

1 Chrna5 and lynx prototoxins identify acetylcholine super- 2 responder subplate neurons

3
4 Sridevi Venkatesan¹, Tianhui Chen¹, Yupeng Liu¹, Eric E Turner², Shreejoy
5 Tripathy^{1,3,4,5}, *Evelyn K Lambe^{1,4,6}

6
7 1. Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto
8 ON, Canada

9 2. Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA,
10 USA

11 3. Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto ON,
12 Canada

13 4. Department of Psychiatry, University of Toronto, Toronto ON, Canada

14 5. Institute of Medical Science, University of Toronto, Toronto ON, Canada

15 6. Department of Obstetrics and Gynecology, University of Toronto, Toronto ON, Canada

16 Corresponding author:

17 E.K. Lambe, Ph.D.

18 1 King's College Circle

19 Toronto ON

20 Canada M5S 1A8

21 (416) 946-0910

22 Email: evelyn.lambe@utoronto.ca

23 **Summary (150 words)**

24 Attention depends on cholinergic excitation of prefrontal neurons but is sensitive to perturbation
25 of $\alpha 5$ -containing nicotinic receptors encoded by *Chrna5*. However, *Chrna5*-expressing
26 (*Chrna5*+) neurons remain enigmatic, despite their potential as a target to improve attention.
27 Here, we generate complex transgenic mice to probe *Chrna5*+ neurons and their sensitivity to
28 endogenous acetylcholine. Through opto-physiological experiments, we discover that *Chrna5*+
29 neurons contain a distinct population of acetylcholine super-responders. Leveraging single-cell
30 transcriptomics, we discover molecular markers conferring subplate identity on this subset. We
31 determine that *Chrna5*+ super-responders express a unique complement of GPI-anchored lynx
32 prototoxin genes (*Lypd1*, *Ly6g6e*, and *Lypd6b*), predicting distinct nicotinic receptor regulation.
33 To manipulate lynx regulation of endogenous nicotinic responses, we developed a
34 pharmacological strategy guided by transcriptomic predictions. Overall, we reveal *Chrna5*-Cre
35 mice as a transgenic tool to target the diversity of subplate neurons in adulthood, yielding new
36 molecular strategies to manipulate their cholinergic activation relevant to attention disorders.

37 **Keywords**

38 Acetylcholine, *Chrna5*, nicotinic receptor, alpha5, prefrontal cortex, subplate, lynx prototoxins,
39 transcriptomics, optogenetics, electrophysiology

40 **Introduction (723 words)**

41 Cholinergic modulation of the medial prefrontal cortex (mPFC) is essential for attention and
42 detection of sensory cues (Dalley et al., 2004b, 2004a; Gritton et al., 2016; McGaughy et al.,
43 2002). Deep-layer pyramidal neurons in the PFC are critically involved in such executive
44 function (Briggs and Usrey, 2008; Spellman et al., 2021; Voigts et al., 2020) and are robustly
45 excited by acetylcholine (Kassam et al., 2008; Sparks et al., 2018), via nicotinic and muscarinic
46 receptor activation (Venkatesan et al., 2020). The $\alpha 5$ nicotinic receptor subunit encoded by
47 *Chrna5* is specifically expressed in deep-layer pyramidal neurons (Wada et al., 1990; Winzer-
48 Serhan and Leslie, 2005), forming high-affinity nicotinic receptors in combination with $\alpha 4$ and
49 $\beta 2$ subunits. Electrophysiological, behavioural, and genetic evidence in both rodents and humans
50 point to an important role of *Chrna5* expression for nicotinic receptor function, attention, and
51 executive function.

52 Constitutive deletion of *Chrna5* in mice, or knockdown in the adult rat PFC disrupt
53 attention and reduce nicotinic receptor activation by exogenous acetylcholine stimulation in layer
54 6 neurons (Bailey et al., 2010; Howe et al., 2018a; Tian et al., 2011). Optogenetic experiments in
55 *Chrna5*^{-/-} mice show that *Chrna5* is required for rapid onset of postsynaptic cholinergic
56 activation and prevents desensitization of the endogenous cholinergic response during prolonged
57 stimulation (Venkatesan and Lambe, 2020). In humans, the non-synonymous rs16969968
58 (D398N) polymorphism in *Chrna5* is associated with nicotine dependence, schizophrenia and
59 cognitive impairment (Bierut et al., 2008; Han et al., 2019; Schuch et al., 2016). Nicotinic
60 $\alpha 4\beta 2\alpha 5$ receptors with the D398N polymorphism have partial loss of function, attributed to
61 changes in receptor desensitization, calcium permeability, or membrane trafficking (Maskos,
62 2020; Prevost et al., 2020; Scholze and Huck, 2020).

63 Despite $\alpha 5$ nicotinic receptor involvement in attention and prefrontal cholinergic
64 activation, systematic characterization of *Chrna5*-expressing neurons using modern genetic tools
65 is lacking. Deep-layer neurons include diverse corticothalamic (L6CT), corticocortical, and layer
66 6b (L6b) populations (Briggs, 2010; Sorensen et al., 2015; Thomson, 2010). *Chrna5* is predicted
67 to be expressed in L6CT neurons (Heath et al., 2010; Kassam et al., 2008), which are usually
68 identified by their expression of *Syt6*, a conserved L6CT neuronal marker (Harris et al., 2014,
69 2019; Nectow et al., 2017a). *Syt6*-Cre mice have been widely used to characterize prefrontal
70 L6CT neurons and their cholinergic properties (Nakayama et al., 2018; Tian et al., 2014; Vaasjo
71 et al., 2021). However, it is unclear whether these are the same neurons expressing *Chrna5*.
72 Characterization of *Chrna5*-expressing neurons has been limited by the lack of verified
73 antibodies for the $\alpha 5$ subunit that could be used for post-hoc immunostaining. Previous BAC-
74 transgenic mice labeling *Chrna5*-expressing neurons had altered expression of other genes in the
75 tightly linked *Chrna5/a3/b4* gene cluster, limiting their use for functional examination (Ables et
76 al., 2017). This issue was circumvented by disrupting the open reading frames of *Chrna3/b4* in
77 the BAC transgene to generate a *Chrna5*-Cre mouse without misexpression artifacts (Morton et
78 al., 2018).

79 Here, we create compound transgenic mice to investigate how prefrontal *Chrna5*-
80 expressing (*Chrna5*+) neurons respond to optogenetic release of endogenous acetylcholine. The

81 fast and strong response prompted a multi-approach examination of *Chrna5*⁺ neurons together
82 with a control population of *Syt6*-expressing (*Syt6*⁺) neurons, a more traditional molecular
83 marker of deep-layer prefrontal cortex. We demonstrate a large fraction of *Chrna5*⁺ neurons
84 have distinctive high-affinity cholinergic responses. Single-cell RNAseq analysis reveals the
85 expression of several subplate markers (*Cplx3*, *Ctgf*, and *Lpar1*) in this *Chrna5*⁺ subset,
86 identifying them as subplate neurons born early in development that are critical for establishing
87 thalamocortical connectivity (Hoerder-Suabedissen and Molnár, 2013; Kanold and Luhmann,
88 2010; Luhmann et al., 2018). *Chrna5*⁺ subplate neurons show distinct expression pattern of GPI-
89 anchored lynx prototoxins (*Ly6g6e*, *Lypd1*, and *Lypd6b*) capable of exerting complex modulation
90 of nicotinic receptor properties (Miwa et al., 2019; Wu et al., 2015). As predicted from the
91 transcriptomic analysis, our pharmacological manipulations targeting lynx prototoxins
92 successfully alter endogenous nicotinic responses, revealing cell-type specific lynx regulation
93 of nicotinic receptors.

94 Recent studies have examined cell-type specific modulation of nicotinic receptors by
95 different lynx prototoxins and the consequences for cortical development and cognition
96 (Anderson et al., 2020; Demars and Morishita, 2014; Falk et al., 2021; Miwa, 2021). Here, we
97 discovered endogenous lynx modulation of nicotinic properties relevant for attention in subplate
98 neurons expressing *Chrna5*. Our work highlights *Chrna5*-Cre mice as a transgenic tool to target
99 acetylcholine super-responder subplate neurons and identifies strategies to fine-tune their
100 cholinergic activation by manipulating GPI-anchored lynx prototoxins.

101 **Results**

102 ***Chrna5* expression identifies acetylcholine 'super-responders'**

103 To characterize prefrontal *Chrna5*-expressing (*Chrna5*⁺) neurons, we generated triple transgenic
104 *Chrna5*-Cre^{+/+} Ai14^{+/+} ChAT-ChR2^{+/+} mice (**Fig 1A**) and examined optogenetic cholinergic
105 responses in labeled *Chrna5*⁺ neurons. These mice expressed tdTomato in *Chrna5*⁺ neurons and
106 channelrhodopsin-2 in cholinergic axons as seen by two-photon imaging (**Fig 1B**). We recorded
107 endogenous cholinergic responses in labeled *Chrna5*⁺ neurons with optophysiology in mPFC
108 slices, using unlabeled pyramidal neurons as a control (**Fig 1C**). Optogenetic *Chrna5*⁺ neurons
109 clearly possessed larger-amplitude cholinergic responses with significantly faster onset
110 compared to control neurons (**Fig 1D-F**). The rising slope was significantly larger in *Chrna5*⁺
111 neurons (220 ± 32 pA/s, 24 cells from 4 mice) compared to control (123 ± 22 pA/s, 15 cells; $t_{(37)} = 2.19$, $P = 0.02$, unpaired t-test; Cohen's d: 0.72). Similarly, peak current evoked by optogenetic
112 acetylcholine release was greater in *Chrna5*⁺ neurons (15 ± 2 pA) compared to control (8 ± 1 pA,
113 $t_{(37)} = 2.52$, $P = 0.02$; Cohen's d: 0.83), as well as the area of the cholinergic response ($t_{(37)} = 2.06$, $P = 0.046$). Intrinsic electrophysiological properties, however, did not differ between
114 *Chrna5*⁺ and unlabeled neurons (**Suppl Table 1**). Additionally, we determined that *Chrna5*⁺
115 neurons are under presynaptic muscarinic autoinhibitory control, which can be relieved by
116 atropine, resulting in even larger responses (post atropine response: $194 \pm 42\%$ of baseline, $n = 6$
117 cells). Our application of the nicotinic antagonist DHBE eliminated the optogenetic cholinergic
118 response (post DHBE response : 3 ± 2 % of baseline, $n = 4$ cells), indicating the relevant
119 response (post DHBE response : 3 ± 2 % of baseline, $n = 4$ cells), indicating the relevant
120 response (post DHBE response : 3 ± 2 % of baseline, $n = 4$ cells), indicating the relevant

121 nicotinic receptors contain $\beta 2$ subunits. This characterization of *Chrna5*⁺ neurons revealed them
122 to be acetylcholine ‘super-responders’ with stronger and faster onset cholinergic responses
123 distinct from other deep-layer pyramidal neurons.

124 To further probe the distinct cholinergic responses of prefrontal *Chrna5*⁺ neurons, we
125 examined factors differentiating these cells from neurons labeled by *Syt6* expression (*Syt6*⁺),
126 which has hereto been the predominant marker of layer 6 corticothalamic neurons used to
127 characterize their function during PFC-dependent tasks (Harris et al., 2019; Nakayama et al.,
128 2018; Nectow et al., 2017b; Vaasjo et al., 2021). Since the extent of overlap between *Chrna5* and
129 *Syt6* expressing deep-layer pyramidal neuron populations was unclear, we adopted an imaging
130 strategy to visualize the distribution of *Chrna5*⁺ and *Syt6*⁺ neurons in the PFC and determine the
131 exact proportion of distinctive non-overlapping *Chrna5*⁺ neurons. We generated a compound
132 transgenic *Chrna5*-Cre^{+/} Ai14^{+/} *Syt6*-EGFP⁺ mouse to simultaneously express tdTomato in
133 *Chrna5*⁺ neurons and EGFP in *Syt6*⁺ neurons and performed confocal and two-photon imaging
134 of the endogenous fluorescence of these reporters in mPFC brain slices. *Chrna5*⁺ and *Syt6*⁺
135 neurons were both present primarily in layer 6, with a few *Chrna5*⁺ neurons in layer 5 (**Fig 1G, I**). Closer
136 investigation confirmed the existence of a substantial proportion of exclusively
137 *Chrna5*⁺ neurons (37% of all labeled cells) which do not express *Syt6*, in addition to overlapping
138 *Chrna5*⁺-*Syt6*⁺ neurons (39%) which express both markers, and exclusively *Syt6*⁺ neurons
139 (24%) which do not express *Chrna5* (N = 4 mice, **Fig 1H, J**). Thus, nearly half of all *Chrna5*-
140 expressing neurons are not labeled by *Syt6*-expression and would have been excluded in previous
141 studies using *Syt6*-Cre mice.

142 ***Distinct Chrna5*⁺ neurons with highly-resilient nicotinic receptor responses**

143 To elucidate the distinct subset of *Chrna5*⁺ neurons not found with *Syt6*-labeling approaches, we
144 measured acetylcholine-evoked signals in multiple neurons simultaneously with *ex vivo*
145 GCaMP6s Ca^{2+} imaging. We generated transgenic mice expressing GCaMP6s in either *Chrna5*⁺
146 (*Chrna5*-Cre^{+/}/Ai96^{+/}) or *Syt6*⁺ (*Syt6*-Cre^{+/}/Ai96^{+/}) neurons and performed two-photon imaging
147 of mPFC layer 6 (**Fig 2A**). We measured Ca^{2+} signals evoked by acetylcholine (1 mM, 15 s) in
148 *Chrna5*⁺ (**Suppl Video 1**) and *Syt6*⁺ neurons (**Suppl Video 2**). To pharmacologically interrogate
149 these populations, we measured changes in the Ca^{2+} signal and proportions of acetylcholine-
150 responsive neurons (**Fig 2A, B**). Application of the competitive nicotinic antagonist DHBE (10
151 μM , 10 min) left residual acetylcholine-evoked Ca^{2+} signals in *Chrna5*⁺ neurons ($35 \pm 3\%$ of
152 baseline, n = 71 cells, 6 mice; **Fig 2C i**) that were greater to those in *Syt6*⁺ neurons ($21 \pm 3\%$ of
153 baseline, n = 112 cells, 7 mice; Mann Whitney U = 2400, $P < 10^{-4}$). The cumulative distribution
154 of responses remaining after DHBE was significantly right-shifted in *Chrna5*⁺ neurons compared
155 to *Syt6*⁺ neurons (**Fig 2C ii**, Kolmogorov Smirnov D = 0.37, $P < 10^{-4}$). A majority of *Chrna5*⁺
156 neurons (~83%) still showed acetylcholine-evoked responses after DHBE, whereas fewer *Syt6*⁺
157 neurons (~50%) retained their responses, with a complete elimination of acetylcholine-evoked
158 responses in the rest (**Fig 2C iii**, Fisher’s exact test: $P < 10^{-4}$). Yet, the addition of muscarinic
159 antagonist atropine did not attenuate the striking differences between *Chrna5*⁺ and *Syt6*⁺
160 neurons, raising the possibility of an underlying nicotinic mechanism (**Fig 2D**). In the presence
161 of DHBE+ atropine, a subset of *Chrna5*⁺ neurons still showed substantial acetylcholine-evoked

162 Ca^{2+} signals (6 ± 1 % of baseline; **Fig 2D i**), whereas almost all Syt6+ neurons' responses were
163 completely blocked (0.2 ± 0.1 % of baseline; Mann Whitney U = 2083, $P < 10^{-4}$) as seen from
164 the cumulative distribution (**Fig 2D ii**, Kolmogorov Smirnov D = 0.36, $P < 10^{-4}$). The proportion
165 of Chrna5+ and Syt6+ neurons showing acetylcholine-evoked responses after DHBE+ Atropine
166 was significantly different (41% Chrna5+ vs 6% Syt6+, Fisher's exact test: $P < 10^{-4}$, **Fig 2D iii**).
167 However, since DHBE is a competitive antagonist, it can be outcompeted by exogenous
168 acetylcholine at high affinity nicotinic receptors. Therefore, we hypothesized that the resilient
169 exogenous acetylcholine-evoked responses would require non-competitive antagonist.

170 To address the hypothesis of higher-affinity nicotinic binding and its consequences for
171 spiking in these neurons, we switched to whole-cell recording in individual Chrna5+ and Syt6+
172 neurons. We recorded current clamp responses to acetylcholine (1 mM, 15 s) in labeled Chrna5+
173 and Syt6+ neurons from *Chrna5-Cre*^{+/+Ai14} and *Syt6-Cre*^{+/+Ai14} or *Syt6-EGFP* mice
174 respectively (**Fig 2E**). Chrna5+ neurons showed stronger acetylcholine-evoked firing: attaining
175 significantly higher peak firing frequency (29 ± 6 Hz, n=12 cells, 6 mice; $t_{(24)} = 2.74$, $P = 0.01$,
176 unpaired t-test; Cohen's d: 1.08) compared to Syt6+ neurons (13 ± 2 Hz, n = 14 cells, 5 mice;
177 **Fig 2E**). The intrinsic electrophysiological properties of Chrna5+ and Syt6+ neurons did not
178 show statistically significant differences (**Suppl Table 2**). We next examined the sensitivity of
179 acetylcholine-evoked firing to competitive nicotinic receptor block by DHBE in the presence of
180 atropine. Acetylcholine-evoked firing was completely eliminated in all Syt6+ neurons (**Fig 2F**)
181 whereas a large subset of Chrna5+ neurons (7/11) retained their ability to respond to
182 acetylcholine (Average peak firing rate in Chrna5+ neurons: 6 ± 2 Hz; $t_{(19)} = 3.22$, $P = 0.004$,
183 unpaired t-test) demonstrating similar resilience to competitive nicotinic receptor block as
184 observed with Ca^{2+} imaging. We used the non-competitive nicotinic receptor blocker
185 mecamylamine (Papke et al., 2013; Webster et al., 1999) to test our hypothesis that nicotinic
186 receptors in this Chrna5+ subset were higher affinity and therefore allowed exogenous
187 acetylcholine to outcompete DHBE. The addition of 5 μM mecamylamine was sufficient to
188 eliminate acetylcholine-evoked firing in all the Chrna5+ neurons that were resilient to
189 competitive nicotinic block ($t_{(4)} = 5.14$, $P = 0.007$, paired t-test; **Fig 2F**). Together, our Ca^{2+}
190 imaging and electrophysiology experiments revealed the existence of a distinct subset of
191 Chrna5+ neurons dissimilar to Syt6+ neurons, with high affinity nicotinic responses resilient to
192 competitive nicotinic antagonism.

193 **Single-cell transcriptomics identifies *Chrna5*+ subplate neurons with *Lynx* genes**

194 To determine the molecular identity of distinct Chrna5+ neurons with enhanced cholinergic
195 responses, we pursued single-cell RNAseq. We extracted gene expression data of L5-6
196 glutamatergic neurons (n = 2422 cells) in the mouse anterior cingulate cortex from the Allen
197 Institute single cell RNAseq databases (Tasic et al., 2016, 2018; Yao et al., 2021). We classified
198 these deep-layer pyramidal neurons into 3 groups: those expressing only *Chrna5* (Chrna5+, n=
199 243), both *Chrna5* and *Syt6* (Chrna5+ Syt6+, n = 834), or only *Syt6* (Syt6+, n = 564) (**Fig 3A**).
200 781 cells showed no expression of *Chrna5* or *Syt6* and consisted primarily of L6
201 Intratelencephalic cells which have been previously shown to have purely muscarinic M2/M4
202 mediated hyperpolarizing cholinergic responses (Venkatesan and Lambe, 2020; Yang et al.,

203 2020). We focused on the Chrna5+, Syt6+ and Chrna5+Syt6+ groups to examine their
204 transcriptomic differences. Single-cell analysis revealed that the Chrna5+ group primarily
205 included L6b (44%), L5 near-projecting (L5NP, 19%), and L6CT neurons (30%), whereas the
206 Chrna5+Syt6+ and Syt6+ groups were predominantly composed of L6CT neurons (>90%) (**Fig**
207 **3B**). We examined the expression of marker genes in these respective groups to validate our cell-
208 classification. Chrna5+ neurons showed distinctive expression of several marker genes- *Ctgf*,
209 *Cplx3*, *Kcnab1*, *Lpar1* (**Fig 3B,C**) associated with subplate neurons (Ghezzi et al., 2021;
210 Hoerder-Suabedissen and Molnár, 2013). Subplate neurons are early-born and vital for brain
211 development, leaving L6b neurons as descendants in adulthood (Kanold and Luhmann, 2010;
212 Luhmann et al., 2018; Wess et al., 2017). Notably, the highest fold enrichment among all
213 differentially expressed genes in Chrna5+ neurons was found for subplate markers *Ctgf* (Fold
214 change, 5.69) and *Cplx3* (3.81) (**Table 1**). Overall, Chrna5+ neurons including both L5NP and
215 L6b subpopulations highly express subplate marker genes. In contrast, *Syt6*-expressing
216 Chrna5+Syt6+ and Syt6+ groups are only enriched in the corticothalamic markers *Foxp2* and
217 *Syt6*, consistent with their corticothalamic subtype. These results support our imaging,
218 electrophysiological, and pharmacological results suggesting the exclusive Chrna5+ population
219 is a distinct cell type from typical L6CT *Syt6*-expressing neurons.

220 To identify molecular changes predictive of Chrna5+ nicotinic ‘super-responders’, we
221 examined differential expression of genes that exert effects on postsynaptic cholinergic
222 responses (**Fig 3D-E**). We selected cholinergic receptor genes (nicotinic *Chrna5-2*, *Chrna7*,
223 *Chrb2-4*, and muscarinic subunits *Chrm1-4*), acetylcholinesterase (*Ache*), and members of the
224 family of genes that encode lynx proteins (*Ly6e*, *Ly6h*, *Ly6g6e*, *Lynx1*, *Lypd1*, *Lypd6*, *Lypd6b*)
225 known to allosterically modulate nicotinic receptor responses (Miwa et al., 2019). We found
226 substantial and highly significant changes in the expression of three lynx prototoxins *Lypd1*,
227 *Ly6g6e* and *Lypd6b* (**Fig 3D**). While both Chrna5+ and Chrna5+Syt6+ populations express
228 *Chrna5*, there was slightly higher expression of *Chrna5* (25% increase) as well as lower
229 expression of the inhibitory muscarinic receptor *Chrm2* (20% decrease) in Chrna5+Syt6+
230 neurons. There were no significant differences in other nicotinic and muscarinic subunit
231 expression between the two groups. Acetylcholinesterase, the enzyme that breaks down
232 acetylcholine was also highly expressed (50% increase) in Chrna5+ neurons, which may benefit
233 their nicotinic responses by protecting receptors from overactivation and desensitization. The
234 fold-change of the genes in **Fig 3E** between Chrna5+ and Chrna5+Syt6+ neurons is shown in
235 **Suppl Table 3**. Notably, the top three genes with highest fold change in Chrna5+ neurons were
236 the GPI-anchored lynx prototoxins: *Lynx2* encoded by *Lypd1* (Fold change: 2.55), *Ly6g6e*
237 (2.03), and *Lypd6b* (1.51). The distinct pattern of expression of specific lynx proteins in Chrna5+
238 neurons suggests unexpectedly complex endogenous control of nicotinic responses in these
239 prefrontal subplate neurons.

240 ***Perturbing native prefrontal cortical lynx-modulation of optogenetic nicotinic responses***

241 To examine whether the molecular machinery of deep layer prefrontal neurons endows them
242 with greater dynamic range in responding to acetylcholine, we sought to experimentally perturb
243 endogenous lynx modulation. Members of the lynx-family are GPI-anchored (**Fig 4A**), and work
244 in cell expression systems (Wu et al., 2015) suggests these anchors can be cleaved via activation

245 of phospholipase C (PLC). These experiments are important because the potential impact of GPI
246 cleavage on nicotinic responses in a native system is not well understood. We hypothesized that
247 perturbing lynx-mediated control could affect endogenous nicotinic properties in a complex
248 manner (**Fig 4A**) since both positive (eg. Ly6g6e) and negative modulatory lynx proteins (eg.
249 Lynx1) are expressed. To cleave GPI-anchored proteins, we used the PLC activator compound
250 m-3M3FBS (Bae et al., 2003; Horowitz et al., 2005; Krjukova et al., 2004; Sturgeon and
251 Magoski, 2018). Nicotinic responses of deep layer pyramidal neurons from ChAT-ChR2 mice to
252 optogenetic acetylcholine release were recorded in the continuous presence of atropine before
253 and after treatment with m-3M3FBS (25 μ M, 5 min; **Fig 4B**). The rising slope of the nicotinic
254 responses showed a significant increase after m-3M3FBS treatment ($23 \pm 17\%$; Paired Cohen's d
255 = 0.83; $P = 0.008$, Wilcoxon matched-pairs test), compared to the baseline change observed in
256 the same cells prior to PLC activation ($-6 \pm 4\%$; 8 cells, 6 mice; **Fig 4C, D**). This increase was
257 not observed with the inactive ortholog o-3M3FBS that does not activate PLC (Paired Cohen's d
258 = 0.09, $P = 0.625$, Wilcoxon matched-pairs test, data not shown). The area under the nicotinic
259 response known as charge transfer also showed a statistically significant increase following PLC
260 activation ($22 \pm 7\%$; Cohen's d = 1.68; $P = 0.016$, Wilcoxon matched-pairs test; **Fig 4D**),
261 compared to baseline change ($-9 \pm 6\%$). Thus, PLC activation causes a specific increase in
262 nicotinic receptor responses, presumably due to cleavage of inhibitory GPI-anchored prototoxins
263 such as Lynx1.

264 To test the transcriptomic prediction that cell-type specific differences in lynx modulation
265 lead to different cholinergic properties, we obtained purified water-soluble recombinant Ly6g6e
266 protein and examined its effects on optogenetic nicotinic responses in labeled Chrna5+ and
267 Syt6+ neurons (**Fig 4F**). These experiments were conducted in *Chrna5-Cre^{+/+} Ai14^{+/+} ChAT-*
268 *ChR2^{+/+}* and *Syt6-Cre^{+/+} Ai14^{+/+} ChAT-ChR2^{+/+}* mice. We hypothesized that the modulation of
269 Chrna5+ neuronal nicotinic receptors by endogenous Ly6g6e would occlude the effect of
270 exogenous soluble Ly6g6e, whereas Syt6+ neurons would be altered by exposure to the
271 exogenous Ly6g6e (Fig 4G). Consistent with this hypothesis, we found that 10 minute
272 application of soluble Ly6g6e did not significantly alter the amplitude of optogenetically evoked
273 nicotinic responses in labeled Chrna5+ neurons (Change in peak = -2.1 ± 1.2 pA, $t_{(6)} = 1.79$, $P =$
274 0.12, paired t-test). However, in labeled Syt6+ neurons lacking endogenous expression of
275 *Ly6g6e*, exogenous application of soluble Ly6g6e caused a significant decrease in the amplitude
276 (Change in peak = -10 ± 1.8 pA, $t_{(8)} = 5.60$, $P < 0.001$, paired t-test; **Fig 4H-I**). The change in
277 peak and area of the nicotinic responses caused by soluble Ly6g6e was significantly different
278 between Chrna5+ and Syt6+ neurons (change in peak : $t_{(14)} = 3.43$, $P = 0.004$; Change in area:
279 $t_{(14)} = 2.53$, $P = 0.024$, Unpaired t test; **Fig 4I - J**). Of note, soluble and endogenous GPI-
280 anchored prototoxins are known to have opposite effects on nicotinic receptors and the exact
281 direction of endogenous modulation of nicotinic receptors by different lynx proteins is still
282 debated (Arvaniti et al., 2016; Kulbatskii et al., 2021; Miwa, 2021). The key outcome of this
283 experiment is the difference in the Ly6g6e modulation of Chrna5+ and Syt6+ neurons, not the
284 direction. We conclude that Chrna5+ neurons exert specialized molecular control over their
285 nicotinic receptors, shaping their fate as acetylcholine super-responders.

286 **Discussion (1206 words)**

287 Our work examines the effects of GPI-anchored lynx prototoxins on native nicotinic receptor-
288 mediated optogenetic responses, advancing from work in heterologous expression systems.

289 These results are a first step in showing how endogenous lynx regulation of nicotinic responses
290 can act in a complex cell-type specific fashion leading to specialized cholinergic properties in a
291 subset of neurons. Overall, our study reveals a previously uncharacterized population of *Chrna5*-
292 expressing subplate neurons in the prefrontal cortex that are exquisitely sensitive to
293 acetylcholine, with differential expression of several lynx prototoxin genes that allow flexible
294 tuning of their high-affinity nicotinic responses (**Fig 5**).

295 ***Specialized cholinergic properties of Chrna5-expressing neurons***

296 While important for attention, the neurophysiological impact of the auxiliary $\alpha 5$ nicotinic subunit
297 in its native neuronal environment has remained beyond the reach of previous work. The
298 contributions of $\alpha 5$ to high-affinity nicotinic receptors have been extrapolated based on results of
299 cell system experiments and work in rodents deleted for *Chrna5* (Bailey et al., 2010; Howe et al.,
300 2018b; Kuryatov et al., 2008; Prevost et al., 2020; Venkatesan and Lambe, 2020). Here, *Chrna5*-
301 Cre mice allowed us to affirmatively demonstrate that neurons expressing the $\alpha 5$ nicotinic
302 subunit respond faster and more strongly to endogenous acetylcholine. This cholinergic
303 heterogeneity among layer 6 neurons prompted a larger scale comparison between *Chrna5*+
304 neurons and a well-defined layer 6 population labeled by *Syt6* (Nectow et al., 2017a). These
305 experiments revealed a subset of *Chrna5*+ acetylcholine ‘super-responders’ with high affinity
306 nicotinic responses that were not found in *Syt6*+ neurons.

307 ***Heterogeneity of cell types expressing Chrna5***

308 Previously, the deep-layer cell types expressing *Chrna5* were uncharacterized, and generally
309 thought to include L6CT neurons (Kassam et al., 2008). Investigation of L6CT neurons have
310 relied on *Syt6*-Cre and *Ntsr1*-Cre mouse lines that label similar sets of neurons (Harris et al.,
311 2014, 2019; Nectow et al., 2017a), with only *Syt6*-Cre mice successfully labeling this population
312 in prefrontal cortex (Vaasio et al., 2021). L6CT neurons labeled by *Syt6* or *Ntsr1* expression are
313 excited by acetylcholine (Sundberg et al., 2018; Tian et al., 2014), but the degree to which their
314 nicotinic response relied on *Chrna5* expression was unclear. Strikingly, we reveal that
315 acetylcholine super-responders with high affinity nicotinic receptors are from the population of
316 *Chrna5*+ neurons without *Syt6*-expression. Transcriptomic analysis demonstrates that majority of
317 these likely *Chrna5*+ ‘super-responders’ arise from L5 Near-Projecting and L6b neurons,
318 populations that express multiple markers linking them to the developmental subplate. These
319 enigmatic cells are remnants of earliest-born cortical neurons that serve as a relay for
320 establishing connections between cortex and thalamus (Marx et al., 2017; Molnár et al., 2020).
321 Subplate neurons receive cholinergic inputs at birth (Mechawar and Descarries, 2001),
322 highlighting their role in developmental cholinergic modulation.

323

324 ***Advantages of Chrna5 as a marker for subplate cells***

325 In contrast to L6CT neurons, subplate neurons remain relatively uncharacterized due to the lack
326 of transgenic mice to definitively label the diverse subtypes, and inaccessibility of the available
327 lines for *in vivo* targeting. Transcriptomic analysis (Fig 5, Table 1) suggests that the *Chrna5*+
328 population is enriched for known subplate markers *Ctgf* (Connective tissue growth factor), *Cplx3*
329 (Complexin 3), *Kcnab1*, and *Lpar1* (Hoerder-Suabedissen and Molnár, 2013; Hoerder-
330 Suabedissen et al., 2009; Tiong et al., 2019). Significantly, the lynx prototoxin and nicotinic

331 receptor modulator *Ly6g6e*, which is highly expressed in *Chrna5*⁺ neurons, is also a marker of
332 subplate neurons (Hoerder-Suabedissen et al., 2013). Our study is the first to identify enhanced
333 cholinergic activation regulated by *Chrna5* and lynx-gene expression in subplate/L6b neurons.
334 Subplate neurons have recently been found to strongly regulate cortical output through their
335 intracortical connections (Egger et al., 2020; Zolnik et al., 2020). Enhanced cholinergic
336 activation in these neurons will have different consequences for prefrontal processing,
337 challenging the popular conception that cholinergic modulation of attention occurs only through
338 top-down control of thalamic input by L6CT neurons.

339 ***Molecular determinants of nicotinic receptor properties in Chrna5⁺ neurons***

340 Our transcriptomic analysis revealed enhanced expression of GPI-anchored lynx prototoxin
341 genes *Ly6g6e*, *Lypd1*, and *Lypd6b* in *Chrna5*⁺ neurons (Fig 5). Lynx proteins are well known
342 modulators of nicotinic receptor properties and trafficking (Anderson et al., 2020; Miwa, 2021),
343 but most of the insight into their actions comes from heterologous cell systems, deletion, and
344 overexpression experiments. Their effects on nicotinic receptors in their native environment is
345 unclear. In expression systems, *Ly6g6e* potentiates $\alpha 4\beta 2$ nicotinic responses, slowing their
346 desensitization (Wu et al., 2015), predicting cholinergic responses in *Chrna5*⁺ neurons would be
347 resistant to desensitization as has been implied by *Chrna5* deletion work (Venkatesan and
348 Lambe, 2020). In contrast, *Lynx2* (*Lypd1*) is a predicted negative modulator that can increase
349 desensitization of $\alpha 4\beta 2$ nicotinic receptors (Tekinay et al., 2009). *Lynx2* acts intracellularly to
350 reduce surface expression of $\alpha 4\beta 2$ nicotinic receptors (Wu et al., 2015), but may preferentially
351 act on lower affinity $(\alpha 4)_3(\beta 2)_2$ receptors (Kuryatov et al., 2008; Nichols et al., 2014) and
352 indirectly promote expression of high affinity $(\alpha 4)_2(\beta 2)_2\alpha 5$ nicotinic receptors. The effect of
353 *Lypd6b* on $(\alpha 4)_2(\beta 2)_2\alpha 5$ nicotinic receptors is yet to be determined and may further contribute to
354 the complex control of *Chrna5*⁺ nicotinic responses (Ochoa et al., 2016). In addition, *Lynx1*, a
355 well-known negative modulator of $\alpha 4\beta 2$ nicotinic receptors (Falk et al., 2021; Ibañez-Tallón et
356 al., 2002; Miwa et al., 1999; Morishita et al., 2010) is also expressed in *Chrna5*⁺ neurons.
357 Consistent with such complex lynx regulation, our experiments confirmed that removing GPI-
358 anchored lynx proteins increases nicotinic response onset and amplitude potentially due to
359 removal of *Lynx1*. In contrast, exogenous application of recombinant *Ly6g6e* had different
360 effects in *Chrna5*⁺ and *Syt6*⁺ neurons, consistent with cell-type specific lynx modulation in
361 *Chrna5*⁺ neurons predicted by transcriptomics.

362 ***Functional consequences***

363 The effects of lynx proteins on nicotinic receptor function have so far been determined by
364 heterologous expression systems (Wu et al., 2015), knockout studies (Sherafat et al., 2021;
365 Tekinay et al., 2009), exogenous application of recombinant water-soluble lynx proteins
366 (Shenkarev et al., 2020; Thomsen et al., 2016), and viral manipulation of expression in the brain
367 (Falk et al., 2021; Sadahiro et al., 2020). We advance this field by revealing, in native tissue,
368 complex endogenous regulation of optogenetic nicotinic responses by multiple GPI-anchored
369 lynx proteins. Inhibitory lynx expression and high levels of acetylcholinesterase in *Chrna5*⁺
370 neurons suggest that their responses are restrained and our experiments likely underestimated
371 their nicotinic receptor function. These responses could be dramatically enhanced when

372 acetylcholinesterase and inhibitory lynx modulation is reduced through other signaling
373 mechanisms. Such flexible tuning of nicotinic responses by lynx prototoxins in *Chrna5*⁺ neurons
374 can provide greater dynamic range and poises them to be key players during attentional
375 processing (Fig 5). A recent study found that preventing developmental increase in *Lynx1*
376 expression in corticocortical neurons by viral knockdown led to altered cortical connectivity and
377 impaired attention (Falk et al., 2021). Thus cell-type specific changes in lynx expression during
378 development are critical for maturation of attention circuits. It is of interest to examine such
379 changes during development in *Chrna5*⁺ neurons and how they differ from *Syt6*⁺ neurons.

380 ***Summary of advances***

381 Our study reveals a distinct group of ‘acetylcholine super-responder’ neurons in the prefrontal
382 cortex identified by *Chrna5*-expression that constitute subplate neurons vital for cortical
383 development. We identify that their high affinity $\alpha 5$ subunit-containing nicotinic receptors are
384 under complex regulation by several lynx prototoxins and acetylcholinesterase. *Chrna5*-Cre mice
385 are a valuable tool for future studies examining the *in vivo* role of these specialized neurons.

386

387

388

389 **Acknowledgements:** We acknowledge the generous support of the Canadian Institutes of Health
390 Research (CIHR MOP 89825, EKL; CIHR PJT-153101, EKL), the Canada Research Chair in
391 Developmental Cortical Physiology (EKL), an Ontario Graduate Scholarship (SV). We thank
392 Ms. Janice McNabb and Mr. Ha-Seul Jeoung for expert technical assistance. Earlier
393 presentations of this work received valuable feedback from Dr. Junchul Kim, Dr. Beverly Orser,
394 and Dr. Steve Prescott of the University of Toronto.

395 **Conflicts of interest:** None

396 **Figure legends**

397 **Figure 1. *Chrna5* expression identifies a distinct population of prefrontal neurons with**

398 **stronger and faster-onset optogenetic cholinergic responses.** **A**, Breeding scheme to obtain

399 triple transgenic *Chrna5*-Cre^{+/+}Ai14^{+/+}ChAT-ChR2^{+/+} mice expressing tdTomato in *Chrna5*-

400 expressing (*Chrna5*+) neurons and Channelrhodopsin 2 in cholinergic axons. **B, (Top)**

401 Schematic of coronal mPFC slice with region of interest, adapted from (Paxinos and Franklin,

402 2004). (*Bottom*) two photon imaging (3D projection) of tdTomato-labeled *Chrna5*+ neurons and

403 EYFP-labeled cholinergic axons in layer 6 of mPFC slices. **C**, IRDIC (*left*) and widefield

404 fluorescence (TRITC, *right*) images of tdTomato labeled *Chrna5*+ and unlabeled layer 6 neurons

405 during whole cell patch clamp electrophysiology. Clearing induced by the pipette is visible. **D**,

406 Average light-evoked endogenous cholinergic response of labeled *Chrna5*+ vs neighbouring

407 unlabeled *Chrna5*- neurons. Dotted lines are the slope of the response onset. (*Inset*) Individual

408 responses are zoomed in to show the onset. **E-F**, Bar graph comparing (E) Rising slope and (F)

409 Peak current of endogenous cholinergic responses between labeled *Chrna5*+ neurons (n = 24

410 cells) and unlabeled *Chrna5*- neurons (n = 15 cells, 4 mice). *P < 0.05, Unpaired t-test. **G, (Top)**

411 Breeding scheme to obtain triple transgenic *Chrna5*-Cre^{+/+}Ai14^{+/+}Syt6-EGFP^{+/+} mice expressing

412 tdTomato in *Chrna5*+ neurons and EGFP in Syt6+ neurons. (*Bottom*) Confocal imaging in mPFC

413 slices shows *Chrna5*+ and Syt6+ neurons distributed in layer 6. **H-I**, Confocal (H) and two-

414 photon imaging (I) reveal three populations of neurons: exclusively *Chrna5*+ neurons which do

415 not express *Syt6*, overlapping *Chrna5*+Syt6+ neurons which express both markers, and

416 exclusively Syt6+ neurons which do not express *Chrna5*. **J, (left)** Graph quantifies the

417 percentage of each cell type with respect to all labeled cells per sample. (*Right*) Average

418 proportions of *Chrna5*+, *Chrna5*+Syt6+ and Syt6+ neurons.

419 **Figure 2. Calcium imaging in *Chrna5*+ and Syt6+ populations reveals a distinct subset of**

420 ***Chrna5*+ neurons with resilient nicotinic responses.** **A, (Top)** Two photon Ca²⁺ imaging in

421 prefrontal brain slices from *Chrna5*-Cre^{+/+}Ai96^{+/+} (*left*) and Syt6-Cre^{+/+}Ai96^{+/+} mice (*right*) showing

422 acetylcholine-evoked GCaMP6s responses in *Chrna5*+ and Syt6+ neurons respectively (scale 50

423 μm). (*Bottom*) Acetylcholine-evoked GCaMP6s signals were sequentially recorded after

424 application of competitive nicotinic antagonist DHBE and addition of muscarinic antagonist

425 atropine (scale 10 μm). **B**, Normalized fluorescence signal (ΔF by F) evoked by acetylcholine in

426 individual *Chrna5*+ and Syt6+ neurons in a brain slice at baseline (*left*), after DHBE (*middle*),

427 and after DHBE + Atropine (*right*). (*Inset*, average response and standard deviation. Scale: same

428 as main figure). **C-D i**, Boxplot shows the percentage of response remaining after the application

429 of (C) DHBE and (D) DHBE + Atropine (Inset shows the same boxplot with a restricted y-axis,
430 ‘+’ symbols denote respective means). Responses were quantified by the area under the $\Delta F/F$
431 curve ($n = 71$ neurons, 6 mice for *Chrna5*+, and 112 neurons, 7 mice for *Syt6*+, $****P < 10^{-4}$,
432 Mann-Whitney test). **C-D ii**, Cumulative frequency distribution of the percentage response
433 remaining after (C) DHBE and (D) DHBE + Atropine ($P < 10^{-4}$, Kolmogorov-Smirnov test). **C-**
434 **D iii**, Proportion of cells showing zero and non-zero responses after (C) DHBE and (D) DHBE +
435 Atropine ($P < 10^{-4}$ for both C & D, Fisher’s exact test). **E**, Current clamp responses evoked by
436 1mM acetylcholine (15s) in fluorescently labeled *Chrna5*+ and *Syt6*+ layer 6 neurons patched in
437 mPFC slices from mice *Chrna5-Cre*^{+/+} *Ai14*^{+/+} and *Syt6-Cre*^{+/+} *Ai14*^{+/+} or *Syt6-EGFP* mice
438 respectively. **F**, Peak spike frequency in *Chrna5*+ and *Syt6*+ neurons evoked by acetylcholine
439 (*left*), and in the presence of competitive nicotinic antagonist DHBE and atropine (*middle*; $**P <$
440 0.01 , $*P < 0.05$, unpaired t-test). Residual response remaining after DHBE + Atropine in
441 *Chrna5*+ neurons is blocked by non-competitive nicotinic antagonist mecamylamine (*right*, $**P <$
442 0.01 , paired t-test).

443 **Figure 3. Single cell transcriptomic analysis reveals *Chrna5*+ subset to span subplate**
444 **neuron populations with differential expression of lynx prototoxin genes** **A**, Single cell-
445 RNAseq data for 2422 L5-6 glutamatergic neurons in the anterior cingulate cortex (ACA, shown
446 in schematic on the left) was obtained from publicly available datasets (Allen Institute,
447 SMARTSeq ACA and MOP (2018)). (*Right*) Scatter plot showing *Chrna5* vs *Syt6* expression in
448 \log_{10} (Copies per million +1) for each neuron, with the frequency distribution shown on the
449 corresponding axes. Neurons were classified into *Chrna5*+, *Chrna5*+*Syt6*+ and *Syt6*+ groups
450 based on their expression of *Chrna5* and *Syt6* genes. Cells which expressed neither gene were
451 excluded from subsequent analyses. **B**, The major neuronal subclasses within *Chrna5*+,
452 *Chrna5*+*Syt6*+ and *Syt6*+ groups is indicated by the colorbar on top. NP- Near projecting, CT-
453 Corticothalamic. Heatmap shows expression of subplate and corticothalamic marker genes in
454 each cell in all 3 groups. **C**, Dotplot shows summary of subplate and corticothalamic marker
455 expression in *Chrna5*+, *Chrna5*+*Syt6*+ and *Syt6*+ groups. Dot size indicates the percentage of
456 cells within each group expressing that gene, color of the dot indicates average expression level
457 relative to other groups. *Chrna5*+ neurons highly express multiple subplate marker genes, but not
458 corticothalamic markers. **D**, Violin plots show expression of Lynx prototoxin genes *Ly6g6e*,
459 *Lypd1* (*Lynx2*) and *Lypd6b* which show highest fold-change between *Chrna5*+ and
460 *Chrna5*+*Syt6*+ neurons. **E**, Dotplot shows expression of major genes known to modulate
461 cholinergic function, including nicotinic, muscarinic subunits, acetylcholinesterase, and lynx
462 prototoxins in *Chrna5*+, *Chrna5*+*Syt6*+ and *Syt6*+ neurons. Genes are ordered by decreasing fold
463 change in expression. Dot size indicates the percentage of cells within each group expressing that
464 gene, color of the dot indicates average expression level relative to other groups. Fold change of
465 all the genes shown in this dotplot are listed in Supplementary table 3.

466 **Figure 4. Regulation of optogenetic nicotinic responses by endogenous GPI-anchored lynx**
467 **proteins and cell type specific effects of recombinant *Ly6g6e*.** **A**, Schematic of nicotinic
468 receptor environment showing endogenous GPI-anchored lynx proteins exerting positive and
469 negative modulation of nicotinic receptors. The compound m-3M3FBS activates PLC, cleaving
470 the GPI anchor and perturbing lynx-mediated modulation of nicotinic responses. **B**, Optogenetic

471 nicotinic responses in prefrontal deep-layer pyramidal neurons from ChAT-ChR2 mice before
472 and after treatment with m-3M3FBS (5 min). **C**, PLC activation significantly increased the rising
473 slope of optogenetic nicotinic responses. Percent change in **D**, Rising slope and **E**, Area of
474 nicotinic response in control and after PLC activation. (* $P < 0.05$, ** $P < 0.01$, Wilcoxon
475 matched-pairs test). **F**, IRDIC (*left*) and widefield fluorescence (*right*) images of tdTomato
476 labeled Chrna5+ (*top*) and Syt6+ (*bottom*) neurons during whole-cell patch clamp
477 electrophysiology in *Chrna5-Cre^{+/+} Ai14^{+/+} ChAT-ChR2^{+/+}* and *Syt6-Cre^{+/+} Ai14^{+/+} ChAT-ChR2^{+/+}*
478 mouse brain slices respectively. **G**, Schematic summarising predicted and observed effects of
479 recombinant water-soluble ly6g6e on Chrna5+ and Syt6+ neuronal nicotinic receptors. **G**,
480 Optogenetic nicotinic responses are reduced in amplitude following 10 minute application of
481 soluble ly6g6e in Syt6+ but not Chrna5+ neurons. Change in peak current (**I**) and area of the
482 nicotinic response (**J**) of Chrna5+ vs Syt6+ neurons (* $P < 0.05$, ** $P < 0.01$, Unpaired t-test)

483 **Figure 5. Graphical summary. Deep-layer pyramidal neurons can be divided into three**
484 **groups (Chrna5+, Chrna5+Syt6+, Syt6+) by their expression of Chrna5 and Syt6 genes.** The
485 subset of *Chrna5*-expressing neurons without *Syt6* expression are molecularly distinct and
486 comprise of subplate neurons, whereas *Syt6*-expressing neurons are of the corticothalamic
487 subtype. Nicotinic receptors in these neurons are under complex regulation by endogenous lynx
488 prototoxins. Inhibitory prototoxin gene *Lynx1* is expressed uniformly in all neurons, whereas
489 *Chrna5*+ subplate neurons additionally have specific expression of *Ly6g6e*, *Lypd1* and *Lypd6b*
490 prototoxin genes. These *Chrna5*+ subplate neurons show enhanced $\alpha 5$ subunit nicotinic receptor-
491 mediated cholinergic responses that are differently modulated by specific lynx prototoxins.

492

493 **STAR Methods**

494 **Experimental model and subject details**

495 *Syt6-Cre*^{+/+}GCaMP6s^{+/} and *Chrna5-Cre*^{+/+}GCaMP6s^{+/} mice used for Ca²⁺ imaging were obtained
496 by crossing *Chrna5-Cre* (Gift from Dr. Eric Turner) and *Syt6-Cre* mice (*Syt6-Cre* KI148,
497 RRID:MMRRC 037416-UCD, (Gong et al., 2007)) respectively, with Ai96 mice (JAX: 024106).
498 For electrophysiological recordings of labeled *Chrna5*⁺ and *Syt6*⁺ neurons, we used *Chrna5*
499 *Cre*^{+/+}Ai14^{+/}, and *Syt6-Cre*^{+/+}Ai14^{+/} mice respectively. *Syt6-EGFP*^{+/} mice were additionally used
500 for few experiments (*Syt6-EGFP* EL71, RRID:MMRRC 010557-UCD, (Gong et al., 2003)).

501 Triple transgenic mice labeling both *Chrna5* and *Syt6*-expressing neurons with EGFP in
502 *Syt6*⁺ neurons and tdTomato in *Chrna5*⁺ neurons were used to examine the overlap between the
503 two cell types. *Syt6-EGFP* and Ai14 mice (Madisen et al., 2010) were bred together and the
504 offspring were crossed with *Chrna5-Cre* mice to generate *Chrna5-Cre*^{+/+}Ai14^{+/}*Syt6-EGFP*^{+/} mice
505 used for these experiments. A set of experiments measuring optogenetic cholinergic responses
506 was also performed in ChAT-ChR2 (ChAT^{+/}) mice (JAX: 014546). To examine optogenetic
507 cholinergic responses in labeled *Chrna5* and *Syt6* cell populations, the respective Cre lines were
508 crossed with ChAT^{+/}Ai14^{+/} mice to generate *Chrna5-Cre*^{+/+}Ai14^{+/}ChAT^{+/} and *Syt6-*
509 *Cre*^{+/+}Ai14^{+/}ChAT^{+/} mice.

510 All animals were bred on a C57BL/6 background, except *Syt6-EGFP* which were Black
511 Swiss. Adult male and female animals age >P60 were used in the study. Mice were separated
512 based on sex after weaning at P21 and group-housed (2-4 mice per cage). Animals had ad
513 libitum access to food and water and were on a 12-h light/dark cycle with lights on at 7 AM.
514 Guidelines of the Canadian Council on Animal Care were followed, and all experimental
515 procedures were approved by the Faculty of Medicine Animal Care Committee at the University
516 of Toronto. 42 mice were used for the entire study, with similar numbers of males and females.

517 **Method details**

518 ***Brain slicing and electrophysiology***

519 Slicing and electrophysiology followed procedures described previously (Venkatesan and
520 Lambe, 2020). An intraperitoneal injection of chloral hydrate (400 mg/kg) was given to
521 anesthetize mice prior to decapitation. The brain was rapidly extracted in ice cold sucrose ACSF
522 (254 mM sucrose, 10 mM D-glucose, 26 mM NaHCO₃, 2 mM CaCl₂, 2 mM MgSO₄, 3 mM KCl
523 and 1.25 mM NaH₂PO₄). 400 µm thick coronal slices of prefrontal cortex (Bregma 2.2 - 1.1)
524 were obtained on a Dosaka linear slicer (SciMedia, Costa Mesa, CA, USA). Slices were left to
525 recover for at least 2 hours in oxygenated (95% O₂, 5% CO₂) ACSF (128 mM NaCl, 10 mM D-
526 glucose, 26 mM NaHCO₃, 2 mM CaCl₂, 2 mM MgSO₄, 3 mM KCl, and 1.25 mM NaH₂PO₄) at
527 30°C before being used for electrophysiology or two-photon Ca²⁺ imaging. Brain slices were
528 transferred to the stage of a BX51WI microscope (Olympus, Tokyo, Japan) and perfused with

529 oxygenated ACSF at 30°C. Recording electrodes (2 - 4 MΩ) containing patch solution (120 mM
530 potassium gluconate, 5 mM KCl, 10 mM HEPES, 2 mM MgCl₂, 4 mM K₂-ATP, 0.4 mM Na₂-
531 GTP and 10 mM sodium phosphocreatine, pH adjusted to 7.3 using KOH) were used to patch
532 pyramidal neurons in layer 6 - 6b based on morphology and proximity to white matter. Only
533 regular spiking neurons were included. Multiclamp 700B amplifier at 20 kHz with Digidata
534 1440A and pClamp 10.7 software (Molecular devices) were used for data acquisition. All
535 recordings were compensated for liquid junction potential (14 mV). Voltage-clamp responses
536 were examined at -75 mV and in current-clamp at rest or starting from -70 mV.

537 ***Optogenetics***

538 5 ms pulses of blue light (473 nm) were delivered through the 60X objective lens with an LED
539 (Thorlabs, 2 mW) to excite channelrhodopsin containing cholinergic fibers. Pattern of
540 stimulation was as in a previous study, with 8 pulses of light delivered in a frequency
541 accommodating manner (Venkatesan and Lambe, 2020).

542 ***Pharmacology***

543 Acetylcholine (1mM, Sigma) was used to exogenously stimulate cholinergic receptors. Atropine
544 (200 nM, Sigma) and Dihydro-β-erythroidine (DHBE, 10 μM, Tocris) were used to
545 competitively block muscarinic receptors and β2 subunit-containing nicotinic receptors
546 respectively. Mecamylamine (5 μM, Tocris) was used to further non-competitively block
547 nicotinic receptors. Phospholipase C activator m-3M3FBS (25 μM, Tocris) was used to cleave
548 GPI-anchored Lynx prototoxins and the inactive ortholog o-3M3FBS (25 μM, Tocris) was used
549 as a control (Bae et al., 2003). Cyclodextrin (1 mM, Tocris) was included in a small subset of
550 experiments to improve solubility of 3M3FBS compounds, but no further improvement in
551 efficacy was observed. Water soluble recombinant Ly6g6e (0.5 mg/ml) was obtained by custom
552 purification (Creative Biomart) and used for exogenous application at 1: 1000 and 3:1000
553 dilution. Effects on nicotinic receptors were not distinguishable between the two different protein
554 concentrations. Only freshly thawed protein aliquots were used for experiments.

555 ***Two-photon imaging***

556 Two-photon imaging of GCaMP6s Ca²⁺ signals in L6 neurons was performed using a 60× water-
557 immersion objective with 0.90 numerical aperture using an Olympus Fluoview FV1000
558 microscope and a Titanium-Sapphire laser sapphire laser (Newport) at 930nm. Images were
559 sampled at 512 x 512 pixels (2.4 pixels/μm) at a frame rate of 0.9 Hz. Following a 2-minute
560 washout period for this initial application, GCaMP6s Ca²⁺ signals were measured in response to
561 acetylcholine (1 mM, 15 s). The cellular responses to acetylcholine were measured at baseline,
562 then after application of competitive nicotinic receptor antagonist DHBE (10 μM, 10 min), and
563 again after the addition of muscarinic antagonist atropine (200 nM, 10 min).

564 Dual color two-photon imaging (910 nm excitation, using 570 nm dichroic mirror with
565 green (540-595 nm) and red (570-620 nm) filters) was performed in brain slices of triple
566 transgenic *Chrna5-Cre^{+/+}Ai14^{+/+}Syt6-EGFP^{+/}* mice to examine overlap in fluorescent reporter
567 expression between Chrna5+ and Syt6+ neurons. Z-stacks of 30 frames acquired in 1-μm steps
568 were taken in layer 6 of mPFC slices and the maximum projection used to count cells with the

569 cell counter feature in Fiji. A set of mPFC brain slices from *Chrna5*-Cre^{+/+}*Ai14*^{+/+}*Syt6*-EGFP^{+/+}
570 mice were also fixed and mounted for confocal imaging with LSM880 (Leica) microscope.

571 ***Single cell RNAseq analysis***

572 Single cell RNAseq data for Anterior Cingulate Cortex (ACA) of adult mice was taken from the
573 ACA and MOP Smart-Seq (2018) database, with cell-type annotations from Whole cortex &
574 Hippocampus Smart-Seq (2019) database from the Allen Institute for Brain Science at
575 <https://portal.brain-map.org/atlas-and-data/rnaseq> (Tasic et al., 2018; Yao et al., 2021). Single
576 cell analysis was performed using the R package Seurat (v 4.04). Layer 5 and 6 glutamatergic
577 neurons were selected and sorted into three cell classes based on their expression of *Chrna5* and
578 *Syt6* genes: those expressing only *Chrna5* (*Chrna5*+, n = 243), only *Syt6* (*Syt6*+, n = 834), or
579 both *Chrna5* and *Syt6* (*Chrna5*+*Syt6*+, n = 564). Expression (copies per million) greater than
580 zero was used as the threshold. 781 cells did not express either *Chrna5* or *Syt6* and were not used
581 in subsequent analyses. Rare cell types with fewer than 10 cells per group are not shown in the
582 heatmap in figure 5 but are included for the differential expression analysis. The FindMarkers
583 function in Seurat was used to identify genes differentially expressed between the *Chrna5*+ and
584 *Chrna5*+*Syt6*+ populations. Adjusted p value < 0.05 was used as the cutoff for identifying
585 differentially expressed genes.

586 **Quantification and Statistical Analysis**

587 Analysis of electrophysiological data was conducted on Clampfit 10.7 and Axograph. Rising
588 slope was measured by fitting a line to the first 50ms of the optogenetic cholinergic responses.
589 Cholinergic response magnitude in voltage clamp was determined by peak current (picoamperes)
590 and charge transfer (picoulombs) measured by the area under the current response for 1
591 second.

592 GCaMP6s imaging data were extracted using the multi-measure feature in Fiji. Maximum
593 projections across time for each experiment were first used to identify acetylcholine-responsive
594 cells and add them to the ROI manager, then fluorescence intensity at all timepoints for each cell
595 was measured. Fluorescence was normalized to the background fluorescence averaged over the
596 first 10 frames. Area under the peak (AUP) of the signal after baseline correction was used to
597 quantify the magnitude of cells' response to acetylcholine. Percentage response remaining after
598 DHBE and DHBE+Atropine was calculated from the cell's AUP before and after the blockers.

599 GraphPad Prism 8 was used for statistical analysis and plotting graphs. Bar graphs
600 depicting mean with standard error and boxplots with median and quartiles are shown. Effect
601 sizes are reported as Cohen's d for major results (Ho et al., 2019). Unpaired t-tests or Mann-
602 Whitney tests were used when comparing response properties between cell types, and paired t-
603 test or Wilcoxon test to quantify effect of pharmacological manipulations within cells.
604 Kolmogorov-Smirnov and Fisher's exact tests were used to compare cumulative distributions
605 and proportions of cells respectively.

606 **References**

607 Ables, J.L., Görlich, A., Antolin-Fontes, B., Wang, C., Lipford, S.M., Riad, M.H., Ren, J., Hu, F., Luo, M., Kenny, P.J., et al. (2017). Retrograde inhibition by a specific subset of interpeduncular $\alpha 5$ nicotinic neurons regulates nicotine preference. *Proc Natl Acad Sci U S A* **114**, 13012–13017.
610 <https://doi.org/10.1073/pnas.1717506114>.

611 Anderson, K.R., Hoffman, K.M., and Miwa, J.M. (2020). Modulation of cholinergic activity through lynx 612 prototoxins: Implications for cognition and anxiety regulation. *Neuropharmacology* **174**, 108071.
613 <https://doi.org/10.1016/j.neuropharm.2020.108071>.

614 Arvaniti, M., Jensen, M.M., Soni, N., Wang, H., Klein, A.B., Thiriet, N., Pinborg, L.H., Muldoon, P.P., 615 Wienecke, J., Damaj, M.I., et al. (2016). Functional interaction between Lypd6 and nicotinic 616 acetylcholine receptors. *Journal of Neurochemistry* **138**, 806–820. <https://doi.org/10.1111/JNC.13718>.

617 Bae, Y.S., Lee, T.G., Park, J.C., Hur, J.H., Kim, Y., Heo, K., Kwak, J.Y., Suh, P.G., and Ryu, S.H. 618 (2003). Identification of a Compound That Directly Stimulates Phospholipase C Activity. *Molecular 619 Pharmacology* **63**, 1043–1050. <https://doi.org/10.1124/MOL.63.5.1043>.

620 Bailey, C.D.C., De Biasi, M., Fletcher, P.J., and Lambe, E.K. (2010). The nicotinic acetylcholine receptor 621 alpha5 subunit plays a key role in attention circuitry and accuracy. *J Neurosci* **30**, 9241–9252.
622 <https://doi.org/10.1523/JNEUROSCI.2258-10.2010>.

623 Bierut, L.J., Stitzel, J.A., Wang, J.C., Hinrichs, A.L., Grucza, R.A., Xuei, X., Saccone, N.L., Saccone, 624 S.F., Bertelsen, S., Fox, L., et al. (2008). Variants in the Nicotinic Receptors Alter the Risk for Nicotine 625 Dependence. *Am J Psychiatry* **165**, 1163. <https://doi.org/10.1176/APPI.AJP.2008.07111711>.

626 Briggs, F. (2010). Organizing principles of cortical layer 6. *Front Neural Circuits* **4**, 3.
627 <https://doi.org/10.3389/neuro.04.003.2010>.

628 Briggs, F., and Usrey, W.M. (2008). Emerging views of corticothalamic function. *Current Opinion in 629 Neurobiology* **18**, 403–407. <https://doi.org/10.1016/j.conb.2008.09.002>.

630 Dalley, J.W., Cardinal, R.N., and Robbins, T.W. (2004a). Prefrontal executive and cognitive functions in 631 rodents: neural and neurochemical substrates. *Neuroscience & Biobehavioral Reviews* **28**, 771–784.
632 <https://doi.org/10.1016/j.neubiorev.2004.09.006>.

633 Dalley, J.W., Theobald, D.E., Bouger, P., Chudasama, Y., Cardinal, R.N., and Robbins, T.W. (2004b). 634 Cortical Cholinergic Function and Deficits in Visual Attentional Performance in Rats Following 192 IgG- 635 Saporin-induced Lesions of the Medial Prefrontal Cortex. *Cerebral Cortex* **14**, 922–932.
636 <https://doi.org/10.1093/cercor/bhh052>.

637 Demars, M.P., and Morishita, H. (2014). Cortical parvalbumin and somatostatin GABA neurons express 638 distinct endogenous modulators of nicotinic acetylcholine receptors. *Molecular Brain* **7**, 75.
639 <https://doi.org/10.1186/s13041-014-0075-9>.

640 Egger, R., Narayanan, R.T., Guest, J.M., Bast, A., Udvary, D., Messore, L.F., Das, S., de Kock, C.P.J.,
641 and Oberlaender, M. (2020). Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep
642 Layers. *Neuron* *105*, 122-137.e8. <https://doi.org/10.1016/J.NEURON.2019.10.011>.

643 Falk, E.N., Norman, K.J., Garkun, Y., Demars, M.P., Im, S., Taccheri, G., Short, J., Caro, K., Mccraney,
644 S.E., Cho, C., et al. (2021). Nicotinic regulation of local and long-range input balance drives top-down
645 attentional circuit maturation. *Sci. Adv.* *7*..

646 Ghezzi, F., Marques-Smith, A., Anastasiades, P.G., Lyngholm, D., Vagnoni, C., Rowett, A.,
647 Parameswaran, G., Hoerder-Suabedissen, A., Nakagawa, Y., Molnar, Z., et al. (2021). Non-canonical role
648 for lpar1-egfp subplate neurons in early postnatal mouse somatosensory cortex. *Elife* *10*.
649 <https://doi.org/10.7554/ELIFE.60810>.

650 Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A.,
651 Leblanc, G., Hatten, M.E., et al. (2003). A gene expression atlas of the central nervous system based on
652 bacterial artificial chromosomes. *Nature* *425*, 917–925. <https://doi.org/10.1038/NATURE02033>.

653 Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N., and Gerfen, C.R.
654 (2007). Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome
655 constructs. *Journal of Neuroscience* *27*, 9817–9823. <https://doi.org/10.1523/JNEUROSCI.2707-07.2007>.

656 Gritton, H.J., Howe, W.M., Mallory, C.S., Hetrick, V.L., Berke, J.D., and Sarter, M. (2016). Cortical
657 cholinergic signaling controls the detection of cues. *Proc Natl Acad Sci U S A* *113*, E1089-97.
658 <https://doi.org/10.1073/pnas.1516134113>.

659 Han, W., Zhang, T., Ni, T., Zhu, L., Liu, D., Chen, G., Lin, H., Chen, T., and Guan, F. (2019).
660 Relationship of common variants in CHRNA5 with early-onset schizophrenia and executive function.
661 *Schizophrenia Research* *206*, 407–412. <https://doi.org/10.1016/j.schres.2018.10.011>.

662 Harris, J.A., Hirokawa, K.E., Sorensen, S.A., Gu, H., Mills, M., Ng, L.L., Bohn, P., Mortrud, M.,
663 Ouellette, B., Kidney, J., et al. (2014). Anatomical characterization of Cre driver mice for neural circuit
664 mapping and manipulation. *Frontiers in Neural Circuits* *8*, 76. <https://doi.org/10.3389/fncir.2014.00076>.

665 Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P., Caldejon, S.,
666 Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and thalamic connectivity. *Nature*
667 *575*, 195–202. <https://doi.org/10.1038/s41586-019-1716-z>.

668 Heath, C.J., King, S.L., Gotti, C., Marks, M.J., and Picciotto, M.R. (2010). Cortico-Thalamic
669 Connectivity is Vulnerable to Nicotine Exposure During Early Postnatal Development through $\alpha 4/\beta 2/\alpha 5$
670 Nicotinic Acetylcholine Receptors. *Neuropsychopharmacology* *35*, 2324–2338.
671 <https://doi.org/10.1038/npp.2010.130>.

672 Ho, J., Tumkaya, T., Aryal, S., Choi, H., and Claridge-Chang, A. (2019). Moving beyond P values: data
673 analysis with estimation graphics. *Nature Methods* *16*, 565–566. [https://doi.org/10.1038/s41592-019-0470-3](https://doi.org/10.1038/s41592-019-
674 0470-3).

675 Hoerder-Suabedissen, A., and Molnár, Z. (2013). Molecular Diversity of Early-Born Subplate Neurons.
676 *Cerebral Cortex* *23*, 1473–1483. <https://doi.org/10.1093/CERCOR/BHS137>.

677 Hoerder-Suabedissen, A., Wang, W.Z., Lee, S., Davies, K.E., Goffinet, A.M., Rakić, S., Parnavelas, J.,
678 Reim, K., Nicolić, M., Paulsen, O., et al. (2009). Novel Markers Reveal Subpopulations of Subplate

679 Neurons in the Murine Cerebral Cortex. *Cerebral Cortex* 19, 1738–1750.
680 <https://doi.org/10.1093/CERCOR/BHN195>.

681 Hoerder-Suabedissen, A., Oeschger, F.M., Krishnan, M.L., Belgard, T.G., Wang, W.Z., Lee, S., Webber,
682 C., Petretto, E., Edwards, A.D., and Molnár, Z. (2013). Expression profiling of mouse subplate reveals a
683 dynamic gene network and disease association with autism and schizophrenia. *Proc Natl Acad Sci U S A*
684 110, 3555–3560. <https://doi.org/10.1073/PNAS.1218510110>/SUPPL_FILE/SD02.XLSX.

685 Horowitz, L.F., Hirdes, W., Suh, B.-C., Hilgemann, D.W., Mackie, K., and Hille, B. (2005).
686 Phospholipase C in Living Cells Activation, Inhibition, Ca²⁺ Requirement, and Regulation of M Current.
687 *Journal of General Physiology* 126, 243–262. <https://doi.org/10.1085/JGP.200509309>.

688 Howe, W.M., Brooks, J.L., Tierney, P.L., Pang, J., Rossi, A., Young, D., Dlugolenski, K., Guillmette, E.,
689 Roy, M., Hales, K., et al. (2018a). $\alpha 5$ nAChR modulation of the prefrontal cortex makes attention
690 resilient. *Brain Structure and Function* 223, 1035–1047. <https://doi.org/10.1007/s00429-017-1601-1>.

691 Howe, W.M., Brooks, J.L., Tierney, P.L., Pang, J., Rossi, A., Young, D., Dlugolenski, K., Guillmette, E.,
692 Roy, M., Hales, K., et al. (2018b). $\alpha 5$ nAChR modulation of the prefrontal cortex makes attention
693 resilient. *Brain Structure and Function* 223, 1035–1047. <https://doi.org/10.1007/s00429-017-1601-1>.

694 Ibañez-Tallon, I., Miwa, J.M., Wang, H.L., Adams, N.C., Crabtree, G.W., Sine, S.M., and Heintz, N.
695 (2002). Novel modulation of neuronal nicotinic acetylcholine receptors by association with the
696 endogenous prototoxin lynx1. *Neuron* 33, 893–903. [https://doi.org/10.1016/S0896-6273\(02\)00632-3](https://doi.org/10.1016/S0896-6273(02)00632-3).

697 Kanold, P.O., and Luhmann, H.J. (2010). The Subplate and Early Cortical Circuits.
698 [Http://Dx.Doi.Org/10.1146/Annurev-Neuro-060909-153244](https://doi.org/10.1146/Annurev-Neuro-060909-153244) 33, 23–48.
699 <https://doi.org/10.1146/ANNUREV-NEURO-060909-153244>.

700 Kassam, S.M., Herman, P.M., Goodfellow, N.M., Alves, N.C., and Lambe, E.K. (2008). Developmental
701 excitation of corticothalamic neurons by nicotinic acetylcholine receptors. *J Neurosci* 28, 8756–8764.
702 <https://doi.org/10.1523/JNEUROSCI.2645-08.2008>.

703 Krjukova, J., Holmqvist, T., Danis, A.S., Åkerman, K.E.O., and Kukkonen, J.P. (2004). Phospholipase C
704 activator m-3M3FBS affects Ca²⁺ homeostasis independently of phospholipase C activation. *British*
705 *Journal of Pharmacology* 143, 3–7. <https://doi.org/10.1038/SJ.BJP.0705911>.

706 Kulbatskii, D., Shenkarev, Z., Bychkov, M., Loktyushov, E., Shulepko, M., Koshelev, S., Povarov, I.,
707 Popov, A., Peigneur, S., Chugunov, A., et al. (2021). Human Three-Finger Protein Lypd6 Is a Negative
708 Modulator of the Cholinergic System in the Brain. *Frontiers in Cell and Developmental Biology* 9, 2593.
709 <https://doi.org/10.3389/FCELL.2021.662227>/BIBTEX.

710 Kuryatov, A., Onksen, J., and Lindstrom, J. (2008). Roles of accessory subunits in $\alpha 4\beta 2^*$ nicotinic
711 receptors. *Molecular Pharmacology* <https://doi.org/10.1124/mol.108.046789>.

712 Luhmann, H.J., Kirischuk, S., and Kilb, W. (2018). The superior function of the subplate in early
713 neocortical development. *Frontiers in Neuroanatomy* 12, 97.
714 <https://doi.org/10.3389/FNANA.2018.00097>/BIBTEX.

715 Madisen, L., Zwingman, T.A., Sunkin, S.M., Wook Oh, S., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter,
716 R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting and
717 characterization system for the whole mouse brain. <https://doi.org/10.1038/nn.2467>.

718 Marx, M., Qi, G., Hanganu-Opatz, I.L., Kilb, W., Luhmann, H.J., and Feldmeyer, D. (2017). Neocortical
719 Layer 6B as a Remnant of the Subplate - A Morphological Comparison. *Cerebral Cortex* 27, 1011–1026.
720 <https://doi.org/10.1093/CERCOR/BHV279>.

721 Maskos, U. (2020). The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in
722 disease: Functional dissection and remaining challenges. *Journal of Neurochemistry* 154, 241–250.
723 <https://doi.org/10.1111/JNC.14989>.

724 McGaughy, J., Dalley, J.W., Morrison, C.H., Everitt, B.J., Robbins, T.W., and Robbins, T.W. (2002).
725 Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions
726 of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. *J Neurosci* 22,
727 1905–1913. <https://doi.org/10.1523/jneurosci.5112-07.2008>.

728 Mechawar, N., and Descarries, L. (2001). The cholinergic innervation develops early and rapidly in the
729 rat cerebral cortex: a quantitative immunocytochemical study. *Neuroscience* 108, 555–567.
730 [https://doi.org/10.1016/S0306-4522\(01\)00389-X](https://doi.org/10.1016/S0306-4522(01)00389-X).

731 Miwa, J.M. (2021). Lynx1 prototoxins: critical accessory proteins of neuronal nicotinic acetylcholine
732 receptors. *Current Opinion in Pharmacology* 56, 46–51. <https://doi.org/10.1016/J.COPH.2020.09.016>.

733 Miwa, J.M., Ibañez-Tallon, I., Crabtree, G.W., Sánchez, R., Šali, A., Role, L.W., and Heintz, N. (1999).
734 lynx1, an Endogenous Toxin-like Modulator of Nicotinic Acetylcholine Receptors in the Mammalian
735 CNS. *Neuron* 23, 105–114. [https://doi.org/10.1016/S0896-6273\(00\)80757-6](https://doi.org/10.1016/S0896-6273(00)80757-6).

736 Miwa, J.M., Anderson, K.R., and Hoffman, K.M. (2019). Lynx Prototoxins: Roles of Endogenous
737 Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to
738 Influence Complex Biological Processes. *Frontiers in Pharmacology* 10, 343.
739 <https://doi.org/10.3389/fphar.2019.00343>.

740 Molnár, Z., Luhmann, H.J., and Kanold, P.O. (2020). Transient cortical circuits match spontaneous and
741 sensory-driven activity during development. *Science* 370. <https://doi.org/10.1126/science.abb2153>.

742 Morishita, H., Miwa, J.M., Heintz, N., and Hensch, T.K. (2010). Lynx1, a Cholinergic Brake, Limits
743 Plasticity in Adult Visual Cortex. *Science* (1979) 330, 1238–1240.
744 <https://doi.org/10.1126/science.1195320>.

745 Morton, G., Nasirova, N., Sparks, D.W., Brodsky, M., Sivakumaran, S., Lambe, E.K., and Turner, E.E.
746 (2018). Chrna5-expressing neurons in the interpeduncular nucleus mediate aversion primed by prior
747 stimulation or nicotine exposure. *J Neurosci* 0023–18. <https://doi.org/10.1523/JNEUROSCI.0023-18.2018>.

749 Nakayama, H., Ibañez-Tallon, I., and Heintz, N. (2018). Cell-type-specific contributions of medial
750 prefrontal neurons to flexible behaviors. *Journal of Neuroscience* 38, 4490–4504.
751 <https://doi.org/10.1523/JNEUROSCI.3537-17.2018>.

752 Nectow, A.R., Moya, M. V., Ekstrand, M.I., Mousa, A., McGuire, K.L., Sferrazza, C.E., Field, B.C.,
753 Rabinowitz, G.S., Sawicka, K., Liang, Y., et al. (2017a). Rapid Molecular Profiling of Defined Cell
754 Types Using Viral TRAP. *Cell Reports* 19, 655–667. <https://doi.org/10.1016/j.celrep.2017.03.048>.

755 Nectow, A.R., Moya, M. V., Ekstrand, M.I., Mousa, A., McGuire, K.L., Sferrazza, C.E., Field, B.C.,
756 Rabinowitz, G.S., Sawicka, K., Liang, Y., et al. (2017b). Rapid Molecular Profiling of Defined Cell
757 Types Using Viral TRAP. *Cell Reports* 19, 655–667. <https://doi.org/10.1016/j.celrep.2017.03.048>.

758 Nichols, W.A., Henderson, B.J., Yu, C., Parker, R.L., Richards, C.I., Lester, H.A., and Miwa, J.M.
759 (2014). Lynx1 Shifts $\alpha 4\beta 2$ Nicotinic Receptor Subunit Stoichiometry by Affecting Assembly in the
760 Endoplasmic Reticulum *. *Journal of Biological Chemistry* 289, 31423–31432.
761 <https://doi.org/10.1074/JBC.M114.573667>.

762 Ochoa, V., George, A.A., Nishi, R., and Whiteaker, P. (2016). The prototoxin LYPD6B modulates
763 heteromeric $\alpha 3\beta 4$ -containing nicotinic acetylcholine receptors, but not $\alpha 7$ homomers. *The FASEB Journal*
764 30, 1109–1119. <https://doi.org/10.1096/FJ.15-274548>.

765 Papke, R.L., Stokes, C., Muldoon, P., and Imad Damaj, M. (2013). Similar activity of mecamylamine
766 stereoisomers in vitro and in vivo. *Eur J Pharmacol* 720, 264.
767 <https://doi.org/10.1016/J.EJPHAR.2013.10.018>.

768 Paxinos, G., and Franklin, K. (2004). Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates.

769 Prevost, M.S., Bouchenaki, H., Barilone, N., Gielen, M., and Corringer, P.J. (2020). Concatemers to re-
770 investigate the role of $\alpha 5$ in $\alpha 4\beta 2$ nicotinic receptors. *Cellular and Molecular Life Sciences* 2020 78:3 78,
771 1051–1064. <https://doi.org/10.1007/S00018-020-03558-Z>.

772 Sadahiro, M., Demars, M.P., Burman, P., Yewoo, P., Zimmer, A., and Morishita, H. (2020). Activation of
773 Somatostatin Interneurons by Nicotinic Modulator Lypd6 Enhances Plasticity and Functional Recovery in
774 the Adult Mouse Visual Cortex. *Journal of Neuroscience* 40, 5214–5227.
775 <https://doi.org/10.1523/JNEUROSCI.1373-19.2020>.

776 Scholze, P., and Huck, S. (2020). The $\alpha 5$ Nicotinic Acetylcholine Receptor Subunit Differentially
777 Modulates $\alpha 4\beta 2^*$ and $\alpha 3\beta 4^*$ Receptors. *Frontiers in Synaptic Neuroscience* 12, 607959.
778 <https://doi.org/10.3389/fnsyn.2020.607959>.

779 Schuch, J.B., Polina, E.R., Rovaris, D.L., Kappel, D.B., Mota, N.R., Cupertino, R.B., Silva, K.L.,
780 Guimarães-da-Silva, P.O., Karam, R.G., Salgado, C.A.I., et al. (2016). Pleiotropic effects of Chr15q25
781 nicotinic gene cluster and the relationship between smoking, cognition and ADHD. *Journal of Psychiatric
782 Research* 80, 73–78. <https://doi.org/10.1016/J.JPSYCHIRES.2016.06.002>.

783 Shenkarev, Z.O., Shulepko, M.A., Bychkov, M.L., Kulbatskii, D.S., Shlepova, O. V., Vasilyeva, N.A.,
784 Andreev-Andrievskiy, A.A., Popova, A.S., Lagereva, E.A., Loktyushov, E. V., et al. (2020). Water-
785 soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive
786 impairment associated with $\alpha 7$ -nAChR dysfunction. *Journal of Neurochemistry* 155, 45–61.
787 <https://doi.org/10.1111/JNC.15018>.

788 Sherafat, Y., Chen, E., Lallai, V., Bautista, M., Fowler, J.P., Chen, Y.C., Miwa, J., and Fowler, C.D.
789 (2021). Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse
790 Inhibition. *Frontiers in Behavioral Neuroscience* 15. <https://doi.org/10.3389/FNBEH.2021.703748>.

791 Sorensen, S.A., Bernard, A., Menon, V., Royall, J.J., Glattfelder, K.J., Desta, T., Hirokawa, K., Mortrud,
792 M., Miller, J.A., Zeng, H., et al. (2015). Correlated Gene Expression and Target Specificity Demonstrate
793 Excitatory Projection Neuron Diversity. *Cerebral Cortex* 25, 433–449.
794 <https://doi.org/10.1093/cercor/bht243>.

795 Sparks, D.W., Tian, M.K., Sargin, D., Venkatesan, S., Intson, K., and Lambe, E.K. (2018). Opposing
796 cholinergic and serotonergic modulation of layer 6 in prefrontal cortex. *Frontiers in Neural Circuits* 11.
797 <https://doi.org/10.3389/fncir.2017.00107>.

798 Spellman, T., Svei, M., Kaminsky, J., Manzano-Nieves, G., and Liston, C. (2021). Prefrontal deep
799 projection neurons enable cognitive flexibility via persistent feedback monitoring. *Cell* *184*, 2750–
800 2766.e17. <https://doi.org/10.1016/J.CELL.2021.03.047>.

801 Sturgeon, R.M., and Magoski, N.S. (2018). A Closely Associated Phospholipase C Regulates Cation
802 Channel Function through Phosphoinositide Hydrolysis. *Journal of Neuroscience* *38*, 7622–7634.
803 <https://doi.org/10.1523/JNEUROSCI.0586-18.2018>.

804 Sundberg, S.C., Lindström, S.H., Sanchez, G.M., and Granseth, B. (2018). Cre-expressing neurons in
805 visual cortex of Ntsr1-Cre GN220 mice are corticothalamic and are depolarized by acetylcholine. *Journal*
806 of Comparative Neurology *526*, 120–132. <https://doi.org/10.1002/cne.24323>.

807 Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A.,
808 Dolbeare, T., et al. (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
809 *Nature Neuroscience* *19*, 335–346. <https://doi.org/10.1038/nn.4216>.

810 Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E.,
811 Economo, M.N., Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types across
812 neocortical areas. *Nature* *563*, 72–78. <https://doi.org/10.1038/s41586-018-0654-5>.

813 Tekinay, A.B., Nong, Y., Miwa, J.M., Lieberam, I., Ibanez-Tallon, I., Greengard, P., and Heintz, N.
814 (2009). A role for LYNX2 in anxiety-related behavior. *Proc Natl Acad Sci U S A* *106*, 4477.
815 <https://doi.org/10.1073/PNAS.0813109106>.

816 Thomsen, M.S., Arvaniti, M., Jensen, M.M., Shulepko, M.A., Dolgikh, D.A., Pinborg, L.H., Härtig, W.,
817 Lyukmanova, E.N., and Mikkelsen, J.D. (2016). Lynx1 and A β 1–42 bind competitively to multiple
818 nicotinic acetylcholine receptor subtypes. *Neurobiology of Aging* *46*, 13–21.
819 <https://doi.org/10.1016/J.NEUROBIOLAGING.2016.06.009>.

820 Thomson, A.M. (2010). Neocortical layer 6, a review. *Front Neuroanat* *4*, 13.
821 <https://doi.org/10.3389/fnana.2010.00013>.

822 Tian, M.K., Bailey, C.D.C., De Biasi, M., Picciotto, M.R., and Lambe, E.K. (2011). Plasticity of
823 prefrontal attention circuitry: upregulated muscarinic excitability in response to decreased nicotinic
824 signaling following deletion of α 5 or β 2 subunits. *J Neurosci* *31*, 16458–16463.
825 <https://doi.org/10.1523/JNEUROSCI.3600-11.2011>.

826 Tian, M.K., Bailey, C.D.C., and Lambe, E.K. (2014). Cholinergic excitation in mouse primary vs.
827 associative cortex: region-specific magnitude and receptor balance. *Eur J Neurosci* *40*, 2608–2618.
828 <https://doi.org/10.1111/ejn.12622>.

829 Tiong, S.Y.X., Oka, Y., Sasaki, T., Taniguchi, M., Doi, M., Akiyama, H., and Sato, M. (2019). Kcnab1 is
830 expressed in subplate neurons with unilateral long-range inter-areal projections. *Frontiers in*
831 *Neuroanatomy* *13*, 39. <https://doi.org/10.3389/FNANA.2019.00039> /BIBTEX.

832 Vaasjo, L.O., Han, X., Thurmon, A.N., Tiemroth, A.S., Berndt, H., Korn, M., Figueroa, A., Reyes, R.,
833 Feliciano-Ramos, P.A., and Galazo, M.J. (2021). Characterization and manipulation of Corticothalamic
834 neurons in associative cortices using Syt6-Cre transgenic mice. *Journal of Comparative Neurology*
835 <https://doi.org/10.1002/CNE.25256>.

836 Venkatesan, S., and Lambe, E.K. (2020). Chrna5 is essential for a rapid and protected response to
837 optogenetic release of endogenous acetylcholine in prefrontal cortex. *The Journal of Neuroscience* 40,
838 7255–7268. <https://doi.org/10.1523/jneurosci.1128-20.2020>.

839 Venkatesan, S., Jeoung, H.-S., Chen, T., Power, S.K., Liu, Y., and Lambe, E.K. (2020). Endogenous
840 Acetylcholine and Its Modulation of Cortical Microcircuits to Enhance Cognition. In *Behavioral*
841 *Pharmacology of the Cholinergic System*, (Springer, Berlin, Heidelberg), pp. 47–69.

842 Voigts, J., Deister, C.A., and Moore, C.I. (2020). Layer 6 ensembles can selectively regulate the
843 behavioral impact and layer-specific representation of sensory deviants. *eLife* 9.
844 <https://doi.org/10.7554/eLife.48957>.

845 Wada, E., McKinnon, D., Heinemann, S., Patrick, J., and Swanson, L.W. (1990). The distribution of
846 mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family ($\alpha 5$) in the
847 rat central nervous system. *Brain Research* 526, 45–53. [https://doi.org/10.1016/0006-8993\(90\)90248-A](https://doi.org/10.1016/0006-8993(90)90248-A).

848 Webster, J.C., Francis, M.M., Porter, J.K., Robinson, G., Stokes, C., Horenstein, B., and Papke, R.L.
849 (1999). Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit
850 sequence in the second transmembrane domain. *British Journal of Pharmacology* 127, 1337–1348.
851 <https://doi.org/10.1038/SJ.BJP.0702686>.

852 Wess, J.M., Isaiah, A., Watkins, P. V., and Kanold, P.O. (2017). Subplate neurons are the first cortical
853 neurons to respond to sensory stimuli. *Proc Natl Acad Sci U S A* 114, 12602–12607.
854 https://doi.org/10.1073/PNAS.1710793114/SUPPL_FILE/PNAS.201710793SI.PDF.

855 Winzer-Serhan, U.H., and Leslie, F.M. (2005). Expression of alpha5 nicotinic acetylcholine receptor
856 subunit mRNA during hippocampal and cortical development. *The Journal of Comparative Neurology*
857 481, 19–30. <https://doi.org/10.1002/cne.20357>.

858 Wu, M., Puddifoot, C.A., Taylor, P., and Joiner, W.J. (2015). Mechanisms of inhibition and potentiation
859 of $\alpha 4\beta 2$ nicotinic acetylcholine receptors by members of the Ly6 protein family. *J Biol Chem* 290,
860 24509–24518. <https://doi.org/10.1074/jbc.M115.647248>.

861 Yang, D., Günter, R., Qi, G., Radnikow, G., and Feldmeyer, D. (2020). Muscarinic and Nicotinic
862 Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. *Cerebral*
863 *Cortex* 30, 3528–3542. <https://doi.org/10.1093/cercor/bhz324>.

864 Yao, Z., van Velthoven, C.T.J., Nguyen, T.N., Goldy, J., Sedeno-Cortes, A.E., Baftizadeh, F.,
865 Bertagnolli, D., Casper, T., Chiang, M., Crichton, K., et al. (2021). A taxonomy of transcriptomic cell
866 types across the isocortex and hippocampal formation. *Cell* <https://doi.org/10.1016/j.cell.2021.04.021>.

867 Zolnik, T.A., Ledderose, J., Toumazou, M., Trimbuch, T., Oram, T., Rosenmund, C., Eickholt, B.J.,
868 Sachdev, R.N.S., and Larkum, M.E. (2020). Layer 6b Is Driven by Intracortical Long-Range Projection
869 Neurons. *Cell Reports* 30, 3492–3505.e5. <https://doi.org/10.1016/J.CELREP.2020.02.044>.

870

871 Supplementary Material Legends

872 **Supplementary Video 1:** Video shows *Chrna5*⁺ neurons in mPFC slices from *Chrna5*-
873 *Cre*^{+/+}*Ai96*^{+/+} mice responding to exogenous application of 1mM acetylcholine with an increase in
874 GCaMP6s fluorescence signal

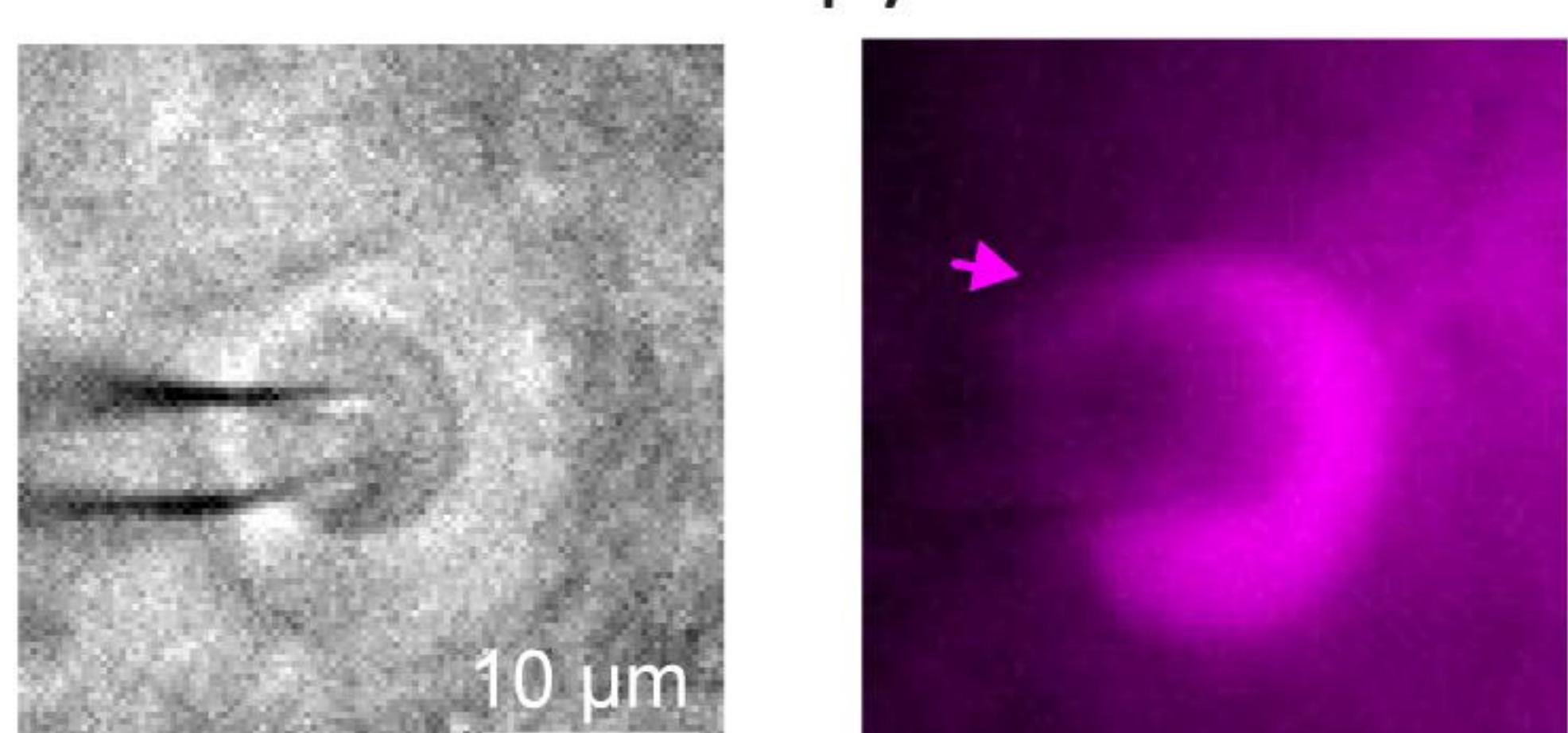
Supplementary Video 2: Video shows Syt6+ neurons from *Syt6-Cre*^{+/+} Ai96^{+/+} mice responding to exogenous application of 1mM acetylcholine with an increase in GCaMP6s fluorescence signal.

877

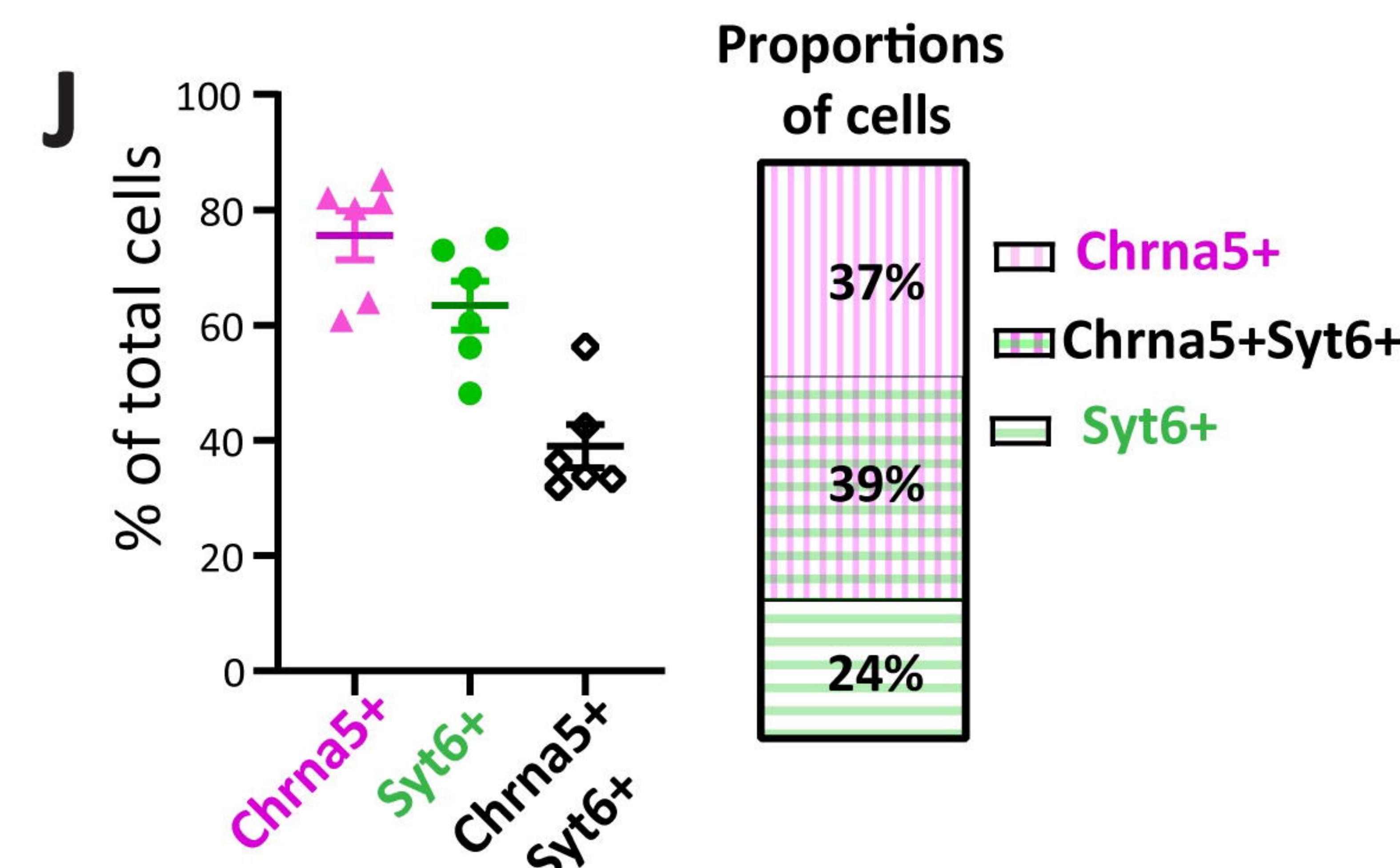
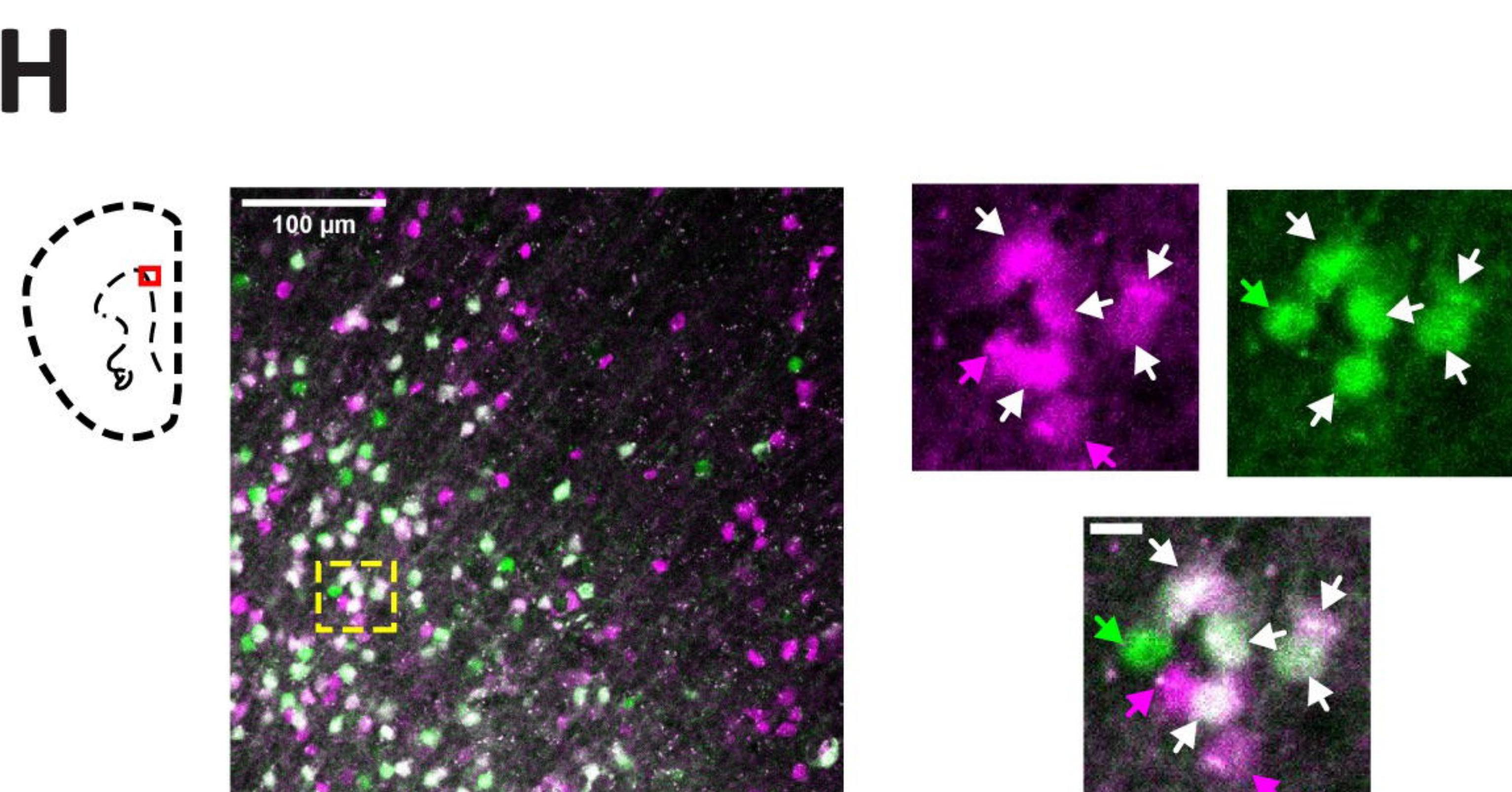
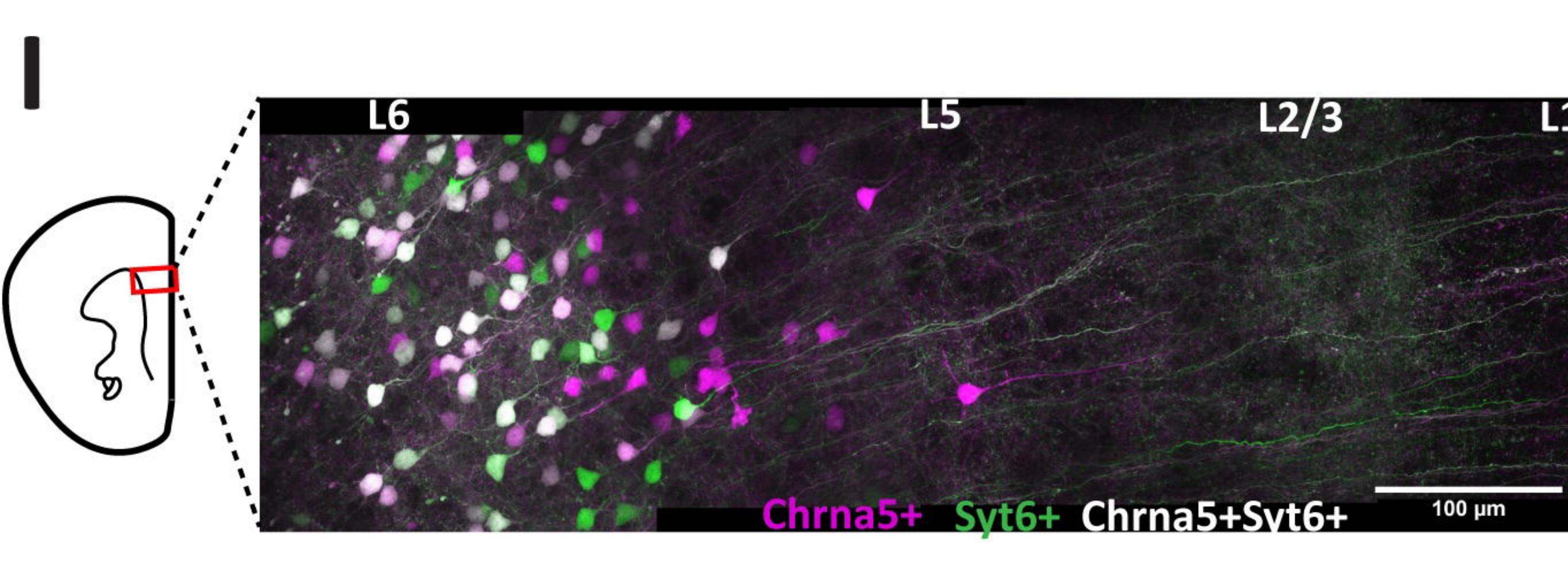
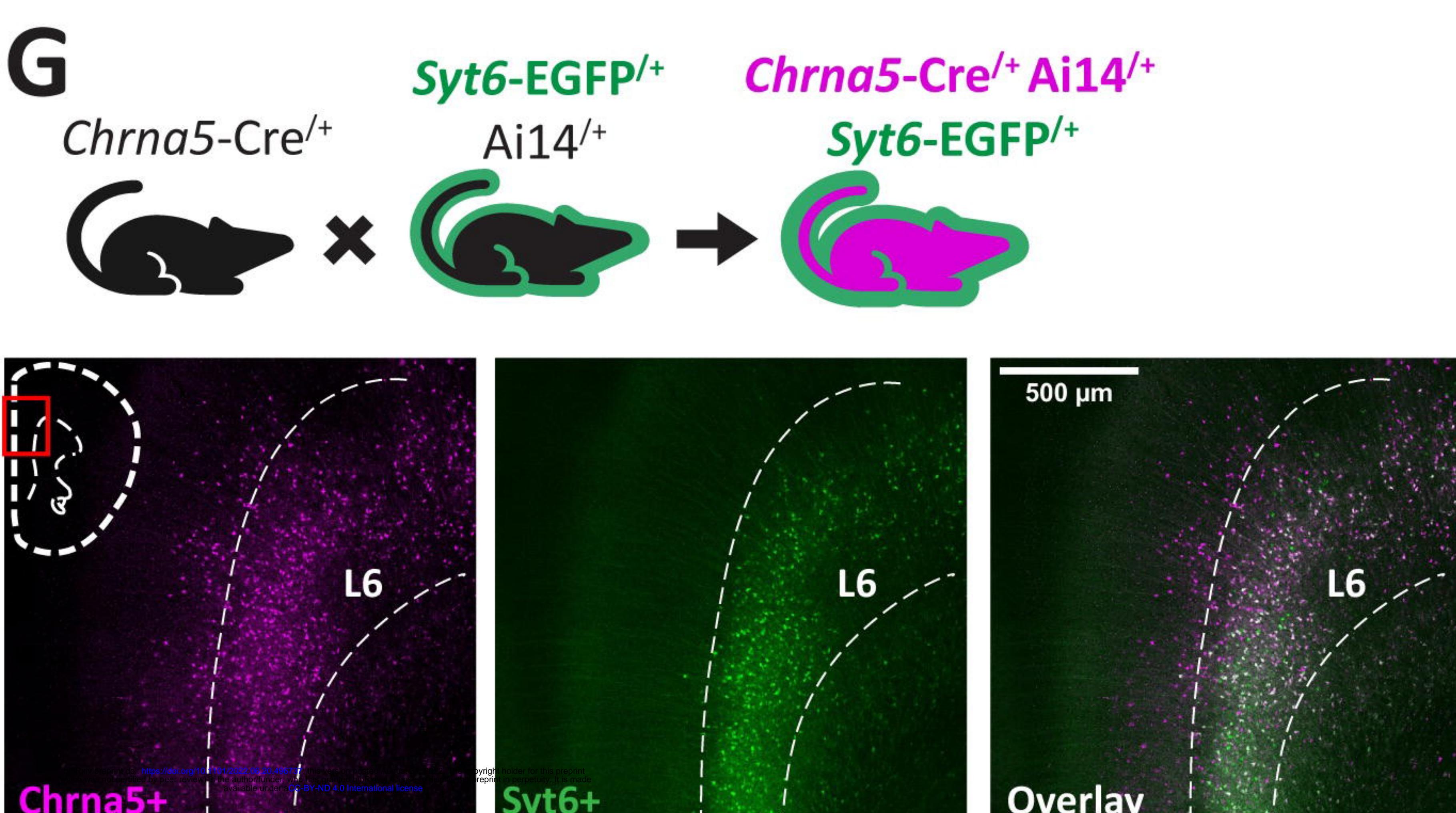
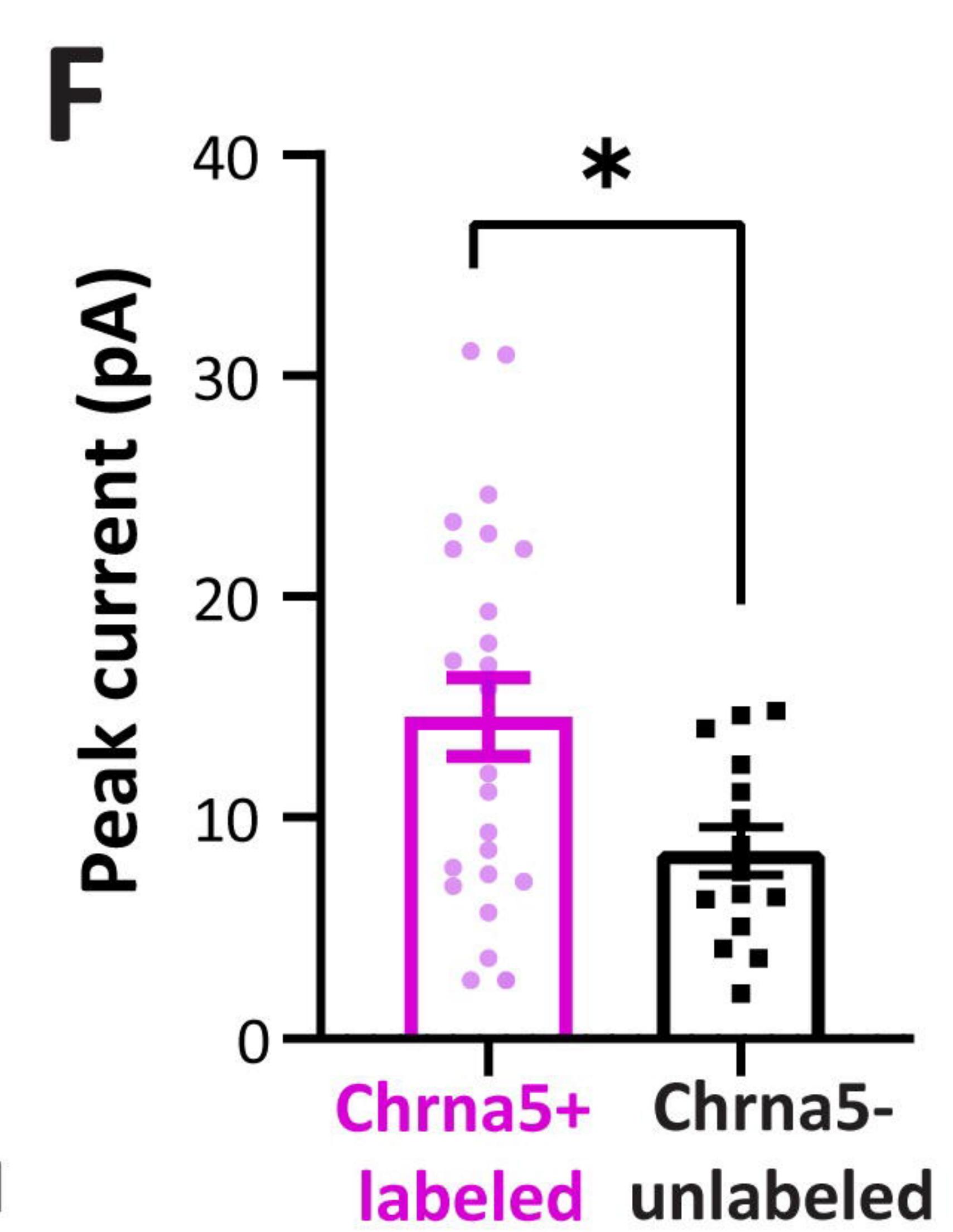
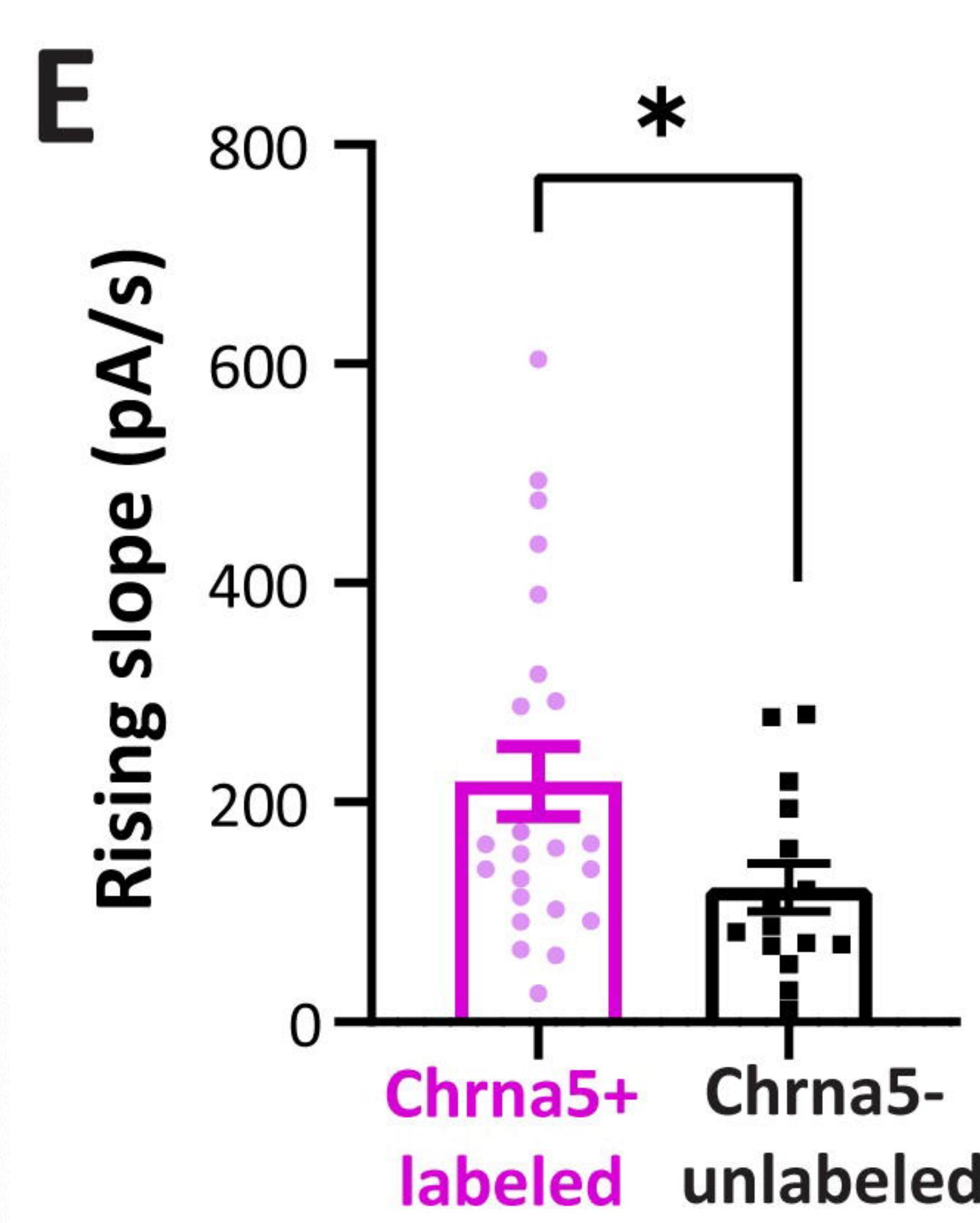
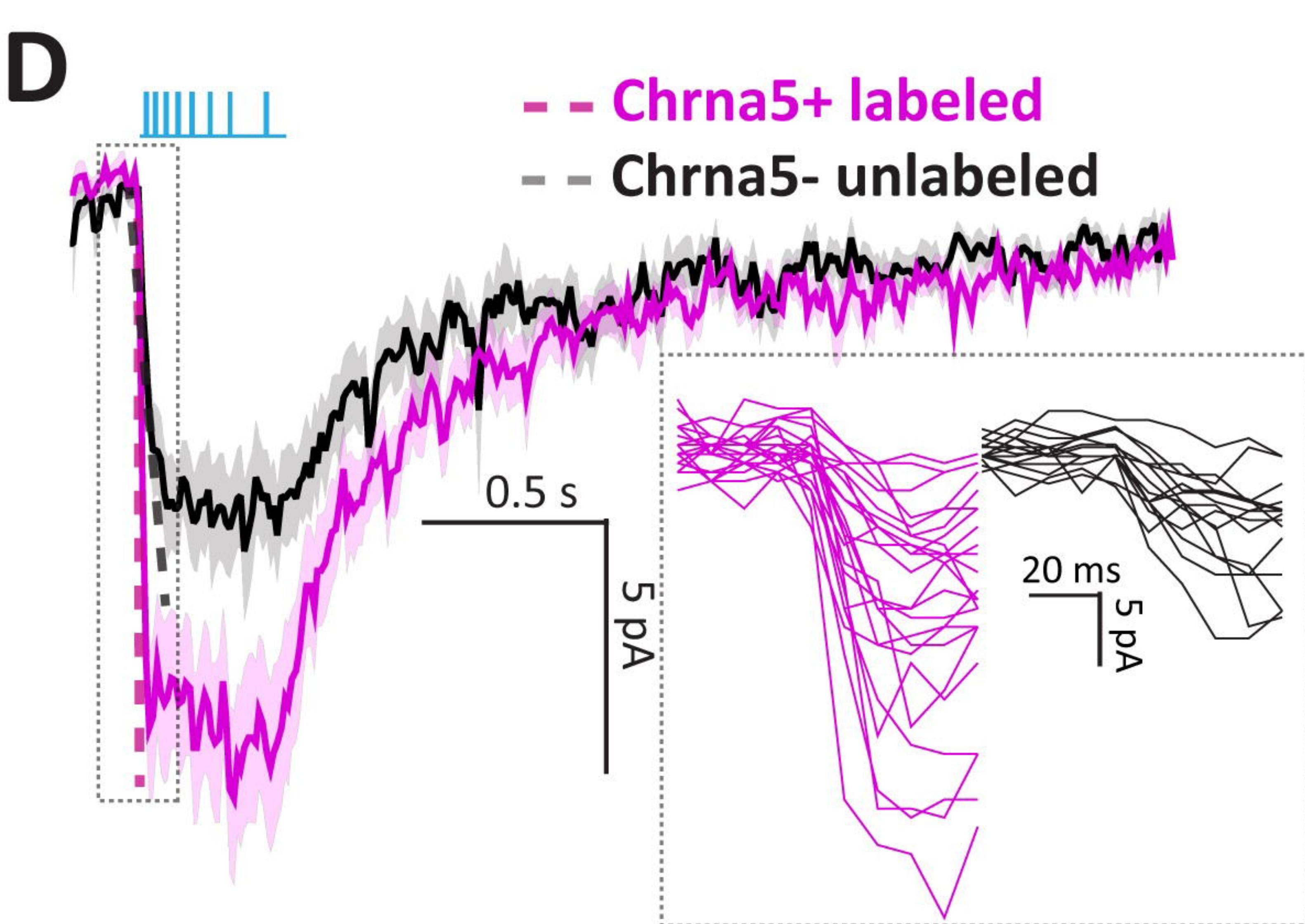
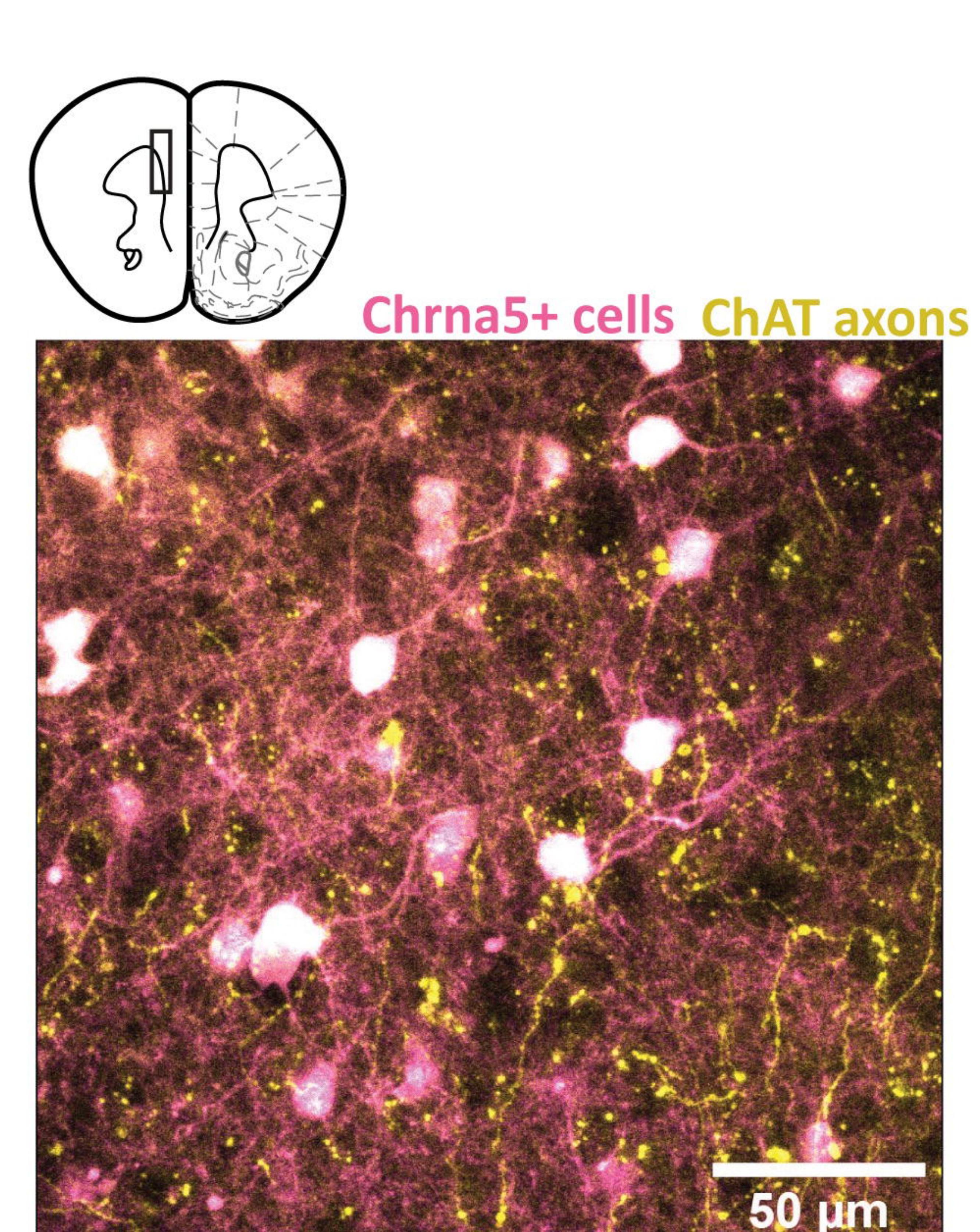
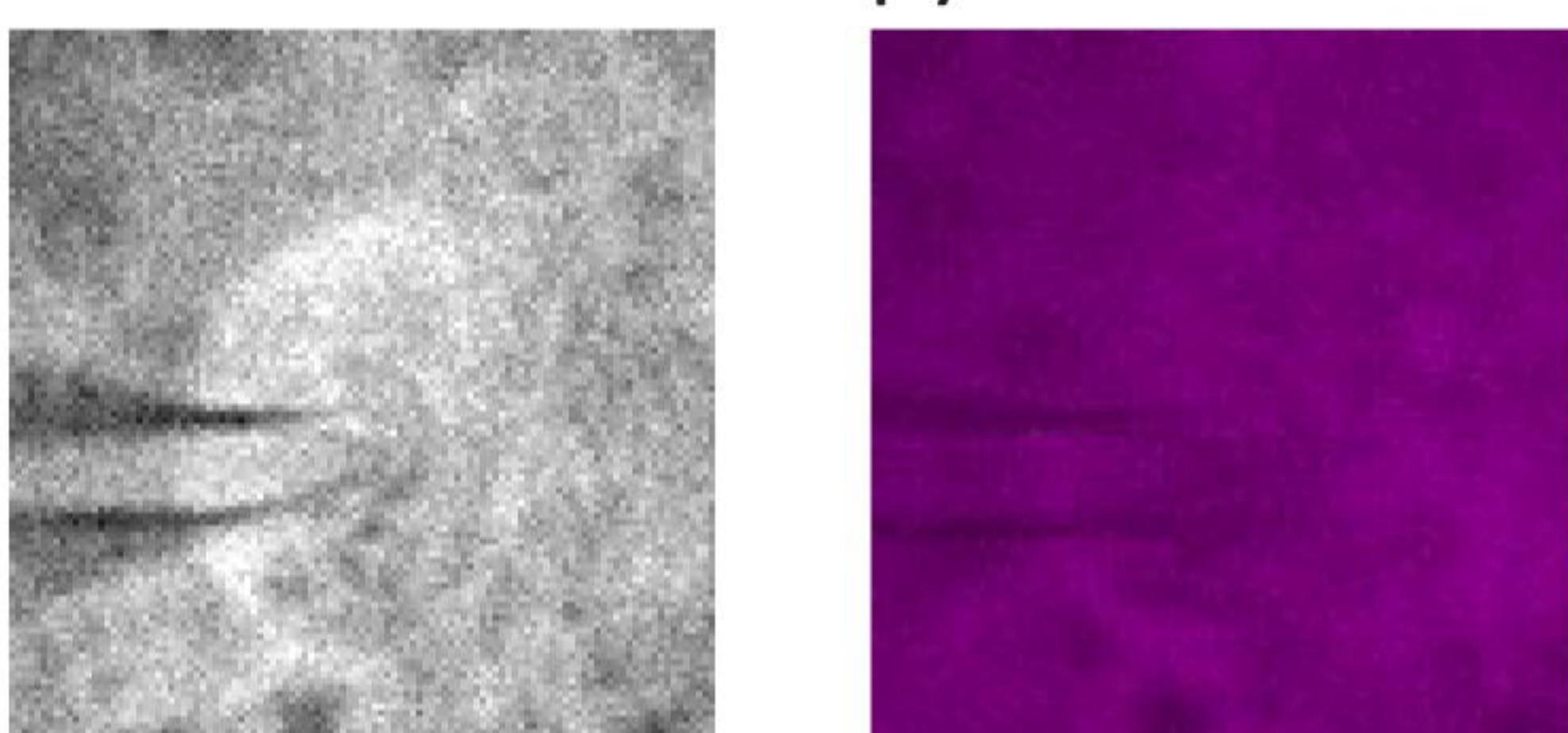
878 (Note: Supplementary Tables 1-3 are in one file)

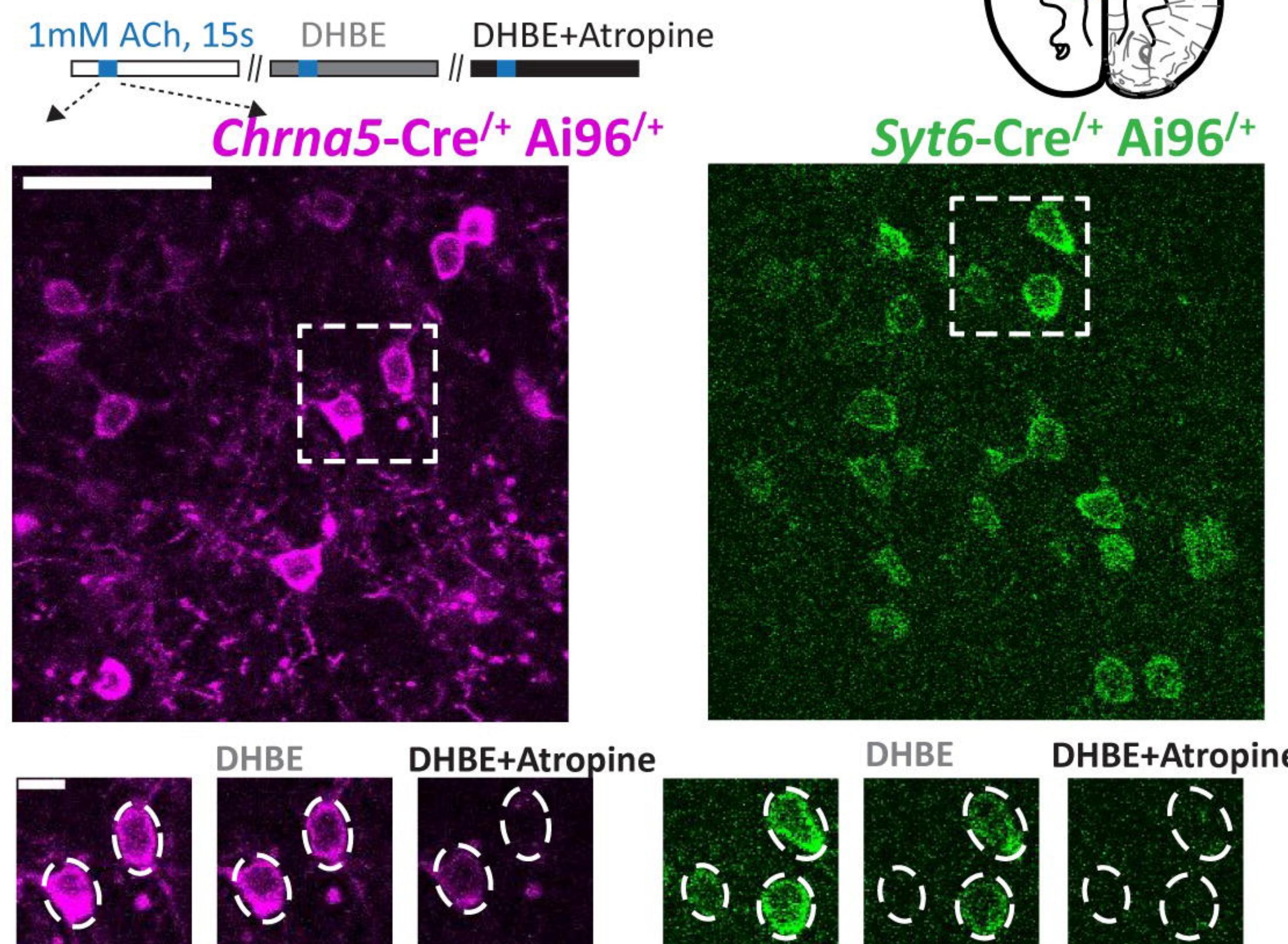
879 **Supplementary Table 1. Intrinsic electrophysiological properties of Chrna5+ and Chrna5-**
 880 **unlabeled deep-layer neurons in *Chrna5-Cre*^{+/+}*Ai14*^{+/+}ChAT-ChR2^{+/} mice.** None of the
 881 intrinsic properties are significantly different between the Chrna5+ and unlabeled Chrna5-
 882 neurons in Figure 1.

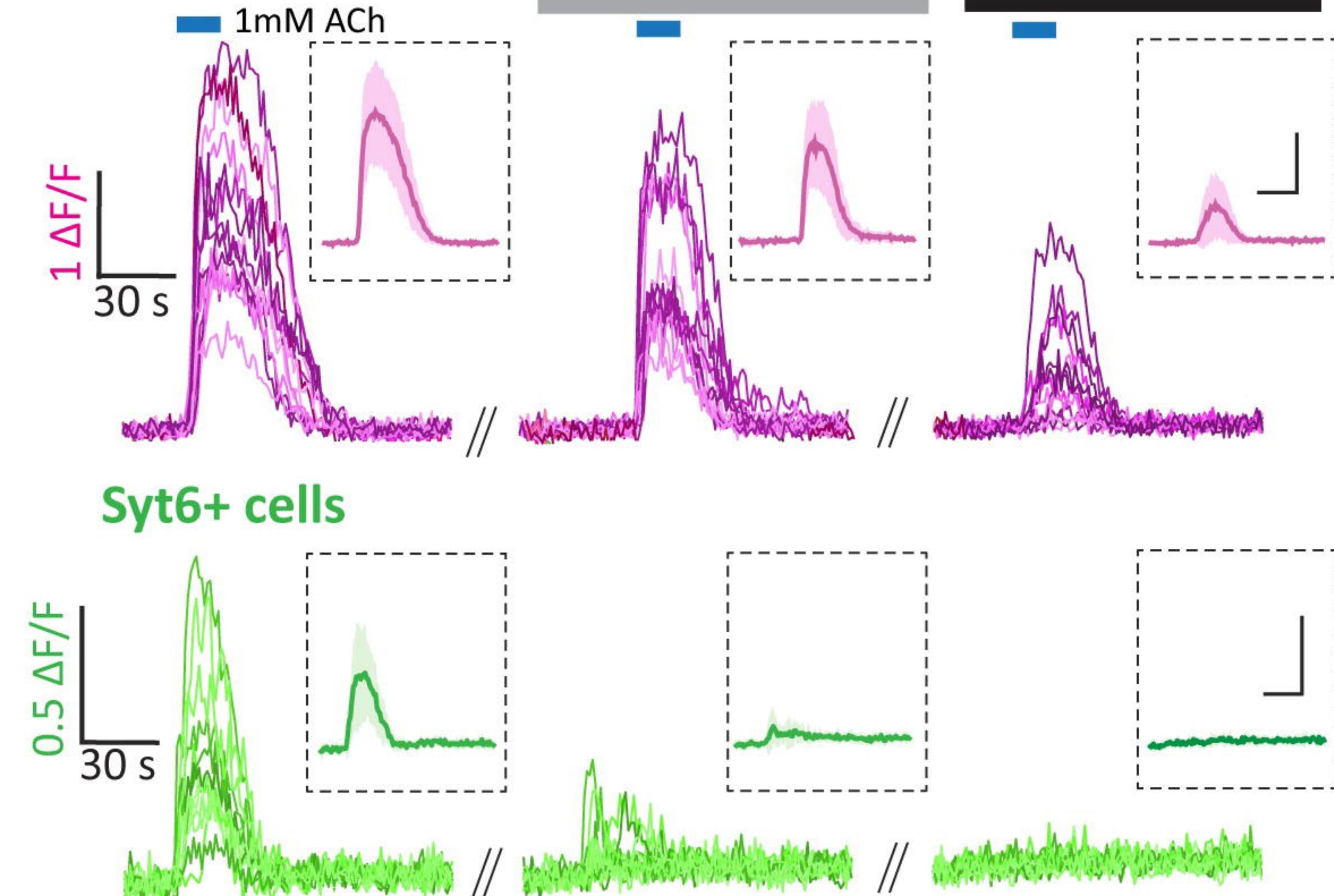
Supplementary Table 2. Intrinsic electrophysiological properties of *Chrna5*⁺ and *Syt6*⁺ deep-layer neurons. None of the intrinsic properties are significantly different between *Chrna5*⁺ and *Syt6*⁺ neurons in Figure 3.

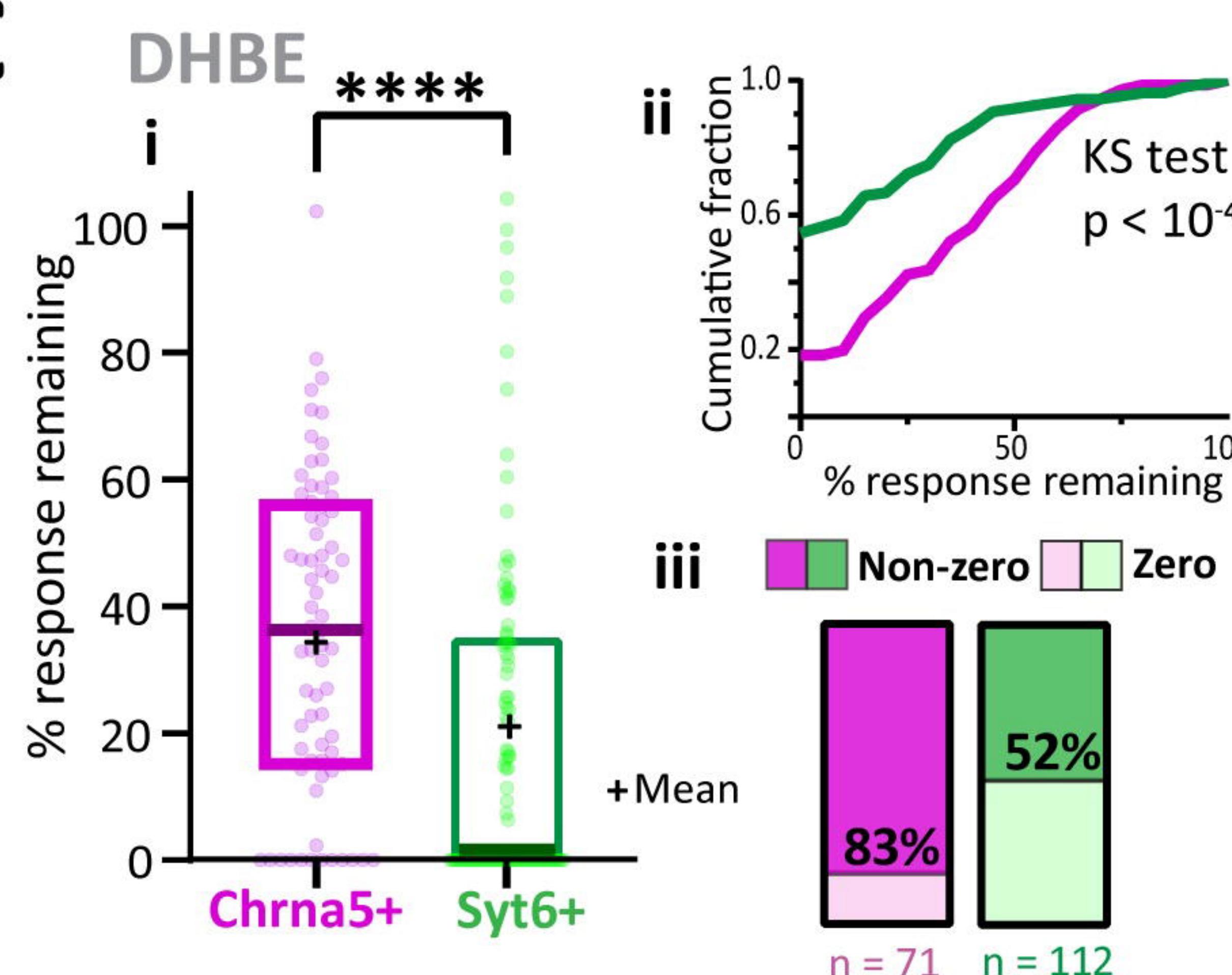

886 **Supplementary Table 3.** Comparing expression of major genes modulating postsynaptic
887 cholinergic responses in Chrna5+ and Chrna5+Syt6+ neurons. Genes of interest for cholinergic
888 properties filtered from the list of all genes in our differential expression analysis. Genes are
889 sorted in descending order of the fold change between Chrna5+ and Chrna5+Syt6+ neurons. 3
890 Lynx prototoxins- Lypd1, Ly6g6e, and Lypd6b (bold text) are the highest enriched among these
891 cholinergic modulatory genes in Chrna5+ neurons.

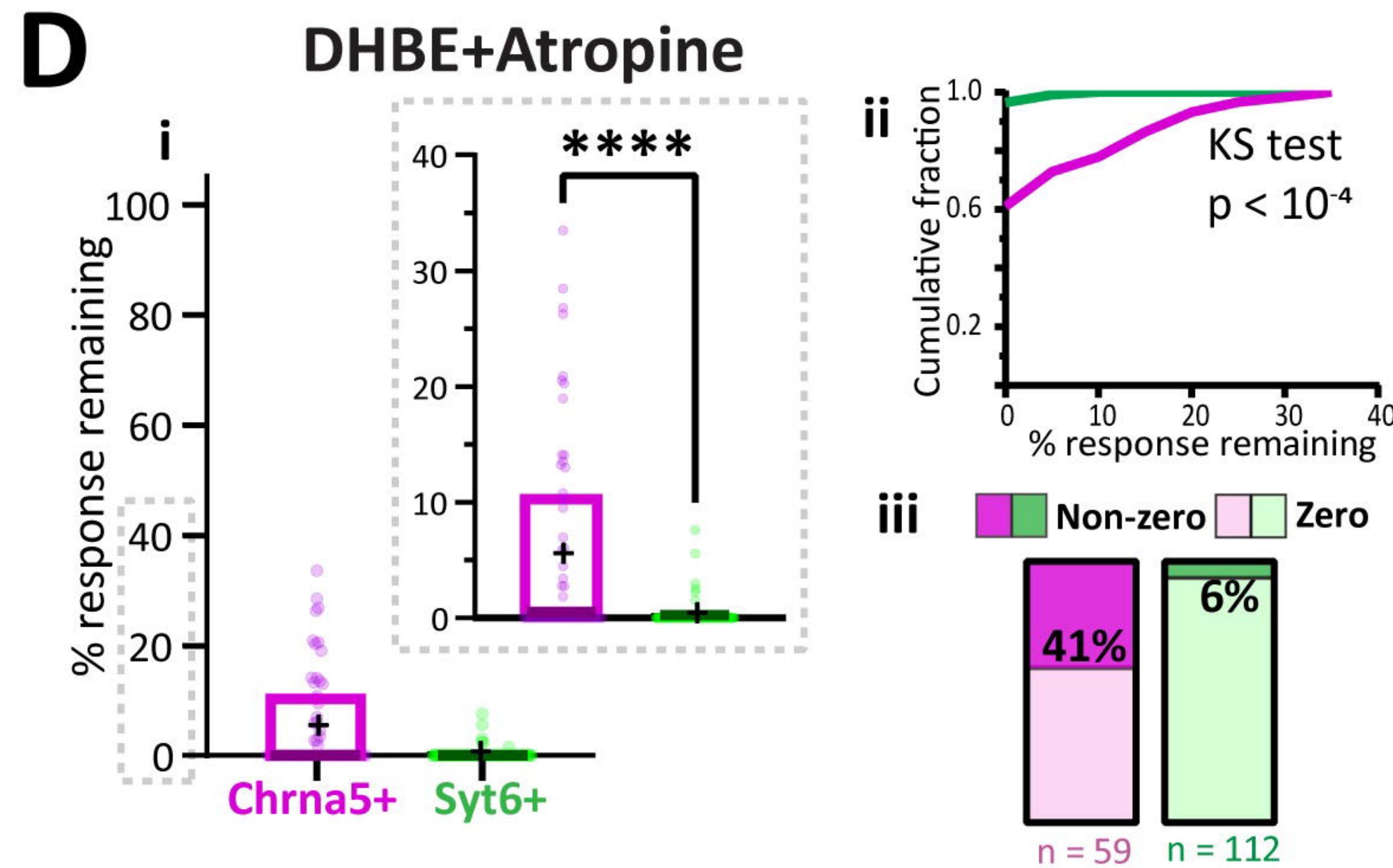
892

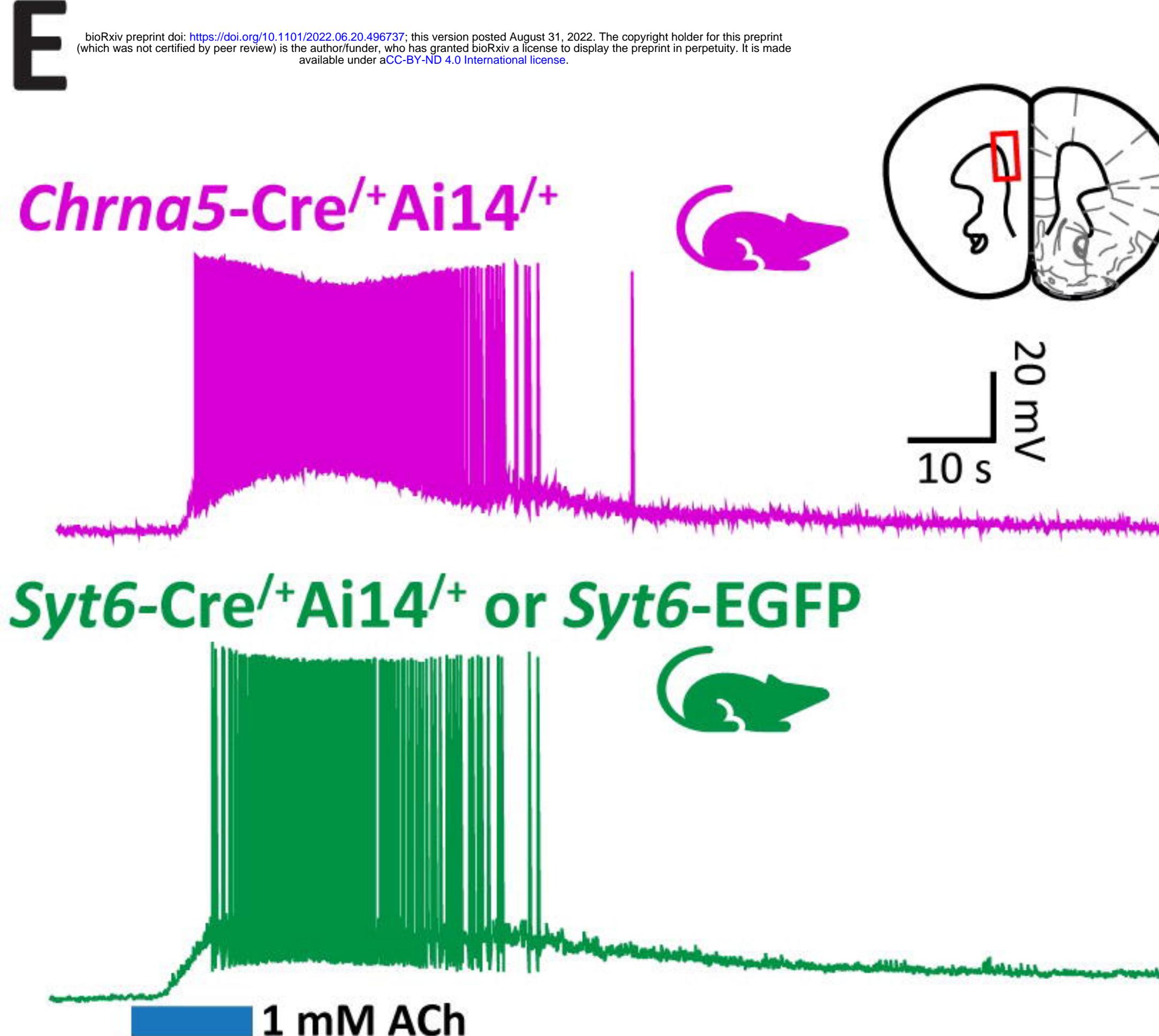









893 **Supplementary Table 4.** Excel file containing all differentially expressed genes between
894 Chrna5+ and Chrna5+Syt6+ neurons with adjusted p value < 0.05

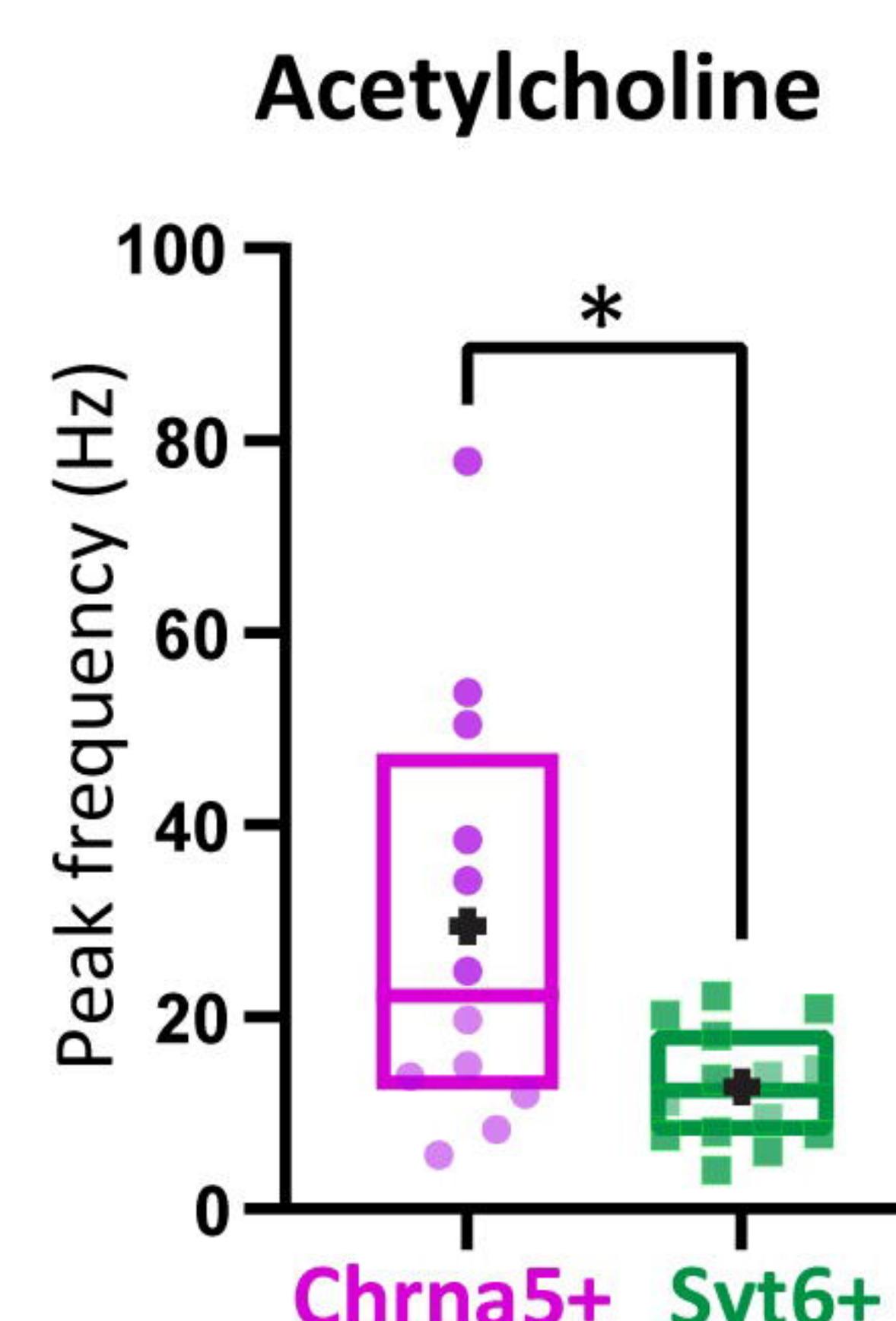

Chrna5+ labeled L6 pyramidal neuron

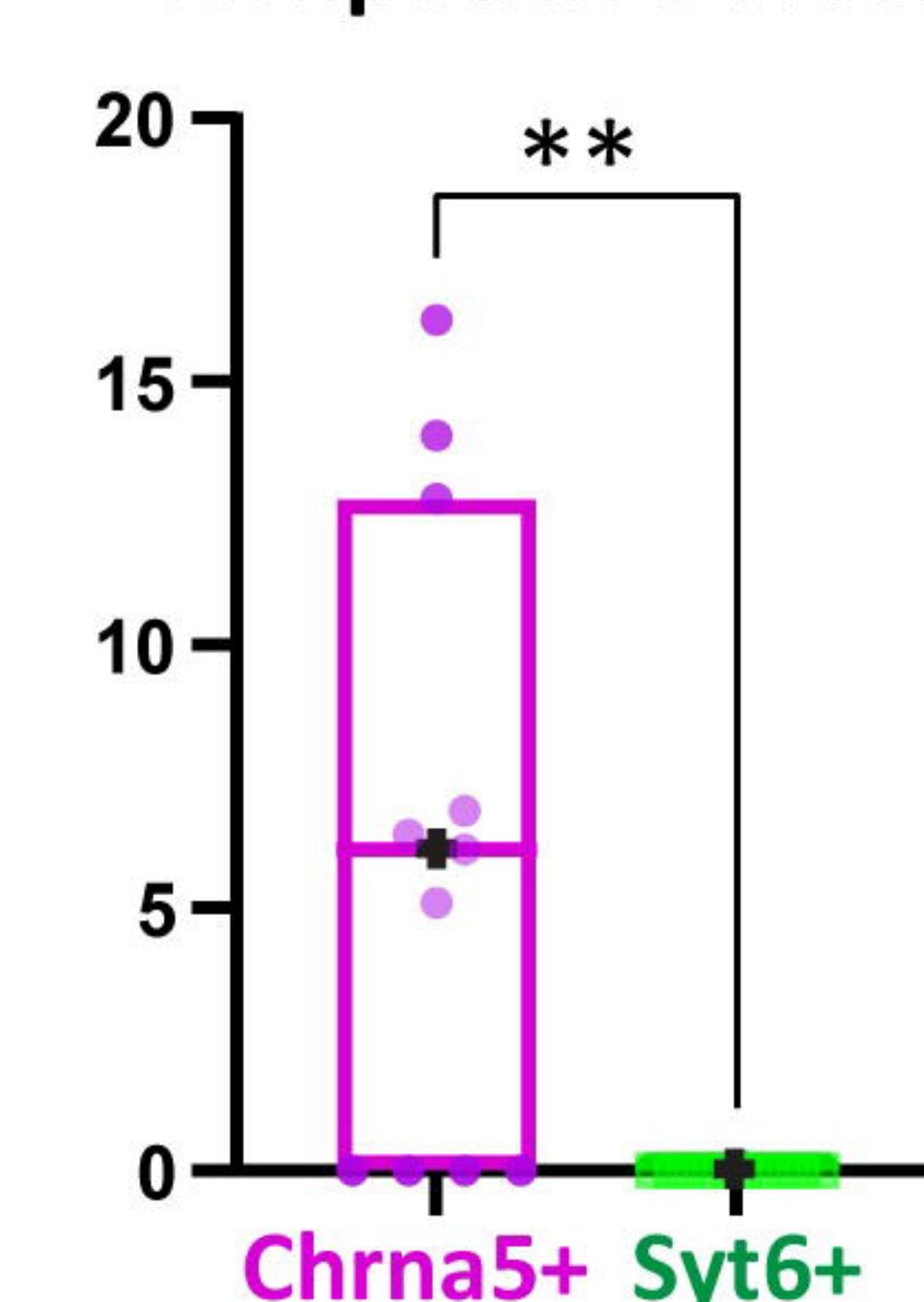

Chrna5- unlabeled L6 pyramidal neuron

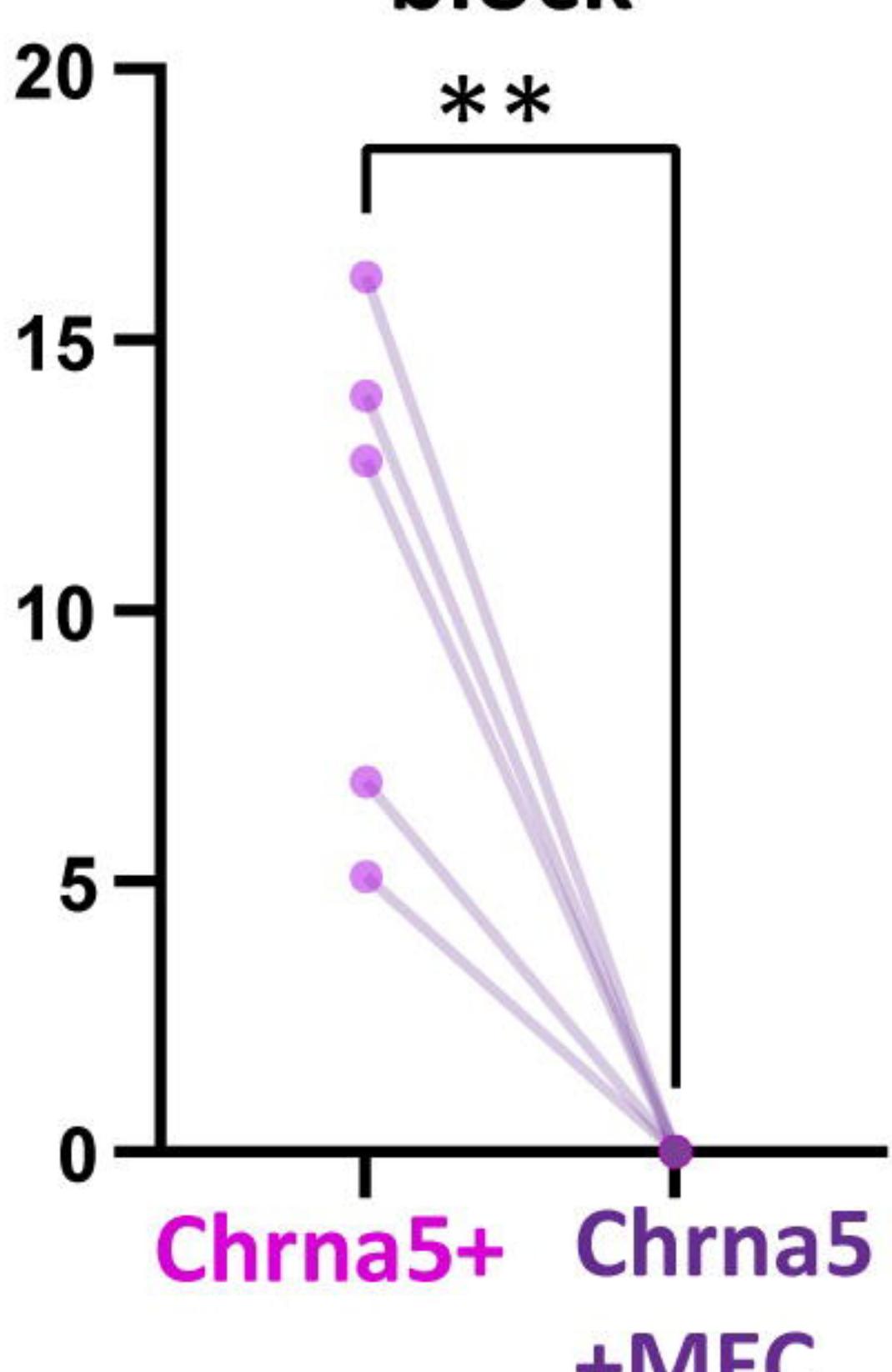

A GCaMP6s Ca^{2+} imaging

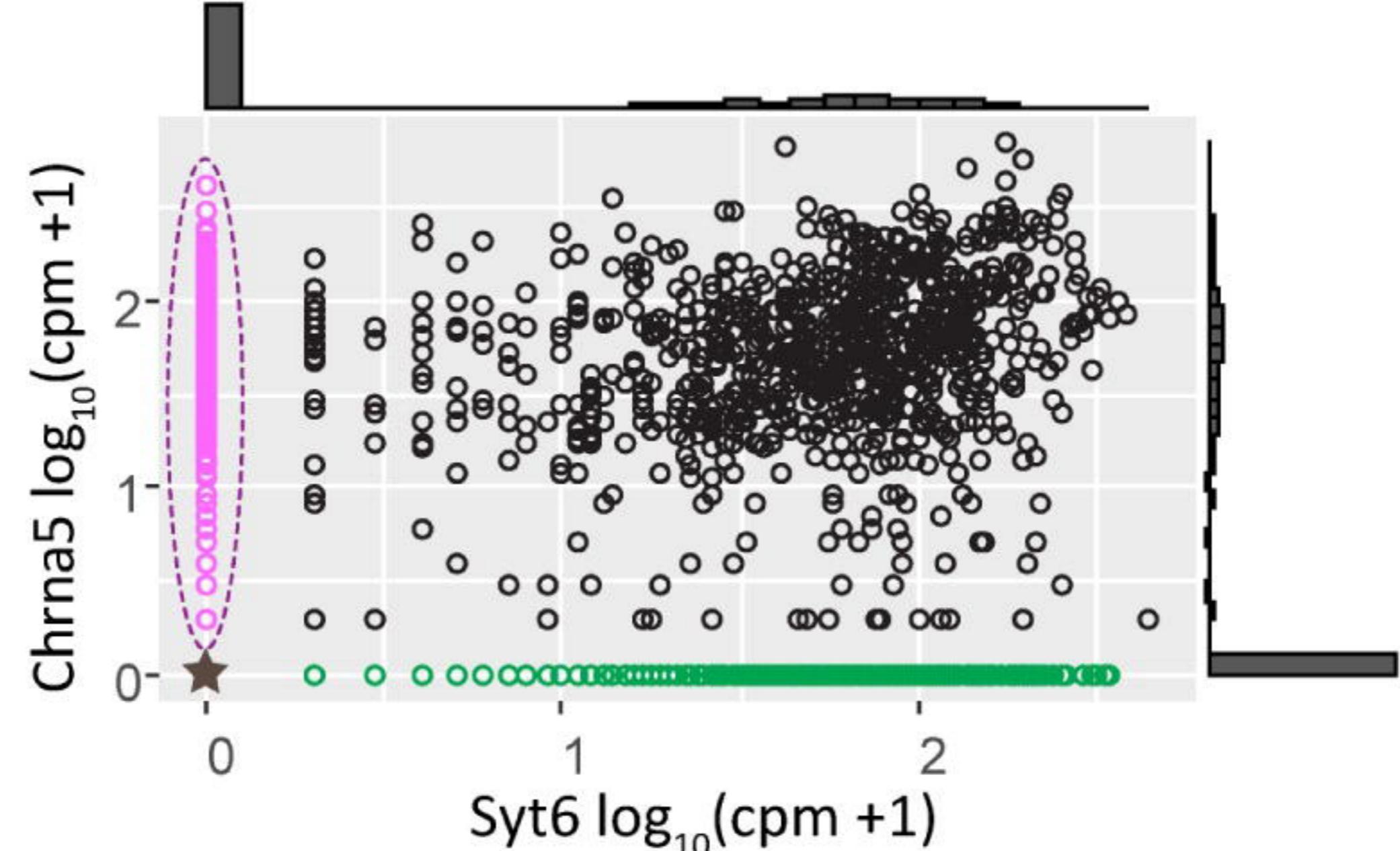
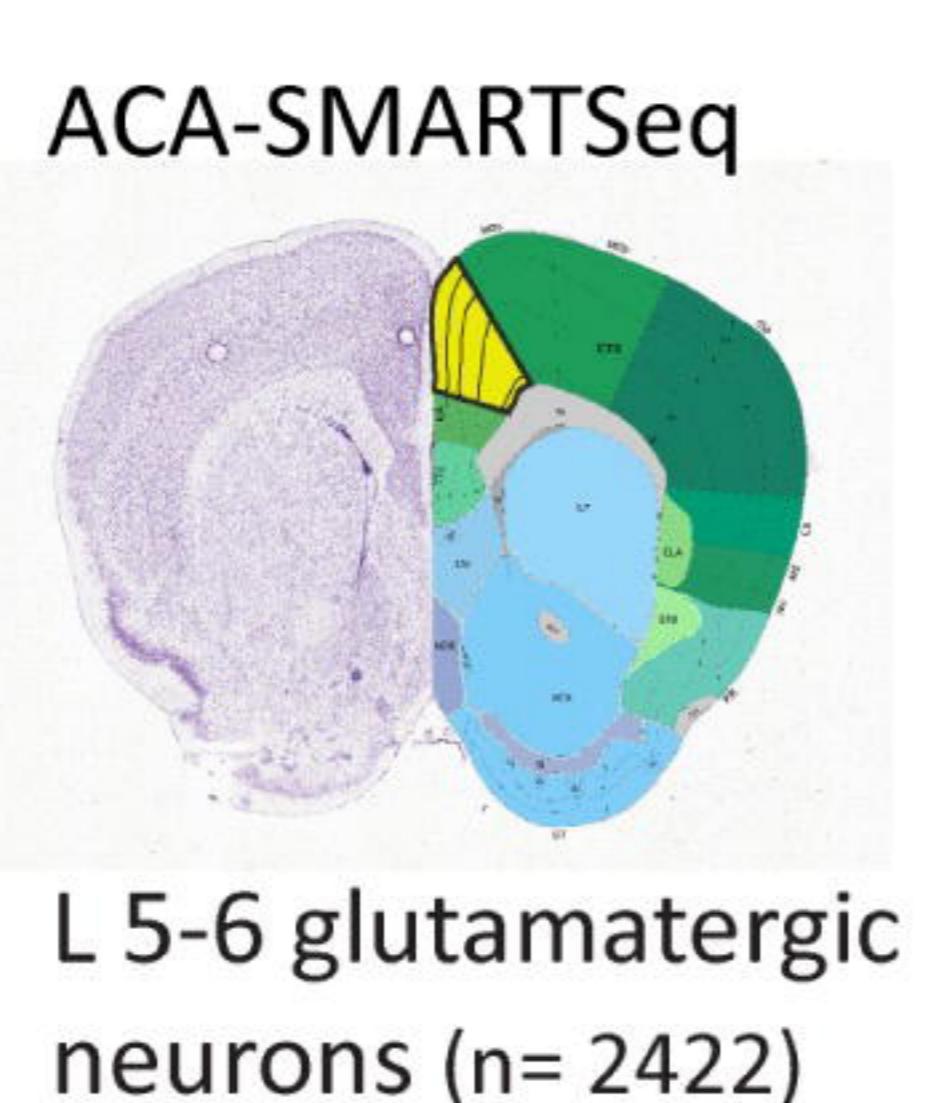
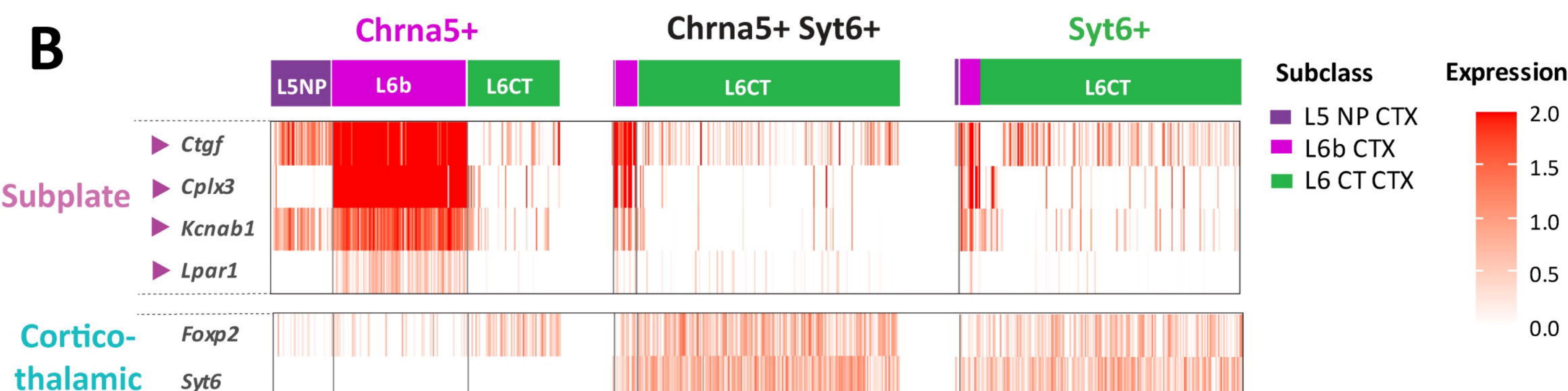
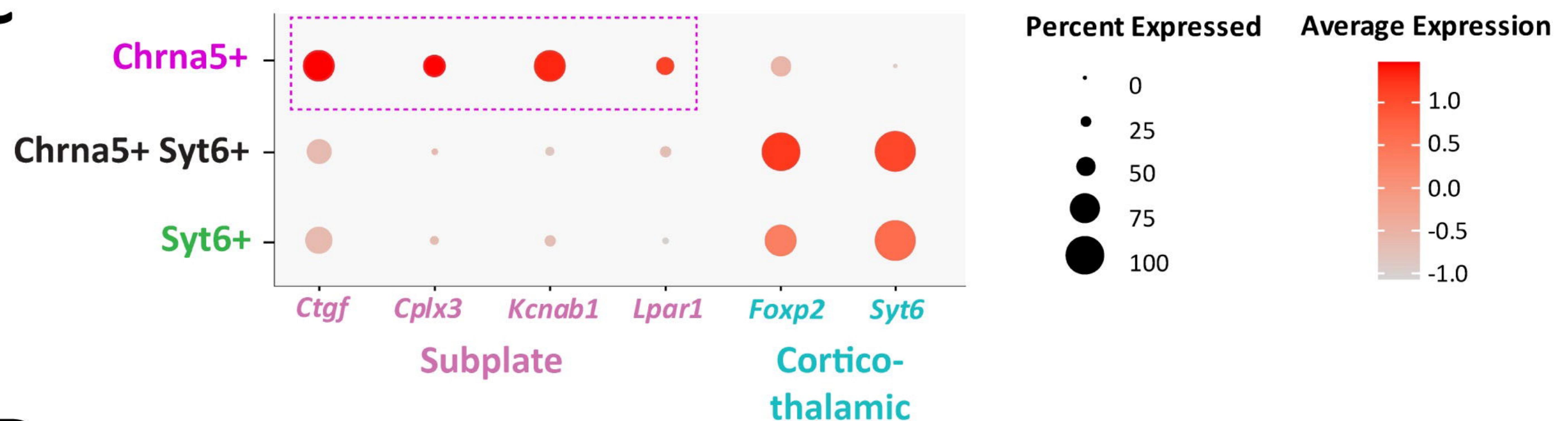
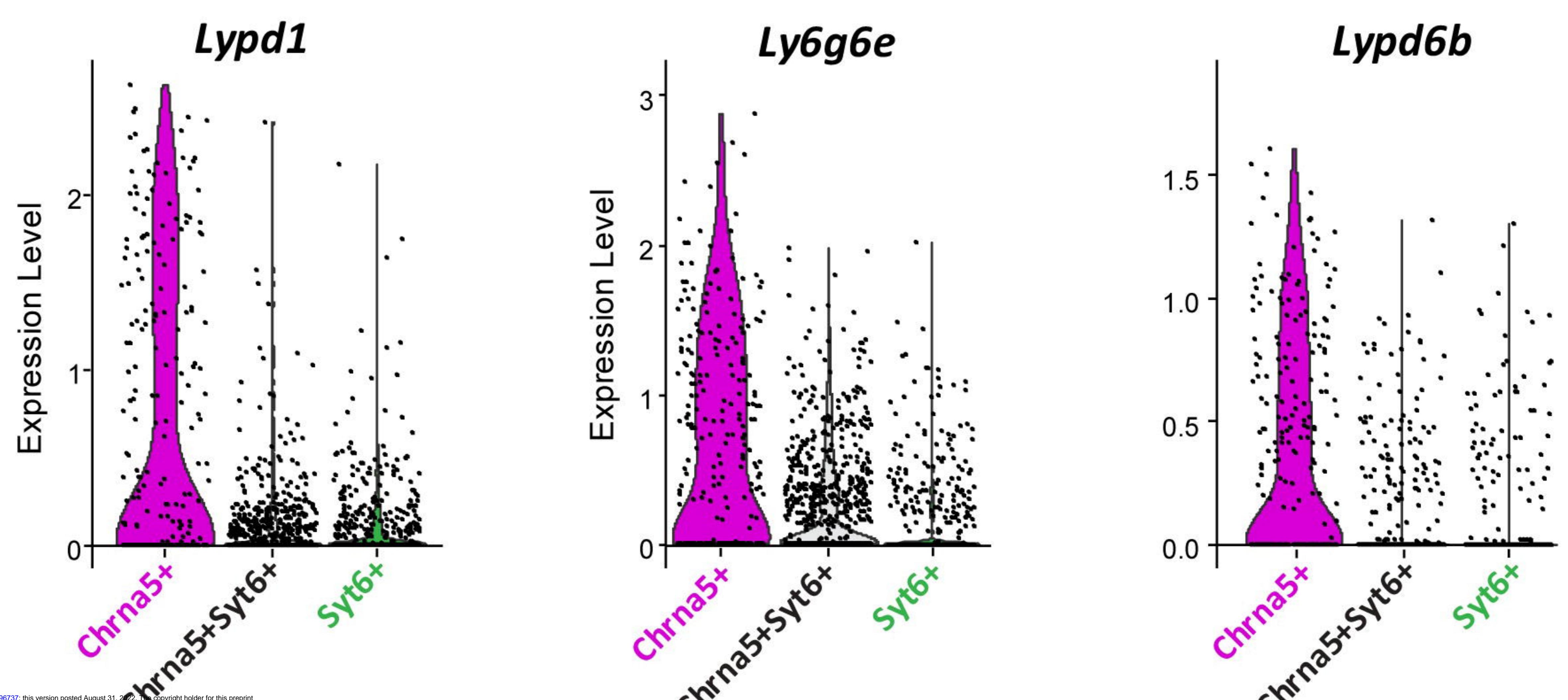
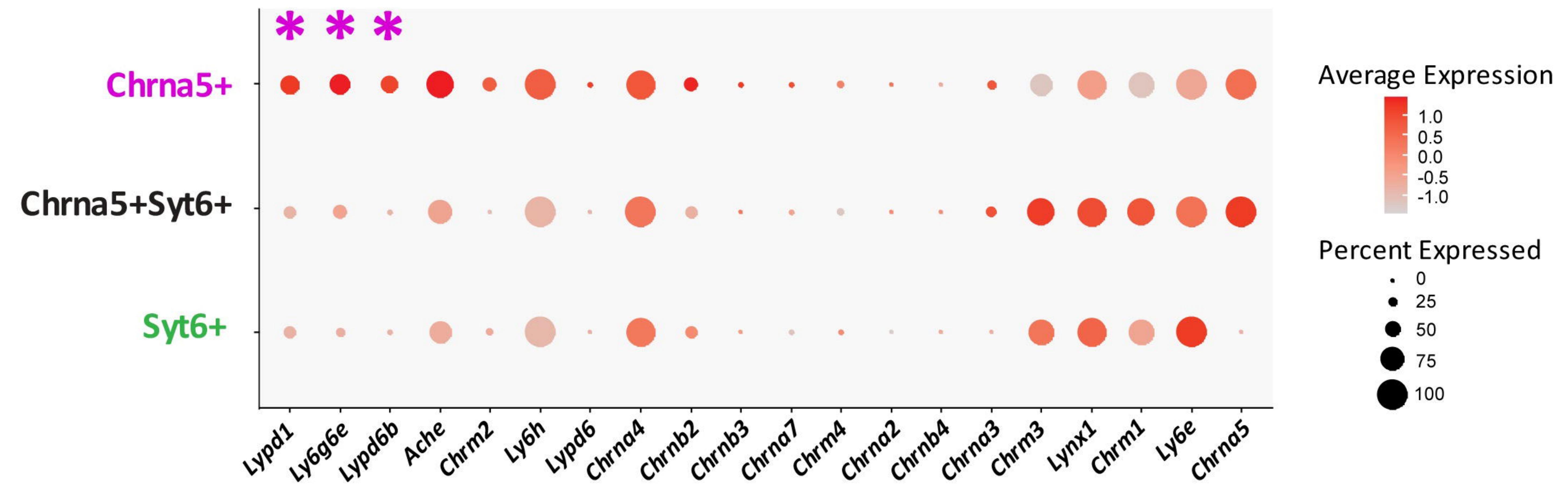

B Chrna5+ cells


C

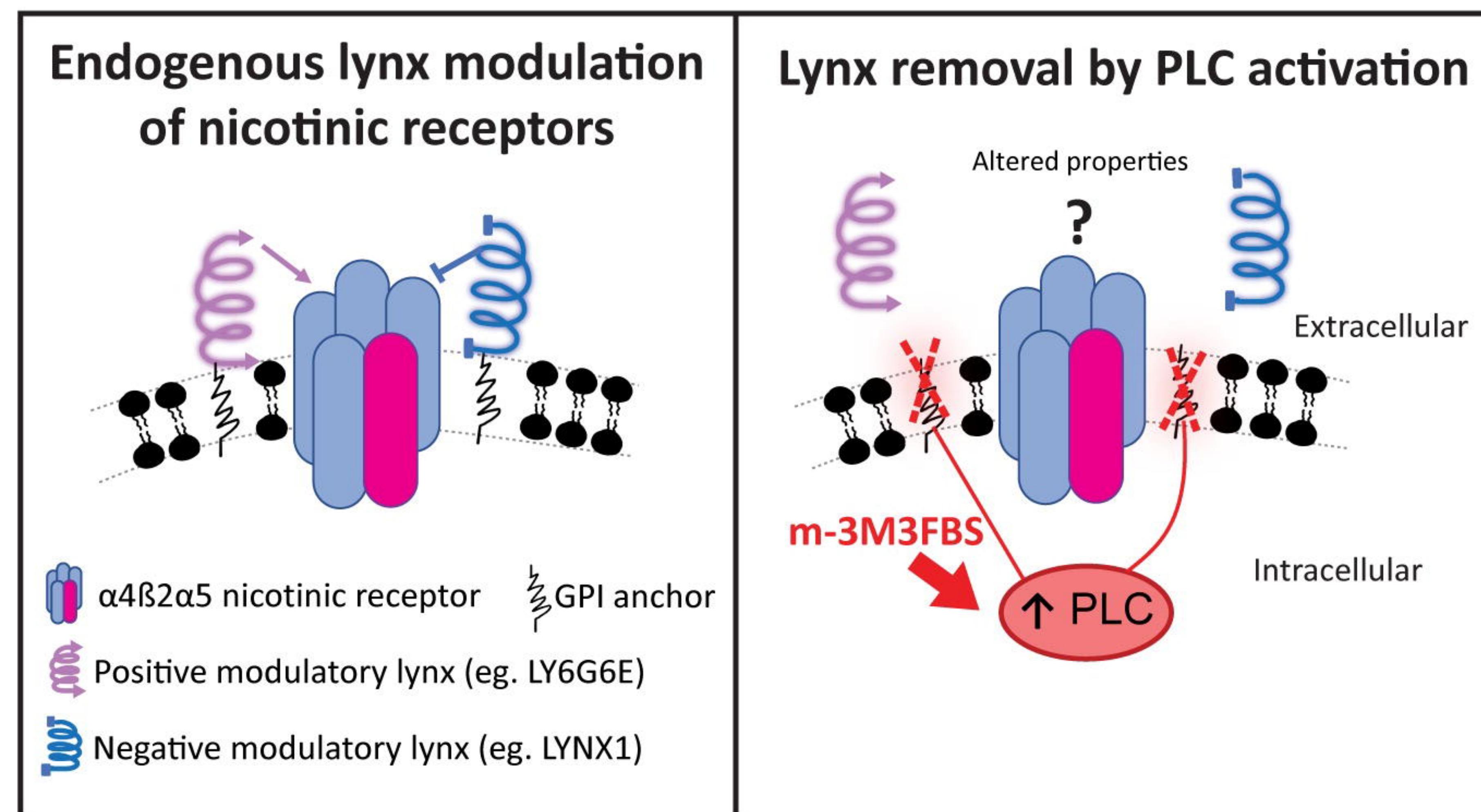
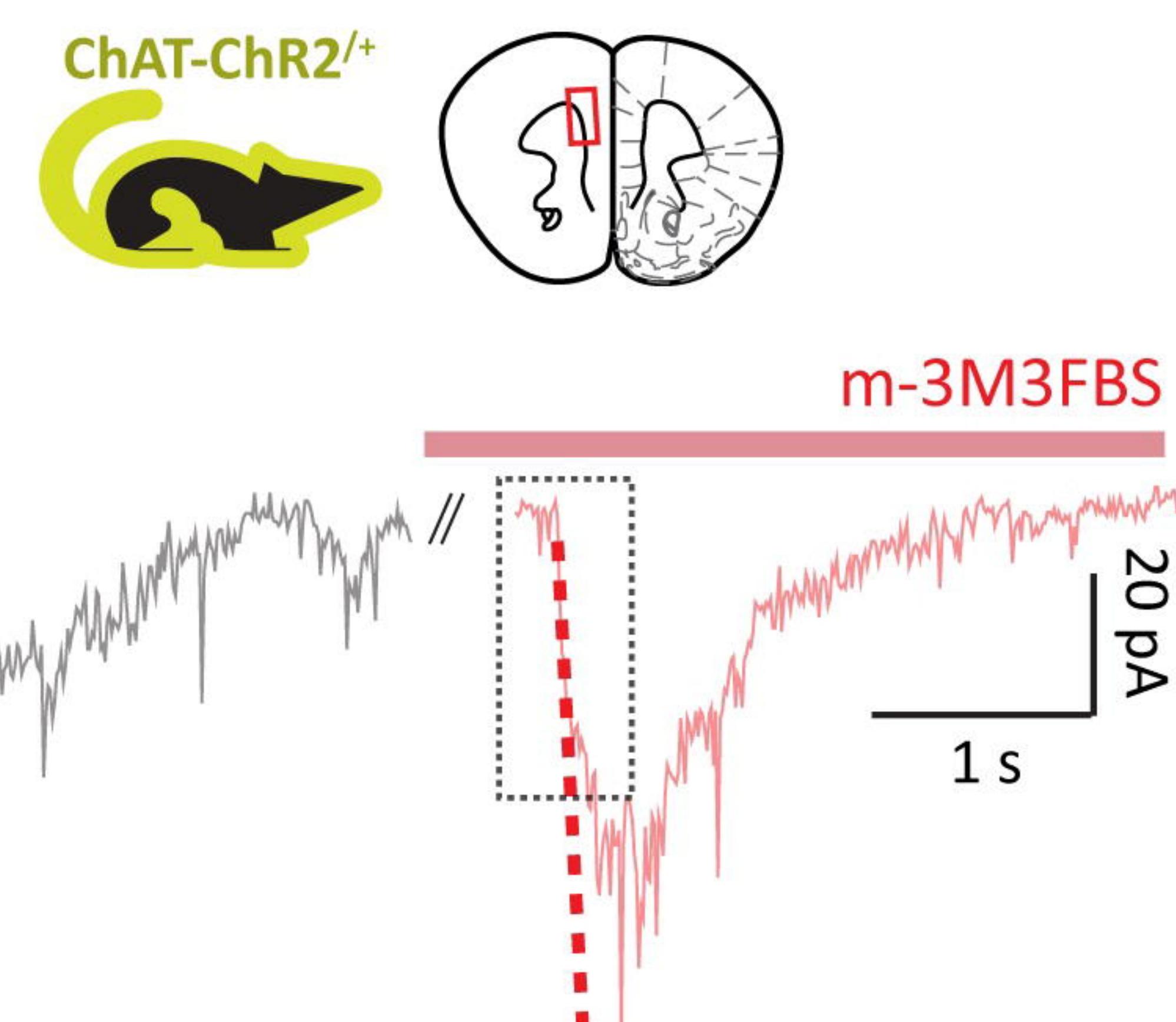
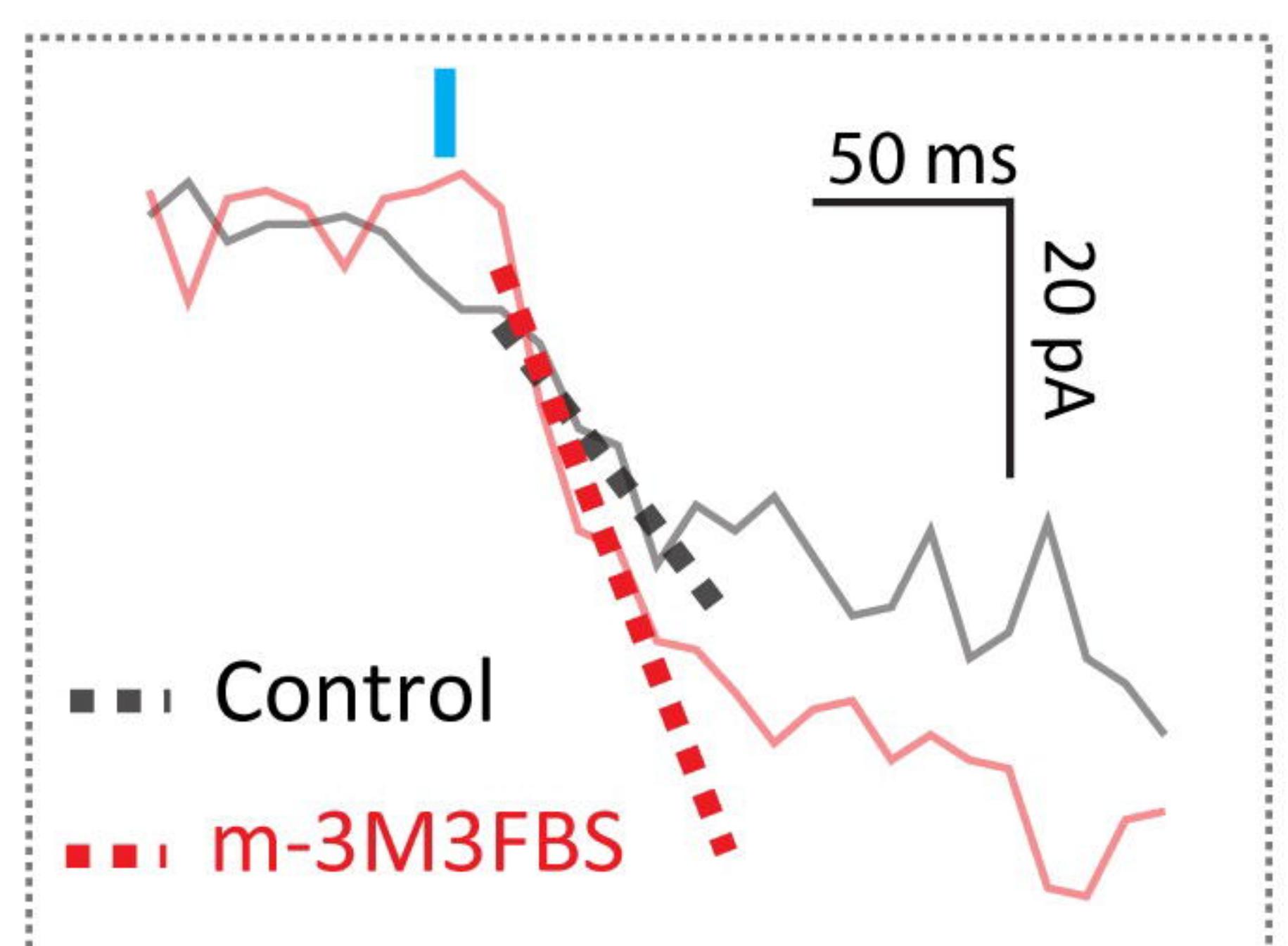
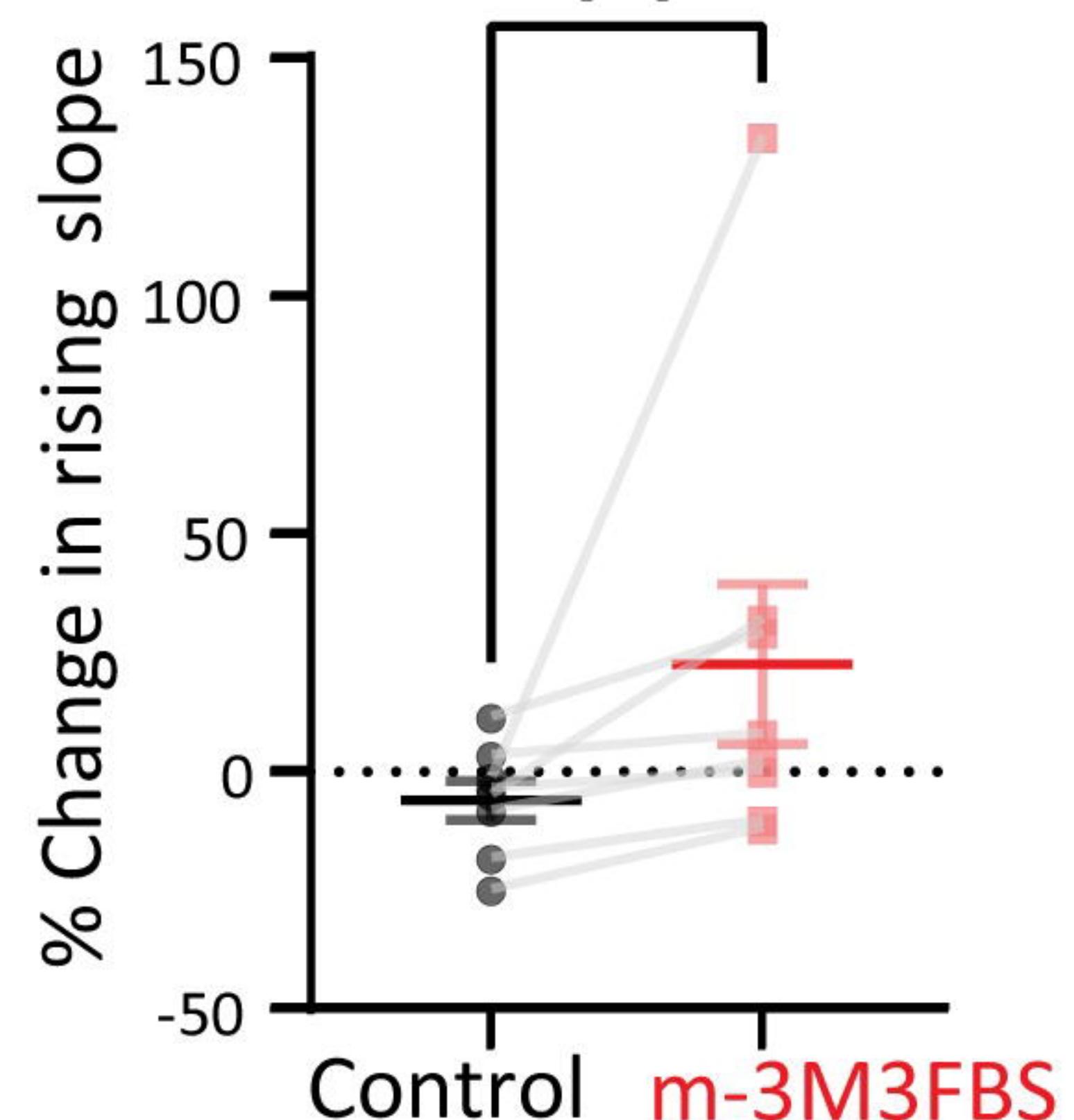
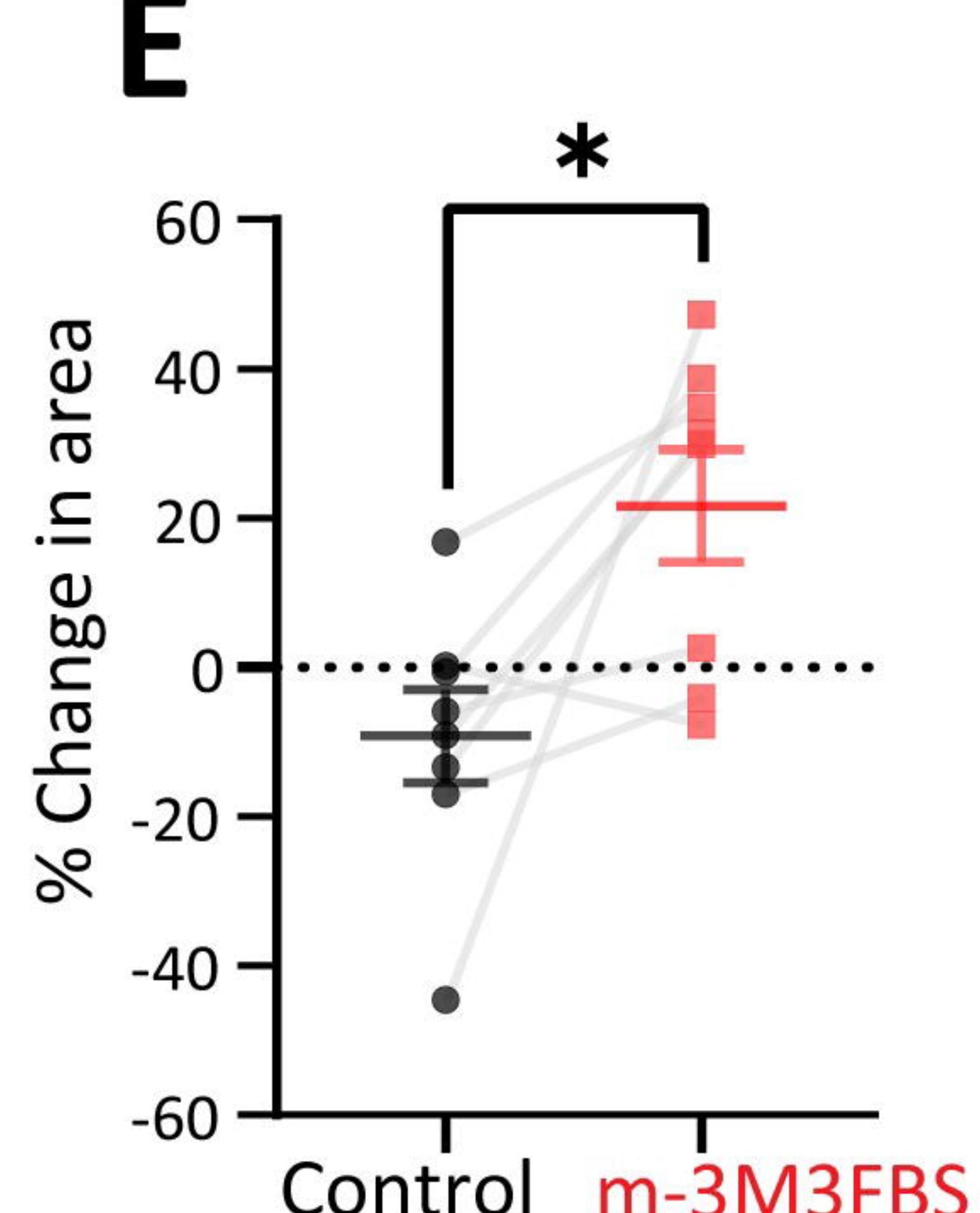
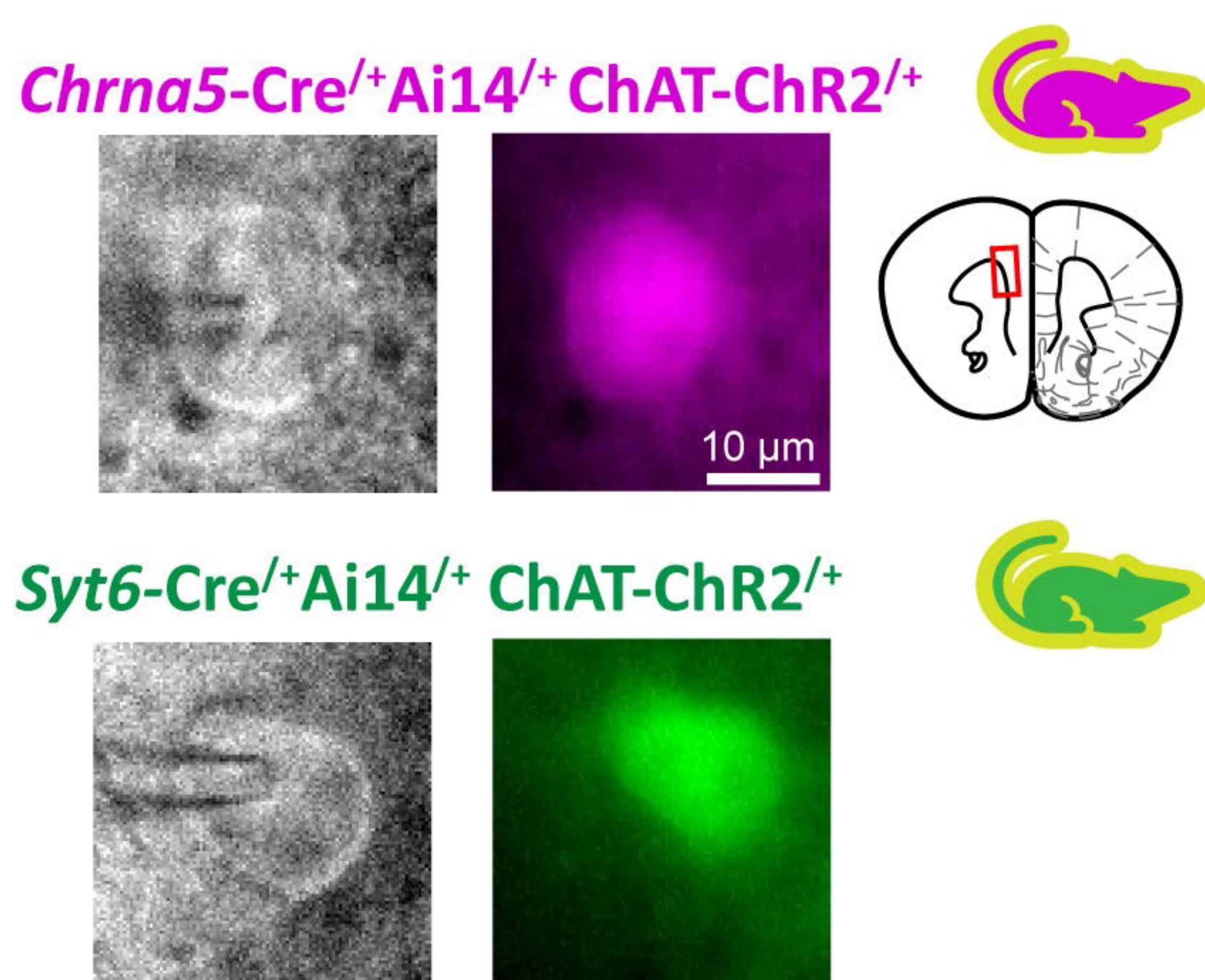
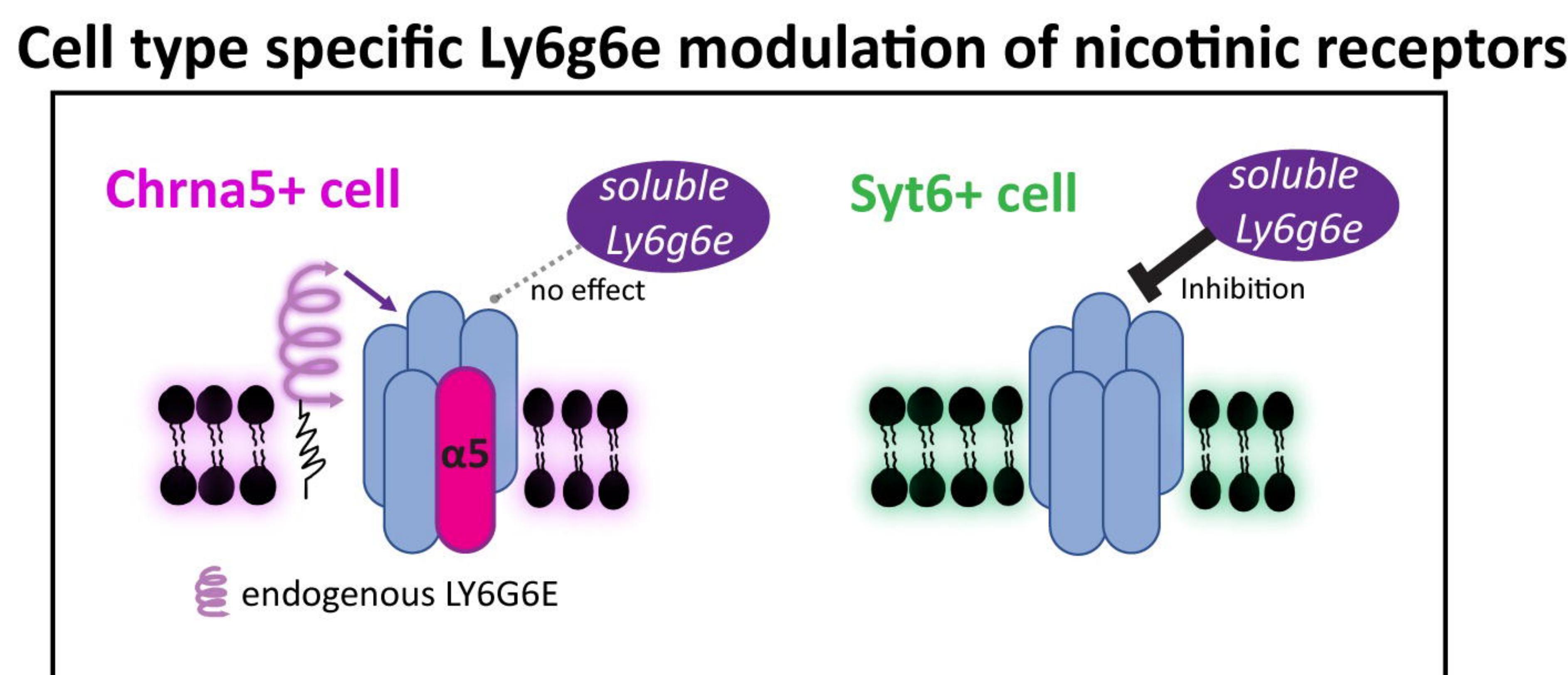
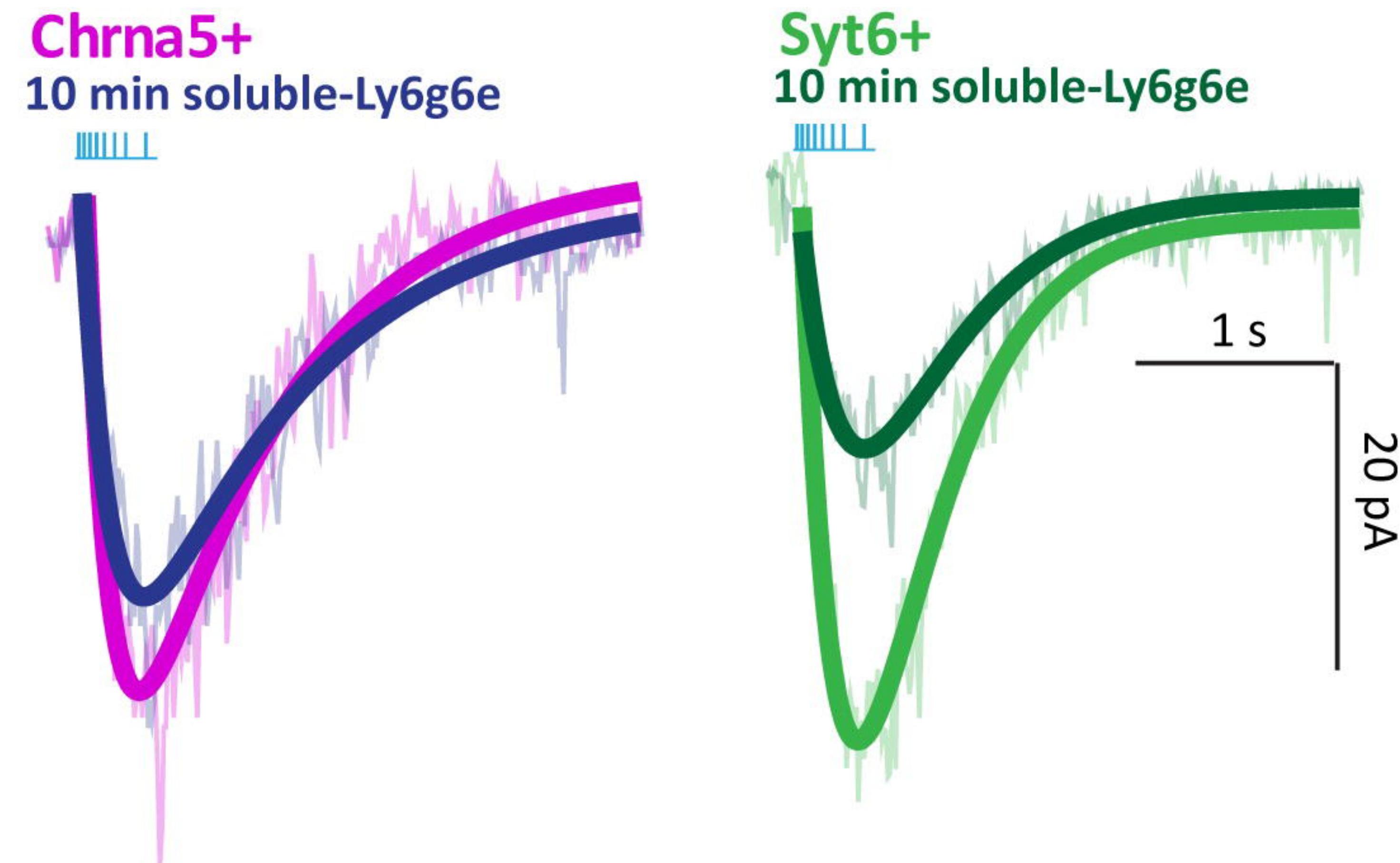
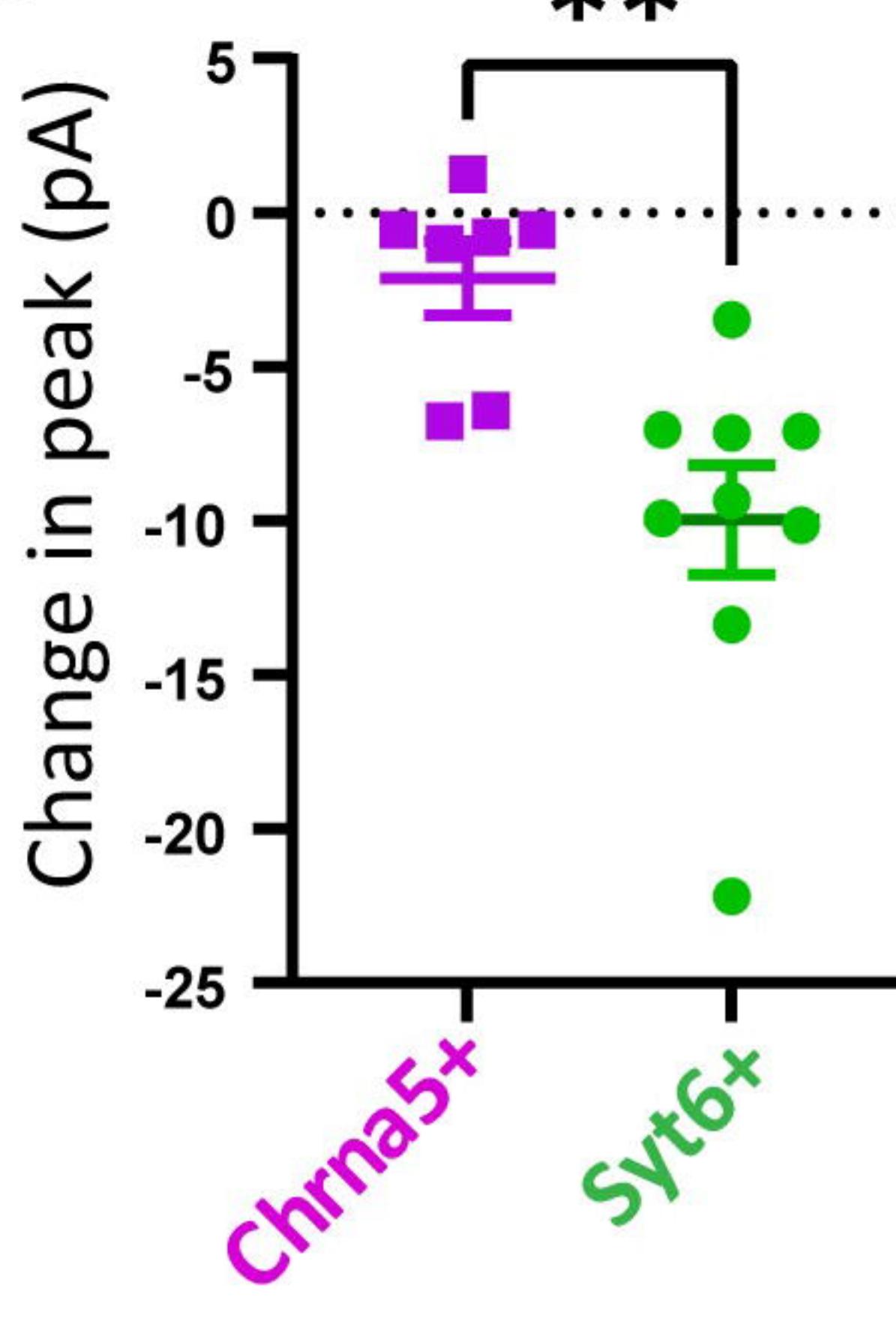
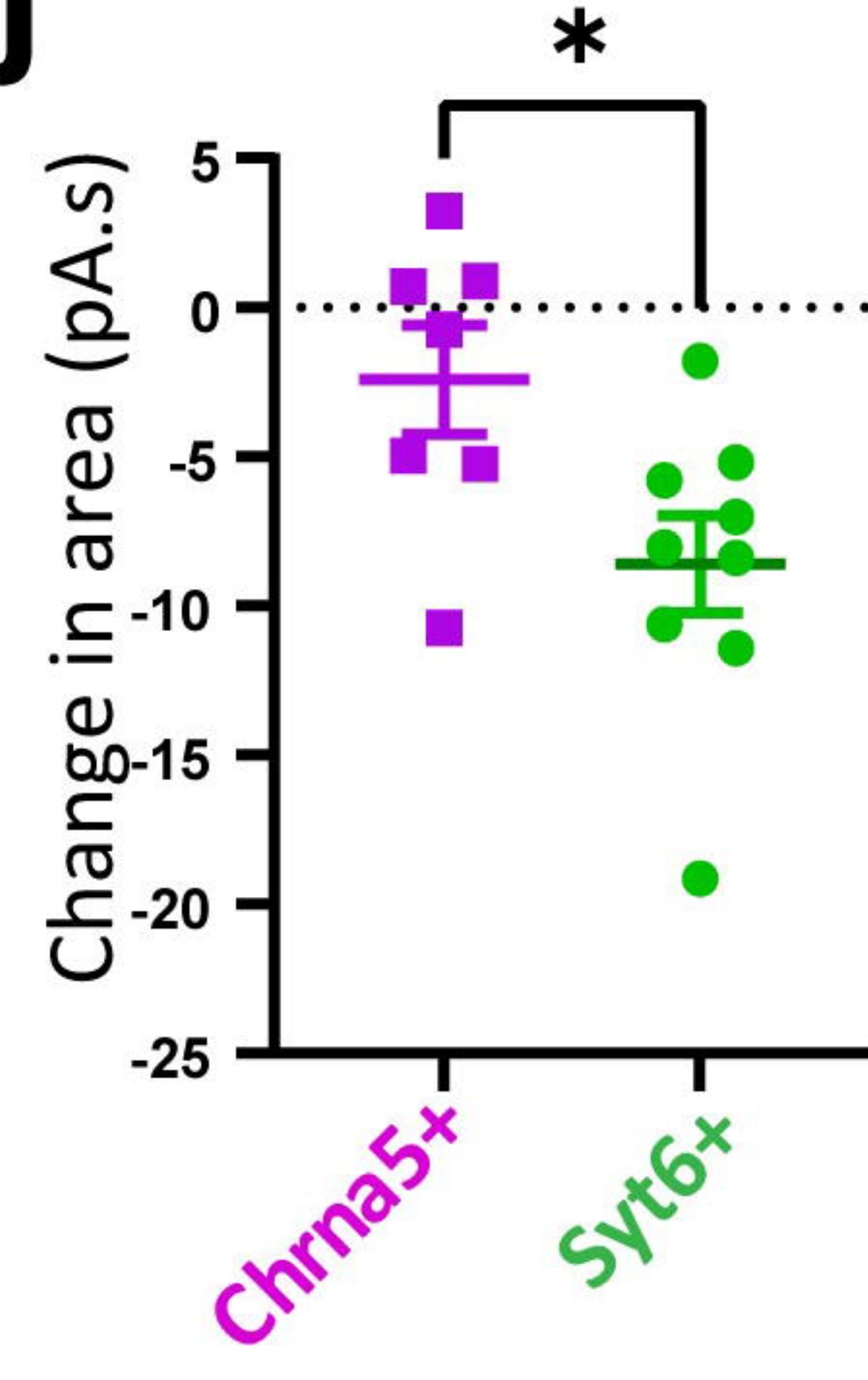

D


E

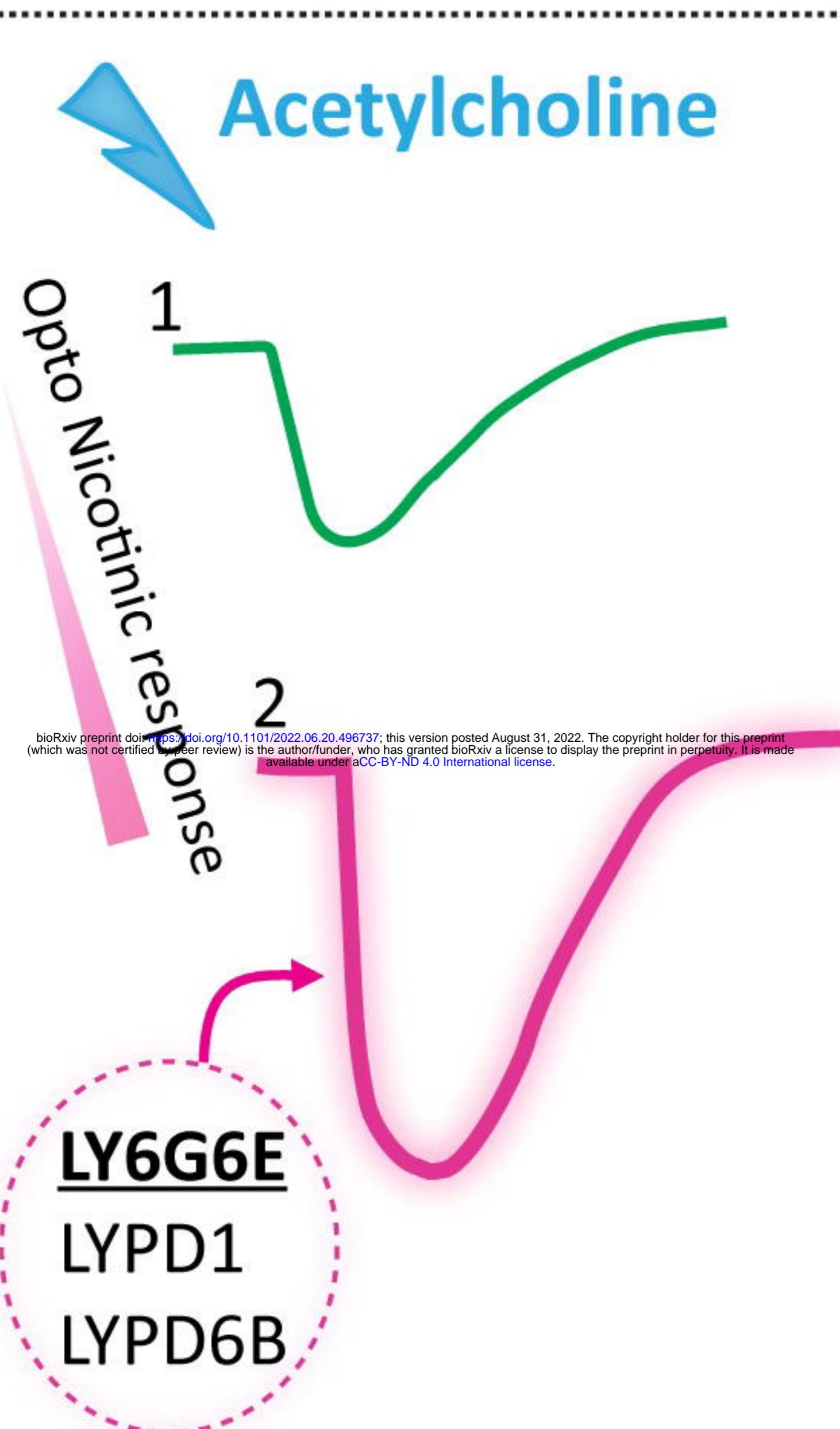

F

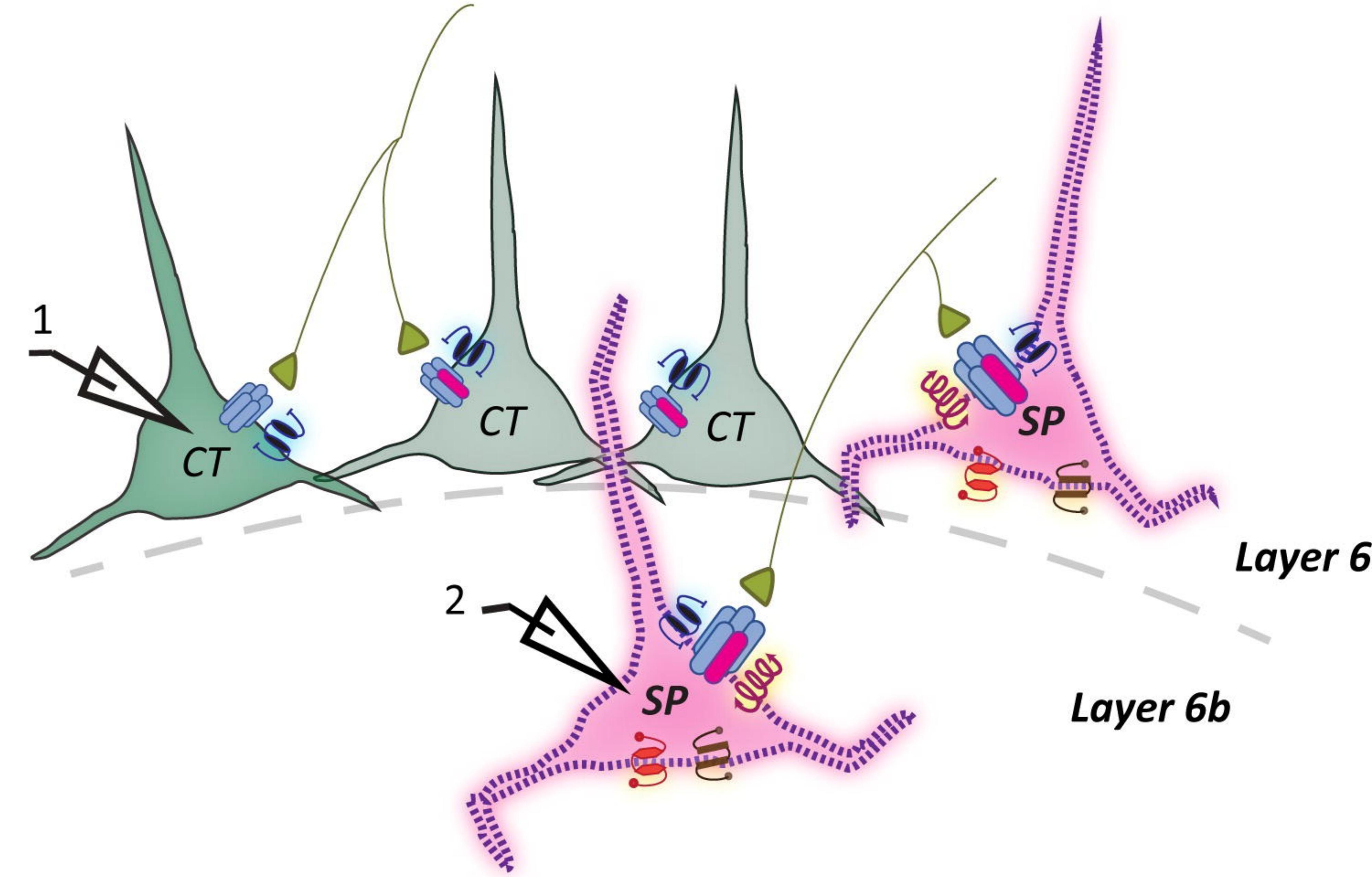
+Competitive block

+Non-competitive block



A**B****C****D****E**


bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.20.498737>; this version posted August 31, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A**B****C****D****E****F****G****H****I****J**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.06.20.498732>; this version posted August 31, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Cell-type specific
Lynx modulation of
nicotinic receptors

CT- Corticothalamic	Cholinergic afferents	<u>Lynx prototoxins</u>
SP- Subplate	$\alpha 4\beta 2\alpha 5$ nicotinic receptor	LY6G6E
■ Syt6+	$\alpha 4\beta 2$ nicotinic receptor	LYN1
■ Chrna5+Syt6+		LYPD1
■ Chrna5+		(LYNX2)