community is maintained 151 

until the sample size reaches a threshold below which no inference is supported. On the 152 

contrary, we expected the reduction in parasite taxonomic resolution to have a greater impact 153 
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on the community descriptors. Commonly, parasite species are not redundant in their host 154 

ranges. Specialisation in their host limits the ability of parasite species to infect many host 155 

species (i.e., environmental filtering) (Llopis-Belenguer et al. 2020). Therefore, the detection 156 

of the infection patterns would be more sensitive to taxonomic resolution following the loss 157 

of inter-species variability. In addition, we expected the combined effect of both sampling 158 

issues to cause a greater bias in the descriptors than either of the simulated sampling biases in 159 

isolation (Hypothesis 2). Finally, we also hypothesised that the four network descriptors 160 

would differ in sensitivity (Hypothesis 3). Based on the results of previous studies on 161 

ecological systems outside the host-parasite realm (Blüthgen et al. 2006, Vizentin-Bugoni et 162 

al. 2016), redundant interactions would make the descriptors considerably robust against 163 

reduced sampling completeness. With regard to taxonomic resolution (Thompson and 164 

Townsend 2000, Rodrigues and Boscolo 2020), modularity, nestedness and specialisation 165 

would be reasonably robust to loss of taxonomic resolution. However, communities in the 166 

gradient of parasite taxonomic resolution varied in size. Connectance expresses the 167 

proportion of realised interactions out of all possible interactions (Table 1). A realised 168 

interaction represents a higher proportion in a small network than in a larger network. For the 169 

same number of interactions, communities with low parasite taxonomic resolution (small 170 

networks) would present higher connectance than communities with correct taxonomic 171 

resolution (large networks). Then, we expected connectance to be sensitive to parasite 172 

taxonomic resolution. 173 

 174 

Material and Methods 175 

Building simulated communities 176 

Our main dataset consists of 10 replicate simulated networks (hereafter, “full communities”) 177 

that were constructed using host-parasite community parameters extracted from published 178 
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host-parasite community data (n = 6, “natural communities”) (Fig. 1a, Appendix S1). To 179 

build the full communities, we used a quantitative niche model (see below) that was initiated 180 

with the mean number of host and parasite species (nhost = 13; npara = 42) of the six natural 181 

communities. The mean number of interactions per parasite species in the full communities 182 

(maxobs.rf = 2,067) was the mean overall number of interactions in the six natural 183 

communities (ni = 86,794) divided by npara. In other words, these 10 replicate full 184 

communities represent a generalisation of different natural host-parasite communities with 185 

respect to their number of species and their number of interactions (Fig. 1a). We performed 186 

all the analyses in R (R Core Team 2021). If not specified otherwise, the functions mentioned 187 

below are available in bipartite package (Dormann 2011). Replication code and data are 188 

provided in Llopis-Belenguer et al. (to be published in Zenodo after acceptance). 189 

We used the quantitative niche model described in Fründ et al. (2016) to create the 190 

full communities (Fig. 1b). The model generates weighted bipartite networks reflecting a 191 

chosen specialisation parameter (Fründ et al. 2016). First, the model creates a matrix of 192 

interaction probabilities based on quantitative trait values of each host and parasite species 193 

(Fig. 1b: 1. Matrix of interaction probabilities). Equal trait values of a host and a parasite 194 

represent a realised interaction. Non-equal trait values receive an interaction probability 195 

depending on the specialisation parameter (Fründ et al. 2016), which defines the shape 196 

(width) of the gaussian niche function. In our case, we assigned trait values to host and 197 

parasite species from an exponential power distribution, since the expected distribution of 198 

key traits (e.g., body mass) for interaction establishment is usually skewed (Poulin and 199 

Morand 1997, Kozłowski and Gawelczyk 2002). We used the highest specialisation 200 

parameter used in Fründ et al. (2016) (specpar = 55) (Appendix S2) because specialisation is 201 

the general trend in metazoan host-parasite interactions (Poulin 2007). We implemented this 202 

procedure with the function makeweb (Fründ et al. 2016). Second, we multiplied the 203 
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interaction probability matrices by species abundance-distribution vectors with the function 204 

make_trueweb (Fründ et al. 2016) (Fig. 1b: 2. Abundance-distribution adjusted matrix of 205 

interaction probabilities). This step adjusts the interaction probability matrix according to the 206 

relative abundance of each species (Fründ et al. 2016), i.e. it considers that it is more likely to 207 

record interactions between two abundant species than between two rare ones. We assumed 208 

an even abundance distribution of the host species. This corresponds to sampling procedures 209 

where an effort is made to capture the same number of individuals of each host species 210 

(Poulin 1998). We distributed the abundance of parasite species from a log-normal 211 

distribution with mean 5.89 and SD 1.45 both in the log-scale, which are similar to the mean 212 

and SD of parasite species in the natural host-parasite communities, with the function 213 

get_skewedabuns (Fründ et al. 2016). Therefore, only the abundance distribution of parasite 214 

species affected the interaction probability in our simulation. As the last step, we weighted 215 

the full communities with parasite abundances according to the given interaction probability 216 

matrix with the function sampleweb (Fründ et al. 2016) (Fig. 1b: 3. Full communities). We 217 

assumed a mean number of interactions per parasite species equal to maxobs.rf. 218 

 219 

Simulating sampling completeness and taxonomic resolution biases 220 

We resampled the full communities with a reduced effort to simulate communities along 221 

decreasing gradients of host sampling completeness, parasite taxonomic resolution and their 222 

crossed effect (hereafter, “resampled communities”) (Fig. 1c). Each full community was 223 

resampled in 10% steps from 90% to 10% of host sampling completeness and parasite 224 

taxonomic resolution, thus simulating a situation where researchers do not have a-priori 225 

knowledge of the true size and taxonomic structure of the communities they are sampling. 226 

To simulate the decreasing gradient of host sampling completeness, we used data on 227 

parasite abundance in 3,258 fish host individuals from 51 locations and of 41 species (63.9 ± 228 
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71.4 fish individuals per species) (Appendix S1). Only one of these datasets belongs to the 229 

six natural communities we used to derive the full communities (Valtonen et al. 2001). Fish 230 

individuals of each fish species and location formed an independent dataset. We resampled 231 

host individuals of each independent dataset by reducing the sample size in 10% steps 232 

starting from 90% and ending with 10% of the original host individuals. Then, we quantified 233 

the mean percentage of interactions per parasite species remaining in all datasets ( 234 
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Table 2a). We applied these resampled percentages to the mean number of 235 

interactions per parasite species (maxobs.rf = 2,067) to fill the existing matrix of interaction 236 

probabilities in each of the 10-replicate full communities. Thus, we simulated the effect of a 237 

decreasing number of sampled host individuals by reducing the mean number of interactions 238 

per parasite species in the full communities (  239 
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Table 2a). We derived 90 resampled communities to examine the effect of host 240 

sampling completeness. 241 

To simulate the effect of incomplete parasite taxonomic resolution, we calculated 242 

pairwise Jaccard similarities between all parasite species based on their host-range overlap 243 

(Martinez 1991). These pairwise distance estimates were used to distribute the species to a 244 

number of groups according to the decreasing gradient of parasite taxonomic resolution ( 245 
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Table 2b). Similar parasite species in the Jaccard calculation were assigned to the 246 

same group. We implemented the “around medoids” clustering, which is a more robust 247 

version of “k-means” clustering, to distribute parasites into groups. This was performed with 248 

the function clara in cluster package (Maechler et al. 2021). For example, in the simulation of 249 

“50%” of parasite taxonomic resolution, we asked the function to assign parasite species to 250 

21 groups, which represents 50% of the original number of parasite species in the full 251 

communities (npara). Consequently, we clustered parasite species based on the similarity of 252 

their host range, which resembles the taxonomic resolution issues common in the 253 

parasitological data given that closely related species may share hosts.   254 
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Table 2b shows the number of groups for each decreasing resolution class. Note that 255 

the overall number of interactions (ni) was kept unchanged by this regrouping of parasite 256 

species to fewer groups. For each replicate full community, we ran a new clustering 257 

algorithm using the same target number of groups (  258 
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Table 2b). We obtained 90 resampled communities to examine the effect of parasite 259 

taxonomic resolution. 260 

Finally, we simulated the crossed effect of host sampling completeness and parasite 261 

taxonomic resolution. A gradient of parasite taxonomic resolution (as described above) was 262 

created for each resampled community used to examine host sampling completeness. This 263 

produced 810 additional resampled communities, which were biased for both sampling issues 264 

to varying degrees.  265 

 266 

Community and species level descriptors 267 

We assessed four weighted community level descriptors for each of the 1,000 full and 268 

resampled communities: modularity, nestedness, connectance and specialisation (H2
') (Table 269 

1). Specifically, we used the Becket algorithm (Beckett 2016) to calculate modularity in our 270 

communities with the function computeModules. The function networklevel was used to 271 

measure the weighted versions of the algorithms: NODF (Nestedness metric based on 272 

Overlap and Decreasing Fill, Almeida-Neto & Ulrich, 2011), connectance (Tylianakis et al. 273 

2007) and H2
' (Blüthgen et al. 2006). We standardised modularity and nestedness of each web 274 

since raw values of these descriptors are not directly comparable. To do this, we created 275 

1,000 null communities for each of the 1,000 full and resampled communities with the 276 

function vaznull (Vázquez et al. 2007). This algorithm creates null host-parasite communities 277 

by randomising the total number of host-parasite interactions observed in the full 278 

communities. Thus it constrains connectance but not the marginal totals (Vázquez et al. 279 

2007). We then calculated the mean value and the standard deviation of modularity and 280 

nestedness of each set of 1,000 null communities. Finally, we standardised modularity and 281 

nestedness of each full and resampled community following the equation of the Standardised 282 

Effect Size (SES) (Gotelli and Rohde 2002) (Equation 1):  283 
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��� �  
value of a full or replicate community –  mean of its 1,000 null communities

SD of its 1,000 null communities
 

Finally, to assess the effect of each sampling issue and their crossed effect on the community 284 

descriptors, four two-way ANOVAs were used with host sampling completeness and parasite 285 

taxonomic resolution as fixed factors. If the two fixed factors are significant, a significant 286 

interaction term indicates a synergistic effect of both sampling issues, otherwise additive 287 

(Ferguson and Stiling 1996). 288 

We used t-tests to establish whether network descriptors of the simulated full 289 

communities differed significantly from those of natural communities. Additionally, we 290 

aimed to know whether the full communities reproduced the pattern of interactions of the 291 

natural communities at the species level. For each full and natural community, we computed 292 

Rao alpha diversity of the parasite communities of each host species, and two species-level 293 

network descriptors of centrality for both host and parasite species: weighted betweenness 294 

and weighted closeness (Table 1). Rao alpha diversity, which accounts for the richness and 295 

abundance of species (Pavoine et al. 2004), was calculated with the function dpcoa in ade4 296 

package (Thioulouse et al. 2018). To make alpha diversity comparable across host species, 297 

we transformed alpha diversity results into their equivalent numbers (Ealpha) following 298 

Equation 2 (Ricotta and Szeidl 2009): 299 

������ �  
1

1 � Rao alpha diversity
 

We used a linear regression of Ealpha on the communities followed by ANOVA to test 300 

differences in Ealpha between the full and natural communities. Finally, the function 301 

specieslevel was used to compute the two descriptors of centrality, betweenness and 302 

closeness (Table 1). Both are based on the Dijkstra’s algorithm to find the shortest path in 303 

networks of interactions (Newman 2001). We ran the analyses of betweenness and closeness 304 

for host and parasite species independently. We excluded those species that were not linked 305 
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to any other species in the community since no centrality measure could be calculated. To 306 

compare these descriptors across communities independently of their sizes, we first regressed 307 

each descriptor on their community size. We used the residuals of these regressions as the 308 

dependent variables in linear models as a function of the type of study (natural vs simulated) 309 

followed by ANOVA to test the differences between full and natural communities (Morris et 310 

al. 2014). 311 

 312 

Results 313 

Community and species level descriptors of the full communities did not significantly differ 314 

from descriptors of the natural communities, except for closeness (Table 3). 315 

Standardised modularity and nestedness showed opposite patterns with respect to host 316 

sampling completeness (Fig. 2a and Fig. 2b, darkest purple points and lines). While 317 

modularity decreased with decreasing host sampling completeness (~0.5-fold), nestedness 318 

increased (~0.2-fold). Estimates of modularity in simulations capturing 70% or less of host 319 

sampling completeness strongly differed from those values of the full communities (Fig. 2a, 320 

error bars do not overlap). Estimates of nestedness in simulations from 40% of host sampling 321 

completeness and below strongly differed from estimates of the full communities (Fig. 2b, 322 

error bars do not overlap). In contrast, weighted connectance and H2
’ were robust to host 323 

sampling completeness since resampled communities showed little evidence of difference 324 

from estimates for full communities (Fig. 1c-d, Table 4). 325 

The four indices were affected by parasite taxonomic resolution (Table 4, Fig. 2, 326 

100% of host sampling completeness). Standardised modularity increased up to 50% of 327 

parasite taxonomic resolution in resampled communities, followed by a decline in lower 328 

percentages of parasite taxonomic resolution. Estimates of modularity given 70% of parasite 329 

taxonomic resolution and below differed from modularity calculated for the full communities 330 
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(~0.3 underestimation, Fig. 2a, error bars do not overlap). Both nestedness and connectance 331 

increased ~0.7 and ~3.2-fold, respectively, as parasite taxonomic resolution decreased. 332 

Nestedness estimates at 60% of parasite taxonomic resolution and below differed from 333 

nestedness of the full communities (Fig. 2b, error bars do not overlap). We found moderate to 334 

strong differences between connectance of the full communities and connectance of the 335 

resampled communities at 80% of parasite taxonomic resolution or less (Fig 2c, error bars do 336 

not overlap). H2
’ decreased with parasite taxonomic resolution. We found moderate (~0.1-337 

fold underestimation) differences between H2
’ of full communities and resampled 338 

communities with 50% or less of parasite taxonomic resolution (Fig. 2d, error bars do not 339 

overlap). 340 

The crossed effect of host sampling completeness and parasite taxonomic resolution 341 

was additive for both sampling issues for modularity and nestedness, as both effects were 342 

significant and no evidence of an interaction was found (Fig. 2, Table 4). Additionally, 343 

parasite taxonomic resolution had higher influence on network metrics than host sampling 344 

completeness. The standard error of the mean tended to increase with sampling bias, showing 345 

proportionally higher variation for connectance than for the other three indices (Fig. 2, Table 346 

4). 347 

Finally, all full and resampled communities were significantly modular. Only in a few 348 

severely resampled communities (10% parasite taxonomic resolution capturing less than 50% 349 

host sampling completeness) nestedness did not differ from nestedness of 1,000 random 350 

assemblages (results not shown). These cases represented Type II errors. 351 

 352 

Discussion 353 

Sampling completeness (representative sample of a community) and taxonomic resolution 354 

(accuracy of species assignment) are common sources of uncertainty and bias in community 355 
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ecology and influence the interpretation of bipartite interactions (Chacoff et al. 2012, 356 

Rodrigues and Boscolo 2020). In accordance with our Hypothesis 1, we found that 357 

community descriptors are more sensitive to parasite taxonomic resolution than to host 358 

sampling completeness. The combination of both sampling issues also resulted in an additive 359 

effect for modularity and nestedness (Hypothesis 2, Table 4). Additionally, the descriptors 360 

differed in their sensitivity to both sampling issues. This partially concurs with our 361 

Hypothesis 3 since modularity was not as robust as in previous studies. Acknowledging that 362 

these sampling issues are inevitable to some extent, studies should: (i) avoid applying 363 

bipartite network analyses to communities with a low resolution of species identification or 364 

low sampling effort; (ii) use the most robust measures to evaluate community structure in 365 

communities severely affected by sampling issues (only connectance and H2
’ were robust to 366 

severely under-sampled communities); (iii) pay attention to the conclusions relying on more 367 

sensitive metrics (all descriptors were sensitive to taxonomic resolution); and (iv) compare 368 

interaction patterns over time and space in communities with comparable and adequate 369 

sampling efforts. This is especially true for taxonomic resolution since all descriptors were 370 

sensitive to it. 371 

Antagonistic communities are often highly modular (Runghen et al. 2021), most 372 

likely due to parasite specialisation on its host resource (Krasnov et al. 2012). We found that 373 

modularity was sensitive to both reduction in host sampling completeness and parasite 374 

taxonomic resolution. Lower sampling effort left less frequent interactions undetected and 375 

eventually decreased resolution in module uniqueness. These results are contrary to those 376 

reported in mutualistic communities, in which modularity was found to be a robust descriptor 377 

(Rivera-Hutinel et al. 2012, Vizentin-Bugoni et al. 2016). Moreover, an increase in 378 

modularity was observed in mutualistic communities with the lowest sampling effort due to 379 

increased module identity through removal of between-module interactions (Rivera-Hutinel 380 
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et al. 2012, Vizentin-Bugoni et al. 2016). A decrease in modularity due to low taxonomic 381 

resolution has been found in other plant-insect mutualistic and antagonistic systems 382 

(Rodrigues and Boscolo 2020, Renaud et al. 2020). In our study, we found that modularity 383 

tended to increase up to a point after which it rapidly decreased in the case of parasite 384 

taxonomic resolution, also evident for the crossed effect. 385 

Dallas and Cornelius (2015) found a similar result in their host-parasite co-extinction 386 

analyses using in-silico experiments in which they sequentially removed host species first 387 

based on species extinction risks and then randomly. These communities with decreasing 388 

gradient of host species varied in size and number of interactions, as did our resampled 389 

communities which were affected by the crossed effect of both sampling issues. They found 390 

that modularity increased up to a critical point and then decreased with both extinction-risk 391 

and random removal of host species. However, connectance was robust to random removals 392 

but increased with extinction-risk removals in their experiment. Because of the differences 393 

between modularity and connectance, they suggested that the behaviour of modularity could 394 

be due to either a statistical artifact or that it is a property of complex networks (Dallas & 395 

Cornelius, 2015). Here, we suggest that the pattern of initial increase in modularity followed 396 

by a decrease may be explained by the way species resolution is lost. Resampled 397 

communities from 90% to 60% of parasite taxonomic resolution grouped parasite species 398 

with a high overlap in host use. As a result, within-module interactions were strengthened, 399 

and modularity increased in these communities. On the other hand, in resampled communities 400 

with 20-10% of parasite taxonomic resolution, even parasite species with a low overlap in 401 

host use were grouped together. That made host species that actually differ in their parasite 402 

communities members of the same module. However, these host species were additionally 403 

connected to other modules where the rest of their parasite species were placed. Hence, the 404 

loss of parasite taxonomic resolution decreased modularity and made between-module 405 
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interactions more frequent. 406 

In accordance with our results, nestedness has been shown to be reasonably robust to 407 

low sampling completeness in both mutualistic (Nielsen and Bascompte 2007, Vizentin-408 

Bugoni et al. 2016, Fründ et al. 2016) and antagonistic communities (Henriksen et al. 2019). 409 

However, as with modularity, previous studies have shown opposite patterns. In earlier 410 

studies, nestedness was high in communities with high sampling completeness, and decreased 411 

when sampling completeness was lost (Nielsen and Bascompte 2007, Vizentin-Bugoni et al. 412 

2016, Fründ et al. 2016, Henriksen et al. 2019). Interactions in many ecological communities 413 

are truly nested (Staniczenko et al. 2013). When such a nested community is under-sampled, 414 

one can expect a weaker signature of the nested pattern, or decreasing nestedness with 415 

decreasing sampling completeness (Nielsen and Bascompte 2007, Vizentin-Bugoni et al. 416 

2016). However, host-parasite communities are different from other ecological communities 417 

and typically show low values of nestedness (Runghen et al. 2021), possibly resulting from 418 

coevolution leading to trade-offs in parasite transmission (McQuaid and Britton 2013). The 419 

full communities had low values of nestedness (Fig. 2b, negative values or less nested than 420 

random assemblages). Hence, low sampling actually opposed the true low nested pattern of 421 

antagonistic communities and resulted in increasing nestedness. Moreover, nestedness was 422 

not robust since it quickly increased as parasite taxonomic resolution was lost. Along the 423 

gradient of taxonomic resolution, parasite species with some shared hosts were grouped. 424 

These species appeared as a single generalist parasite species able to infect not only the 425 

shared hosts of their foundational parasite species, but also the non-shared hosts. At the same 426 

time, specialist parasites remained as separate entities because they were not grouped with 427 

any other species. Then, host spectrum of specialist parasites was a subset of the host species 428 

used by generalist parasites, or in other words, the network structure became more nested. 429 

Connectance and specialisation (H2
') were robust to decreasing host sampling 430 
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completeness, but not to parasite taxonomic resolution. These descriptors showed opposite 431 

patterns, as expected by definition (Table 1). Our results were consistent with previous 432 

studies reporting robustness of these metrics to the loss of interactions (Nielsen and 433 

Bascompte 2007, Vizentin-Bugoni et al. 2016, Fründ et al. 2016, Henriksen et al. 2019), but 434 

not to the loss of species, or the loss of both species and interactions (Dallas and Cornelius 435 

2015, Fründ et al. 2016, Henriksen et al. 2019, Rodrigues and Boscolo 2020, Renaud et al. 436 

2020). The strong dependence of connectance on network size hinders the interpretation of 437 

many biological processes (Blüthgen et al. 2006). This pattern was evident along our crossed-438 

effect gradient, where decreasing parasite taxonomic resolution increased the relative 439 

contribution of the interactions. H2
' was developed as an alternative index of specialisation to 440 

overcome the scale dependence issue of connectance (Blüthgen et al. 2006). We found that 441 

H2
' was sensitive to the loss of parasite taxonomic resolution. However, H2

' was only 442 

overestimated ~0.2-fold in the resampled communities with the lowest efforts (10% host 443 

sampling completeness × 10% parasite taxonomic resolution), against ~3-fold in the case of 444 

connectance. 445 

We observed that the loss of parasite taxonomic resolution made the descriptor 446 

confidence intervals wider. Communities in the gradient of parasite taxonomic resolution 447 

vary in size. Large and small communities are known to be biased to different degrees 448 

(Shvydka et al. 2018, Henriksen et al. 2019). The full communities represented the largest 449 

communities, whereas resampled communities in the lower end of the gradient of parasite 450 

taxonomic resolution represented the smallest communities (  451 
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Table 2b). The later aggregated most of the parasite species with similar infection 452 

patterns, losing redundant interactions. Typically, large communities show higher overlap in 453 

interaction patterns compared to small communities, where redundancy is low (Henriksen et 454 

al. 2019). Therefore, sampling issues are expected to have a limited impact on the network 455 

structure of large communities because, if a species is not recorded, the actual infection 456 

patterns are nevertheless recorded in redundant interactions. However, inclusion or exclusion 457 

of species or interactions produces a greater change among the interaction patterns of small 458 

communities. Therefore, the redundancy-size relationship could explain the increasing 459 

variance observed in the resampled communities along the parasite taxonomic resolution 460 

gradient (Fig. 2, error bars). Nonetheless, severely biased resampled communities were 461 

structurally equivalent to full communities (Type II error results) and still useful to 462 

categorically describe the structure of ecological communities (e.g., if a community is 463 

modular or not), but not the quantitative values of the descriptors (Vanbergen et al. 2017). 464 

The combination of both sampling issues produced an additive effect to modularity 465 

and nestedness. Therefore, when both sampling issues coincide in a sampled dataset, this is 466 

similarly affected by both sampling issues simultaneously than by the sum of the effects of 467 

both sampling issues in isolation. This entails that both sampling issues can be controlled 468 

independently. For example, the use of predictive models potentially overcomes the 469 

limitation of incomplete interaction richness. These models identify where interactions are 470 

most likely to have been missed in a sampled community and eventually include them in the 471 

dataset to improve the study of ecological networks (Terry and Lewis 2020). Despite 472 

producing greater biases in community descriptors, solutions to taxonomic limitations may 473 

not be straightforward. For example, it may require collaborations between ecologists and 474 

taxonomists (Poulin and Presswell 2022). 475 

The full communities resembled community and species level descriptors of the 476 
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natural communities, except for closeness. Earlier studies have evaluated species centrality 477 

descriptors, such as closeness, of both parasites (Poulin et al. 2013) and hosts (Dallas et al., 478 

2019). Taxonomic identification at family level was one of the main factors explaining 479 

centrality of parasite and host species, suggesting that phylogeny could help in predicting 480 

centrality of each species according to their taxonomic affiliation (Poulin et al. 2013). We did 481 

not account for the phylogenetic structure of the guilds in the full communities. Instead, each 482 

interaction acquired a probability according to the specialisation we represented in the model, 483 

but independently of the phylogenetic distance among the members of each guild. The 484 

consideration of the phylogenetic structure of parasites and hosts in our model could improve 485 

our representation of host-parasite communities and predictions. For example, if parasites 486 

infected a range of phylogenetically close hosts, modularity would even be higher because of 487 

homogenisation of module composition. Nonetheless, we consider our approach 488 

representative of natural communities as most of the community and species level descriptors 489 

were effectively captured in the full communities. 490 

Our research shows that studies of communities with low sampling effort and 491 

taxonomic resolution may result in wrong conclusions. The implementation of the latest 492 

methodological advances in open access software facilitates the use of network analysis in 493 

parasitology (Runghen et al. 2021). The increasing availability of host-parasite interaction 494 

datasets also favours the comparison or aggregation of communities to address 495 

macroecological questions (Doherty et al. 2021). Furthermore, data for some host-parasite 496 

communities is already 100 years old. These represent unique case studies to evaluate long-497 

term dynamics and trends at ecosystem level (Carlson et al. 2020) owing to the role of 498 

parasites as connectors of all the species they infect throughout their life cycles (Lafferty et 499 

al. 2006). However, if communities in such comparative studies notably differ in, or do not 500 

include sufficient completeness and species resolution, the conclusions extracted from the 501 
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network analyses of such data will be of limited use, if not defective. 502 
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Tables 660 

Table 1. Effect of sampling issues on community and species level descriptors. 661 

Weighted 

descriptors 

Definition Host sampling 

completeness 

Parasite 

taxonomic 

resolution 

Crossed effect 

Standardised 

Modularity 

Network level descriptor. Pattern 

in which host-parasite 

communities are organised in 

subsets of species that interact 

more frequently among 

themselves than with other 

members of the community 

(Beckett 2016). Higher values 

indicate higher modularity. 

Decreases as 

host sampling 

completeness 

decreases. 

Increases up to 

50% of parasite 

taxonomic 

resolution. Then, 

it drastically 

decreases as 

parasite 

taxonomic 

resolution 

decreases. 

Overall 

decreasing 

tendency. 

Additive effect 

of both sampling 

biases. 

Standardised 

Nestedness 

Network level descriptor. Pattern 

in which less rich parasite 

assemblages are subsets of richer 

parasite assemblages (Almeida-

Neto and Ulrich 2011). Higher 

values indicate higher nestedness. 

Increases as host 

sampling 

completeness 

decreases. 

Increases as 

parasite 

taxonomic 

resolution 

decreases. 

Overall 

increasing 

tendency. 

Additive effect 

of both sampling 

biases. 

Connectance 

[0,1] 

Network level descriptor. 

Relationship between linkage 

density and number of species 

(Tylianakis et al. 2007). Values 

closer to 1 indicate higher 

connectance. 

Robust along the 

decreasing 

gradient of host 

sampling 

completeness. 

Increases as 

parasite 

taxonomic 

resolution 

decreases. 

No evidence of a 

crossed effect. 

H2
' [0,1] Network level descriptor of 

specialisation (Blüthgen et al. 

Reasonably 

robust along the 

Decreasing 

tendency along 

No evidence of a 

crossed effect. 
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2006). Higher values of H2
' 

indicate higher specialisation. 

decreasing 

gradient of host 

sampling 

completeness. 

the decreasing 

gradient of 

parasite 

taxonomic 

resolution. 

Betweenness Species level descriptor. Extent to 

which a species funnels the 

interactions among all other 

species in the community. Values 

>0 represent a species connecting 

groups of species that would be 

sparsely or not connected at all, 

otherwise (Newman 2001, Martín 

González et al. 2010) 

   

Closeness Species level descriptor. Average 

distance of a species to all other 

species in the community. Higher 

values indicate species closer to 

all the other species (Newman 

2001, Poulin et al. 2013).  

   

Rao alpha 

diversity 

Host species level descriptor. 

Diversity of the parasite 

community of each host species 

in terms of richness and 

abundance of parasite species 

(Pavoine et al. 2004) 
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Table 2. Decreasing gradients of (a) host sampling completeness and (b) parasite taxonomic 663 

resolution. 664 

 
Full 

communities 
Resampled communities  

(a) Host sampling completeness 

% of remaining 

host individuals 
100 90 80 70 60 50 40 30 20 10 

% of remaining 

interactions 
100 85.1 78.5 69.3 57.2 50.5 36.8 27.7 17.9 8.2 

Mean number 

interactions per 

parasite species 

2067 1759 1622 1433 1182 1043 761 574 371 170 

(b) Parasite taxonomic resolution 

% of parasite 

species 
100 90 80 70 60 50 40 30 20 10 

Remaining 

number of 

parasite species 

42 37 33 29 25 21 16 12 8 4 
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Table 3. Comparisons of the weighted descriptors between the full and natural communities. 666 

M: standardised modularity. N: standardised nestedness. C: connectance. H2': specialisation. 667 

B: betweenness. Cl: closeness. p: parasites. h: hosts. 668 

  
Community level Species level 

  
M N C H2' Bp Bh Clp Clh 

Rao 

alpha 

diversity 

Full 

communities 

(n=10) 

Minimum 54.32 -14.03 0.05 0.67 0 0 0.001 0.02 1.08 

Maximum 77.80 -10.59 0.07 0.84 0.46 0.46 0.13 0.22 7.9 

Mean 66.25 -11.90 0.05 0.76 0.02 0.08 0.02 0.09 3.22 

Standardised 

error 
2.30 0.30 0.00 0.01 0.003 0.01 0.001 

0.00

4 

0.12 

Natural 

communities 

(n=6) 

Minimum 36.93 -13.39 0.04 0.44 0 0 10-5 0 1 

Maximum 
150.2

1 
-8.67 0.07 0.88 0.77 0.72 0.08 0.7 

9.54 

Mean 74.76 -11.09 0.05 0.66 0.02 0.08 0.005 0.06 2.73 

Standardised 

error 
17.47 0.71 0.00 0.06 0.005 0.02 6×10-4 0.01 

0.19 

t-test 

(community 

level) 

ANOVA 

(species 

level) 

p-value 0.65 0.33 0.92 0.16 0.33 0.88 0.00 0.00 0.24 
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Table 4. Two-way ANOVA of host sampling completeness and parasite taxonomic resolution 670 

for (a) standardised modularity, (b) standardised nestedness, (c) connectance and (d) 671 

specialisation (H2
'). 672 

(a) Standardised modularity df SS MS F p-value 

Sampling Completeness 9 91709 10189.9 62.28 0.00 

Taxonomic Resolution 9 64658 7184.3 43.91 0.00 

Interaction 81 9020 111.4 0.68 1 

Residuals 900 147257 163.6   

      

(b) Standardised nestedness df SS MS F p-value 

Sampling Completeness 9 353.9 39.32 37.75 0.00 

Taxonomic Resolution 9 5610.3 623.36 598.41 0.00 

Interaction 81 108.6 1.34 1.29 0.05 

Residuals 900 937.5 1.04   

      

(c) Connectance df SS MS F p-value 

Sampling Completeness 9 0.00 0.00 0.57 0.82 

Taxonomic Resolution 9 2.6 0.3 1942.05 0.00 

Interaction 81 0.00 0.00 0.32 1 

Residuals 900 0.13 0.00   

      

(d) H2
' df SS MS F p-value 

Sampling Completeness 9 0.01 0.00 0.28 0.98 

Taxonomic Resolution 9 1.85 0.21 66.47 0.00 

Interaction 81 0.05 0.00 0.2 1 

Residuals 900 2.78 0.00   
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Figures 674 

Figure 1. Analysis steps. a) Obtain mean parameters of the natural communities to fit the 675 

model. b) Create host-parasite simulated communities (full communities). (1) Build a matrix 676 

of interaction probabilities by trait matching and according to a specialisation parameter. (2) 677 

Adjust the matrix of interactions probabilities by species abundance distributions. (3) 678 

Distribute interactions through the abundance adjusted matrix of interaction probabilities 679 

(Fründ et al. 2016). c) Simulate nine levels of sampling biases for host sampling 680 

completeness and parasite taxonomic resolution, and their crossed effect. d) Assess and 681 

compare network descriptors between (1) natural and full communities and (2) full and 682 

resampled communities. 683 

Figure 2. Effect of the decreasing gradient of host sampling completeness, parasite taxonomic 684 

resolution and their crossed effect on host-parasite community descriptors. 685 
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Supporting information. Llopis-Belenguer, C., J. A. Balbuena, I. Blasco-Costa, A. 687 

Karvonen, V. Sarabeev, J. Jokela. Sensitivity of bipartite network analyses to incomplete 688 

sampling and taxonomic uncertainty. 689 

Appendix S1: Data sources  690 

• Full communities: 691 

Replication code and data for these analyses is available in: 692 

Llopis-Belenguer, C., J. A. Balbuena, I. Blasco-Costa, A. Karvonen, V. Sarabeev, J. 693 

Jokela. Replication code and data for: Sensitivity of bipartite network analyses to incomplete 694 

sampling and taxonomic uncertainty. Zenodo, DOI### (to be published in Zenodo after 695 

acceptance) 696 

• Natural communities (retrieved from http://www.ecologia.ib.usp.br/iwdb/): 697 

Arai, H. P., and D. R. Mudry. 1983. Protozoan and Metazoan Parasites of Fishes from the 698 

Headwaters of the Parsnip and McGregor Rivers, British Columbia: A Study of Possible 699 

Parasite Transfaunations. Canadian Journal of Fisheries and Aquatic Sciences 40:1676–1684. 700 

Arthur, J. R., L. Margolis, and H. P. Arai. 1976. Parasites of Fishes of Aishihik and Stevens 701 

Lakes, Yukon Territory, and Potential Consequences of Their Interlake Transfer Through a 702 

Proposed Water Diversion for Hydroelectrical Purposes. Journal of the Fisheries Research 703 

Board of Canada 33:2489–2499. 704 

Chinniah, V. C., and W. Threlfall. 1978. Metazoan parasites of fish from the Smallwood 705 

Reservoir, Labrador, Canada. Journal of Fish Biology 13:203–213. 706 

Leong, T. S., and J. C. Holmest. 1981. Communities of metazoan parasites in open water 707 

fishes of Cold Lake, Alberta. Journal of Fish Biology 18:693–713. 708 

• Natural communities and Host sampling completeness (data in Valtonen et al. 709 

(2001)): 710 
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Llopis-Belenguer, C. et al. Parasite communities of fishes from Northeastern Baltic Sea (data 711 

in Valtonen et al., 2001). Zenodo, DOI### (to be published in Zenodo after acceptance) 712 

• Host sampling completeness: 713 

Llopis-Belenguer, C., 2019. Replication Data for: Native and invasive hosts play different 714 

roles in host-parasite networks. Harvard Dataverse, https://doi.org/10.7910/DVN/IWIKOL 715 

Llopis-Belenguer, C., J.A. Balbuena, K. Lange, F. de Bello, I. Blasco-Costa. 2018. Data 716 

from: Unveiling hidden diversity: towards a functional trait framework for parasites. Harvard 717 

Dataverse, https://doi.org/10.7910/DVN/RX3R2X 718 

Llopis-Belenguer, C. et al. Parasite communities of Coregonus spp. from Swiss and 719 

Norwegian Lakes. Zenodo, DOI### (to be published in Zenodo after acceptance) 720 
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Supporting information. Llopis-Belenguer, C., J. A. Balbuena, I. Blasco-Costa, A. 721 

Karvonen, V. Sarabeev, J. Jokela. Sensitivity of bipartite network analyses to incomplete 722 

sampling and taxonomic uncertainty.  723 

Appendix S2: Fig. S1 724 

 725 

Fig. S1. Host range distribution of the parasite species in the 10-replicate full 726 

communities. Bar plots show the number of parasite species that infect a given number of 727 

host species. Almost all parasite species infect less than half of the host species (nhost=13) 728 

due to the high specialisation parameter (specpar=55). The mean intensity of each parasite 729 

species in a given host species was not considered in these plots, but presence-absence data. 730 
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