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Abstract:

The rise of single-cell data highlights the need for a nondeterministic view of gene expression,
while offering new opportunities regarding gene regulatory network inference. We recently
introduced two strategies that specifically exploit time-course data, where single-cell profiling
is performed after a stimulus: HARISSA, a mechanistic network model with a highly efficient
simulation procedure, and CARDAMOM, a scalable inference method seen as model calibration.
Here, we combine the two approaches and show that the same model driven by transcriptional
bursting can be used simultaneously as an inference tool, to reconstruct biologically relevant
networks, and as a simulation tool, to generate realistic transcriptional profiles emerging from
gene interactions. We verify that CARDAMOM quantitatively reconstructs causal links when
the data is simulated from HARISSA, and demonstrate its performance on experimental data
collected on in vitro differentiating mouse embryonic stem cells. Overall, this integrated strategy
largely overcomes the limitations of disconnected inference and simulation.
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Introduction

Cell decision making as a response to exogenous or endogenous stimuli (e.g., differentiation,
proliferation, cell death or biological activity modulation) is often supported by time-dependent
modulation of gene expression upon stimulation. Understanding how and why gene expression
changes as a function of time in response to specific stimuli is therefore critical to understand the
underlying biological processes.

The “how” question can now be approached using single-cell-based technologies, offering an
unprecedented resolution and a much finer view than population-based measures [1, 2]. The
“why” question relates to the functioning of an underlying gene regulatory network (GRN) which
describes interactions between genes through their expression products. GRNs are thus a central
notion for understanding and predicting cellular behavior, but their construction from literature is
a very laborious task, sometimes even impossible due to the lack of knowledge.

Reconstructing most-likely GRNs from transcriptomic datasets has therefore become a major
goal in systems biology [3] but is also notoriously difficult, especially in the case of single-cell
transcriptomic data. Indeed, the bursty synthesis of mMRNAs, now clearly evidenced [4, 5], gives
rise to highly variable and non-Gaussian expression data [1, 6], and current GRN inference
methods employ a wide range of statistical and modeling tools [7]. Methods based on a specific
mechanistic model have the great advantage of providing biological interpretability, since each
inferred interaction between genes can be understood in terms of model behavior. Moreover,
such approach generally provides interactions with their direction and intensity, which is not the
case for most purely statistical methods.

However, the results of a method based on a mechanistic model can only be considered relevant
if the model is able to correctly reproduce single-cell datasets. For instance, it is now widely
accepted that the transcriptional bursting phenomenon is associated to specific patterns of gene
expression products [8, 9], making continuous single-cell data close to Gamma distributions [10]
and discrete data close to negative binomial distributions [11], the latter being themselves
mathematically equivalent to Poisson distributions with Gamma-distributed random parameters.
Thus, executable network models should at least be able to generate these patterns in their
marginal distributions. In any case, the use of a mechanistic model-based method requires
prior strong evidence that the underlying model is relevant for simulating realistic single-cell
transcriptomic data sets.

We recently developed several methods for inferring GRNs from single-cell data based on a
particular mechanistic network model, defined as a ‘multi-agent’ generalization of the well-known
two-state stochastic model of gene expression [8] where genes are now being described by
interacting two-state models [6]. These methods are well suited for single-cell RNA-seq (scRNA-
seq) time-course data, each dataset being considered as a partial observation of the model at a
certain time. Crucially, they do not require the observation of cell trajectories, whose inference is a
problem in itself [12, 13], but only that the cells sampled at each timepoint are driven by the same
dynamical process, i.e., resulting from the same GRN. Our first proposal was called WASABI [14],
which uses a divide-and-conquer approach where the problem of GRN inference is solved one
gene at a time. Although able to propose relevant GRNSs, this approach suffered from two
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drawbacks: it required days of computation for a GRN with 50 genes, and proposed a potentially
long list of candidate networks. We therefore developed two other methods: HARISSA [6], a
GRN simulation algorithm based on the mechanistic model together with a proof-of-concept
inference method derived from likelihood maximization, and CARDAMOM [15], a simplified and
scalable alternative for the GRN inference part that crucially exploits the notions of landscape
and metastability.

In this work, we sought to investigate the benefits of using this model as an integrated tool for both
GRN inference and data simulation. We therefore assessed its ability to allow for efficient network
reconstruction from time-course scRNA-seq data, while accurately reproducing the dataset main
features from the functioning of the inferred network. Note that to the best of our knowledge, this
is not performed by existing GRN-based simulation tools, which are generally based on more
phenomenological than mechanistic models [16, 17], meaning that gene expression patterns, and
especially transitions between cell types, are hard-coded instead of emerging from interactions
between genes.

After introducing the setup of our benchmark made from in silico datasets generated with the
mechanistic model, we first evaluate the performances of HARISSA and CARDAMOM together
with four state-of-the-art GRN inference algorithms: GENIE3 [18], PIDC [19], SINCERITIES [20]
and SCRIBE [21]. We study the limits of the different categories of inference methods in the
case of transcriptional bursting, and verify that the two model-based methods perform better than
the others on these datasets. CARDAMOM appears as the best performing algorithm during
this benchmark step, which only considers network structures. Importantly, the output of this
algorithm is not only a matrix of interaction scores, but also a set of quantitative parameters that
can be plugged into the GRN model for simulations.

In a second step, we use CARDAMOM to calibrate the model with a real time-stamped scRNA-seq
dataset of differentiating mouse embryonic stem (ES) cells [22]. We demonstrate the ability of the
model to reproduce the global features of real time-course transcriptomic profiles. We also show
that most of the inferred interactions are indeed supported by biological evidence such as ChlP-
seq experiments, although this evidence was not used during the inference process. Altogether,
these results establish the ability of an executable network model not only to simulate realistic
single-cell datasets, but also to provide an effective reverse-engineering algorithm capable of
reproducing the main gene expression patterns of an experimental dataset as emergent properties
of the underlying GRN.

Results

HARISSA simulates single-cell datasets from a mechanistic GRN model

We first wanted to benchmark the ability of the different inference algorithms to reconstruct
correct network structures from in silico generated datasets, i.e., when the ground truth is known.
For this, we used the simulation module of HARISSA [23], which generates trajectories of a
mechanistic model describing gene expression dynamics (both mRNA and the corresponding
proteins) within a single cell, these dynamics being influenced by an underlying GRN and driven
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by transcriptional bursting (see Methods and Figure S1). As shown in previous work, this model
is indeed able to generate scRNA-seq datasets with realistic marginal distributions [6, 23].

We simulated nine types of datasets corresponding to different network structures (Figure 1): a
network of 4 genes with a branching structure and inhibition feedback loop (FN4); a network of 5
genes with a cycling structure (CN5); a network of 8 genes with multiple branching structure and
feedback loops (FN8); a network of 8 genes with branching trajectories (BN8); networks with a
tree structure of 5, 10, 20, 50, and 100 genes (Trees). These networks represent the main types
of network structures that have been used for benchmarking GRN inference algorithms [17].
Overall, the objective was to reproduce time-course experiments in which single-cell profiling is
performed after a given stimulus, typically a change of medium [22, 24, 25]. This stimulus was
therefore taken into account in all the simulations, in the form of a virtual gene defined as being
inactive before the beginning of the experiment and fully activated afterwards.

For each network structure (Figure 1A), the transcriptional bursting model implies that typical
single-cell trajectories do not follow a diffusion-like process (at least in the space of mMRNA levels),
and differ strongly from the more usual and intuitive population-average trajectory (Figure 1B).
The practical datasets were obtained by sampling independent cells at a specific sequence of
timepoints, therefore not keeping the real cell trajectories but rather considering different cells
at each timepoint, forming time-stamped snapshots (Figure 1C). Interestingly, both feedback
networks (FN4 and especially FN8) produce a recognizable “differentiation trajectory” across the
UMAP space with a clear temporal order of cells. Due to the stochastic nature of cell trajectories
generated by the mechanistic model, branching trajectories in snapshots only appear in specific
cases, generally when a toggle-switch is dominating the GRN structure and then generates
distinct branches in the UMAP representation (see BN8 in Figure 1).

As mentioned previously, HARISSA consists of two modules for performing respectively simulation
and inference. Whereas the original inference module of HARISSA was limited to a few genes [6],
it recently integrated an effective CARDAMOM-inspired simplification [23] that allows to infer
networks with a much larger number of genes. We therefore also benchmarked this method
along with the others.

CARDAMOM quantitatively reconstructs causal GRN links

We then inferred GRN structures from the in silico generated datasets using the six algorithms
presented in the Methods section (HARISSA, CARDAMOM, GENIES, PIDC, SINCERITIES,
and SCRIBE). Note that neither GENIE3 nor PIDC are able to use the temporal information
(except for the stimulus state information, which they are also provided with), giving them a
disadvantage compared to the other algorithms. They were nevertheless used in the benchmark
as they are considered to be among the best algorithms for single-cell data, and given that very
few algorithms are specifically adapted to time-stamped datasets. Indeed, most methods are
limited to static data, and those that are not (such as SCRIBE) require temporally-ordered cell
trajectories instead of independent snapshots, thus requiring a pre-processing step that can itself
be subject to errors. Moreover, it was not known how they would fare in a time-course setting
with transcriptional bursting, which was an interesting question per se.
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Figure 1: Single-cell data simulation using HARISSA. (A) Networks used for subsequent tests, in-
cluding feedback loop networks (FN), a cycling network (CN) and a branching network (BN). Genes
and stimulus are represented by numbered nodes and an empty node, respectively, while green arrows
indicate activation and red blunt arrows indicate inhibition. (B) Corresponding trajectories, defined as
time-dependent mRNA levels (in copies per cell). For each network, the first plot shows one example of
single-cell trajectory M while the second plot shows the population average (M) from 1000 cells. The
transcriptional bursting model underlying HARISSA implies that every single-cell trajectory differs strongly
from the more usual population average. (C) Two-dimensional UMAP representations of corresponding
single-cell snapshots, defined as mRNA levels sampled at 10 timepoints in different cells from Oh to
96h, with 100 cells per timepoint. Such snapshots are called time-stamped data in the text and are
fundamentally different from single-cell trajectories, which are currently not available experimentally.
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We also emphasize that among these algorithms, only CARDAMOM and HARISSA have the
significant advantage of providing biological interpretability, thanks to the mechanistic model
on which they are based: here the network parameters are not mere interaction scores, but
quantitative parameters that can be plugged into the model for simulations. From this perspective,
even similar performances compared to the other algorithms would be satisfying.

Inference was performed on ten independent datasets for each condition, and the results were
merged into the area under the precision-recall curve (AUPR) which measures the quality of the
inferred GRN structure. We also compared the inferred GRNs with a naive method consisting
in assigning to each edge of the network the value given by the Pearson correlation coefficient
between the corresponding genes (abbreviated as PEARSON): this comparison with Pearson
coefficients makes it possible to verify, when the algorithms show good performances, that
these are not only due to highly correlated data which are thus not difficult to analyze. The
results are presented in Figure 2A-B for the first five algorithms. We present the results for
SCRIBE separately in Figure 2C because this algorithm requires temporally or pseudo-temporally
ordered trajectories, and the results then depend on the pre-processing that is applied on the
time-stamped data.

CARDAMOM and HARISSA appeared to outperform the other algorithms for most of these
datasets. In particular, in terms of directed interactions, these two methods always clearly
performed better than the others. The undirected networks for which GENIE3 and PIDC have
similar performances (CN5 and BN8) correspond to cases where the Pearson correlation method
is also accurate.

Also, if GENIE3 and PIDC represent an improvement over the Pearson correlation method, they
seem to perform poorly when the correlation between genes is not sufficient to infer a reliable
GRN. More precisely, we observe that GENIE3 and PIDC are accurate for tree-like networks
(Trees), even with bifurcating trajectories (BN8) and cycling (CN5), which was not the case in [17].
On the contrary, SINCERITIES performs very poorly for these type of networks, but seems
however competitive for networks with feedback loops (FN4 and FN8) where GENIE3 and PIDC
have lower performances. These networks are more difficult to reconstruct. Indeed, as visible in
Figure 1, the population-average trajectories of some genes are completely similar. Some genes
also have the same marginal distribution of mMRNA levels: for example in the network FN4, gene
2 and gene 3 have the same input (gene 1), so their marginal distributions evolve similarly at
each timepoint. Then SINCERITIES, which bases the inference procedure on the approximate
distribution for each gene, fails to make this subtle distinction, illustrating the improvement that is
typically expected from HARISSA and CARDAMOM. On all the networks, GENIES fails to infer
reliably the direction of the interaction, i.e., to distinguish the interaction i — j from the interaction
J — i. On the contrary, because of their mechanistic assumptions, CARDAMOM, HARISSA and
SINCERITIES have always quite similar results for directed and undirected inference. Finally, we
observed that CARDAMOM outperforms HARISSA on most of the networks.

Regarding SCRIBE, we tested its performances for 3 types of data (Figure 2C):

1. When we have access to real trajectories (Real traj.): each cell at each timepoint is being
associated to a real ancestor at the previous timepoint and a real descendant at the
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Figure 2: Benchmark of inference methods for five different network structures. For each network,
inference is performed on ten independently simulated datasets, each dataset containing the same 10
timepoints with 100 cells per timepoint (1000 cells sampled per dataset). The performance on each
dataset is then measured as the area under the precision-recall curve (AUPR), based on the unsigned
inferred weights of edges. Finally, the performance of each method is summarized as a box plot of the
corresponding AUPR values, or the average AUPR value for the tree-structure activation networks (Trees).
For each plot, the dashed gray line indicates the average performance of the random estimator (assigning
to each edge a weight 0 or 1 with 0.5 probability). For the Trees networks, each dataset corresponds to a
random tree structure of fixed size (5, 10, 20, 50, and 100 genes) sampled from the uniform distribution
over trees of this size. (A) Performance of all methods when considering only undirected interactions.
(B) Performance of the methods able to infer directed interactions. (C) Performance of the SCRIBE
inference method for the same networks, in three conditions: when one has access to real single-cell
trajectories (in brown), when pseudo-trajectories are reconstructed from time-stamped data using a
coupling method similar to Waddington-OT (in pink), and when a single pseudo-trajectory is reconstructed
using the pseudotime algorithm SLINGSHOT (in light green).
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following one. Such knowledge can of course only be accessed with in silico generated
datasets or in vitro for a very limited number of genes by using live-cell imaging of short-lived
transcriptional reporters [26];

2. When we do not have access to real trajectories, and each cell at each timepoint is
associated to a pseudo-ancestor at the previous timepoint and a pseudo-descendant at
the following one, using the Waddington-OT method described in [27] (Coupling);

3. When we do not have access to real trajectories, and the algorithm SLINGSHOT [28] is
used for reconstructing a pseudo-temporally ordered trajectory (Pseudotime).

We observed that SCRIBE performs well when the datasets are built with the method 1, but poorly
when the datasets are built with the methods 2 and 3, at least on the tested networks (Figure 2C).
These poor performances are due to the loss of temporal coupling between measurements of
genes that interact. They suggest that neither optimal coupling nor pseudotime reconstruction are
sufficiently efficient for GRN inference in case of transcriptional bursting. Concerning the optimal
coupling method, we notice that this might be due to the "movement by diffusion” assumption on
which the method Waddington-OT is built, which does not takes into account the constraints on
the trajectories imposed by the GRN.

When computing the average runtime of each algorithm on the tree-like networks, we observed
that except for SCRIBE, all algorithms are suitable for inferring GRN with a realistic number of
genes (see Table S1). Thus, due to this computational limit and its poor performances when
using time-stamped data, we did not consider SCRIBE for further analysis.

We then investigated the limit performances with respect to the number of cells and/or timepoints.
We observed that the performances of the first five algorithms decrease for the tree-like networks
when the number of genes increases (Figure 2). This can be due to three main factors:

1. A sequence of timepoints too coarse in relation to the dynamics would directly lead to a
lack of inference accuracy;

2. A sequence of timepoints which is too restricted may not allow to see interactions involving
some genes that are regulated late in the process. For example, in Figure 2, we observe
that the inference on the Trees networks is very poor for more than ten genes: it comes
from the fact that some genes are never activated before 96h;

3. The number of cells at each timepoint can simply not be enough to infer a reliable GRN.

We therefore investigated the effects of these three factors on the accuracy of the algorithms by
studying their performances in terms of AUPR for ten datasets generated from ten randomly-
generated tree-like network of ten genes, when varying the number of cells at each timepoint
(Figure 3A), the length of the interval for a fixed time gap between each timepoint (Figure 3B),
and the density of the sequence of timepoints for an interval with fixed length (Figure 3C). As
anticipated, all these conditions have an impact on the quality of the inference: augmenting
their values tends to produce a better quality of inference. We also observed that the number of
sampled cells seems less critical than the other factors, confirming that few cells at a sequence
of timepoints which is dense and long-enough is preferable to many cells on a sequence of
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Figure 3: Dependence of inference methods on data collection parameters. For simplicity, only the
case of undirected interactions is considered here and the datasets are restricted to 10-gene tree-structure
networks (see Figure 2 for the general benchmark). Inference is performed for each method and condition
on ten independently simulated datasets and summarized by box plots of AUPR values as in Figure 2.
(A) Performance as a function of the number of cells per timepoint, while keeping the same timepoints.
(B) Performance as a function of the length of the measurement period, while keeping the same gap
between timepoints and the same total number of cells. (C) Performance as a function of the density of
the measurements, while keeping the same final timepoint and the same total number of cells.

timepoints which is too coarse and/or too short. This should be kept in mind when designing
single-cell transcriptomics experiments aiming at GRN inference.

Hence, both CARDAMOM and HARISSA, with a benefit for using CARDAMOM, allowed to
efficiently reconstruct network structures by reverse engineering the generative model on which
they are based. We then needed to test its ability to reproduce an experimental dataset from the
literature after network inference.

Application to a real dataset yields a biologically relevant network

As a test case, we used a time-stamped in vitro dataset from Semrau et al. [22] obtained by
scRNA-seq of a retinoic acid (RA)-induced differentiation of mouse ES cells (see Methods).
This well-characterized model system of in vitro differentiation recapitulates the transition from
pluripotent embryonic stem cells towards two cellular lineages (ectoderm- and extraembryonic
endoderm-like cells), all characterized by well-established molecular markers that were further
used in GRN inference.

In order to interpret the resulting GRN, we sought to assess whether the inferred interactions
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Figure 4: Comparison between inference methods and physical interactions derived from ChiP-
seq. The four directed GRN inference methods were applied to the experimental dataset from [22]
restricted to a panel of 41 marker genes identified by the authors, and a reference network was obtained
independently from edges supported by ChlP-seq data. As we only have access to physical interactions
involving the retinoic acid (RA) stimulus or genes Pou5f1, Sox2, and Jarid2, the comparison only considers
the related edges. (A) Receiver operating characteristic (ROC) curve and corresponding area under
the curve (AUROC) for each inference method. (B) Precision-recall (PR) curve and corresponding
area under the curve (AUPR) for each inference method. (C) Venn diagram showing the overlap, for
interactions involving the RA stimulus, between directed edges predicted by CARDAMOM and known
physical interactions identified by ChIP-seq analysis.

are supported by known biochemical evidence of physical interaction between regulators and
regulated genes (Figure 4). For this, we annotated the inferred edges coming from genes
encoding known transcription regulators (i.e., transcription factors and cofactors) included in the
network and for which ChlP-seq data are currently available in ES or the closely related embryonic
carcinoma (EC) cell system. Since the RA stimulus exerts its differentiating effect mainly through
the members of the RA-activated nuclear receptors subfamily RAR (NR1B) that encompass
3 paralogs (i.e., RARa, RARS and RAR¢), the annotation of the interaction edges linking the
stimulus and the regulated genes was based on the presence/absence of ChlP-seq peaks for any
RAR paralogs at less than 10 kb upstream or downstream of the annotated transcription start site
(TSS) in RA-stimulated ES or EC cells [29, 30]. Although arbitrary, the chosen distance between
TSS and DNA binding site for the indicated transcription regulator is relatively conservative
as transcriptional effect could be exerted from greater distance up to megabases [31] and the
absence of supporting peak as defined should not be interpreted as a proof of absence of any
direct modulating effect. Similarly, the edges supported by physical interactions data for Sox2
and Pou5f1, or Jarid2 were extracted from [32, 33].

Using these known physical interactions as a ground-truth, we compared the receiver operating
characteristic (ROC) and precision-recall (PR) curves related to the network structures inferred
by the four algorithms (Figure 4A-B). We observed that, in accordance with the previous results,
CARDAMOM and HARISSA appear as the top-ranked algorithms, displaying both a very close
ability to infer known edges.

We then examined the structure of the network inferred by CARDAMOM (Figure 5). Importantly, in
agreement with its differentiating effect in ES/EC cell systems, we observed that the RA stimulus
is densely connected with genes involved in pluripotency maintenance as supported by multiple
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biological analyses [29, 30, 34] and to a lesser extent with gene nodes corresponding to genes
associated with specific cell fates, this latter observation likely reflecting how the stimulus is
modeled (see Methods). Notably, these last nodes also exhibit a relatively high interconnectivity
(e.g., endodermal differentiation) as compared to intergroup connectivity. Although biologically
interesting, these observations illustrate our previous conclusion and likely mirrors the unbalanced
experimental design characterized by a dense sequence of timepoints during the early phase
(Oh to 36h) of the differentiation process analysed and a coarser sequence of timepoints in the
mid (36h to 48h) and late (48h to 96h) phases of the process [22].

Most notably, the overwhelming majority (0.85%) of the inferred edges that involve the RA stimulus
are supported by biochemical evidence (Figure 4C). Similarly, the edges inferred from Pou5f1,
Sox2, and Jarid2 nodes are globally supported by physical interaction (2/3 for Pou5f1, 2/3 for
Sox2, and 1/1 for Jarid2).

We also observed that some inferred edges are not supported by documented physical inter-
actions, as expected for genes encoding proteins unable to directly interact with DNA. As an
example of such node, Sparc (also known as Osteonectin) appears highly connected to genes
associated with all four cell states despite its inability to directly interact with gene basal tran-
scription machinery (i.e., RNA polymerase complex). However, the inferred edges are clearly in
agreement with its documented role in promoting endodermal differentiation [35]. Additionally,
unsupported inferred edges may mirror the lag time between the expression and therefore the
physical interaction between regulator and regulated genes and the observed transcriptional
effect. By contrast with TFs that establish contact with the transcription machinery, modifying
cofactors often catalyse deposition/erasure of epigenetic marks (e.g., acetylation/methylation of
histones, DNA methylation) that will likely modulate transcription in a longer lasting manner. In
this respect it is interesting to note that the Dnmt3b gene negatively interacts with many other
genes in the network, which mirrors the fact that Dnmt3b is a de novo DNA methyltransferase,
and has an indirect effect on gene regulation through CpG methylation, a well documented
epigenetic mark generally associated with gene expression silencing. Altogether, this illustrates
that our GRN model does incorporate various epigenetic information or indirect effects and is not
restricted to physical interactions between transcription factors and their target genes.

While most inferred edges involving genes that encode TFs appear to be supported by physical
interactions, many physical interactions detected by ChlIP-seq are missed by CARDAMOM (e.g.,
50% for RA, see Figure 4C). This observation is however not necessarily the sign of a lack
of accuracy of the inferred GRN, since the detection of a physical interaction is not per se the
hallmark of a modulating effect on the transcription level of the target gene [30]. Additionally,
some specific regulatory structures are notoriously difficult to infer as illustrated by the high failure
rate (96%) in inferring edges from Jarid2, a component of a repressive complex expressed in
the pluripotent state and directly involved in the silencing of differentiation-associated genes.
Interestingly, the interaction between Jarid2 and most of its physical targets presented in our GRN
were instead wrongly detected as an inhibitory effect of the regulated genes on their regulators.
This is due to the fact that CARDAMOM works by going forward in time, and thus fails to capture
an inhibition that has an effect at the beginning of the process and which can be detected only
further: instead, it would be prone to interpret the increase of the repressed genes by the effect
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of other intermediate genes, and the decrease of the repressor by an inhibitory effect of the
repressed genes. We discuss further such bias of the algorithm in the Discussion section.

For a better understanding of the inferred GRN dynamics, we also examined a dynamical network
representation, where each edge appears at the timepoint for which it was detected with the
strongest intensity by the inference algorithm (Figure 6). Unsurprisingly, the RA stimulus is
detected at the earliest timepoint of the response (6h) and then ceases to influence the signal,
which propagates in waves through the network as we described in a previous study [14]. For
example, we do clearly observe the late increase of interactions for genes involved in specifying
the extraembryonic endoderm.

Simulation of the inferred network reproduces the original dataset

While inferring the GRN structure, CARDAMOM also inferred all the other parameters of the
model, as described in Methods, except the mRNA degradation rates dj ; for each gene i. These
parameters dy ; are not negligible as they scale the dynamics of the process. To address this
problem, we used values from the literature that can be found in [36] (see Methods and Table S2).
Once the model has been calibrated, one can simulate an in silico dataset and sample the
nine timepoints corresponding to the in vitro experiment. More precisely, we simulated two
different datasets after calibrating the mechanistic model: one actually using the inferred network
interactions, and one corresponding to the “null network” defined by removing the interactions
(i.e., all genes individually calibrated with the same parameters but kept independent).

We first decided to verify, as advocated by Soneson et al. [37], the suitability of our generated
synthetic data. We used countsimQC [37], a recent tool for comparing multivariate single-cell
datasets, already used for benchmarking synthetic scRNA-seq data [38] (see Methods for more
details). The synthetic dataset indeed mimics experimental data for a large number of tested
characteristics (Figure S2). However, we observed that except for correlations, the features
considered by countsimQC are also well reproduced by the dataset simulated with the null
network. This suggests that countsimQC features are not sufficient for measuring the accuracy
of the dataset reproduction.

We then explored the ability of the synthetic dataset to recapitulate more sophisticated dimensions
of the experimental data. At that stage, the critical question concerns the temporality of the
synthetic data. Indeed, as developed in [15] and [23], none of the algorithms used for the
benchmark (and presented in Methods) allows to take into account the real temporality of the
data: the only information they use is the order of the sequence of timepoints at which the cells
are measured. It is therefore not necessarily expected that a dataset simulated with the network
inferred by CARDAMOM can reproduce the data distribution exactly at the same timepoints. The
temporality is taken into account in a second time, by setting the value of the degradation rates
from the literature. However, the hypothesis that these degradation rates are not time-dependent
(which of course oversimplifies the biological reality [39]) may prevent us from being able to
perfectly fit the time-dependent evolution of the data.

We observed that this hypothesis indeed limits our ability to simulate the true dynamics at the last
timepoint. In particular, the process seems to accelerate between 72h and 96h and the model
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Figure 5: Network inferred by CARDAMOM from a real time-stamped scRNA-seq dataset. The
CARDAMOM inference method was applied to the experimental dataset from [22] restricted to a panel
of 41 marker genes identified by the authors. The network structure is obtained by keeping only the 5%
strongest activations (green arrows) and inhibitions (red blunt arrows) acting on each gene. Genes are
colored according to four groups related to different cell states (pluripotency, post-implantation epiblast,
neuroectoderm, extraembryonic endoderm) following the proposed classification of [22]. Edges supported
by a ChlIP-seq interaction are marked with black dots (see main text for the definition of what is considered
as an interaction) and edges that are not supported are marked with white dots. Edges for which we have

no reliable information have no mark.
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Figure 6: Time decomposition of the network inferred by CARDAMOM from a real time-stamped
scRNA-seq dataset. Decomposition of the network shown in Figure 5, where each edge appears at the
timepoint for which it was detected with the strongest intensity. This dynamic representation highlights a
consistent flow of information coming from the stimulus. Gene positions and colors as well as activation
and inhibition representations are the same as in Figure 5.
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cannot be in adequacy with both the dynamics between 0h and 72h, and between 72h and 96h
with the same degradation rates. It is important to note that such a global variation in degradation
rates has been observed experimentally during the differentiation of chicken erythroid progenitors
(see [24] and data at https://osf.1i0/k2g5b/). We thus decided to multiply the degradation
rates by a scaling factor after 72h, allowing the process to reach its final state in time.

We compared these datasets using different metrics. First, we examined the extent to which
the simulations matched the experimental marginal distributions of each gene. In Figure 7A, we
represent the time-dependent evolution of the p-value of a Kolmogorov-Smirnov test between
the GRN-generated distributions and the experimental dataset. We can see that some genes
are better fitted than others, as exemplified by the Esrrb gene that is correctly fitted while the
Sparc gene seems more difficult to catch (see Figure 7B). We nevertheless observe that for
most genes and timepoints, the p-value is above 5%, meaning that the marginal distributions of
the experimental data are quite well reproduced by the GRN model. We compare in Figure 7C
the mean Earth Mover Distance (EMD), and in Figure 7D the mean p-value of the Kolmogorov-
Smirnov test applied on the 41 genes at each timepoint, between the empirical distributions of
the experimental dataset and the two simulated datasets (with and without GRN). We observe
that without GRN, the distance between the distributions generated by the model are constantly
increasing, that is diverging from the experimental datasets (Figure 7C). This is corroborated by
the fact that the mean p-values are decreasing monotonically (i.e. the model’s output is more and
more significantly different from the experimentally observed distributions, see Figure 7D). The
behavior of the GRN-simulated dataset is much closer to the experimental one, as seen from a
smaller (and constant) EMD distance as well as a larger mean p-value. However, we observe in
Figure 7A that the mid-timepoints (the central portion of the dynamics) seems to be the most
difficult to capture, since mid-time p-value are often higher that at the beginning or end of the
kinetics. This is corroborated by Figure S3, where we plotted the temporal marginal distributions
of six genes, and where Sox2 and Sparc in particular appear to have a final distribution close to
the experimental one but not the correct transient behavior.

Finally, we were interested in how well we could capture the joint distributions. For this, we
compared UMAP representations of the experimental dataset (Figure 7E) and the datasets
simulated from the inferred network (Figure 7F) and from the null network (Figure 7G). These
three datasets were projected on the same pseudo-axes based on the UMAP computed from the
experimental dataset, using the methodology described by Mcinnes et al. [40]. This common
projection allows a better side-by-side comparison between datasets. It is immediately evident
that our GRN-generated data points are very closely mimicking the actual experimental data
points, and that this resemblance is completely lost if all interactions are removed. The fact that
UMAP is not linear requires some precautions, that we discussed in the Methods section.

To conclude, we observed that the mechanistic model can reproduce the major characteristics of
the gene expression patterns observed during a differentiation process examined at the single cell
level. It also appears clearly that simulating the model with the network inferred by CARDAMOM
significantly improves the fit to the experimental dataset compared to the simulation with the null
network (see Figure 7 and Figure S5).
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Figure 7: Inferred network simulations compared to the original dataset. (A) Heatmap of p-values
associated with Kolmogorov—Smirnov (KS) tests between real and simulated mRNA distributions, for each
of the 41 genes of the network and for each timepoint. The green color indicates p-values greater than
5%, implying that the model output is not significantly different from the experimental dataset. (B) Time-
dependent distributions of Esrrb and Sparc genes for the experimental dataset (original data, in beige) and
datasets simulated after calibrating the mechanistic model, one including interactions (inferred network,
in blue) and one obtained after removing interactions (without interactions, in orange). (C-D) Average
earth’s mover (EM) distance (C) and average KS p-value (D) between real and simulated distributions,
for the inferred network and without interactions. The dispersion corresponds to the first and ninth decile
from ten simulations. (E-F-G) Two-dimensional UMAP representations of the original dataset (E) and
the datasets simulated from the inferred network (F) and without interactions (G). In these three plots,
Sparc is removed from the genes represented in Figure 5 as its dynamics are not well captured by the
mechanistic model, so the three datasets consist of 2449 cells with mRNA levels of 40 genes.
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Discussion

The major interest of the method we proposed in this work is that it uses the same model for
both inferring and simulating a gene regulatory network. The simulation part is not a novelty:
a growing number of algorithms are proposed for simulating realistic single-cell gene expres-
sion datasets [38], and some have already been used for benchmarking GRN reconstruction
methods [16, 17, 41].

Part of the success of our GRN model lies in its ability to reproduce the main characteristics of
cell-cell heterogeneity observed in experimental datasets by making stochasticity an inherent
part of the model, instead of adding an adapted noise a posteriori (see Methods). This is not
the case of most algorithms that are used to simulate gene expression data associated to a
regulatory network for benchmarking purposes [42, 43], even when they are based on underlying
mechanistic models [16]. This point is also crucial for developing analytical results able to be used
for the reverse engineering of the model, as it has been done for HARISSA and CARDAMOM.

Among the recently described algorithms, SERGIO [16] is the closest to our work. Nevertheless,
we want to highlight some key differences:

1. SERGIO’s mechanistic model is based on SDEs, treating noise as a Gaussian white noise.
This is clearly insufficient to capture the biological zeros and Gamma-shaped variability,
which in SERGIO arise only from the addition of technical noise. In our modeling scheme,
these features arise naturally from the transcriptional bursting phenomenon.

2. As stressed by the authors, SERGIO seeks to simulate data with an explicit GRN as an input,
a forward simulation goal, rather than attempt to estimate it from data, a reverse engineering
goal. This is a fundamental difference with our work where we seek simultaneously to infer
and to simulate data. To the best of our knowledge, the ability to do so using a mechanistic
model is a true novelty of our work.

3. Our modeling scheme is amenable to in-depth mathematical analysis [6, 15, 23, 44].

4. The use of a specific module to add technical noise, as well as SERGIO’s ability to generate
both spliced and unspliced versions of mMRNAs are welcome innovation that we will consider
in future versions of our work.

We also mention that there has been a recent surge of interest in using generative adversarial
networks (GANSs) for producing realistic new single-cell transcriptomics data [45]. Although it
can be an efficient strategy for data generation and augmentation, its behaves as a black box
regarding the underlying biology. Our main added value here is that our model is based on the
biophysical reality of the cell and provides a clear materialistic explanation for generated data.
Since we have shown that this generative model can be calibrated from single-cell datasets, it
can also be used for control purposes, aiming at controlling the cellular phenotype by interfering
with the GRN behavior.

While the test case was made using a dataset obtained during a differentiation sequence,
one should note that our approach can be applied to any biological process for which time-
stamped single-cell transcriptomic data are obtained after applying a given stimulus. When
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such time-stamped snapshots are not available, the algorithm could in principle take as an input
time-reconstructed data (i.e., artificially ordered snapshots). In that case, the quality of the
inference will strictly depend on the effectiveness of the time reconstruction algorithm.

Although efficient and promising, the model and the method we presented here have some
limitations that are clearly identified, and that should guide future research efforts. First, we
consider that the burst frequencies, which are critical parameters of the regulation, are sigmoid
functions of protein levels. This implies that the distribution of a gene generally cannot have
more than 2 modes [15], one associated to a low frequency of bursts and one to a high frequency
of bursts, which correspond to the regions of the gene expression space where the sigmoid is
relatively flat. Thus, if the distributions of some genes appear more complex than a mixture of
these 2 modes, the model is not expected to reproduce accurately its dynamics, since some
minor regulatory interactions should be not detected (in particular if the "hidden" mode is much
closer to one of the two main modes than the other). This seems to be the case for example
for the slight decrease of Sparc at t = 24h, that would have been better capture by adding an
extra mode. To solve these kind of errors, it could be necessary to complexify the model, for
example by modeling the burst rate functions by a multi-layer perceptron rather than a sigmoid
as proposed in [15].

Second, CARDAMOM uses the temporality linearly, by taking into account the timepoints one
after the other without possibility of backward step. This explains why the algorithm is unable to
detect the known fact that a gene like Jarid2 inhibits some Extraembryonic and Neuroectoderm
genes: indeed these inhibitions could only be detected by going up the arrow of time when the
target genes see their expression increase, in order to find the real cause of this effect. Instead,
we have seen that the algorithm interprets it as an activation of some other genes. We believe
that it could be tackled by taking inspiration from the Recurrent Neural Network (RNN) theory,
but it should be achieved while keeping the interpretability of the results. Note that we already
developed a similar analogy for the regression step at each timepoint, which can be interpreted
as the learning step of a perceptron [15].

From that point of view, if the information was indeed transmitted forward, the network would be
supposed to be completed step by step until reaching its complete form. However, two types of
incompatibilities may still occur:

1. A direct incompatibility occurs when an edge which has been inferred at a certain timepoint
is chosen to be reset to a value close to 0 or even to change sign at another one.

2. An indirect incompatibility corresponds to the case where the effect of an edge (j — i),
which has been inferred at a certain timepoint, is compensated by another edge (k — /)
at a following timepoint, but that the gene k expression products were high enough at the
previous timepoint to thwart the effect of the relation (j — 7).

This explains why, for the experimental dataset presented in the Results section, the model is
not able to reproduce the behavior of some genes. One good example is Pou5f1 between t = Oh
and t = 24h: indeed, the edges that could generate the slight increase of Pou5f1 att = 6h are
thwarted by the edges inferred at the following timepoints which lead to the strong decrease of
Pou5f1 after t = 48h. However, these incompatibilities could also have a biological meaning, and
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be impossible to solve by modifying the regression problems. To go further, it is necessary to
discuss the notions of structure and states of the network, which is related to the importance of
possibly hidden variables. If the network incorporates all critical nodes, then the structure should
not change. But it is different if there are some hidden variables, like genes the level of which
are not measured, which results in modifying the network structure. For example, the problem
of Pou5f1 that we have presented above could be explained in the following way: at t = Oh, an
hidden variable may act on the interaction by preventing its possibility, before the hidden variable
disappear at t = 24h. So if the hidden variable was integrated, then the network structure would
not change anymore, but it is likely that we should in our case consider a modification of the
network structure at t = 24h.

Third, the model does not allow the synthesis and degradation rates to vary over time. We
have already mentioned that this was a problem for simulating the passage from t = 72h to
t = 96h, and we decided to speed up the last time step for the model to reach its stationary
distribution at 96h. We believe that most of the errors observed in the simulation with respect to
the experimental dataset could be solved by finding an appropriate degradation rate. Thus, a
significant improvement would consist in taking into account at each regression step the size of
the time interval, and not only its order in the series of timepoints as it is now the case. This could
allow to find a most-likely GRN in accordance to the degradation rate at each timepoint, or even to
infer a most-likely degradation rate for each timepoint. Note however that if the latter case could
both provide us a new information on the variation of degradation rates during differentiation
and a better accuracy on the relative importance of the interactions in the GRN, it could also
accentuate the problems of identifiability, and should therefore be studied carefully.

Fourth, the model does not take into account proliferation nor apoptosis while studying the
stochasticity of the differentiation processes, nor the regulation of the proliferation rate by gene
expression products. When sampling a distribution of n cells at a time t, the initial condition
is built by sampling n cells under the uniform distribution among the set of cells at Oh, and to
simulate its evolution during t hours. However, if some cells are supposed to have a higher
death rate, and others to have a higher division rate, the process should evolve preferably in
a certain direction in the gene expression space, which is going to be ignored in the current
version of CARDAMOM. Taking into account these characteristics is a notoriously difficult task:
a significant improvement has been recently achieved with Waddington-OT [27, 46], where a
stochastic diffusion process models gene expression dynamics. Extending this kind of approach
for the mechanistic model will be the subject of future works.

Finally, future versions of our method may consider additional biological features such as spatial
cell-cell communication as the advent of multiomics datasets should provide data allowing to
analyze the effect of these processes on differentiation, which is not possible in the case of
scRNA-seq data without seriously compromising identifiability. We believe that the work presented
here could serve as a basis for developing multiscale approaches to differentiation processes.
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Methods

Mechanistic model of gene regulatory networks

The model used throughout this article is based on a hybrid version of the well-established two-
state model of gene expression [6], where a gene is described by the state of a promoter, which
can be either on or off. If the promoter is on, mRNAs are being transcribed at a rate sy, which
are then translated into proteins at a rate s;. Degradation of both mMRNAs and proteins occurs at
a rate dy and dy, respectively. The transitions between the on and off states occur at times of
rates k., and k.. We consider the bursty regime of this model (kon << koff), cOrresponding to
short active periods with high transcription rates, as experimentally observed [47-50]. In this
regime, mRNA is then transcribed by bursts of tens to hundreds of molecules. The random times
at which these bursts occur are still described by an exponential distribution of parameter k,,
and their random size by an exponential distribution with mean sy / k. This model is compatible
with experimental single-cell data, as steady-state mMRNA levels follow for each gene a Gamma
distribution, in line with continuous single-cell data [10].

The key idea is to incorporate this model into a network: the burst rate for each gene i/ is given
by a gene-specific function kfn,,-(P), where P is the vector of protein quantities (Figure S1).
This function depends on proteins through a GRN, represented by an n-by-n matrix 6 = (6;;)
where n is the number of genes in the network. The value of kg’n'i(P) then corresponds to the
transcriptional burst frequency of gene i given protein levels P. Each parameter 8;; encodes the
interaction j — / with its direction, sign, and intensity. Recent work suggests that burst sizes
are smaller and more uniform than previously anticipated [49] therefore leaving more room for
burst frequency modulation [51] as a mechanism for gene expression regulation. We therefore
consider that interactions come mainly from the modulation of burst frequencies kfnv,- and that for
any gene i, the rates k¢ ; do not depend on P. The burst frequencies can be represented by

sigmoid functions [23] as a simplification of the mechanistic form used in [6, 14]:

, —1
ko, {(P) = ko + (kui — ko) <1 + exp <—ﬁi - Z 9/ij>)
=1

where kg ; (resp. ki ;) is the minimal (resp. maximal) burst frequency of gene i and B; is the
basal activity of gene /, which can be also considered as the constant activity of a set of genes
that are not measured but act on the network.

Simulation of time-stamped datasets

In order to simulate the mechanistic model, we used the simulation module of the HARISSA
package [23]. One computational advantage of this method, which consists in sampling burst
times with maximum rate and then deciding with an appropriate rule which ones to keep, is that it
is guaranteed to be exact without requiring any numerical integration.

To simulate discrete “count” data that are produced by current scRNA-seq technologies, each
mRNA level is generated by sampling from a Poisson distribution whose mean is the simulated
expression level. The resulting cell profiles are exactly (resp. approximately) distributed according
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to the discrete-valued “Gillespie” version of the mechanistic model in the absence (presence) of
interactions between genes [52].

In order to reproduce in vitro experiments for a specific GRN, we use the following method: (1)
let the model run for t < Oh until its (stochastic) steady state is reached; (2) introduce att = Oh a
virtual stimulus gene with a constant maximal value for its protein. Such stimulus represents a
perturbation in the environment of the cells, inducing them to evolve towards a new (stochastic)
steady state. For example, in the case of mouse ES cell differentiation, this corresponds to the
addition of all-trans RA in the medium. A time-stamped dataset corresponds to the sampling
of independent cells at a specific sequence of timepoints (therefore “killing” sampled cells at
each timepoint) starting from t = Oh. Namely, for the benchmark of Figure 2, the sequence of 10
timepoints was setto 0, 6, 12, 24, 36, 48, 60, 72, 84, and 96h.

Relevance to biological data

The exact probability distribution associated to the mechanistic model remains unknown for
general networks. However, the analysis developed in [15] suggests that the marginal on mRNAs
of the distribution at each time t can be reasonably approximated by a Gamma mixture:

z,0 ko i
MtNZ/J/t ﬂGamma (do s:), (1)

zeZ

where Z denotes the set of cell types seen as the basins of attraction of the deterministic limit,
k. ; denotes the mode of bursts frequency associated to a gene j within a basin z € Z, and u, is
a probability vector describing the relative weight of the basins in the process at time t.

The Poissonian layer transforms the Gamma distributions into negative binomial (NB) distributions,

which gives:
Koft, i
M, ~ NB — ). 2
‘ Z“t ]_[ <d01 OffI+SOI> ()

zeZ
Such mixture distributions are known to be compatible with continuous single-cell data [1, 10].
In particular, we recover the second order relationship between pairs of variables that are
characteristic of experimental datasets. Indeed, we remark that the mean of a negative binomial

distribution NB(a, b) is m = 3(1 %) and its variance v = %, which implies that:

v 1 11
V= — = " =-"
m?> a(l—b) bm

Thus, for every gene i, by replacing b by P f°”’ we see that the relation CV? ~ 1 , which
is characteristic of cell-cell heterogeneity in smgle -cell data is well verified by the mechanlstlc
model, provided that k¢ ; does not depend on the protein field. This also argues in favor of
the assumption that a GRN does not affect significantly the bursts size. Note however that
following this criteria, any model generating negative binomial distributions could be considered
as realistic. Such criteria is therefore not sufficient for characterizing the accuracy of a model of
gene expression, in particular when a synthetic noise well adapted is added to be in accordance
with experimental datasets [16].
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Tested algorithms

The six algorithms that we are going to use for the benchmark represent together the main
categories of GRN inference methods presented in [7]:

« GENIES [18], which computes the regulatory network for each gene independently, using
tree-based ensemble methods to predict the expression profile of each target gene from
the profiles of all the other genes;

» PIDC [19], which infers undirected network using the notion of mutual information;

» SINCERITIES [20], which uses Granger causality after computing temporal changes in
gene expression through the distance between two consecutive timepoints of the marginal
distributions;

« SCRIBE [21], which is based on the notion of conditioned Restricted Directed Information
and ideally needs real cells trajectories, which is unrealistic experimentally. We then
pseudo-temporally order the time-stamped synthetic data used for the benchmark with
two methods, one using a pseudotime algorithm and the other using an optimal coupling
method with optimal transport, following the idea developed in [27]. We also tested with
a dataset with real trajectories in order to compare the performances. The results of this
algorithm are presented separately, due to the difference in the information that is needed.

* HARISSA [15] and CARDAMOM [23] which are based on the mechanistic model presented
above, and both compute the network by solving a set of regression problems. They are
nevertheless based on distinct mathematical analyses of the same model. HARISSA aims
to solve a maximum likelihood problem on the protein distributions after computing a most-
probable position for the protein concentration in each cell, CARDAMOM reconstructs the
GRN by comparing the function k., to the modes associated to a joint mMRNA distribution
previously inferred.

Measuring algorithm performance for the benchmark

We evaluated the GRN inference algorithms on simulated datasets using the area under the
precision-recall curve (AUPR). Since inferring these coefficients is a notoriously difficult task [17],
we do not take into account diagonal coefficients of the GRN matrix, which correspond to self-
regulations. Note also that we chose precision-recall (PR) curves rather than receiver operating
characteristic (ROC) curves because of the well-known class imbalance problem. Indeed, the
sparsity hypothesis suggests that the number of interactions expected for a network of size n
is smaller than half of the total number of possible interactions (n?): it is then natural to focus
on minimizing false positives (interactions that are detected but not present) rather than false
negatives (interactions that are present but not detected), which explains the preference of PR
over ROC.

Experimental dataset

We used data collected from a differentiation experiment of mouse embryonic stem cells induced
by all-trans retinoic acid treatment [22]. This scRNA-seq dataset consists of 9 timepoints (0,
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6, 12, 24, 36, 48, 60, 72, and 96h), each timepoint containing between 137 and 335 sampled
cells after pre-processing (272 on average, for a total number of 2449 cells). To limit artificial
correlations between genes (due to a multiplicative cell-specific technical factor mainly related to
the reverse-transcription step), we selected cells with a total number of UMI counts > 2000 in
line with Semrau et al. [22], which resulted in keeping only 2449 out of 3456 measured cells.

On the other hand, we did not normalize cells by their respective total UMI counts and argue
that this type of sample normalization is hazardous in the case of single-cell data. Indeed, such
“library sizes” are small compared to bulk data (because here 1 sample = 1 cell) and are in fact
biologically fluctuating, likely reflecting the transcriptional bursting phenomenon (this is easily
seen when simulating “perfect” data from the mechanistic model, see Figure S2). In practice,
since the CARDAMOM inference method starts with a binarization step (applying a specific,
statistically derived threshold to each gene based on the mechanistic model), a multiplicative
factor on each cell should not have too much impact as long as the number of cells is large
enough. More generally, we argue that such normalization of cells should rather be “soft-coded”
as a random factor to be estimated within a statistical framework.

The total number of genes measured in this experiment is 17452, which is much larger than
in our benchmark. As they are unlikely to all be important in characterizing the differentiation
process, we decided to restrict our analysis to a panel of 41 genes that had previously been
identified as key marker genes for pluripotency, post-implantation epiblast, neuroectoderm and
extraembryonic endoderm [22]. This number of genes allows to infer a network rich enough
to make cell types emerge in a non-trivial way, while keeping a reasonable statistical power
regarding the number of sampled cells. Note that the speed of the algorithms (Table S1) would
allow a much larger subset of genes to be used: the limiting factor here is not computational
speed but statistical power resulting from the number of cells available (see Figure 2).

Calibration of the mechanistic model

The principle of CARDAMOM is based on a two-step procedure :

* In afirst step, we find the set of parameters o defining the mixture of negative binomial
distributions (2) which fits well the data. The only parameter which is allowed to vary at
each timepoint is the mixture parameters (allowing to estimate the values of the typical
modes associated to the functions k,, ;, for every gene /). Note that every parameters are
computed except the degradation rates, which are constant for each gene and scale the
dynamics of gene expression;

* In a second step, we calibrate the mechanistic model in order to obtain the distribution
which is the closest to this Gamma mixture distribution. The network 6 is then actualized
at each timepoint in order to fit the mixture parameters.

The degradation rates are then fixed at the values that are found in tables from the literature
[36]. Since many genes do not appear in these tables, we decide to set the same value for the
degradation rates of all the genes belonging to the same functional group identified in [22] (see
Table S2). The detail concerning these two steps can be found in [15]. Note that the first step
has been modified since the original publication in order to replace the MCMC algorithm, which
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was used to find the parameters of the negative binomial distributions associated to each cell
type, by a simpler variational method.

As mentioned previously, the model cannot be in adequacy with both the dynamics from 0h to
72h and from 72h to 96h with the same degradation rates for the experimental dataset used
in Results, due to the acceleration of the process between 72h and 96h. For this reason, we
decided for our simulation to multiply degradation rates before the last timepoint by a factor f = 6,
large enough to reach the steady state between 72h and 96h.

Comparing datasets using countsimQC

We used countsimQC [37] to compare the experimental dataset, the dataset simulated with the
inferred network and the dataset simulated with the null network (Figure S2). Although there
are no significant difference between the first two datasets, we observe in Figure S2F, that the
correlations between genes are not perfectly reproduced (they are clearly more accurate than for
the dataset simulated with the null network). This gap between the correlations between genes
is also illustrated in Figure S4, which compares joint distributions between the simulated dataset
(with the inferred network) and the experimental one for three pairs of genes at the final timepoint.
We observe that if the global form of the correlation is respected, they are not as strong in the
simulated dataset as in the experimental dataset. This suggests that the inferred GRN recovers
the true correlation but not with the right intensity, which may be due to the sensitivity of model to
the value of its parameters.

The fact that except for the correlations (sample-sample and feature-feature), the statistical
characteristics explored by countsimQC are also well reproduced by the dataset simulated with
the null network, suggests that they are generally not sufficient for measuring the accuracy of a
dataset reproduction. This is partly due to the fact that any calibration of the model with the right
scaling parameters but not the right GRN should matches most of these characteristics. In that
meaning, the successes of simulation algorithms prior to our work are limited when measured
with similar criteria. Our methodology, for which we used distinct criteria which are particularly
well illustrated in Figure S5 and Figure 7, then appears as a significant improvement in the field
of executable GRN inference.

Comparing datasets using UMAP

Since UMAP is not linear, the projections of datasets shown in Figure S5 are likely to force
the projected data to be artificially close to the reference dataset. Thus, we decide to present
two figures similar to Figure 7E-F-G, but where instead of projecting the simulated dataset on
the pseudo-axis corresponding to the projection of the experimental dataset, we project both
datasets together and show separately the cells corresponding to each dataset. Using this
methodology, we represented in Figure S5A the UMAP projection of the experimental dataset and
in Figure S5B the one of the dataset simulated with the inferred network. We did the same for the
experimental dataset (Figure S5C) and the dataset simulated with the null network (Figure S5D).
Then, although they have different representations, Figures Figure S5A and Figure S5C represent
the same dataset, and the difference comes from the second dataset (the simulated one) with
which the reduction has been performed. This allows to emphasize that the representation of a
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distribution of cells with UMAP is very sensitive to the choice of the data that are integrated in
the projection. Once again, we observed that the dataset simulated using the inferred network
does seem much closer to the experimental dataset than the one simulated with the null network:
in particular, Figure S5B demonstrates that the UMAP projection of the dataset with network is
close to the one of the experimental dataset both in the arrangement of the cells between the
different timepoints and in the general form of the subspace occupied by the cells, which is not
the case for the UMAP projection of the dataset simulated with the null network, represented in
Figure S5D.

Code availability

CARDAMOM is available at https://gitbio.ens-1lyon.fr/eventr@1/cardamom.
HARISSA is available at https://github.com/ulysseherbach/harissa.

Author contributions

Conceptualization, E.V., U.H., T.E., and O.G.; Formal Analysis, E.V., U.H., and G.B.; Funding
Acquisition, O.G.; Investigation, All; Methodology, E.V., U.H., and T.E.; Software, E.V. and U.H.;
Supervision, O.G. and T.E.; Validation, All; Visualization, E.V., U.H., and O.G.; Writing — Original
Draft, E.V., G.B., and O.G.; Writing — Review and Editing, All.

Acknowledgments

This work was supported by funding from French agency ANR (SingleStatOmics; ANR-18-
CE45-0023-03). We would like to thank especially Christophe Arpin, Thomas Lepoutre, Anton
Crombach and Arnaud Bonnafoux for critical reading of the manuscript. We also thank all
members of the SBDM and Dracula teams, and of the SingleStatOmics project, for providing
such stimulating working environment. We finally thank the BioSyL Federation, the LabEx Ecofect
(ANR-11-LABX-0048) and the LabEx Milyon of the University of Lyon for inspiring scientific events.

References

[1] J. C. Mar. “The rise of the distributions: why non-normality is important for understanding the
transcriptome and beyond”. In: Biophysical Reviews 11 (2019), pp. 89-94.

[2] A.F. Coskun, U. Eser, and S. Islam. “Cellular identity at the single-cell level”. In: Mol Biosyst 12
(2016), pp. 2965—2979.

[8] V. A.Huynh-Thu and G. Sanguinetti. “Gene Regulatory Network Inference: An Introductory Survey”.
In: Methods Mol Biol 1883 (2019), pp. 1-23.

[4] C. Zong, L.-H. So, L. A Sepulveda, S. O Skinner, and I. Golding. “Lysogen stability is determined by
the frequency of activity bursts from the fate-determining gene”. In: Molecular systems biology 6
(2010), p. 440.

[5] H. Ochiai, T. Sugawara, T. Sakuma, and T. Yamamoto. “Stochastic promoter activation affects
Nanog expression variability in mouse embryonic stem cells”. In: Scientific reports 4 (2014), pp. 1-9.

25


https://gitbio.ens-lyon.fr/eventr01/cardamom
https://github.com/ulysseherbach/harissa
https://doi.org/10.1101/2022.06.19.496754
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.19.496754; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

[6] U.Herbach, A. Bonnaffoux, T. Espinasse, and O. Gandrillon. “Inferring gene regulatory networks
from single-cell data: a mechanistic approach”. In: BMC Systems Biology 11 (2017), p. 105.

[7] K. Akers and T.M. Murali. “Gene regulatory network inference in single cell biology”. In: Current
Opinion in Systems Biology (2021).

[8] V. Shahrezaei and P. S. Swain. “Analytical distributions for stochastic gene expression”. In: PNAS
105 (2008), pp. 17256-17261.

[9] N. Friedman, L. Cai, and X S. Xie. “Linking stochastic dynamics to population distribution: an
analytical framework of gene expression”. In: Phys Rev Lett 97 (2006).

[10] C. Albayrak, C. A. Jordi, C. Zechner, J. Lin, C. A. Bichsel, M. Khammash, and S. Tay. “Digital
Quantification of Proteins and mRNA in Single Mammalian Cells”. In: Molecular Cell 61 (2016),
pp. 914-924.

[11] Z. S. Singer, J. Yong, J. Tischler, J. A. Hackett, A. Altinok, M. A. Surani, L. Cai, and M. B. Elowitz.
“Dynamic heterogeneity and DNA methylation in embryonic stem cells”. In: Mol Cell 55 (2014),
pp. 319-31.

[12] G. Schiebinger. “Reconstructing developmental landscapes and trajectories from single-cell data”.
In: Current Opinion in Systems Biology 27 (2021), p. 100351.

[13] L. Deconinck, R. Cannoodt, W. Saelens, B. Deplancke, and Y. Saeys. “Recent advances in trajectory
inference from single-cell omics data”. In: Current Opinion in Systems Biology 27 (2021), p. 100344.

[14] A. Bonnaffoux, U. Herbach, A. Richard, A. Guillemin, S. Gonin-Giraud, P.-A. Gros, and O. Gan-
drillon. “WASABI: a dynamic iterative framework for gene regulatory network inference”. In: BMC
Bioinformatics 20 (2019), p. 220.

[15] E. Ventre. “Reverse engineering of a mechanistic model of gene expression using metastability and
temporal dynamics”. In: In Silico Biology 14 (2021), pp. 89-113.

[16] P.Dibaeiniaand S. Sinha. “SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory
Networks”. In: Cell systems (2020).

[17] A. Pratapa, A. P. Jalihal, J. N. Law, A. Bharadwaj, and T. M. Murali. “Benchmarking algorithms for
gene regulatory network inference from single-cell transcriptomic data”. In: Nat Methods 17 (2020),
pp. 147-154.

[18] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. “Inferring regulatory networks from
expression data using tree-based methods”. In: PLOS One 5 (2010).

[19] T. E Chan, M. P H Stumpf, and A. C Babtie. “Gene Regulatory Network Inference from Single-Cell
Data Using Multivariate Information Measures”. In: Cell Systems 5 (2017).

[20] N.PapiliGao, S. M. M. Ud-Dean, O. Gandrillon, and R. Gunawan. “SINCERITIES: Inferring gene reg-
ulatory networks from time-stamped single cell transcriptional expression profiles”. In: Bioinformatics
(2017).

[21] X. Qiu, A. Rahimzamani, L. Wang, B. Ren, Q. Mao, T. Durham, J.L. McFaline-Figueroa, L. Saunders,
C. Trapnell, and S. Kannan. “Inferring Causal Gene Regulatory Networks from Coupled Single-Cell
Expression Dynamics Using Scribe”. In: Cell Systems 10 (2020), pp. 1-10.

[22] S. Semrau, J. E. Goldmann, M. Soumillon, T. S. Mikkelsen, R. Jaenisch, and A. van Oudenaarden.
“Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic
stem cells”. In: Nat Commun 8 (2017), pp. 1-16.

[23] U. Herbach. “Gene regulatory network inference from single-cell data using a self-consistent
proteomic field”. In: arXiv 2109.14888 (2021).

26


https://doi.org/10.1101/2022.06.19.496754
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.19.496754; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

[24] A. Richard, L. Boullu, U. Herbach, A. Bonnafoux, V. Morin, E. Vallin, A. Guillemin, N. Papili Gao,
R. Gunawan, J. Cosette, O. Arnaud, J. J. Kupiec, T. Espinasse, S. Gonin-Giraud, and O. Gandrillon.
“Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding
Irreversible Commitment in a Differentiation Process”. In: PLoS Biol 14 (2016), e1002585.

[25] P.S. Stumpf, R.C.G. Smith, M. Lenz, A. Schuppert, F.-J. Miller, A Babtie, T.E. Chan, M.P.H. Stumpf,
C.P. Please, S.D. Howison, F. Arai, and B.D. MacArthur. “Stem Cell Differentiation as a Non-Markov
Stochastic Process”. In: Cell Systems 5 (2017), pp. 268-282.

[26] N. E. Phillips, A. Mandic, S. Omidi, F. Naef, and D. M. Suter. “Memory and relatedness of transcrip-
tional activity in mammalian cell lineages”. In: Nature Communications 10 (2019).

[27] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu, S. Lin,
P. Berube, L. Lee, J. Chen, J. Brumbaugh, P. Rigollet, K. Hochedlinger, R. Jaenisch, A. Regev, and
E. S. Lander. “Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental
Trajectories in Reprogramming”. In: Cell 176 (2019), 928-943 e22.

[28] K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, and S. Dudoit. “Slingshot:
cell lineage and pseudotime inference for single-cell transcriptomics”. In: BMC Genomics 19 (2018),
p. 477.

[29] E. Moutier, T. Ye, M. A. Choukrallah, S. Urban, J. Osz, A. Chatagnon, L. Delacroix, D. Langer,
N. Rochel, D. Moras, G. Benoit, and |. Davidson. “Retinoic acid receptors recognize the mouse
genome through binding elements with diverse spacing and topology”. In: J Biol Chem 287 (2012),
pp. 26328—41.

[30] A. Chatagnon, P. Veber, V. Morin, J. Bedo, G. Triqueneaux, M. Semon, V. Laudet, F. d’Alche-Buc,
and G. Benoit. “RAR/RXR binding dynamics distinguish pluripotency from differentiation associated
cis-regulatory elements”. In: Nucleic Acids Res (2015).

[81] E.H.Z. Chua, S. Yasar, and N. Harmston. “The importance of considering regulatory domains in
genome-wide analyses - the nearest gene is often wrong!” In: Biol Open 11.4 (2022).

[32] X.Chen, H. Xu, P. Yuan, F. Fang, M. Huss, V. B. Vega, E. Wong, Y. L. Orlov, W. Zhang, J. Jiang, Y. H.
Loh, H. C. Yeo, Z. X. Yeo, V. Narang, K. R. Govindarajan, B. Leong, A. Shahab, Y. Ruan, G. Bourque,
W. K. Sung, N. D. Clarke, C. L. Wei, and H. H. Ng. “Integration of external signaling pathways with
the core transcriptional network in embryonic stem cells”. In: Cell 133 (2008), pp. 1106-17.

[33] G. Li, R. Margueron, M. Ku, P. Chambon, B. E Bernstein, and D. Reinberg. “Jarid2 and PRC2,
partners in regulating gene expression”. In: Genes & development 24 (2010), pp. 368—-380.

[34] S. Mahony, E. O Mazzoni, S. McCuine, R. A Young, H. Wichterle, and D. K Gifford. “Ligand-
dependent dynamics of retinoic acid receptor binding during early neurogenesis”. In: Genome
biology 12 (2011), pp. 1-15.

[35] C. Hrabchak, M. Ringuette, and K. Woodhouse. “Recombinant mouse SPARC promotes parietal
endoderm differentiation and cardiomyogenesis in embryoid bodies”. In: Biochemistry and Cell
Biology 86 (2008), pp. 487—499.

[36] B. Schwanhausser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach.
“Global quantification of mammalian gene expression control”. In: Nature 473 (2011), pp. 337-42.

[37] C. Soneson and M. D Robinson. “Towards unified quality verification of synthetic count data with
countsimQC”. In: Bioinformatics 34 (2018), pp. 691-692.

[38] H. L. Crowell, S. X. M. Leonardo, C. Soneson, and M. D. Robinson. “Built on sand: the shaky
foundations of simulating single-cell RNA sequencing data”. In: bioRxiv (2021).

[39] K.S.Manning and T. A. Cooper. “The roles of RNA processing in translating genotype to phenotype”.
In: Nat Rev Mol Cell Biol 18 (2017), pp. 102—114.

27


https://doi.org/10.1101/2022.06.19.496754
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.19.496754; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

[40] L. Mclnnes, J. Healy, and J. Melville. “UMAP: uniform manifold approximation and projection for
dimension reduction”. In: arXiv 1802.03426 (2020).

[41] R. Cannoodt, W. Saelens, L. Deconinck, and Y. Saeys. “Spearheading future omics analyses using
dyngen, a multi-modal simulator of single cells”. In: Nature Communications 12.1 (2021).

[42] A. Mizeranschi, H. Zheng, P. Thompson, and W. Dubitzky. “Evaluating a common semi-mechanistic
mathematical model of gene-regulatory networks”. In: BMC Systems Biology 9 (2015), pp. 1-12.

[43] H.Matsumoto, H. Kiryu, C. Furusawa, M. S. Ko, S. B. Ko, N. Gouda, T. Hayashi, and |. Nikaido.
“SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during
differentiation”. In: Bioinformatics (2017).

[44] E. Ventre, T. Espinasse, C.-E. Bréhier, V. Calvez, T. Lepoutre, and O. Gandrillon. “Reduction of a
stochastic model of gene expression: Lagrangian dynamics gives access to basins of attraction as
cell types and metastabilty”. In: Journal of Mathematical Biology 83 (2021), pp. 1-63.

[45] M. Marouf, P. Machart, V. Bansal, C. Kilian, D. S. Magruder, C. F. Krebs, and S. Bonn. “Realistic
in silico generation and augmentation of single-cell RNA-seq data using generative adversarial
networks”. In: Nat Commun 11 (2020), p. 166.

[46] H.Lavenant, S. Zhang, Y.-H. Kim, and G. Schiebinger. “Towards a mathematical theory of trajectory
inference”. In: arXiv preprint arXiv:2102.09204 (2021).

[47] D. M Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, and F. Naef. “Mammalian genes are
transcribed with widely different bursting kinetics”. In: Science 332 (2011).

[48] D. Nicolas, N. E. Phillips, and F. Naef. “What shapes eukaryotic transcriptional bursting?” In: Mol
Biosyst 13 (2017), pp. 1280—-1290.

[49] J. Rodriguez and D. R. Larson. “Transcription in Living Cells: Molecular Mechanisms of Bursting”.
In: Annu Rev Biochem 89 (2020), pp. 189-212.

[50] E. Tunnacliffe and J. R. Chubb. “What Is a Transcriptional Burst?” In: Trends Genet 36 (2020),
pp. 288—-297.

[51] C. Li, F. Cesbron, M. Oehler, M. Brunner, and T. Hofer. “Frequency Modulation of Transcriptional
Bursting Enables Sensitive and Rapid Gene Regulation”. In: Cell Syst (2018).

[52] U. Herbach. “Stochastic gene expression with a multistate promoter: breaking down exact distribu-
tions”. In: SIAM Journal on Applied Mathematics 79 (2019), pp. 1007—-1029.

28


https://doi.org/10.1101/2022.06.19.496754
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.19.496754; this version posted June 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Supplementary information

Table S1: Related to Figure 2. Average runtime for inferring a network from datasets simulated with
tree-like networks for which the results of the inference are represented in Figure 2, for the six algorithms
that are used in the benchmark. Timings measured on a 16-GB RAM, 2.4 GHz Intel Core i5 computer.

Runtime PIDC | SINCERITIES | HARISSA | CARDAMOM | GENIE3 | SCRIBE
5 genes 0.02s 0.01s 0.16s 0.24s 9.02s 34.36s
10 genes | 0.04s 0.03s 0.28s 0.64s 17.27s | 136.51s
20 genes | 0.06s 0.06s 0.45s 1.70s 31.17s | > 5min
50 genes | 0.18s 0.24s 0.96s 7.87s 83.18s >1h
100 genes | 0.75s 0.77s 1.80s 18.57s 159.42s >3h

Table S2: Related to Figure 7. Numerical values of mRNA and protein degradation rates (in h—1) used
for data simulation (sim.), compared with experimental (exp.) measures from the literature. Group
abbreviations: Pluri = Pluripotency, Epi = Post-implantation epiblast, Neuro = Neuroectoderm, Endo =
Extraembryonic endoderm.

Gene | Sox2 | Zfp42 | Kif2 [ Dnmt3 | Cdh2 | Sparc | Col4a2 | Lamb1

Group Pluri Epi Neuro Endo
mRNA (exp.) | 0.044 [ 0.053 | 0.067 - | 0015 [ 0.012 | 0.012 | 0.015
mRNA (sim.) 0.075 02 | 0.03 0.005
Protein (exp.) | 0.0073 | 0.05 | 0.0027 | 0.023 | 0.022 | 0.17 | 0.078 | 0.038
Protein (sim.) 0.0075 0.02 0.02 0.1
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Figure S1: Related to Figure 1. Graphical (A) and mathematical (B) descriptions of the mechanistic
model for the dynamics of a gene i. (C) Bursts of mMRNA occur at random times with rate k., ; and their
size follows an exponential distribution £(kof i/s0,i). The variables M; and P; describe respectively the
mRNA and protein quantities associated to gene i in the cell. The vector of protein levels is denoted by
P = (Py,---, P,) while 8 denotes the GRN which couples the genes together through functions kqp ;-
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Figure S2: Related to Figure 7. Comparison of various statistical characteristics across datasets using
the countsimQC package. Each plot shows the experimental dataset (real, in blue) and datasets simulated
from the mechanistic model calibrated by CARDAMOM, including interactions (network, in green) and
without interactions (naive, in red). Each dataset consists of 41 genes (features) measured in 2433 single
cells (samples). (A) Distribution of “library sizes”, defined as the total read count in each sample. (B)
Association between the library size and the fraction of zeros observed per cell. (C) Distribution of the
fraction of zeros observed per cell. (D) Distribution of cell-cell correlations, based on random cell pairings.
(E) Distribution of the fraction of zeros observed per gene. (F) Distribution of gene-gene correlations, based
on all possible gene pairings. Notably, the cell-cell correlation (D) bimodal pattern shows two possible
pairings of cells: pairs with similar expression profiles (same genes on, same genes off) and therefore
positively correlated, and pairs with opposite, “antinomic” profiles and therefore negatively correlated.
This pattern is an indirect sign of the emergence of different cell types, a characteristic that is clearly not
reproduced in the absence of interactions between genes (naive dataset).
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Figure S3: Related to Figure 7. Comparison between empirical distributions along timepoints, for six
genes that have been found to play a key role in the regulation of the process (as visible in Figure 5). The
experimental dataset (in beige), the dataset simulated from the inferred network (in blue) and the dataset
simulated without interactions (in orange) correspond to Figure 7E, F and G, respectively.
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Figure S4: Related to Figure 7. Comparison of the joint distributions of three pairs of genes at the final
timepoint between the experimental dataset (A) compared to the dataset simulated when the mechanistic
model is calibrated by CARDAMOM (B) and the dataset simulated without interactions (C). The genes in
each pair are expected to have interactions (direct or indirect) in the network represented in Figure 5.
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Figure S5: Related to Figure 7. Two-dimensional UMAP representations of the experimental dataset
(original data) and datasets simulated after calibrating the mechanistic model with CARDAMOM, one
including interactions (inferred network) and one obtained after setting 8 = 0 (without interactions). The
four plots are based on two different projections, computed after merging the experimental dataset with
(A-B) the simulated dataset including interactions or (C-D) the simulated dataset without interactions.
Hence A and C are two representations of the exact same data, while B is to be compared with A, and D
is to be compared with C.
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