

1 Evolving copy number gains promote tumor
2 expansion and bolster mutational
3 diversification

4 Zicheng Wang^{1,2†}, Yunong Xia^{1,2}, Lauren Mills³, Athanasios
5 N. Nikolakopoulos^{1,2}, Nicole Maeser^{1,2}, Jason M. Sheltzer⁴
6 and Ruping Sun^{1,2*†}

7 ¹Department of Laboratory Medicine and Pathology, University
8 of Minnesota, Minneapolis, Minnesota, United States of America.

9 ²Masonic Cancer Center, University of Minnesota, Minneapolis,
10 Minnesota, United States of America.

11 ³Department of Pediatrics, University of Minnesota, Minneapolis,
12 Minnesota, United States of America.

13 ⁴School of Medicine, Yale University, New Haven, Connecticut,
14 United States of America.

15 *Corresponding author(s). E-mail(s): ruping@umn.edu;
16 Contributing authors: wang2569@umn.edu; xia00045@umn.edu;
17 ljmills@umn.edu; annikolako@gmail.com; maese004@umn.edu;
18 jason.sheltzer@yale.edu;

19 [†]These authors contributed equally to this work.

20 **Abstract**

21 Charting the evolutionary history of rampant somatic copy number alter-
22 ations (SCNA) is an indispensable step toward a deeper understanding
23 of their roles in tumor development. However, the existing SCNA timing
24 analysis is limited to low copy number states and initiating gains, which
25 are not necessarily close to the onset of the malignant proliferation. More-
26 over, it remains a critical question if the timing of an SCNA reveals the
27 corresponding variant's fitness effect. Here we propose a framework to
28 estimate the arrival time of a clonal SCNA, i.e., the time delay from its
29 last alteration to the start of population expansion, in addition to its initia-
30 tion time when the first alteration occurs. Our method leverages the bias

2 *Evolving gains promote tumor expansion*

31 that a genomic segment, when resting on a copy number (CN) state, accu-
32 mulates somatic single nucleotide variants (SSNV) at a rate proportional
33 to its CN. From the whole genome sequencing data of 184 samples from
34 75 patients across five tumor types, we commonly observed late clonal
35 CN gains following early initiating events, which appear right before the
36 expansion leading to the observed tumor sample(s). Genome doubling
37 (GD) can be late, but post-GD CN evolution is prevalent in the geneal-
38 ogy of the most recent common ancestor of patient tumors. Notably,
39 mathematical modeling suggests that late evolving events could contain
40 rate-limiting drivers. The advantage of evolving gains could arise from
41 the dosage increase of cancer genes in proliferative signaling and ampli-
42 fication of early functional variants. In addition, evolving SCNAs bolster
43 the diversification of SSVNs between sub-populations, exacerbating the
44 vicious circle between malignant growth and accumulation of genomic
45 heterogeneity. Our findings have broad implications for resolving the tra-
46 jectory of SCNAs, discerning the CN markers of malignant growth *in*
47 *vivo*, and properly quantifying tumor heterogeneity in aneuploid tumors.

48 **Keywords:** Timing of Somatic Copy Number Alteration, Aneuploidy, Whole
49 genome sequencing, Cancer evolution, Tumor heterogeneity

50

1 Introduction

51 Underlying the maintained genomic diversity within a patient tumor is the
52 uncontrolled proliferation, a core hallmark of cancer [1], coupled with somatic
53 alterations occurring over time [2]. To prevent the disease, uncovering the
54 somatic aberrations responsible for the malignant growth is the primary
55 goal of precision oncology. At the genomic level, somatic alterations exist on
56 a spectrum, ranging from small changes such as somatic single nucleotide
57 variants (SSNV, often referred to as mutations) [3] to large somatic copy num-
58 ber alterations (SCNA). Frequent chromosomal mis-segregation (chromosomal
59 instability or CIN) leads to abnormal chromosome numbers (aneuploidy[4])
60 and unbalanced structural variations (SV) cause segmental SCNAs [5]. These
61 two genomic errors are intertwined in many solid tumors, leading to extensive
62 SCNAs, especially in advanced diseases [4] with poor clinical outcomes [6].

63 The inextricable relation of SCNAs to cancer initiation[7, 8] and
64 progression[9] has become a consensus in cancer genomics. It remains little
65 known, however, to what extent a specific SCNA accounts for the malignant
66 growth and how it affects the intra-tumor-heterogeneity (ITH) [4]. Indeed,
67 chaotic karyotype and widespread high copy number (CN) states in aneuploid
68 tumors[10] make it extremely challenging to identify SCNA drivers, limiting
69 the precision of using SCNA patterns for diagnostic and treatment purposes.
70 For example, the treatment strategy for osteosarcoma, the most common bone
71 tumor affecting teenagers with one of the most chaotic aneuploid genomes,
72 has stagnated for decades [11]. From an evolutionary perspective, discovering

73 the tempo of SCNA during somatic evolution is key to gaining knowledge of
74 SCNA drivers [12]. Here, we hypothesize that the timing of SCNAs can be sys-
75 tematically measured from whole genome sequencing (WGS) data of patient
76 tumors, and the temporal axis contains tangible information in isolating the
77 effect of specific SCNAs on tumorigenesis.

78 We should pause to clarify how bulk sequencing data capture somatic evo-
79 lution timeline. The tumor founder cell arose from the succession of clonal
80 expansions in the pre-cancerous context where beneficial alterations endow
81 progenitor cells with the ability to crowd out less advantageous populations
82 [13] (Figure 1A). The growth of the primary lesion gives rise to genetically
83 diverging lineages [14], some of which, after acquiring a more malignant poten-
84 tial, can initiate the re-growth of a secondary tumor, such as metastasis [15].
85 Bulk sequencing data provide us with the opportunity to anchor the roots of
86 expansion (the most recent common ancestor, or MRCA). Clonal variants in a
87 single sample refer to the root of the observed sample. In multi-region sequenc-
88 ing, truncal variants from multiple samples could trace back asymptotically
89 to the founder of the tumor [16]. For longitudinal sampling, e.g., of paired
90 primary and metastatic tumors, truncal variants could point to the MRCA
91 of the branched tumor progression [17]. Multi-samples reflect the population
92 expansion at a broader scale, i.e., they coalesce to an earlier progenitor cell
93 than a single sample does. Collectively, truncal variants revealed by a particu-
94 lar sampling strategy must map to the somatic evolution timeline prior to the
95 corresponding *sampling-relevant expansion* (SRE).

96 The timing of a truncal SCNA (more specifically, gains) on the evolution
97 toward the MRCA could shed light on the impact of this variant on promoting
98 the SRE. However, our knowledge about the SCNA timing remains fragmen-
99 tary as the existing methods are restricted to simple (single or double) gains
100 [16, 18, 19]. Single-sample based pan-cancer analysis from ICGC[19] revealed
101 extensive variation in the molecular time of these sample gains. Relative to
102 aneuploid tumors, these gains are likely the initiating events of copy number
103 evolution and may not be sufficient to induce the expansion. For example, sin-
104 gle chromosome gains have shown limited capability in driving proliferation in
105 *in vitro* systems [20]. As such, it would be critical to know when a genomic
106 segment further evolves beyond the initial gains, which can often culminate at
107 a state greater than four copies [10]. This requires a timing method applica-
108 ble to high SCNA states. In SCNA timing analysis, the following assumption
109 is made: the site frequency spectrum (SFS) of SSNVs in a genomic region
110 affected by SCNA depends on the trajectory (the order) and time span on
111 each CN state that the segment had ever rested on [21]. For a single gain, the
112 ratio between early (duplicated) and late (non-duplicated) SSNVs can be used
113 to estimate the relative timing of the gain [12]. For a high CN state (> 4) or
114 gains involving both maternal and paternal alleles, the detailed trajectory of
115 each SCNA evolution is not identifiable from the SFS [18], at least not with-
116 out further constraints on the trajectory or additional information that could

4 *Evolving gains promote tumor expansion*

117 allow one to reconstruct the ordering [21]. We reason, however, that it is pos-
118 sible to obtain the upper bounds of the time duration of a segment resting
119 on its observed truncal CN state before the onset of SRE. In principle, once
120 a segment arrives at the final CN state, it can only accumulate single-copy
121 SSNVs; the longer the segment persists in the observed CN state, the more
122 overwhelming the single-copy SSNVs. Notably, for the first time, this allows
123 us to investigate the *arrival time* for SCNAs at high CN states.

124 An outstanding question is how the timing of an SCNA reflects its fitness
125 effect (Figure 1B). Whereas early gains could initiate and increase the risk
126 of disease, we argue that late-appearing SCNAs close to MRCA could pro-
127 mote the population expansion more directly. If an SCNA triggers SRE, one
128 may foresee that the progenitor cell proliferates vigorously upon acquiring the
129 corresponding SCNA. By contrast, before the SRE begins, if the clonal lin-
130 eage persists for many generations after receiving an SCNA, the corresponding
131 variant is unlikely to be sufficient to drive the SRE. Punctuated acquisition
132 of polyploidy (e.g., through genome doubling or GD) is prevalent in aneu-
133 ploid tumors [22] but it remains unclear how close the occurrence of GD is to
134 tumor transformation. Evidence exists that GD itself doesn't confer a strong
135 fitness advantage[23]; instead, it can enhance the plasticity of the genome that
136 permits further CN evolution, such that aneuploid cells adapt to overcome pos-
137 sible fitness penalties incurred by GD [24]. Therefore, SCNAs that arrive after
138 GD could contain driver events. Moreover, depending on the precise location
139 of biopsied tissue, single-sample analyses may differ in the corresponding time
140 scale; subsequently, it is particularly essential to focus on the timeline toward
141 the malignant growth - the somatic evolution in collecting truncal SSNVs of
142 multiple samples of a tumor (e.g., multi-region samples or paired primary and
143 metastatic samples).

144 To broaden the “timable” genomic regions for SCNAs, we developed **Butte**
145 (**Bo**unds of **T**ime **T**ill **E**xpansion), a computational framework to estimate the
146 upper bounds of SCNA arrival and initiation time from WGS data. By applying
147 **Butte** onto multi-sampled WGS data of five cancer types with widespread
148 SCNAs, including osteosarcoma, we systematically charted the temporal pat-
149 terns of CN evolution *in vivo*. To see if late-appearing SCNAs may confer
150 fitness benefits, we constructed mathematical models to examine the evolu-
151 tionary mechanisms that give rise to these late truncal events. Furthermore,
152 we also interrogated potential ways the late culminating SCNAs could add to
153 the fitness and revealed its impact on mutational diversification during tumor
154 expansion.

155 **2 Results**

156 **2.1 A computational framework to estimate the arrival**
157 **time of SCNA gains**

158 From the WGS data, one can characterize with high certainty the dominant
159 SCNAs, inferring the integer allelic CN of a genomic region and the cellular

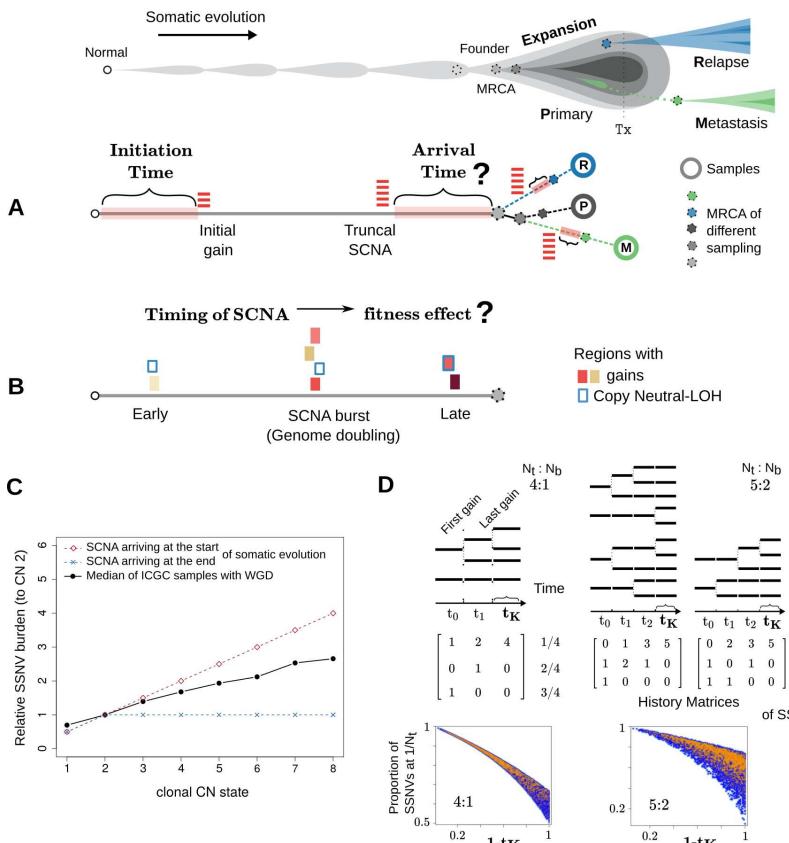


Fig. 1 Measuring the arrival and initiation time of SCNAs. A drawing at the top marks the concept of cancer somatic evolution, which leads to the establishment of the most recent common ancestor (MRCA) of the primary tumor, as well as the roots of secondary tumors. Tx: treatment. (A) For an SCNA present within the MRCA of a sampling-relevant tumor expansion, we aim to characterize the time when the last gain and first gain appeared (referred to as arrival and initiation time, respectively) for the corresponding genomic region. (B) We further aim to address the question if the late truncal gains are neutral or beneficial to tumor evolution. (C) The solid black line shows that the burden of SSVNs of a given genomic locus correlates with its CN state in tumors sequenced by ICGC (single sampling, with WGD). Two dashed lines assume the two extreme scenarios of SCNA arrival time. (D) The proportion of SSVNs at different allele fractions depends on the SCNA history matrix and the relative time span of each CN stage. The smoothed scatter plots show the burden of single-copy SSVNs against the arrival time of an SCNA (t_K), with an increasing density from blue to orange. Two example SCNA states are shown (with CN configuration at 4:1 and 5:2, respectively).

160 prevalence of the corresponding SCNA, i.e., the percentage of cells sharing the
 161 dominant SCNA state [25]. We refer to a unique version of a genomic region
 162 (or segment) as an “allele”. We term the total CN as N_t and the CN for the
 163 minor allele as N_b (“b” stands for b-allele determined by germline SNPs) for
 164 a dominant SCNA. The “allele” fraction of an SSVN is the amount out of
 165 the total N_t copies of the region that carry the corresponding variant. We

166 found that in the aneuploid tumors sequenced by ICGC (International Cancer
 167 Genome Consortium), the SSNV burden increases with the dominant SCNA
 168 states of the corresponding genomic region (Figure 1C). Such a pattern is due
 169 to an intrinsic bias between SCNAs and SSNVs: a genomic segment resting
 170 on a CN state accumulates SSNVs at a rate proportional to the corresponding
 171 CN. Thereby, the burden and CN multiplicity of SSNVs are actively shaped
 172 by SCNAs.

173 Generally, the observed SCNA of a genomic segment (with a configuration
 174 $N_t : N_b$ different from 2 : 1) is the result of a series of CN events. For an
 175 SCNA involving at least K gain events, the total time of somatic evolution
 176 can be divided into $K + 1$ stages. The genomic segment begins with the 2 : 1
 177 setting in the first stage and keeps “climbing up” by duplicating one of its
 178 existing copies in each subsequent stage, respectively, until it arrives at the
 179 observed SCNA state in the last stage (Figure 1D). Accordingly, each stage
 180 is associated with certain time proportion ($t_k \geq 0$) and $\sum_0^K t_k = 1$, the total
 181 time for the somatic evolution. SSNVs occurring at stage k on a segment
 182 copy that experiences duplication(s) in later stages will be presented on the
 183 duplicated copies ($a \geq 2/N_t$). By contrast, SSNVs acquired at stage k on
 184 a copy without further duplication events remain at the single allele state
 185 ($a = 1/N_t$). One can define a history matrix A with entry A_{jk} representing
 186 the number of segment copies in stage k that result in a final allele state a_j
 187 [18, 21]. It can be seen that the abundance of SSNVs at allele state a_j depends
 188 on $\sum A_{jk} t_k$. From the site frequency spectrum (SFS) of SSNVs in a region
 189 affected by SCNA, one can estimate the relative abundance of SSNVs at each
 190 allele state, and in turn, solve for each t_k . There has been much effort to infer
 191 t_0 , i.e., the timing of the first copy number event [18, 19]. These efforts focused
 192 on single gain (2 : 0 and 3 : 1) and at most double gains (3 : 0 and 4 : 1),
 193 where the history matrix A is invertible. By contrast, for other SCNA states,
 194 multiple possible trajectories can exist and the underlying linear system is
 195 underdetermined, i.e., there are more time stages (unknown variables) than
 196 the possible allele states (equations). We note that, however, regardless of the
 197 underlying history, multi-allele SSNVs ($\geq 2/N_t$) can only occur before the last
 198 stage (K) of CN evolution; once the genomic region arrives at the observed
 199 clonal SCNA state, all the copies (N_t) would accumulate SSNVs at single
 200 allele state ($1/N_t$). Therefore, the longer the last stage of CN evolution (from
 201 the emergence of the clonal SCNA to the onset of population expansion), the
 202 more overwhelmingly the single allele SSNVs dominate the SFS (Figure 1D).
 203 Such monotonicity allows one to calculate the bounds of the time duration
 204 for the last stage even when the detailed SCNA history is unidentifiable.

205 To investigate how various SCNAs unfold during somatic evolution, we
 206 developed **Butte** (Bounds of Time Till Expansion), which adopts linear pro-
 207 gramming to infer the upper bounds of arrival (t_K) and initiation time (t_0) of
 208 SCNAs (see Methods). From a technical point of view **Butte** extends the full
 209

maximum-likelihood estimation procedure implemented in **cancerTiming** [18]. Notably, **Butte** does not restrict the analysis to single and double gains, but in addition allows the calculation of the upper bounds of t_K and t_0 for SCNAs up to seven total copies, broadening the “timable” SCNA regions. The upper bounds, by definition, overestimate the time duration. Nevertheless, these estimates systematically correlate with the actual timing of SCNA initiation and culmination (Supplementary Figure 1). To test the performance of **Butte** on real patient tumors, we first evaluated the timing predictions by analyzing multi-region WGS data of colorectal adenocarcinomas (COAD) [16, 26]. **Butte** successfully identified early CN gain of chromosome (chr) 5q (Supplementary Figure 2), corresponding to the SCNA state of 2 : 0 (copy neutral loss of heterozygosity), a known early step in COAD initiation involving gene *APC* [27]. As a benchmark for late-appearing events, private (sample-specific) SCNAs should contain events that occur in the descendent lineage of the MRCA of multi-samples. **Butte** predicted their arrival time to be later than the public SCNAs on the timeline toward the MRCA, highlighting its capability in revealing the late arriving SCNA events (Supplementary Figure 3).

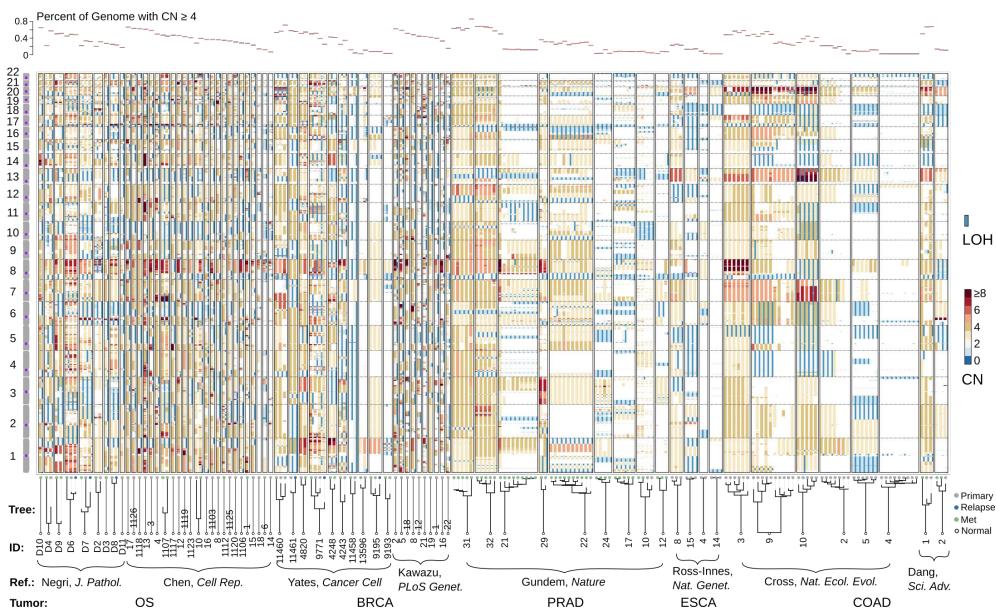


Fig. 2 CN profiles across five tumor types from the re-analysis of published WGS data. Vertical bars represent the segmental CN states along the autosomal chromosomes characterized by the WGS data of tumor samples. For each sample, a color-coded thick bar shows the total CN state of each genomic locus and a thin blue bar to the right indicates that region has loss of heterozygosity (LOH). Samples belonging to the same patient are boxed. The top panel highlights the fraction of high CN states in each sample’s genome. The lower panel exhibits the sample phylogenetic trees constructed from SSNVs. Sample IDs, the reference where the WGS data was published, and tumor types are tabulated at the bottom. In this manuscript, a tumor sample is named after the concatenation of the tumor type, the first character of the author’s surname and the patient ID.

228 **2.2 Evolving SCNA gains define the tumor**
229 **transformation leading to the most recent clonal**
230 **expansion**

231 To evaluate the tempo of SCNAs in solid tumors, we applied **Butte** on five
232 tumor types by analyzing eight published WGS datasets: osteosarcoma (OS)
233 [28, 29], breast invasive carcinoma (BRCA) [30, 31], colorectal adenocarcinomas
234 (COAD) [16, 26], esophageal carcinoma (ESCA) [32], and prostate
235 adenocarcinoma (PRAD) [33], six of which comprise multi-sampling of patient
236 tumors (Figure 2, Table 1). 70% of the analyzed genomes (corresponding to
237 87% of the patients) were near triploid, with the median fraction (IQR) of the
238 high amplitude CN regions (≥ 4) being 0.37 (0.23 to 0.49). Loss of heterozy-
239 gosity (LOH) is prevalent but mostly is at copy neutral or amplified states in
240 the triploid tumors. High amplitude gains can be recurrent across cancer types
241 (e.g., chr 8q) or within a specific tumor type (e.g., chr 1q for BRCA, chr 17p
242 for OS, and chr 7 for COAD). These recurrent gains presumably contain driver
243 events [34], yet their tempo in somatic evolution remains uncharted. Notably,
244 karyotypes largely remain stable across different samples of the same tumor,
245 despite the presence of continued subclonal CN diversification in a relatively
246 minor fraction of the genome.

247 We note that 74 out 75 patient tumors acquired late-appearing gains close
248 to MRCA regardless of the overall ploidy or tumor type (Figure 3A, B), with
249 the only exception of COAD_C_4, which shows high microsatellite instabil-
250 ity. Punctuated copy number bursts were observed in the triploid samples,
251 reflecting the ability of the genome to leapfrog over intermediate states to
252 reach moderately high CN states through whole or partial genome doubling
253 (GD)[35, 36]. Whereas GD occurs late (close to the MRCA) in some adult
254 cancers (18 out of 34 patients), it appears to be an earlier event in many other
255 tumors. This is particularly evident in OS where 28 of 30 patients had GD
256 at the mid-stage of somatic evolution toward SRE (Figure 3B). The contrast-
257 ing tempo of GD suggests that it probably has a context-dependent fitness.
258 In tumors with early GD, **Butte** can characterize the post-GD CN evolution,
259 whereby progenitor cells continue to sample the aneuploid fitness landscape
260 [24]. Such an SCNA evolution involves stochastic chromosomal or structural
261 abnormalities; however, certain genomic regions preferentially exhibit late
262 gains across different patients in a particular tumor type, which, surprisingly
263 includes those recurrent high amplitude gains, such as chr 8q in OS (Figure 3C)
264 and chr 7 in COAD (Supplementary Figure 2). On the other hand, recurrent
265 SCNAs appear to initiate early, e.g., chr 1q (*AKT3*) in BRCA, chr 8q and
266 chr 17p (*TP53*) in OS and chr 5q (*APC*) in COAD (Figure 3C and Supple-
267 mentary Figure 2). These additional gains pre- and/or post-GD could result
268 from either high evolvability of the corresponding region, or persistent selection
269 upon driver genes within.

270 The earlier the timing of GD, the more post-GD CN gains (Figure 4A). The
271 late evolving gains are shorter in segment length than those associated with
272 GD (Supplementary Figure 4), except for a few patients where post-GD events

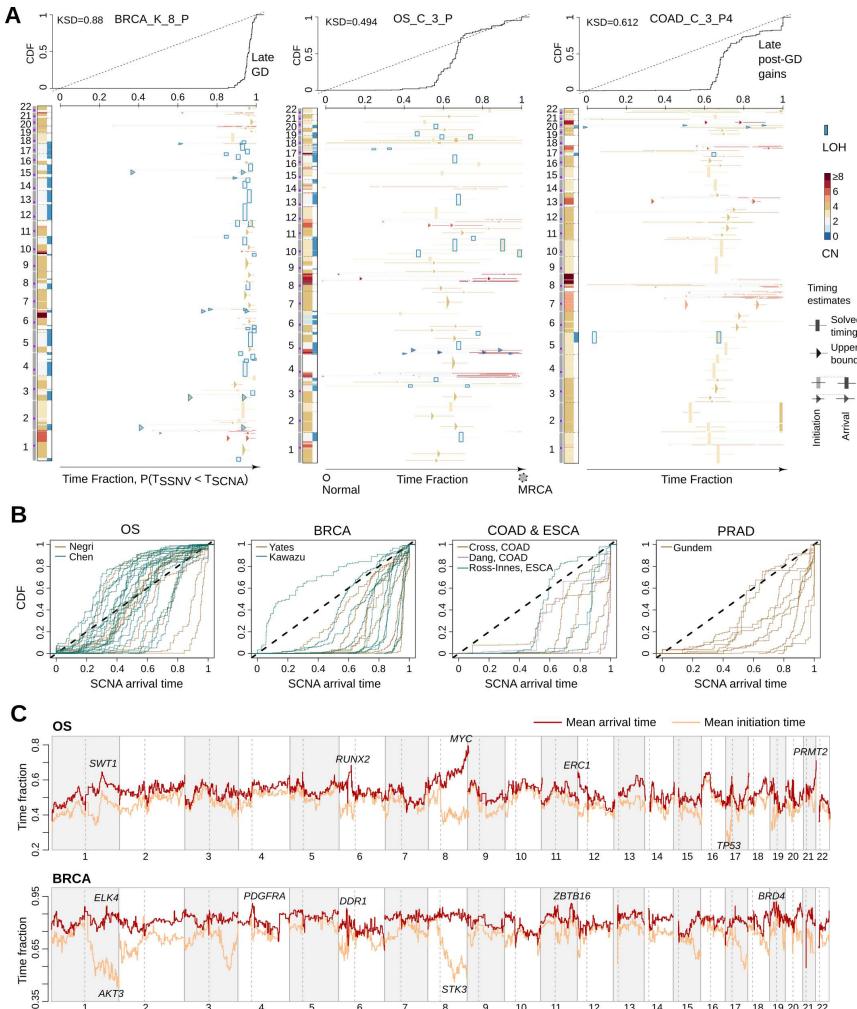


Fig. 3 The timing patterns of SCNA across five tumor types. (A) Timing plots of three exemplified tumors. CN states along the genome are shown on the left of each panel. The right panel visualizes the time fraction of somatic evolution from germline to the MRCA of the patient tumor. For each SCNA segment, the inferred timing is drawn by either rectangle (exactly solved timing) or arrows (upper bounds of timing when the solutions are not unique) with the same color-coding as its CN. The top panel shows the cumulative distribution (CDF) of SCNA arrival time. (B) The CDF curve of SCNA arrival time is shown for each patient categorised by the tumor type. (C) The average timing (both initiation and arrival time) for each one Megabase genomic bin across OS and BRCA patients are shown, respectively. Example genes in regions showing late arrival or early initiation times are marked.

273 are sparse (e.g. for patient PRAD_G_21 and PRAD_G_31). This suggests that
 274 the post-GD CN evolution is driven by SVs, which occur at a higher rate than
 275 chromosomal mis-segregation. Indeed, the breakpoints of structural variants
 276 almost locate the boundary of SCNA segments (Supplementary Figure 5). As

SVs continued to occur, it could become more focally amplified for the driver genes that are repetitively selected, making them more apparent in the late appearing gains, e.g., *MYC* [37] and *RUNX2*[38] in OS (Figure 3C). In terms of types of gains, amplified LOH ($N_b = 0$ and $N_t \geq 3$) tend to culminate later than other types of amplifications, such as allele specific amplifications ($N_b = 1$ and $N_t \geq 3$, $p < 3e - 5$), and this cannot be explained by the overestimation of Butte (Supplementary Figure 6 and 1). Whereas truncal LOH were supposedly acquired before GD [15] causing the complete loss of tumor-suppressor activity, the late appearing gains of the only remaining allele may indicate that these regions potentially acquire dosage-dependent gain-of-functions [39].

2.3 Mathematical modeling suggests the role of late gains in promoting tumor expansion

While early genomic changes during somatic evolution are suggested to be functional initiating events, there is little known about the effect of late-appearing alterations (e.g., close to the MRCA). To reveal the mechanism that gives rise to the tempo of GD and the number of post-GD events, we mathematically modeled the somatic evolution based on a multi-type branching process (see for example [40]), starting with a single tumor-initiating cell that just acquired GD (Figure 4B). This cell gives birth at a rate of a_0 and dies at a rate of b_0 (with net growth rate $\lambda_0 = a_0 - b_0 > 0$). During progression, daughter cells acquire a passenger post-GD gain with a rate of u_0 , which does not change the net growth rate. With a lower rate u_1 , they can also acquire a driver post-GD gain, leading to increased fitness ($\lambda_1 = a_1 - b_1 > \lambda_0$, see Method for details). Our objective is to characterize the number of post-GD gains that reach fixation or become dominant in the observed tumor under two contrasting scenarios: one without and the other with driver post-GD gains.

We first assumed that all post-GD gains are passenger variants. Conditioned on the non-extinction of the population, we obtained that the number of post-GD gains accumulated before the MRCA that grows into detectable tumor follows a geometric distribution with parameter $\frac{\lambda_0}{\lambda_0 + u_0}$ and mean $\frac{u_0}{\lambda_0}$. The mode of this distribution is at zero, similar to the cases where GD appears late and post-GD CN gains are rare. To tolerate the inclusion of subclonal but dominant SCNAAs as the clonal variants, we further evaluated the dominant post-GD gains shared by the majority ($\geq 90\%$) of cancer cells. Building on the results of [41], we derived the expected number of dominant post-GD gains in a tumor with size N as

$$\tilde{S} = \frac{N}{\lceil 0.9N \rceil} \cdot \frac{u_0}{\lambda_0} \approx 1.11 \frac{u_0}{\lambda_0}, \quad (1)$$

which is only slightly larger than the clonal ones. Assuming that u_0 and λ_0 are comparable, \tilde{S} would be no more than just a few. Moreover, numerical

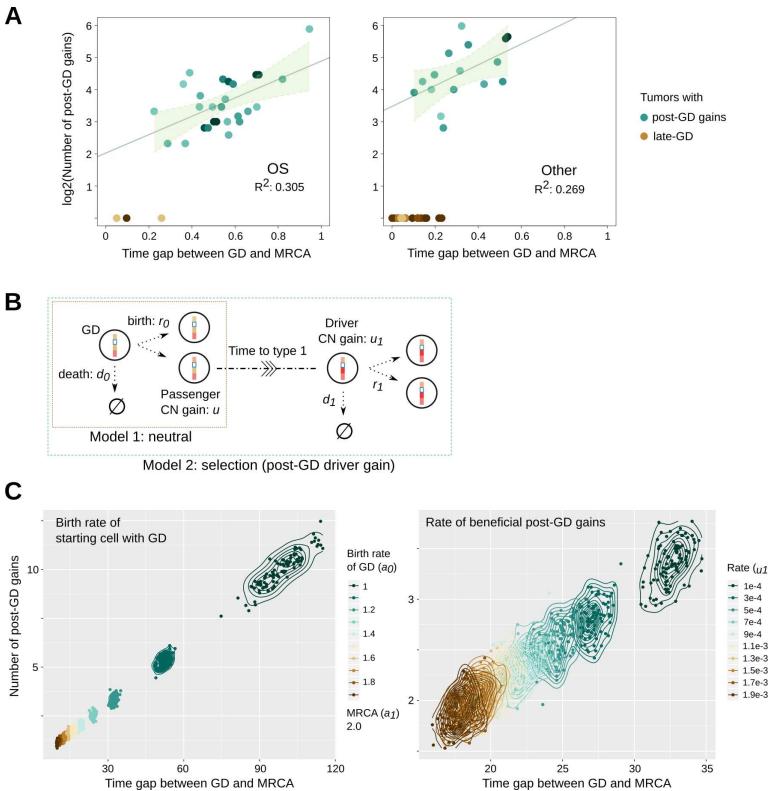


Fig. 4 Mathematical modeling suggests that advantageous CN gains can occur late. (A) Scatter plots colored by density illustrate the number of post GD gains against the time fraction of post-GD evolution towards MRCA for OS and other adult cancer types, respectively. A linear regression line and the confidence intervals are indicated for tumors with post-GD gains. (B) The schema shows the setup of the two contrasting mathematical models: (1) GD is followed by neutral growth where additional gains do not confer a fitness advantage and (2) post-GD gains increase the growth rate. (C) Scatter plots display the number of post-GD passenger gains against the time of post-GD evolution characterized by the selection model. We studied the effects of the growth rate of GD (with a fixed growth rate of the MRCA, the left panel) and the rate of beneficial post-GD driver gains (the right panel), respectively. Each point refers to the average of 100 simulations. Contours of the 2d density estimation are shown. Parameters for the left panel: $b_0 = 1$, $a_1 = 2$, $b_1 = 1$, $u_0 = 0.1$, and $u_1 = 0.0001$; right panel: $a_0 = 1.2$, $b_0 = 1$, $a_1 = 2$, $b_1 = 1$, and $u_0 = 0.1$.

316 simulations show that the number of dominant post-GD gains continues to
 317 follow a geometrical-like distribution with the mode at zero. Thus, if post-GD
 318 gains do not provide growth benefits, GD would be one of the last events before
 319 the MRCA as few of post-GD gains can become dominant in the observed
 320 tumor.

321 However, if post-GD gains increase fitness, the situation drastically
 322 changes. To emphasize how this happens, let us consider the first advantageous
 323 cell (type 1), which is introduced via a beneficial post-GD gain and grows into
 324 an infinite number of descendants. The original population without the new

325 driver forms the type 0 population. In this scenario it suffices to focus on type
 326 1 cells as their population most likely overshadows the type 0 population upon
 327 detection. The expected number of passenger post-GD gains (\bar{S}) carried by a
 328 type 1 cell would be proportional to the time of occurrence of the type 1 cell.
 329 In Methods we show that the distribution of the birth time of the first non-
 330 extinct type 1 cell, $\mathbb{P}(\sigma_1 > t | \Omega_\infty)$, where σ_1 represents the birth time and Ω_∞
 331 represents the event that the population does not go extinct, can be charac-
 332 terized as a function of the rate of beneficial gains u_1 and growth parameters
 333 of type 1 and type 0 cells, respectively (Lemma 1). \bar{S} is thus,

$$\bar{S} = \int_0^\infty \mathbb{P}(\sigma_1 > t | \Omega_\infty) u_0 dt. \quad (2)$$

334 We explored various choices of growth parameters that capture the fitness
 335 difference between type 0 (with GD) and type 1 cells (with advantageous post-
 336 GD gain). Notably, lowering the fitness level of type 0 cells delays the birth of
 337 the type 1 cell (Figure 4C), conditioned on a fixed net growth rate of the type
 338 1 cell. Accordingly, the post-GD gains become abundant with a bell-shaped
 339 distribution when the fitness difference is large. These model predictions are
 340 consistent with timing patterns in tumors with early GD (Figure 4A). There-
 341 fore, early GD observed in many patient tumors suggests that late-appearing
 342 gains may confer additional advantages for promoting the expansion. We note
 343 that the prolonged period of post-GD evolution could also be attributable to a
 344 lower rate of beneficial post-GD gains (Figure 4C). Nevertheless, the beneficial
 345 gain inevitably appears to be a late event since passenger gains introduced after
 346 the beneficial one most likely will be undetectable. The inability of passenger
 347 variants to become dominant themselves ensures such an outcome. Therefore,
 348 a long waiting time after GD suggests that the late beneficial gain becomes a
 349 rate-limiting event.

350 2.4 Ways evolving CN gains contribute to fitness 351 increase and mutational diversification

352 As SCNA have a global impact on gene expression in cancer [42], the evolving
 353 CN gains potentially affect dosage-sensitive genes whose gains have a func-
 354 tional impact. In the OS and BRCA tumors, as the CN evolves, we can see
 355 an enrichment of putative dosage-sensitive genes that are in pathogenic CNV
 356 peak regions derived from dbVar [43, 44] (Figure 5A). Notably, we observed a
 357 similar enrichment for genes involved in sustaining proliferative signaling: one
 358 of the most fundamental capabilities of cancer cells [1]. *MYC*, *EGFR* and *KIT*
 359 are among such genes with late gains in both OS and BRCA, emphasizing
 360 their ability in stimulating cell multiplication in multiple tumor types.

361 The evolving gains could amplify the impact of early functional variants
 362 by increasing their multiplicity (Figure 5B). Such a mechanism potentially
 363 affects SV breakpoints in known oncogenes (e.g., *MAP3K13*, *MECOM* and

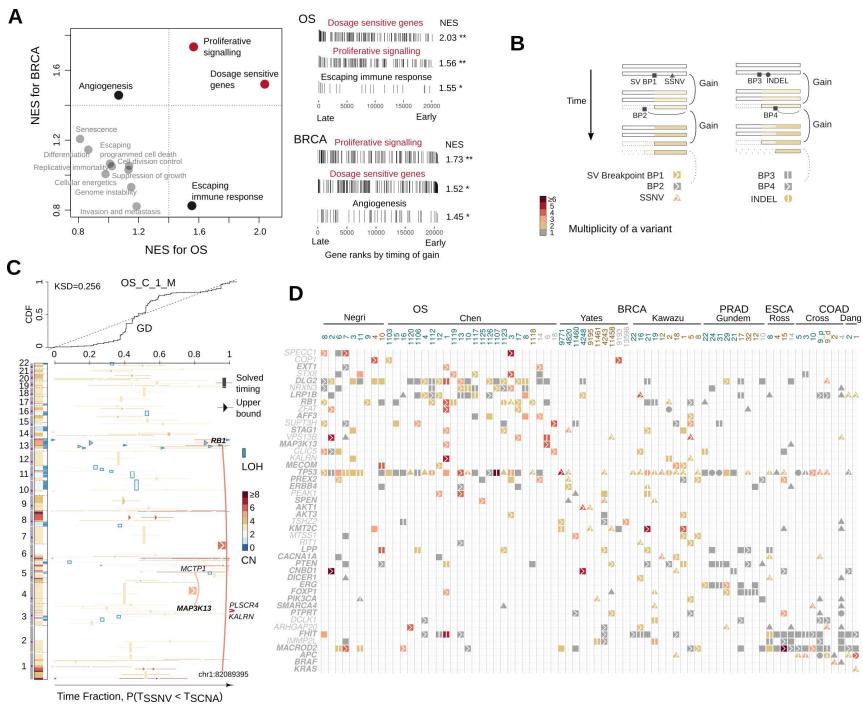


Fig. 5 Ways the late CN gains contribute to the fitness of cancer progenitor cell. (A) The gene set enrichment analysis (GSEA) was performed on the gene list ranked by the averaged CN arrival time for BRCA and OS tumors, respectively. The scatter plot on the left shows the normalized enrichment scores (NES) for each set of cancer census genes belonging to the predefined cancer hallmarks by COSMIC database. The vertical bars on the right panels visualize the timing-ranks of genes that belong to the highlighted gene sets. (B) A cartoon illustrates the multiplicity increase of an early sequence variant due to the inclusion of that variant by a late CN gain, with annotations indicating the type of variants (symbol shapes), level of multiplicity (color hues) and the variants' association with a late gain (right arrow) or an early gain (vertical bar). (C) The SCNA timing plot of an example OS tumor similarly arranged as in Figure 3, with additional links and symbols highlighting the SV breakpoints in known cancer genes that are amplified by late gains. (D) The matrix plot demonstrates genes with recurrent somatic variants and their multiplicity across the five tumor types. Names for known cancer genes are in bold. Genes with variants showing higher multiplicity levels than gene TTN are also included. Symbol annotations are the same as in (B).

364 *PREX2*), breakpoints in genes known to be involved in oncogenic fusions (e.g.,
365 *AFF3*, *LPP* and *ERG*), and simple mutations in oncogenes (e.g., SSNVs in
366 *SMARCA4* and *CACNA1A*), see Figure 5C, D. *MAP3K13* had been shown to
367 promote tumor growth in high *MYC*-expressing cells [45, 46], a similar context
368 as in the OS [37]. We note that highly mutated tumor suppressor genes (TSG),
369 such as *TP53*, *RB1* and *APC*, also have their early mutants duplicated or
370 amplified (Figure 5D). Whereas these are presumably inactivation variants,
371 the retaining of multiple copies of the variants could suggest different roles
372 that remain unclear, such as a potential gain-of-function of APC mutants in
373 COAD [47]. The fact that SRE requires the duplication of these early variants,

rather than starting immediately upon acquiring a single copy of these variants, suggests that late-appearing gains could cooperate with the early variants to promote tumor expansion. On the other hand, late SV breakpoints (at single copy state) coupling evolving gains are prominent in genes located in common fragile sites, e.g., *FHIT* and *MACROD2*. Late alterations of these genome “caretakers” could facilitate further genome evolution and expedite clonal expansion [48, 49].

Lastly, the quantitative relation between SCNA evolution and SSNV accumulation, the rationale behind our timing method, implies that SCNA gains bolster mutational diversification between sub-populations during tumor growth. In principle, the higher the truncal CN state of a genomic segment, the higher the mutational divergence between subclones for the corresponding locus. As tumor expands, genomic regions at distinct SCNA states would accumulate SSNVs at different rates, leading to the heterogeneity of the SSNV burden along the genome. For example, when comparing two samples of a tumor, the sample-specific SSNVs are more abundant for regions with higher CN states (Figure 6A, B). Notably, the overall CN state affects the structure of phylogenetic trees, i.e., it explains more than 50% of the variance of the relative branching distance measured by SSNVs in COAD and PRAD patients, where extensive multi-region sampling is available (Figure 6C). Furthermore, continued evolution of SCNAs between subpopulations would also alter the SSNV divergence. For example, the SSNVs divergence is particularly enlarged for regions showing different CN states between the two samples (Figure 6B). As such, increased SSNV diversity in regions with CN gains provides more materials for further selection within the expanding cell populations.

3 Discussion

The major impediment to devising better therapies for tumors with the CIN phenotype is its highly complex somatic genome. In this study, we have created a computational framework for measuring the arrival and initiation time of SCNAs during the somatic evolution of the MRCA of tumor sample(s). By applying this method on WGS data of patient tumors, we have found that late truncal CN gains close to the most recent clonal expansion are common across multiple tumor types. Mathematical modeling predicts that these late evolving gains could contain rate-limiting driver events, promoting the tumor growth. As CN gains increase the gene dosage and early functional variants, we further demonstrated that an integrated analysis of SCNA timing, SV breakpoints and simple mutations has a strong potential for isolating the functional effect of specific genomic aberrations.

Early genomic changes are presumably beneficial for tumor initiation[27], but it is unclear the effect of late truncal events. Here we have provided evidence that gains occurring later in the somatic evolution, i.e., close to MRCA, can also be beneficial. The simplified two-event cancer development model posits that the cancer-initiating event is followed by the promoting event [50].

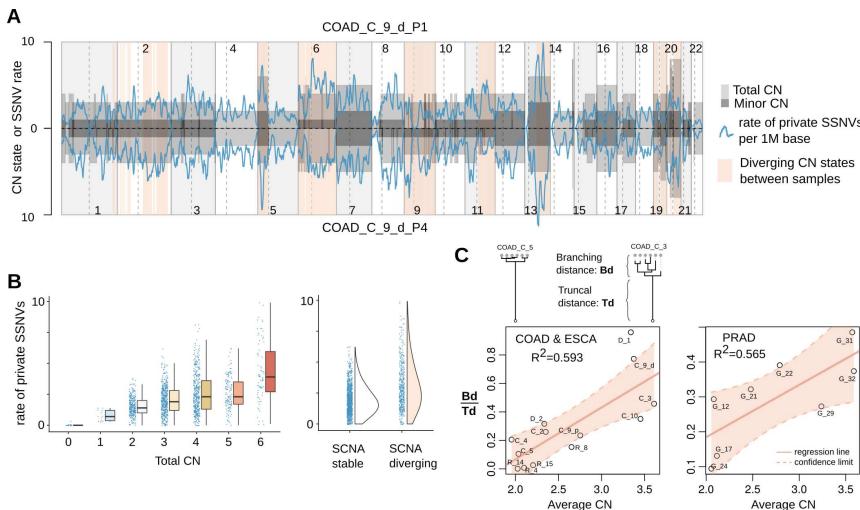


Fig. 6 The effect of SCNA on SSVN diversification during tumor expansion. (A) The rate of sample-private SSVNs when comparing two samples of a COAD patient tumor. The segmental CN states (total and minor CN) along the autosomal chromosomes for the two tumor samples are shown as gray rectangles above and below the x axis. The rate of sample private SSVNs (per million base pairs, blue line) fluctuates with the CN states. Genomic regions with different CN states between the two samples are in light red background. (B) The box plots on the left panel illustrate the rate of private SSVNs in sample P1 detected in regions at a given total CN state. The half-violin plots on the right panel demonstrate such a rate for regions showing stable or diverging CN states between the two samples. (C) The branching distance relative to truncal distance in a tumor's phylogenetic tree was calculated for each of the COAD, ESCA and PRAD tumors to evaluate the correlation with the averaged CN of the corresponding tumor samples. Annotations show the percentage of variance explained by a linear regression model.

417 We reason that the evolving CN gains might render the progenitor cell capable
 418 of “self-promoting,” as they act similarly as a tumor “promoter” by (a)
 419 increasing the dosage of genes causing sustained proliferative signaling; (b)
 420 amplifying the mutant allele with early initiating driver variants; and (c) acceler-
 421 ating the accumulation of further genomic alterations. As both the early and
 422 late CN alterations could confer fitness advantages, chromosomal regions with
 423 SCNA initiated early and arrived late, i.e., showing repetitive gains accompa-
 424 nying the entire course of the somatic evolution, could function as copy number
 425 “addictions.”

426 GD, a landmark event in CN evolution, has context-dependent fitness
 427 effect. The punctuated CN gains successfully induced the SRE in tumors that
 428 underwent a late GD. By contrast, for many other tumors, especially osteosar-
 429 coma, GD was followed by additional CN gains that produces the MRCA. GD
 430 could tolerate the occurrence of deleterious passengers [51]. However, simply
 431 escaping purifying selection was not sufficient to drive the ultimate outgrowth,
 432 at least not in the tumors with post-GD gains, where some chromosomal
 433 regions can reach higher CN states. Alternatively, GD may create an inflated
 434 genome space, accelerating the accumulation of driver alterations. As GD itself

435 affects many genes, regions with pre- and/or post-GD gains could serve as a
436 reduced search space for CN drivers.

437 Our method is applicable to a wide range of SCNAs, yet it is still challenging
438 to analyze extremely high CN states (i.e. above eight). We note that regions
439 with such a high CN likely evolve over time, such as the unequal segregation
440 of extra-chromosomal oncogene amplifications [52, 53]. As such, late-arriving
441 changes are expected for these amplified regions. Some focal high-level gains
442 could involve small segments where the number of SSNVs is inadequate for
443 calculation. This problem can be mitigated by borrowing information from
444 nearby segments with the identical CN state. This strategy is applicable to
445 synchronized SCNAs, such as chromothripsis [54, 55]. In addition, our anal-
446 ysis may have missed some late-appearing SCNAs due to overestimation.
447 This is particularly evident for bi-allelic gains (4:2), where the upper bounds
448 overestimate the actual timing (Supplementary Figure 1). Furthermore, dele-
449 tion was not modelled as it is unidentifiable [18]; by comparing CN profiles
450 between subpopulations, however, it is possible to study deletions during tumor
451 expansion.

452 Our findings also illustrate the existence of a fundamental connection
453 between CN evolution and SSNV diversity, which can explain the positive
454 correlation between aneuploidy and mutational burden when excluding hyper-
455 mutated tumors [56, 57]. Such a connection also indicates that we need to
456 account for the dynamic nature of ongoing SCNAs when measuring subclonal
457 evolution, which remains a challenge [58]. Finally, our results suggest that
458 much can be gained by including the SCNA arrival time in studying tumor
459 evolution, thereby shifting focus on exclusively early drivers to the evolving
460 genomic events that affect the rate of tumor progression.

461 4 Methods

Table 1 WGS data included in this study

Tumor	Ref.	Accession Code	Sampling ¹	#Samples ²	#Patients
OS	Negri[28]	EGAD00001004482	MTS	17	9
	Chen[29]	EGAS00001000263	Single,MTS	24	22
COAD	Cross[16]	EGAD00001004966	MRS	43	7
	Dang[26]	phs001722.v1.p1	MRS,MTS	7	2
BRCA	Yates[30]	EGAD00001002696	MTS	26	12
	Kawazu[31]	JGAD000095	Single	10	10
PRAD	Gundem[33]	EGAD00001000891	MRS,MTS	47	9
	ESCA	Ross-Innes[59]	MRS	11	4

¹MRS: multi-region sampling; MTS: multi-tumor sampling

²Samples passed our quality assessment (Supplementary Figure 7, 8 and 9).

462 4.1 Somatic variant calling from WGS data

463 Raw WGS data in bam or fastq formats were downloaded from public
 464 databases provided by the original publications (Table 1). The cumulative read
 465 depth distribution along the human genome (hg38) and the tumor purity and
 466 ploidy for each sample are illustrated in Supplementary Figure 7, 8, and 9. We
 467 have extended our existing pipeline, which had achieved a balance in sensitivity
 468 and specificity in detecting SSNVs by borrowing information across multiple
 469 samples[60], to allow the detection of clonal SCNAs and the breakpoints of
 470 structural variants.

471 **SSNVs and INDELs:** Analysis-ready read alignment bam files (against
 472 hg38) were generated according to the best practices, including indel realignment,
 473 base recalibration and flagging of duplicated reads. Raw candidate
 474 variants were produced by MuTect (v1.1.7) [3]. To reduce the false-positive
 475 rate due to misalignments or other technical artifacts and to salvage the variants
 476 that may be missed due to uneven read coverage between samples, the
 477 alignment features surrounding each candidate variant were collected for each
 478 sample. The heuristic-based criterion for the read alignment patterns was
 479 adopted to refine and variant calls as detailed previously [60]. Small insertions
 480 and deletions were called by using Strelka (v1.0.15)[61].

481 **SCNAs:** Copy number and tumor purity were estimated by using
 482 TitanCNA (v1.26.0)[25]. Germline heterozygous SNVs used as input to
 483 TitanCNA were identified using Samtools (v1.5)[62] and subject to the same
 484 filtering strategy as was applied to SSNVs. The one-clone solution reported
 485 by TitanCNA (i.e., the sample is dominated by a clone with an SCNA pro-
 486 file along the genome) globally fit the data of the read coverage and allelic
 487 imbalance well, with a few exceptions for which the two-clones solution are
 488 necessary to explain the data of specific genomic regions.

489 SVs: We incorporated two distinct SV calling tools relying on orthogonal
 490 approaches, i.e., DELLY (v0.7.8, abnormal read pair and split-read
 491 analysis)[63] and GRIDSS (v2.10.1, local assembly based algorithm)[64]. We
 492 focused on the SV breakpoints found by both tools, as these shared calls gen-
 493 erally have higher quality (e.g. with higher breakpoint confidence) than those
 494 unique to each tool (Supplementary Figure 10). SV breakpoints were annotated
 495 with AnnotSV[65].

496 4.2 Analysis of genomic divergence

497 SCNA divergence: When multi-samples are available for a patient, the trun-
 498 cal and private SCNAs were identified as follows: (1) we partitioned the genome
 499 into disjoint segments by considering all the SCNAs called from the samples of
 500 the patient; (2) for each segment, we calculated a generalized likelihood ratio
 501 statistics for the comparison between two samples. The statistics is the ratio
 502 of the values of the likelihood function (the probability of observing the read
 503 depth ratio and B-allele frequency for SNPs in the region) evaluated at the
 504 maximum likelihood estimation in the sub-model (two samples have the same
 505 CN profile) and at the maximum likelihood estimation in the full-model; and
 506 (3) the statistics converges weakly to a random variable with chi-square dis-
 507 tribution and thus can be used to determine if a segment shows significantly
 508 different SCNA states between the two samples. The term “truncal SCNAs”
 509 refers to SCNAs that exhibit no difference in pairwise comparisons.

510 Sample phylogeny: We applied Treeomics (v1.7.13) [66] to construct
 511 sample phylogenies from SSNV data. Treeomics takes into account the uncer-
 512 tainty due to purity differences and variations of read depth on the SSNV loci
 513 to derive robust sample phylogenies.

514 Clonality, multiplicity of SSNVs and SV breakpoints: SSNVs were
 515 classified as public (present in all tumor cells) or private according to the
 516 criterion as previously described for multi-sampling data [60]. In individual
 517 samples, clonal SSNVs were identified as those with the 95% confidence interval
 518 of cancer cell fraction (CCF) covering 1 [60]. We focused on the public SSNVs
 519 (multi-sampling) and clonal SSNVs (single sampling) for the timing analysis.
 520 For SSNVs or SV breakpoints existing in an SCNA region, we applied a bino-
 521 mial model to calculate the maximum likelihood estimates of the number of
 522 segment copies containing that variant as previously described [21].

523 4.3 Inferring the arrival and initiation time of SCNAs

524 4.3.1 Allele state distribution of SSNVs for a clonal SCNA

525 For SSNV i in an SCNA region (with CN configuration of $N_t : N_b$ and $M \geq$
 526 10 SSNVs in total), we obtained from WGS the read counts carrying the
 527 mutant allele m_i out of the total number of reads d_i . Expectation Maximization
 528 algorithm was used to estimate the proportion of SSNVs at each possible allele
 529 fraction, i.e. a vector q that gives the probability of randomly acquired SSNVs
 530 in this region having an purity-adjusted allele frequency ($f_i = a_j$) for each

531 possible allele state $\frac{j}{N_t}$. The rationale behind this is that the likelihood function
 532 of observing a particular SSNV data is related to the probability vector q as
 533 well as tumor purity. The log-likelihood is given by,

$$\sum_{i=1}^M \log \Pr(m_i \mid m_i > 0, q) = \sum_{i=1}^M \log \left(\frac{\sum_{j=1}^{N_t - N_b} \Pr(m_i \mid f_i = a_j) q_j}{1 - \sum_{j=1}^{N_t - N_b} (1 - a_j)^{d_i} q_j} \right). \quad (3)$$

534 **4.3.2 Estimating the upper bounds of initiation and arrival
 535 time**

536 For a genomic region affected by SCNA gains, let A be a possible history
 537 matrix with entry A_{jk} representing the number of segment copies in stage k
 538 that result in a final allele state a_j . Let q be a vector with entry q_j representing
 539 the probability of a randomly acquired SSNV in this region having allele
 540 frequency a_j . For single and double gains ($N_t : N_b$ at 3:1, 2:0, 4:1 or 3:0), the
 541 initiation time (t_0) and arrival time (t_K) are directly solved because matrix A
 542 is unique and invertible. For other SCNAs, **Butte** uses linear programming to
 543 obtain the upper bounds of timings across all possible history matrices for the
 544 corresponding CN configuration (Supplementary Figure 11). Let s denote the
 545 vector of the column sum of matrix A . Let t denote the relative time vector in
 546 which every component is a time fraction of the corresponding copy number
 547 state. We solve the following optimization problem by linear programming:

$$\begin{aligned} & \max_{t_K} t_K \\ \text{s.t. } & (A - qs^T)t = \mathbf{0} \\ & \mathbf{1} \cdot t = 1, \end{aligned}$$

548 where t_K is the last element in vector t . The maximum value of t_K gives us an
 549 upper bound of the arrival time given A . For upper bounds of initiation, we
 550 instead maximize t_0 which is the first element in t . To tolerate noise in the allele
 551 state distribution estimated from sequencing data, we add a slack variable on
 552 each capacity constraint, having a penalty cost of 100. The confidence intervals
 553 of the estimated upper bounds were calculated through bootstrapping the
 554 SSNV data.

555 **4.4 Mathematical modeling of the late evolving gains**

556 Consider two contrasting models based on multi-type branching processes with
 557 mutations. In both models, the tumor grows from a single tumor-initiating
 558 cell which just acquired GD. During the tumor's progression, cancer cells
 559 accumulate mutations (post-GD gains).

In the first model, all mutations are passenger mutations. Therefore, all cancer cells give birth at a rate of a_0 and die at a rate of b_0 . The net growth

rate is $\lambda_0 = a_0 - b_0 > 0$. Neutral mutations occur at rate u_0 per unit time throughout the lifetime of a cell, and each mutation is distinct (the infinite-sites model of Kimura [67]). We can obtain that the number of mutations accumulated before the first cell division, which results in two descendants with infinite lineage, follows a geometric distribution with parameter $\frac{\lambda_0}{\lambda_0 + u_0}$ and mean $\frac{u_0}{\lambda_0}$ (conditioned on the non-extinction of the cancer cell population). We then investigated the number of mutations which are shared by more than 90% of the total population (we refer to them as dominant mutations). Gunnarsson and his co-authors [41] derived exact expressions for the expected SFS of a cell population that evolves according to a branching process. We utilized their results on the skeleton subpopulation (see Appendix C of [41]) — cells with an infinite line of descents which determines the high frequency spectrum — to express the expected number of dominant mutations \tilde{S} when the tumor reaches a fixed size N as

$$\tilde{S} = \frac{N}{[0.9N]} \cdot \frac{u_0}{\lambda_0} \approx 1.11 \frac{u_0}{\lambda_0}. \quad (4)$$

560 In the second model, the tumor-initiating cell and its descendants with
 561 only passenger mutations form the type 0 population. Type 0 cells give birth
 562 at a rate of a_0 and die at a rate of b_0 . The net growth rate is $\lambda_0 = a_0 - b_0 > 0$.
 563 Type 0 cells mutate to type 1 cells at a rate of u_1 . Type 1 cells give birth at
 564 a rate of a_1 and die at a rate of b_1 . The net growth rate is $\lambda_1 = a_1 - b_1 > \lambda_0$.
 565 Both type 0 and type 1 cells accumulate passenger mutations at a rate of u_0 .
 566 Due to the selective advantage type 1 cells have over type 0 cells, a tumor at
 567 detection is most likely to be dominated by type 1 cells. As a result, it suffices
 568 to focus on mutations shared by the majority of type 1 cells. For tractability,
 569 we investigated the number of passenger mutations accrued in the first type 1
 570 cell with infinite lineage. In Lemma 1, we obtained the distribution of the time
 571 to the first such type 1 cell conditioned on the non-extinction of the tumor.

Lemma 1 *Let σ_1 denote the time of occurrence of the first type 1 cell that gives rise to a family which does not die out, and let Ω_∞ denote the event of non-extinction of the tumor. Then*

$$\mathbb{P}(\sigma_1 > t \mid \Omega_\infty) = \frac{a_0 (1 - q_0) + \frac{u_1 (1 - q_1)}{1 - q_0}}{a_0 (1 - q_0) + \frac{u_1 (1 - q_1)}{1 - q_0} e^{\zeta t}},$$

where

$$q_0 = \frac{a_0 + b_0 + u_1 - \sqrt{(a_0 + b_0 + u_1)^2 - 4a_0(u_1 q_1 + b_0)}}{2a_0},$$

$$q_1 = \frac{b_1}{a_1}, \quad \text{and}$$

$$\zeta = \frac{u_1 (1 - q_1)}{1 - q_0} + a_0 (1 - q_0).$$

With Lemma 1, we can obtain the expected number of passenger mutations accumulated in the first type 1 cell with infinite lineage, denoted by \bar{S} :

$$\bar{S} = \int_0^\infty \mathbb{P}(\sigma_1 > t \mid \Omega_\infty) u_0 dt. \quad (5)$$

With (4) and (5), we obtained that the expected number of dominant post-GD gains in the subpopulation generated from the first type 1 cell with infinite lineage is $\tilde{S} + \bar{S} + 1$, where the last 1 represents the number of post-GD driver mutation. Proof for Lemma 1 and details of (4) can be found in Supplementary Methods.

Acknowledgments. This study uses the computing resources in Minnesota Supercomputing Institute. This manuscript was prepared using limited access datasets obtained from BC CANCER (OS_N), Queen Mary University of London (COAD_C), the Cancer Genome Project in Wellcome Sanger Institute (BRCA_Y), and does not necessarily reflect the opinions or views of the corresponding provider institutions. The OS_C dataset was generated by the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. The BRCA_K dataset was originally generated by research led by Dr. Masahito Kawazu and available at the website of the National Bioscience Database Center (NBDC; <http://biosciencedbc.jp/en/>) of the Japan Science and Technology Agency (JST). We thank International Cancer Genome Consortium (ICGC) for providing the access to the PRAD_G dataset (originally produced by Cancer Research UK Prostate Cancer Group Study) and ESCA_R dataset (by the Oesophageal Cancer Clinical and Molecular Stratification Study Group). We would also like to acknowledge the database of Genotypes and Phenotypes (dbGaP) and Dr. Ryan C. Fields for producing the COAD_D dataset (phs001722.v1.p1) which was supported by Siteman Cancer Center Investment Program. We thank Dr. Scott Dehm and Boyang Liu for commenting on the manuscript. We thank Einar Gunnarsson for sharing his proof ideas on the skeleton of the branching process.

Code availability. Code for **Butte** (computational framework to estimate SCNA arrival and initiating time from WGS data) and the mathematical modeling is available at <https://github.com/SunPathLab/Butte/>

Author contributions. R.S. and Z.W. designed the study. R.S., Y.X., and Z.W. developed the algorithms. Z.W., R.S., and A.N.N. constructed mathematical models and performed simulation studies. R.S., Y.X., Z.W. and L.M. performed the analysis of WGS data and visualized the results. R.S., Z.W., Y.X., N.M. and J.M.S interpreted the results and wrote the manuscript. All authors reviewed and provided feedback on the manuscript.

606 References

607 [1] Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation.
608 Cell **144**(5), 646–674 (2011) [arXiv:0208024](https://arxiv.org/abs/0208024) [gr-qc]. <https://doi.org/10.1016/j.cell.2011.02.013>

610 [2] Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou,
611 X., Martincorena, I., Alexandrov, L.B., Martin, S., Wedge, D.C., Van
612 Loo, P., Ju, Y.S., Smid, M., Brinkman, A.B., Morganella, S., Aure,
613 M.R., Lingjærde, O.C., Langerød, A., Ringnér, M., Ahn, S.-M., Boy-
614 ault, S., Brock, J.E., Broeks, A., Butler, A., Desmedt, C., Dirix, L.,
615 Dronov, S., Fatima, A., Foekens, J.A., Gerstung, M., Hooijer, G.K.J.,
616 Jang, S.J., Jones, D.R., Kim, H.-Y., King, T.A., Krishnamurthy, S., Lee,
617 H.J., Lee, J.-Y., Li, Y., McLaren, S., Menzies, A., Mustonen, V., O'Meara,
618 S., Pauporté, I., Pivot, X., Purdie, C.A., Raine, K., Ramakrishnan, K.,
619 Rodríguez-González, F.G., Romieu, G., Sieuwerts, A.M., Simpson, P.T.,
620 Shepherd, R., Stebbings, L., Stefansson, O.A., Teague, J., Tommasi, S.,
621 Treilleux, I., Van den Eynden, G.G., Vermeulen, P., Vincent-Salomon,
622 A., Yates, L., Caldas, C., van't Veer, L., Tutt, A., Knapskog, S., Tan,
623 B.K.T., Jonkers, J., Borg, Å., Ueno, N.T., Sotiriou, C., Viari, A., Futreal,
624 P.A., Campbell, P.J., Span, P.N., Van Laere, S., Lakhani, S.R., Eyfjord,
625 J.E., Thompson, A.M., Birney, E., Stunnenberg, H.G., van de Vijver,
626 M.J., Martens, J.W.M., Børresen-Dale, A.-L., Richardson, A.L., Kong,
627 G., Thomas, G., Stratton, M.R.: Landscape of somatic mutations in 560
628 breast cancer whole-genome sequences. Nature **534**(7605), 47–54 (2016).
629 <https://doi.org/10.1038/nature17676>

630 [3] Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe,
631 D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E.S., Getz, G.:
632 Sensitive detection of somatic point mutations in impure and hetero-
633 geneous cancer samples. Nature Biotechnology **31**(3), 213–219 (2013)
634 [arXiv:NIHMS150003](https://arxiv.org/abs/150003). <https://doi.org/10.1038/nbt.2514>

635 [4] Vasudevan, A., Schukken, K.M., Sausville, E.L., Girish, V., Adebambo,
636 O.A., Sheltzer, J.M.: Aneuploidy as a promoter and suppressor of malig-
637 nant growth. Nature Reviews Cancer 2021 21:2 **21**(2), 89–103 (2021).
638 <https://doi.org/10.1038/s41568-020-00321-1>

639 [5] Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of
640 change in gene copy number. Nature Reviews Genetics **10**(8), 551–564
641 (2009). <https://doi.org/10.1038/nrg2593>

642 [6] Hieronymus, H., Murali, R., Tin, A., Yadav, K., Abida, W., Moller, H.,
643 Berney, D., Scher, H., Carver, B., Scardino, P., Schultz, N., Taylor, B.,
644 Vickers, A., Cuzick, J., Sawyers, C.L.: Tumor copy number alteration
645 burden is a pan-cancer prognostic factor associated with recurrence and

646 death. *eLife* **7** (2018). <https://doi.org/10.7554/ELIFE.37294>

647 [7] Nowak, M.A., Komarova, N.L., Sengupta, A., Jallepalli, P.V., Shih, L.M.,
648 Vogelstein, B., Lengauer, C.: The role of chromosomal instability in tumor
649 initiation. *Proceedings of the National Academy of Sciences of the United
650 States of America* **99**(25), 16226–16231 (2002). <https://doi.org/10.1073/pnas.202617399>

651

652 [8] Davoli, T., Xu, A.W., Mengwasser, K.E., Sack, L.M., Yoon, J.C., Park,
653 P.J., Elledge, S.J.: XCumulative haploinsufficiency and triplosensitivity
654 drive aneuploidy patterns and shape the cancer genome. *Cell* **155**(4),
655 948–62 (2013). <https://doi.org/10.1016/j.cell.2013.10.011>

656 [9] Lukow, D.A., Sausville, E.L., Suri, P., Chunduri, N.K., Leu, J., Kendall,
657 J., Wang, Z., Storchova, Z., Sheltzer, J.M.: Chromosomal instability
658 accelerates the evolution of resistance to anti-cancer therapies. *bioRxiv*,
659 2020–0925314229 (2020). <https://doi.org/10.1101/2020.09.25.314229>

660 [10] Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena,
661 G., Tabak, B., Lawrence, M.S., Zhang, C.-Z., Wala, J., Mermel, C.H.,
662 Sougnez, C., Gabriel, S.B., Hernandez, B., Shen, H., Laird, P.W.,
663 Getz, G., Meyerson, M., Beroukhim, R.: Pan-cancer patterns of somatic
664 copy number alteration. *Nature Genetics* **45**(10), 1134–1140 (2013)
665 [arXiv:15334406](https://doi.org/10.1038/ng.2760). <https://doi.org/10.1038/ng.2760>

666 [11] Roberts, R.D., Lizardo, M.M., Reed, D.R., Hingorani, P., Glover,
667 J., Allen-Rhoades, W., Fan, T., Khanna, C., Sweet-Cordero, E.A.,
668 Cash, T., Bishop, M.W., Hegde, M., Sertil, A.R., Koelsche, C.,
669 Mirabello, L., Malkin, D., Sorensen, P.H., Meltzer, P.S., Janeway,
670 K.A., Gorlick, R., Crompton, B.D.: Provocative questions in osteosar-
671 coma basic and translational biology: A report from the Children's
672 Oncology Group. John Wiley and Sons Inc. (2019). <https://doi.org/10.1002/cncr.32351>. <http://www.ncbi.nlm.nih.gov/pubmed/31355930>
673 <http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=PMC6948723>

674

675 [12] Jolly, C., Van Loo, P.: Timing somatic events in the evolution of
676 cancer. *Genome Biology* **19**(1), 95 (2018). <https://doi.org/10.1186/s13059-018-1476-3>

677

678 [13] Nowell, P.: The clonal evolution of tumor cell populations. *Science*
679 **194**(4260), 23–28 (1976). <https://doi.org/10.1126/science.959840>

680

681 [14] Caldas, C.: Cancer sequencing unravels clonal evolution. *Nature Biotech-
682 nology* **30**(5), 408–410 (2012). <https://doi.org/10.1038/nbt.2213>

683

684 [15] Watkins, T.B.K., Lim, E.L., Petkovic, M., Elizalde, S., Birkbak, N.J.,
685 Wilson, G.A., Moore, D.A., Grönroos, E., Rowan, A., Dewhurst, S.M.,

684 Demeulemeester, J., Dentro, S.C., Horswell, S., Au, L., Haase, K., Escud-
685 ero, M., Rosenthal, R., Bakir, M.A., Xu, H., Litchfield, K., Lu, W.T.,
686 Mourikis, T.P., Dietzen, M., Spain, L., Cresswell, G.D., Biswas, D., Lamy,
687 P., Nordentoft, I., Harbst, K., Castro-Giner, F., Yates, L.R., Caramia,
688 F., Jaulin, F., Vicier, C., Tomlinson, I.P.M., Brastianos, P.K., Cho, R.J.,
689 Bastian, B.C., Dyrskjøt, L., Jönsson, G.B., Savas, P., Loi, S., Campbell,
690 P.J., Andre, F., Luscombe, N.M., Steeghs, N., Tjan-Heijnen, V.C.G., Sza-
691 llasi, Z., Turajlic, S., Jamal-Hanjani, M., Van Loo, P., Bakhoum, S.F.,
692 Schwarz, R.F., McGranahan, N., Swanton, C.: Pervasive chromosomal
693 instability and karyotype order in tumour evolution. *Nature*, 1–7 (2020).
694 <https://doi.org/10.1038/s41586-020-2698-6>

695 [16] Cross, W., Kovac, M., Mustonen, V., Temko, D., Davis, H., Baker, A.-
696 M., Biswas, S., Arnold, R., Chegwidden, L., Gatenbee, C., Anderson,
697 A.R., Koelzer, V.H., Martinez, P., Jiang, X., Domingo, E., Woodcock,
698 D.J., Feng, Y., Kovacova, M., Maughan, T., Jansen, M., Rodriguez-
699 Justo, M., Ashraf, S., Guy, R., Cunningham, C., East, J.E., Wedge, D.C.,
700 Wang, L.M., Palles, C., Heinemann, K., Sottoriva, A., Leedham, S.J.,
701 Graham, T.A., Tomlinson, I.P.M.: The evolutionary landscape of col-
702 orectal tumorigenesis. *Nature Ecology Evolution* **2**, 1661–1672 (2018).
703 <https://doi.org/10.1038/s41559-018-0642-z>

704 [17] Reiter, J.G., Makohon-Moore, A.P., Gerold, J.M., Heyde, A., Attiyeh,
705 M.A., Kohutek, Z.A., Tokheim, C.J., Brown, A., DeBlasio, R.M., Niya-
706 zov, J., Zucker, A., Karchin, R., Kinzler, K.W., Iacobuzio-Donahue, C.A.,
707 Vogelstein, B., Nowak, M.A.: Minimal functional driver gene heterogene-
708 ity among untreated metastases. *Science (New York, N.Y.)* **361**(6406),
709 1033–1037 (2018). <https://doi.org/10.1126/science.aat7171>

710 [18] Purdom, E., Ho, C., Grasso, C.S., Quist, M.J., Cho, R.J., Spellman, P.,
711 Kelso, J.: Methods and challenges in timing chromosomal abnormalities
712 within cancer samples. *Bioinformatics* **29**(24), 3113–3120 (2013). <https://doi.org/10.1093/bioinformatics/btt546>

714 [19] Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S.C., Gonzalez, S., Rose-
715 brock, D., Mitchell, T.J., Rubanova, Y., Anur, P., Yu, K., Tarabichi, M.,
716 Deshwar, A., Wintersinger, J., Kleinheinz, K., Vázquez-García, I., Haase,
717 K., Jerman, L., Sengupta, S., Macintyre, G., Malikic, S., Donmez, N.,
718 Livitz, D.G., Cmero, M., Demeulemeester, J., Schumacher, S., Fan, Y.,
719 Yao, X., Lee, J., Schlesner, M., Boutros, P.C., Bowtell, D.D., Zhu, H.,
720 Getz, G., Imielinski, M., Beroukhim, R., Sahinalp, S.C., Ji, Y., Peifer, M.,
721 Markowitz, F., Mustonen, V., Yuan, K., Wang, W., Morris, Q.D., Den-
722 tro, S.C., Leshchiner, I., Gerstung, M., Jolly, C., Haase, K., Tarabichi,
723 M., Wintersinger, J., Deshwar, A.G., Yu, K., Gonzalez, S., Rubanova,
724 Y., Macintyre, G., Adams, D.J., Anur, P., Beroukhim, R., Boutros, P.C.,
725 Bowtell, D.D., Campbell, P.J., Cao, S., Christie, E.L., Cmero, M., Cun,

726 Y., Dawson, K.J., Donmez, N., Drews, R.M., Eils, R., Fan, Y., Fittall,
727 M., Garsed, D.W., Getz, G., Ha, G., Imielinski, M., Jerman, L., Ji, Y.,
728 Kleinheinz, K., Lee, J., Lee-Six, H., Livitz, D.G., Malikic, S., Markowetz,
729 F., Martincorena, I., Mitchell, T.J., Mustonen, V., Oesper, L., Peifer,
730 M., Peto, M., Raphael, B.J., Rosebrock, D., Sahinalp, S.C., Salcedo, A.,
731 Schlesner, M., Schumacher, S., Sengupta, S., Shi, R., Shin, S.J., Spiro,
732 O., Stein, L.D., Vázquez-García, I., Vembu, S., Wheeler, D.A., Yang,
733 T.P., Yao, X., Yuan, K., Zhu, H., Wang, W., Morris, Q.D., Spellman,
734 P.T., Wedge, D.C., Van Loo, P., Spellman, P.T., Wedge, D.C.: The evo-
735 lutionary history of 2,658 cancers. *Nature* **578**(7793), 122–128 (2020).
736 <https://doi.org/10.1038/s41586-019-1907-7>

737 [20] Sheltzer, J.M., Ko, J.H., Replogle, J.M., Burgos, N.C.H., Chung, E.S.,
738 Meehl, C.M., Sayles, N.M., Passerini, V., Storchova, Z., Amon, A.: Single-
739 chromosome Gains Commonly Function as Tumor Suppressors. *Cancer Cell* **31**(2), 240–255 (2017). <https://doi.org/10.1016/J.CCCELL.2016.12.004>

740 [21] Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-
741 Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A.W., Futreal,
742 P.A., Stratton, M.R., Campbell, P.J.: Estimation of rearrangement phy-
743 logeny for cancer genomes. *Genome Research* **22**(2), 346–361 (2012).
744 <https://doi.org/10.1101/gr.118414.110>

745 [22] Dewhurst, S.M., McGranahan, N., Burrell, R.A., Rowan, A.J., Gr?nroos,
746 E., Endesfelder, D., Joshi, T., Mouradov, D., Gibbs, P., Ward, R.L.,
747 Hawkins, N.J., Szallasi, Z., Sieber, O.M., Swanton, C.: Tolerance of
748 whole- genome doubling propagates chromosomal instability and accel-
749 erates cancer genome evolution. *Cancer Discovery* **4**(2), 175–185 (2014).
750 <https://doi.org/10.1158/2159-8290.CD-13-0285>

751 [23] Storchova, Z., Kuffer, C.: The consequences of tetraploidy and aneuploidy.
752 *Journal of cell science* **121**(Pt 23), 3859–66 (2008). <https://doi.org/10.1242/jcs.039537>

753 [24] Laughney, A.M., Elizalde, S., Genovese, G., Bakhoum, S.F.: Dynamics
754 of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution. *Cell
755 Reports* **12**(5), 809–820 (2015). <https://doi.org/10.1016/j.celrep.2015.06.065>

756 [25] Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L.M., Mel-
757 nyk, N., McPherson, A., Bashashati, A., Laks, E., Biele, J., Ding, J.,
758 Le, A., Rosner, J., Shumansky, K., Marra, M.A., Gilks, C.B., Hunts-
759 man, D.G., McAlpine, J.N., Aparicio, S., Shah, S.P.: TITAN: Inference of
760 copy number architectures in clonal cell populations from tumor whole-
761 genome sequence data. *Genome Research* **24**(11), 1881–1893 (2014).
762

766 <https://doi.org/10.1101/gr.180281.114>

767 [26] Dang, H.X., Krasnick, B.A., White, B.S., Grossman, J.G., Strand, M.S.,
768 Zhang, J., Cabanski, C.R., Miller, C.A., Fulton, R.S., Goedegebuure,
769 S.P., Fronick, C.C., Griffith, M., Larson, D.E., Goetz, B.D., Walker, J.R.,
770 Hawkins, W.G., Strasberg, S.M., Linehan, D.C., Lim, K.H., Lockhart,
771 A.C., Mardis, E.R., Wilson, R.K., Ley, T.J., Maher, C.A., Fields, R.C.:
772 The clonal evolution of metastatic colorectal cancer. *Science Advances*
773 **6**(24), 9691 (2020). <https://doi.org/10.1126/sciadv.aay9691>

774 [27] Paterson, C., Clevers, H., Bozic, I.: Mathematical model of colorectal
775 cancer initiation. *Proceedings of the National Academy of Sciences of the*
776 *United States of America* **117**(34), 20681–20688 (2020). <https://doi.org/10.1073/pnas.2003771117>

777 [28] Negri, G.L., Grande, B.M., Delaidelli, A., El-Naggar, A., Cochrane, D.,
778 Lau, C.C., Triche, T.J., Moore, R.A., Jones, S.J., Montpetit, A., Marra,
779 M.A., Malkin, D., Morin, R.D., Sorensen, P.H.: Integrative genomic anal-
780 ysis of matched primary and metastatic pediatric osteosarcoma. *The*
781 *Journal of Pathology* **249**(3), 319–331 (2019). <https://doi.org/10.1002/path.5319>

782 [29] Chen, X., Bahrami, A., Pappo, A., Easton, J., Dalton, J., Hedlund, E.,
783 Ellison, D., Shurtleff, S., Wu, G., Wei, L., Parker, M., Rusch, M., Naga-
784 hawatte, P., Wu, J., Mao, S., Boggs, K., Mulder, H., Yergeau, D., Lu, C.,
785 Ding, L., Edmonson, M., Qu, C., Wang, J., Li, Y., Navid, F., Daw, N.C.,
786 Mardis, E.R., Wilson, R.K., Downing, J.R., Zhang, J., Dyer, M.A., St.
787 Jude Children’s Research Hospital–Washington University Pediatric Can-
788 cer Genome Project: Recurrent Somatic Structural Variations Contribute
789 to Tumorigenesis in Pediatric Osteosarcoma. *Cell Reports* **7**(1), 104–112
790 (2014). <https://doi.org/10.1016/j.celrep.2014.03.003>

791 [30] Yates, L.R., Knappskog, S., Wedge, D., Farmery, J.H.R., Gonzalez, S.,
792 Martincoren, I., Alexandrov, L.B., Van Loo, P., Haugland, H.K., Lil-
793 leng, P.K., Gundem, G., Gerstung, M., Pappaemmanuil, E., Gazinska, P.,
794 Bhosle, S.G., Jones, D., Raine, K., Mudie, L., Latimer, C., Sawyer, E.,
795 Desmedt, C., Sotiriou, C., Stratton, M.R., Sieuwerts, A.M., Lynch, A.G.,
796 Martens, J.W., Richardson, A.L., Tutt, A., Lønning, P.E., Campbell, P.J.:
797 Genomic Evolution of Breast Cancer Metastasis and Relapse. *Cancer Cell*
798 **32**(2), 169–1847 (2017). <https://doi.org/10.1016/j.ccr.2017.07.005>

801 [31] Kawazu, M., Kojima, S., Ueno, T., Totoki, Y., Nakamura, H., Kunita,
802 A., Qu, W., Yoshimura, J., Soda, M., Yasuda, T., Hama, N., Saito-
803 Adachi, M., Sato, K., Kohsaka, S., Sai, E., Ikemura, M., Yamamoto, S.,
804 Ogawa, T., Fukayama, M., Tada, K., Seto, Y., Morishita, S., Hazama,
805 S., Shibata, T., Yamashita, Y., Mano, H.: Integrative analysis of genomic

806 alterations in triple-negative breast cancer in association with homologous recombination deficiency. PLOS Genetics **13**(6), 1006853 (2017).
807 <https://doi.org/10.1371/journal.pgen.1006853>

808

809 [32] Ross-Innes, C.S., Becq, J., Warren, A., Cheetham, R.K., Northen, H.,
810 O'Donovan, M., Malhotra, S., di Pietro, M., Ivakhno, S., He, M., Weaver,
811 J.M.J., Lynch, A.G., Kingsbury, Z., Ross, M., Humphray, S., Bentley, D.,
812 Fitzgerald, R.C., Hayes, S.J., Ang, Y., Welch, I., Preston, S., Oakes, S.,
813 Save, V., Skipworth, R., Tucker, O., Davies, J., Crichton, C., Schustererrer,
814 iter, C., Underwood, T., Noble, F., Stacey, B., Kelly, J., Byrne, J., Haydon,
815 A., Sharland, D., Owsley, J., Barr, H., Lagergren, J., Gossage, J., Davies,
816 A., Mason, R., Chang, F., Zylstra, J., Sanders, G., Wheatley, T., Berri-
817 ford, R., Bracey, T., Harden, C., Bunting, D., Roques, T., Nobes, J., Loo,
818 S., Lewis, M., Cheong, E., Priest, O., Parsons, S.L., Soomro, I., Kaye,
819 P., Saunders, J., Pang, V., Welch, N.T., Catton, J.A., Duffy, J.P., Ragun-
820 nath, K., Lovat, L., Haidry, R., Miah, H., Kerr, S., Eneh, V., Butawan,
821 R., Roques, T., Lewis, M., Cheong, E., Kumar, B., Igali, L., Walton, S.,
822 Dann, A., Safranek, P., Hindmarsh, A., Sudjendran, V., Scott, M., Cluroe,
823 A., Miremadi, A., Mahler-Araujo, B., Nutzinger, B., Peters, C., Abdul-
824 lahi, Z., Crawte, J., MacRae, S., Noorani, A., Elliott, R.F., Bower, L.,
825 Edwards, P., Tavare, S., Eldridge, M., Bornschein, J., Secrier, M., Yang,
826 T.-P., O'Neill, J.R., Adamczuk, K., Lao-Sirieix, P., Grehan, N., Smith, L.,
827 Lishman, S., Beardsmore, D., Dawson, S.: Whole-genome sequencing pro-
828 vides new insights into the clonal architecture of Barrett's esophagus and
829 esophageal adenocarcinoma. Nature Genetics **47**(9), 1038–1046 (2015).
830 <https://doi.org/10.1038/ng.3357>

831 [33] Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L.B., Tubio, J.M.C.,
832 Papaemmanuil, E., Brewer, D.S., Kallio, H.M.L., Högnäs, G., Annala,
833 M., Kivinummi, K., Goody, V., Latimer, C., O'Meara, S., Dawson, K.J.,
834 Isaacs, W., Emmert-Buck, M.R., Nykter, M., Foster, C., Kote-Jarai,
835 Z., Easton, D., Whitaker, H.C., Neal, D.E., Cooper, C.S., Eeles, R.A.,
836 Visakorpi, T., Campbell, P.J., McDermott, U., Wedge, D.C., Bova, G.S.:
837 The evolutionary history of lethal metastatic prostate cancer. Nature
838 **520**(7547), 353–357 (2015). <https://doi.org/10.1038/nature14347>

839 [34] Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim,
840 R., Getz, G.: GISTIC2.0 facilitates sensitive and confident localiza-
841 tion of the targets of focal somatic copy-number alteration in human
842 cancers. Genome Biology **12**(4), 41 (2011). <https://doi.org/10.1186/GB-2011-12-4-R41>

843

844 [35] Dewhurst, S.M., McGranahan, N., Burrell, R.A., Rowan, A.J., Grönroos,
845 E., Endesfelder, D., Joshi, T., Mouradov, D., Gibbs, P., Ward, R.L.,
846 Hawkins, N.J., Szallasi, Z., Sieber, O.M., Swanton, C.: Tolerance of

847 whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. *Cancer discovery* **4**(2), 175–185 (2014).
848 <https://doi.org/10.1158/2159-8290.CD-13-0285>

849

850 [36] Bielski, C.M., Zehir, A., Penson, A.V., Donoghue, M.T.A., Chatila, W.,
851 Armenia, J., Chang, M.T., Schram, A.M., Jonsson, P., Bandlamudi, C.,
852 Razavi, P., Iyer, G., Robson, M.E., Stadler, Z.K., Schultz, N., Baselga, J.,
853 Solit, D.B., Hyman, D.M., Berger, M.F., Taylor, B.S.: Genome doubling
854 shapes the evolution and prognosis of advanced cancers. *Nature Genetics*
855 **50**(8), 1189–1195 (2018). <https://doi.org/10.1038/s41588-018-0165-1>

856 [37] Sayles, L.C., Breese, M.R., Koehne, A.L., Leung, S.G., Lee, A.G., Liu, H.-
857 Y., Spillinger, A., Shah, A.T., Tanasa, B., Straessler, K., Hazard, F.K.,
858 Spunt, S.L., Marina, N., Kim, G.E., Cho, S.-J., Avedian, R.S., Mohler,
859 D.G., Kim, M.-O., Dubois, S.G., Hawkins, D.S., Sweet-Cordero, E.A.:
860 Genome-Informed Targeted Therapy for Osteosarcoma. *Cancer Discovery*
861 **9**(1), 17–1152 (2018). <https://doi.org/10.1158/2159-8290.CD-17-1152>

862 [38] N, L., D, L., X, H., W, L., G, L., Q, W., T, Z., J, G., Y, L., Q, Z.: RUNX2
863 and Osteosarcoma. *Anti-cancer agents in medicinal chemistry* **15**(7), 881–
864 887 (2015). <https://doi.org/10.2174/1871520615666150304151228>

865 [39] Zhang, C., Liu, J., Xu, D., Zhang, T., Hu, W., Feng, Z.: Gain-of-function
866 mutant p53 in cancer progression and therapy. *Journal of Molecul-
867 lar Cell Biology* **12**(9), 674–687 (2020). <https://doi.org/10.1093/JMBC/MJAA040>

868

869 [40] Durrett, R.: Branching Process Models of Cancer. In: Branching Pro-
870 cess Models of Cancer. Mathematical Biosciences Institute Lecture
871 Series, Vol 1.1, pp. 1–63. Springer, ??? (2015). https://doi.org/10.1007/978-3-319-16065-8_1

872

873 [41] Gunnarsson, E.B., Leder, K., Foo, J.: Exact site frequency spectra of neu-
874 trally evolving tumors: a transition between power laws reveals a signature
875 of cell viability. *Theoretical Population Biology* (2021) [arXiv:2102.11959](https://arxiv.org/abs/2102.11959)

876

877 [42] Fehrman, R.S.N., Karjalainen, J.M., Krajewska, M., Westra, H.J., Mal-
878 oney, D., Simeonov, A., Pers, T.H., Hirschhorn, J.N., Jansen, R.C.,
879 Schultes, E.A., Van Haagen, H.H.H.B.M., De Vries, E.G.E., Te Meerman,
880 G.J., Wijmenga, C., Van Vugt, M.A.T.M., Franke, L.: Gene expres-
881 sion analysis identifies global gene dosage sensitivity in cancer. *Nature*
882 *Genetics* 2015 **47**:2 **47**(2), 115–125 (2015). <https://doi.org/10.1038/ng.3173>

883 [43] Rice, A.M., McLysaght, A.: Dosage-sensitive genes in evolution and dis-
884 ease. *BMC Biology* 2017 **15**:1 **15**(1), 1–10 (2017). <https://doi.org/10.1186/S12915-017-0418-Y>

885

886 [44] Rice, A.M., McLysaght, A.: Dosage sensitivity is a major determinant of
887 human copy number variant pathogenicity. *Nature Communications* 2017
888 8:1 8(1), 1–11 (2017). <https://doi.org/10.1038/ncomms14366>

889 [45] Edwards, Z.C., Trotter, E.W., Torres-Ayuso, P., Chapman, P., Wood, H.M., Nyswaner, K., Brognard, J.: Survival of Head and Neck Cancer
890 Cells Relies upon LZK Kinase-Mediated Stabilization of Mutant
891 p53. *Cancer Research* 77(18), 4961–4972 (2017). <https://doi.org/10.1158/0008-5472.CAN-17-0267>

892 [46] Han, H., Chen, Y., Cheng, L., Prochownik, E.V., Li, Y., Han, H.,
893 Chen, Y., Cheng, L., Prochownik, E.V., Li, Y.: microRNA-206 impairs
894 c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting
895 MAP3K13. *Oncotarget* 7(13), 16409–16419 (2016). <https://doi.org/10.18632/ONCOTARGET.7653>

896 [47] Zhang, L., Shay, J.W.: Multiple Roles of APC and its Therapeutic
897 Implications in Colorectal Cancer. *JNCI Journal of the National Cancer
898 Institute* 109(8) (2017). <https://doi.org/10.1093/JNCI/DJW332>

900 [48] Waters, C.E., Saldivar, J.C., Hosseini, S.A., Huebner, K.: The FHIT gene
901 product: tumor suppressor and genome ‘caretaker’. *Cellular and molecular
902 life sciences : CMLS* 71(23), 4577 (2014). <https://doi.org/10.1007/S00018-014-1722-0>

904 [49] Sakthianandeswaren, A., Parsons, M.J., Mouradov, D., Mackinnon, R.N.,
905 Catimel, B., Liu, S., Palmieri, M., Love, C., Jorissen, R.N., Li, S.,
906 Whitehead, L., Putoczki, T.L., Preaudet, A., Tsui, C., Nowell, C.J.,
907 Ward, R.L., Hawkins, N.J., Desai, J., Gibbs, P., Ernst, M., Street, I.,
908 Buchert, M., Sieber, O.M.: MACROD2 Haploinsufficiency Impairs Cat-
909 alytic Activity of PARP1 and Promotes Chromosome Instability and
910 Growth of Intestinal Tumors. *Cancer Discovery* 8(8), 988–1005 (2018).
911 <https://doi.org/10.1158/2159-8290.CD-17-0909>

913 [50] Moolgavkar, S.H., Venzon, D.J.: Two-event models for carcinogenesis:
914 incidence curves for childhood and adult tumors. *Mathematical Bio-
915 sciences* 47(1-2), 55–77 (1979). [https://doi.org/10.1016/0025-5564\(79\)90005-1](https://doi.org/10.1016/0025-5564(79)90005-1)

916 [51] López, S., Lim, E.L., Horswell, S., Haase, K., Huebner, A., Dietzen, M.,
917 Mourikis, T.P., Watkins, T.B.K., Rowan, A., Dewhurst, S.M., Birk-
918 bak, N.J., Wilson, G.A., Van Loo, P., Jamal-Hanjani, M., Swanton, C.,
919 McGranahan, N.: Interplay between whole-genome doubling and the accu-
920 mulation of deleterious alterations in cancer evolution. *Nature Genetics*
921 52(3), 283–293 (2020). <https://doi.org/10.1038/s41588-020-0584-7>

923 [52] Turner, K.M., Deshpande, V., Beyter, D., Koga, T., Rusert, J., Lee,

925 C., Li, B., Arden, K., Ren, B., Nathanson, D.A., Kornblum, H.I., Tay-
926 lor, M.D., Kaushal, S., Cavenee, W.K., Wechsler-Reya, R., Furnari, F.B.,
927 Vandenberg, S.R., Rao, P.N., Wahl, G.M., Bafna, V., Mischel, P.S.: Extra-
928 chromosomal oncogene amplification drives tumour evolution and genetic
929 heterogeneity. *Nature* **543**(7643), 122–125 (2017) [arXiv:NIHMS150003](https://arxiv.org/abs/150003).
930 <https://doi.org/10.1038/nature21356>

931 [53] Kim, H., Nguyen, N.P., Turner, K., Wu, S., Gujar, A.D., Luebeck, J.,
932 Liu, J., Deshpande, V., Rajkumar, U., Namburi, S., Amin, S.B., Yi,
933 E., Menghi, F., Schulte, J.H., Henssen, A.G., Chang, H.Y., Beck, C.R.,
934 Mischel, P.S., Bafna, V., Verhaak, R.G.W.: Extrachromosomal DNA is
935 associated with oncogene amplification and poor outcome across mul-
936 tiple cancers. *Nature Genetics* 2020 52:9 **52**(9), 891–897 (2020). <https://doi.org/10.1038/s41588-020-0678-2>

938 [54] Cortés-Ciriano, I., Lee, J.J.-K., Xi, R., Jain, D., Jung, Y.L., Yang, L.,
939 Gordenin, D., Klimczak, L.J., Zhang, C.-Z., Pellman, D.S., Park, P.J.:
940 Comprehensive analysis of chromothripsis in 2,658 human cancers using
941 whole-genome sequencing. *Nature Genetics* 2020 52:3 **52**(3), 331–341
942 (2020). <https://doi.org/10.1038/s41588-019-0576-7>

943 [55] Zhang, C.-Z., Leibowitz, M.L., Pellman, D.: Chromothripsis and beyond:
944 rapid genome evolution from complex chromosomal rearrangements.
945 *Genes development* **27**(23), 2513–30 (2013). <https://doi.org/10.1101/gad.229559.113>

947 [56] Taylor, A.M., Shih, J., Ha, G., Gao, G.F., Zhang, X., Berger, A.C., Schu-
948 macher, S.E., Wang, C., Hu, H., Liu, J., Lazar, A.J., Caesar-Johnson, S.J.,
949 Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., Hutter, C.M., Sofia,
950 H.J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J.C., Zhang, J.J., Chu-
951 damani, S., Liu, J., Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu,
952 Y., Cho, J., DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman,
953 D.I., Kim, J., Lawrence, M.S., Lin, P., Meier, S., Noble, M.S., Saksena,
954 G., Voet, D., Zhang, H., Bernard, B., Chambwe, N., Dhankani, V., Kni-
955 jnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds,
956 S., Shmulevich, I., Thorsson, V., Zhang, W., Akbani, R., Broom, B.M.,
957 Hegde, A.M., Ju, Z., Kanchi, R.S., Korkut, A., Li, J., Liang, H., Ling,
958 S., Liu, W., Lu, Y., Mills, G.B., Ng, K.S., Rao, A., Ryan, M., Wang, J.,
959 Weinstein, J.N., Zhang, J., Abeshouse, A., Armenia, J., Chakravarty, D.,
960 Chatila, W.K., de Brujin, I., Gao, J., Gross, B.E., Heins, Z.J., Kundra,
961 R., La, K., Ladanyi, M., Luna, A., Nissan, M.G., Ochoa, A., Phillips,
962 S.M., Reznik, E., Sanchez-Vega, F., Sander, C., Schultz, N., Sheridan, R.,
963 Sumer, S.O., Sun, Y., Taylor, B.S., Wang, J., Zhang, H., Anur, P., Peto,
964 M., Spellman, P., Benz, C., Stuart, J.M., Wong, C.K., Yau, C., Hayes,
965 D.N., Parker, J.S., Wilkerson, M.D., Ally, A., Balasundaram, M., Bowlby,
966 R., Brooks, D., Carlsen, R., Chuah, E., Dhalla, N., Holt, R., Jones, S.J.M.,

967 Kasaian, K., Lee, D., Ma, Y., Marra, M.A., Mayo, M., Moore, R.A.,
968 Mungall, A.J., Mungall, K., Robertson, A.G., Sadeghi, S., Schein, J.E.,
969 Sipahimalani, P., Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A.C.,
970 Beroukhim, R., Cherniack, A.D., Cibulskis, C., Gabriel, S.B., Ha, G.,
971 Meyerson, M., Schumacher, S.E., Shih, J., Kucherlapati, M.H., Kucher-
972 lapati, R.S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M.S., Lai,
973 P.H., Maglinte, D.T., Van Den Berg, D.J., Weisenberger, D.J., Auman,
974 J.T., Balu, S., Bodenheimer, T., Fan, C., Hoadley, K.A., Hoyle, A.P., Jef-
975 ferys, S.R., Jones, C.D., Meng, S., Mieczkowski, P.A., Mose, L.E., Perou,
976 A.H., Perou, C.M., Roach, J., Shi, Y., Simons, J.V., Skelly, T., Soloway,
977 M.G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Laird, P.W., Shen, H.,
978 Zhou, W., Bellair, M., Chang, K., Covington, K., Creighton, C.J., Dinh,
979 H., Doddapaneni, H.V., Donehower, L.A., Drummond, J., Gibbs, R.A.,
980 Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., Lee, S., Lewis, L., Li,
981 W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth,
982 M., Shinbrot, E., Wang, L., Wang, M., Wheeler, D.A., Xi, L., Zhao, F.,
983 Hess, J., Appelbaum, E.L., Bailey, M., Cordes, M.G., Ding, L., Fronick,
984 C.C., Fulton, L.A., Fulton, R.S., Kandoth, C., Mardis, E.R., McLellan,
985 M.D., Miller, C.A., Schmidt, H.K., Wilson, R.K., Crain, D., Curley, E.,
986 Gardner, J., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R.,
987 Shelton, C., Shelton, T., Sherman, M., Thompson, E., Yena, P., Bowen,
988 J., Gastier-Foster, J.M., Gerken, M., Leraas, K.M., Lichtenberg, T.M.,
989 Ramirez, N.C., Wise, L., Zmuda, E., Corcoran, N., Costello, T., Hovens,
990 C., Carvalho, A.L., de Carvalho, A.C., Fregnani, J.H., Longatto-Filho, A.,
991 Reis, R.M., Scapulatempo-Neto, C., Silveira, H.C.S., Vidal, D.O., Bur-
992 nette, A., Eschbacher, J., Hermes, B., Noss, A., Singh, R., Anderson, M.L.,
993 Castro, P.D., Ittmann, M., Huntsman, D., Kohl, B., Le, X., Thorp, R.,
994 Andry, C., Duffy, E.R., Lyadov, V., Paklina, O., Setdikova, G., Shabunin,
995 A., Tavobilov, M., McPherson, C., Warnick, R., Berkowitz, R., Cramer,
996 D., Feltmate, C., Horowitz, N., Kibel, A., Muto, M., Raut, C.P., Malykh,
997 A., Barnholtz-Sloan, J.S., Barrett, W., Devine, K., Fulop, J., Ostrom,
998 Q.T., Shimmel, K., Wolinsky, Y., Sloan, A.E., De Rose, A., Giulante,
999 F., Goodman, M., Karlan, B.Y., Hagedorn, C.H., Eckman, J., Harr, J.,
1000 Myers, J., Tucker, K., Zach, L.A., Deyarmin, B., Hu, H., Kvecher, L.,
1001 Larson, C., Mural, R.J., Somiari, S., Vicha, A., Zelinka, T., Bennett, J.,
1002 Iacocca, M., Rabeno, B., Swanson, P., Latour, M., Lacombe, L., Tétu, B.,
1003 Bergeron, A., McGraw, M., Staugaitis, S.M., Chabot, J., Hibshoosh, H.,
1004 Sepulveda, A., Su, T., Wang, T., Potapova, O., Voronina, O., Desjardins,
1005 L., Mariani, O., Roman-Roman, S., Sastre, X., Stern, M.H., Cheng, F.,
1006 Signoretti, S., Berchuck, A., Bigner, D., Lipp, E., Marks, J., McCall, S.,
1007 McLendon, R., Secord, A., Sharp, A., Behera, M., Brat, D.J., Chen, A.,
1008 Delman, K., Force, S., Khuri, F., Magliocca, K., Maithel, S., Olson, J.J.,
1009 Owonikoko, T., Pickens, A., Ramalingam, S., Shin, D.M., Sica, G., Van
1010 Meir, E.G., Zhang, H., Eijckenboom, W., Gillis, A., Korpershoek, E., Looijenga,
1011 L., Oosterhuis, W., Stoop, H., van Kessel, K.E., Zwarthoff, E.C.,

1012 Calatozzolo, C., Cuppini, L., Cuzzubbo, S., DiMeco, F., Finocchiaro, G.,
1013 Mattei, L., Perin, A., Pollo, B., Chen, C., Houck, J., Lohavanichbutr, P.,
1014 Hartmann, A., Stoehr, C., Stoehr, R., Taubert, H., Wach, S., Wullich, B.,
1015 Kybler, W., Murawa, D., Wiznerowicz, M., Chung, K., Edenfield, W.J.,
1016 Martin, J., Baudin, E., Bubley, G., Bueno, R., De Rienzo, A., Richards,
1017 W.G., Kalkanis, S., Mikkelsen, T., Noushmehr, H., Scarpase, L., Girard,
1018 N., Aymerich, M., Campo, E., Giné, E., Guillermo, A.L., Van Bang, N.,
1019 Hanh, P.T., Phu, B.D., Tang, Y., Colman, H., Evasion, K., Dottino, P.R.,
1020 Martignetti, J.A., Gabra, H., Juhl, H., Akeredolu, T., Stepa, S., Hoon,
1021 D., Ahn, K., Kang, K.J., Beuschlein, F., Breggia, A., Birrer, M., Bell, D.,
1022 Borad, M., Bryce, A.H., Castle, E., Chandan, V., Cheville, J., Copland,
1023 J.A., Farnell, M., Flotte, T., Giama, N., Ho, T., Kendrick, M., Kocher,
1024 J.P., Kopp, K., Moser, C., Nagorney, D., O'Brien, D., O'Neill, B.P., Patel,
1025 T., Petersen, G., Que, F., Rivera, M., Roberts, L., Smallridge, R., Smyrk,
1026 T., Stanton, M., Thompson, R.H., Torbenson, M., Yang, J.D., Zhang, L.,
1027 Brimo, F., Ajani, J.A., Angulo Gonzalez, A.M., Behrens, C., Bondaruk,
1028 J., Broaddus, R., Czerniak, B., Esmaeli, B., Fujimoto, J., Gershenwald,
1029 J., Guo, C., Logothetis, C., Meric-Bernstam, F., Moran, C., Ramondetta,
1030 L., Rice, D., Sood, A., Tamboli, P., Thompson, T., Troncoso, P., Tsao,
1031 A., Wistuba, I., Carter, C., Haydu, L., Hersey, P., Jakrot, V., Kakavand,
1032 H., Kefford, R., Lee, K., Long, G., Mann, G., Quinn, M., Saw, R.,
1033 Scolyer, R., Shannon, K., Spillane, A., Stretch, J., Synott, M., Thompson,
1034 J., Wilmott, J., Al-Ahmadie, H., Chan, T.A., Ghossein, R., Gopalan, A.,
1035 Levine, D.A., Reuter, V., Singer, S., Singh, B., Tien, N.V., Broudy, T.,
1036 Mirsaidi, C., Nair, P., Drwiega, P., Miller, J., Smith, J., Zaren, H., Park,
1037 J.W., Hung, N.P., Kebebew, E., Linehan, W.M., Metwalli, A.R., Pacak,
1038 K., Pinto, P.A., Schiffman, M., Schmidt, L.S., Vocke, C.D., Wentzensen,
1039 N., Worrell, R., Yang, H., Moncrieff, M., Goparaju, C., Melamed, J.,
1040 Pass, H., Botnariuc, N., Caraman, I., Cernat, M., Chemencedji, I., Clipca,
1041 A., Doruc, S., Gorincioi, G., Mura, S., Pirtac, M., Stancul, I., Tcaciu, D.,
1042 Albert, M., Alexopoulou, I., Arnaout, A., Bartlett, J., Engel, J.,
1043 Gilbert, S., Parfitt, J., Sekhon, H., Thomas, G., Rassl, D.M., Rintoul,
1044 R.C., Bifulco, C., Tamakawa, R., Urba, W., Hayward, N., Timmers, H.,
1045 Antenucci, A., Facciolo, F., Grazi, G., Marino, M., Merola, R., de Kri-
1046 jger, R., Gimenez-Roqueplo, A.P., Piché, A., Chevalier, S., McKercher,
1047 G., Birsoy, K., Barnett, G., Brewer, C., Farver, C., Naska, T., Pennell,
1048 N.A., Raymond, D., Schilero, C., Smolenski, K., Williams, F., Morri-
1049 son, C., Borgia, J.A., Liptay, M.J., Pool, M., Seder, C.W., Junker, K.,
1050 Omberg, L., Dinkin, M., Manikhas, G., Alvaro, D., Bragazzi, M.C., Car-
1051 dinale, V., Carpino, G., Gaudio, E., Chesla, D., Cottingham, S., Dubina,
1052 M., Moiseenko, F., Dhanasekaran, R., Becker, K.F., Janssen, K.P., Slotta-
1053 Huspenina, J., Abdel-Rahman, M.H., Aziz, D., Bell, S., Cebulla, C.M.,
1054 Davis, A., Duell, R., Elder, J.B., Hilty, J., Kumar, B., Lang, J., Lehman,
1055 N.L., Mandt, R., Nguyen, P., Pilarski, R., Rai, K., Schoenfield, L., Senecal,

1056 K., Wakely, P., Hansen, P., Lechan, R., Powers, J., Tischler, A., Griz-
 1057 zle, W.E., Sexton, K.C., Kastl, A., Henderson, J., Porten, S., Waldmann,
 1058 J., Fassnacht, M., Asa, S.L., Schadendorf, D., Couce, M., Graefen, M.,
 1059 Huland, H., Sauter, G., Schlomm, T., Simon, R., Tennstedt, P., Olabode,
 1060 O., Nelson, M., Bathe, O., Carroll, P.R., Chan, J.M., Disaia, P., Glenn,
 1061 P., Kelley, R.K., Landen, C.N., Phillips, J., Prados, M., Simko, J., Smith-
 1062 McCune, K., VandenBerg, S., Roggin, K., Fehrenbach, A., Kendler, A.,
 1063 Sifri, S., Steele, R., Jimeno, A., Carey, F., Forgie, I., Mannelli, M., Carney,
 1064 M., Hernandez, B., Campos, B., Herold-Mende, C., Jungk, C., Unterberg,
 1065 A., von Deimling, A., Bossler, A., Galbraith, J., Jacobus, L., Knudson, M.,
 1066 Knutson, T., Ma, D., Milhem, M., Sigmund, R., Godwin, A.K., Madan,
 1067 R., Rosenthal, H.G., Adebamowo, C., Adebamowo, S.N., Boussioutas, A.,
 1068 Beer, D., Giordano, T., Mes-Masson, A.M., Saad, F., Bocklage, T., Land-
 1069 drum, L., Mannel, R., Moore, K., Moxley, K., Postier, R., Walker, J.,
 1070 Zuna, R., Feldman, M., Valdivieso, F., Dhir, R., Luketich, J., Mora Pinero,
 1071 E.M., Quintero-Aguilo, M., Carlotti, C.G., Dos Santos, J.S., Kemp, R.,
 1072 Sankarankutty, A., Tirapelli, D., Catto, J., Agnew, K., Swisher, E., Cre-
 1073 aney, J., Robinson, B., Shelley, C.S., Godwin, E.M., Kendall, S., Shipman,
 1074 C., Bradford, C., Carey, T., Haddad, A., Moyer, J., Peterson, L., Prince,
 1075 M., Rozek, L., Wolf, G., Bowman, R., Fong, K.M., Yang, I., Korst, R.,
 1076 Rathmell, W.K., Fantacone-Campbell, J.L., Hooke, J.A., Kovatich, A.J.,
 1077 Shriver, C.D., DiPersio, J., Drake, B., Govindan, R., Heath, S., Ley, T.,
 1078 Van Tine, B., Westervelt, P., Rubin, M.A., Lee, J.I., Aredes, N.D., Mari-
 1079 amidze, A., Cherniack, A.D., Beroukhim, R., Meyerson, M.: Genomic and
 1080 Functional Approaches to Understanding Cancer Aneuploidy. *Cancer Cell*
 1081 **33**(4), 676–6893 (2018). <https://doi.org/10.1016/j.ccr.2018.03.007>

1082 [57] Davoli, T., Uno, H., Wooten, E.C., Elledge, S.J.: Tumor aneuploidy
 1083 correlates with markers of immune evasion and with reduced response
 1084 to immunotherapy. *Science* **355**(6322), 8399 (2017). <https://doi.org/10.1126/science.aaf8399>

1086 [58] Satas, G., Zaccaria, S., Mon, G., Raphael, B.J.: SCARLET: Single-Cell
 1087 Tumor Phylogeny Inference with Copy-Number Constrained Mutation
 1088 Losses. *Cell Systems* **10**(4), 323–3328 (2020). <https://doi.org/10.1016/J.CELLS.2020.04.001>

1090 [59] Ross-Innes, C.S., Becq, J., Warren, A., Cheetham, R.K., Northen, H.,
 1091 O'Donovan, M., Malhotra, S., di Pietro, M., Ivakhno, S., He, M., Weaver,
 1092 J.M.J., Lynch, A.G., Kingsbury, Z., Ross, M., Humphray, S., Bentley, D.,
 1093 Fitzgerald, R.C., Hayes, S.J., Ang, Y., Welch, I., Preston, S., Oakes, S.,
 1094 Save, V., Skipworth, R., Tucker, O., Davies, J., Crichton, C., Schusterreiter,
 1095 C., Underwood, T., Noble, F., Stacey, B., Kelly, J., Byrne, J., Haydon,
 1096 A., Sharland, D., Owsley, J., Barr, H., Lagergren, J., Gossage, J., Davies,
 1097 A., Mason, R., Chang, F., Zylstra, J., Sanders, G., Wheatley, T., Berris-
 1098 ford, R., Bracey, T., Harden, C., Bunting, D., Roques, T., Nobes, J., Loo,

1099 S., Lewis, M., Cheong, E., Priest, O., Parsons, S.L., Soomro, I., Kaye,
1100 P., Saunders, J., Pang, V., Welch, N.T., Catton, J.A., Duffy, J.P., Ragu-
1101 nath, K., Lovat, L., Haidry, R., Miah, H., Kerr, S., Eneh, V., Butawan,
1102 R., Roques, T., Lewis, M., Cheong, E., Kumar, B., Igali, L., Walton, S.,
1103 Dann, A., Safranek, P., Hindmarsh, A., Sudjendran, V., Scott, M., Cluroe,
1104 A., Miremadi, A., Mahler-Araujo, B., Nutzinger, B., Peters, C., Abdul-
1105 lahi, Z., Crawte, J., MacRae, S., Noorani, A., Elliott, R.F., Bower, L.,
1106 Edwards, P., Tavare, S., Eldridge, M., Bornschein, J., Secrier, M., Yang,
1107 T.-P., O'Neill, J.R., Adamczuk, K., Lao-Sirieix, P., Grehan, N., Smith, L.,
1108 Lishman, S., Beardsmore, D., Dawson, S.: Whole-genome sequencing pro-
1109 vides new insights into the clonal architecture of Barrett's esophagus and
1110 esophageal adenocarcinoma. *Nature Genetics* **47**(9), 1038–1046 (2015).
1111 <https://doi.org/10.1038/ng.3357>

1112 [60] Sun, R., Hu, Z., Sottoriva, A., Graham, T.A., Harpak, A., Ma, Z., Fischer,
1113 J.M., Shibata, D., Curtis, C.: Between-region genetic divergence reflects
1114 the mode and tempo of tumor evolution. *Nature Genetics* **49**(7), 1015–
1115 1024 (2017). <https://doi.org/10.1038/ng.3891>

1116 [61] Saunders, C.T., Wong, W.S.W., Swamy, S., Becq, J., Murray, L.J.,
1117 Cheetham, R.K.: Strelka: Accurate somatic small-variant calling from
1118 sequenced tumor-normal sample pairs. *Bioinformatics* **28**(14), 1811–1817
1119 (2012). <https://doi.org/10.1093/bioinformatics/bts271>

1120 [62] Li, H.: Improving SNP discovery by base alignment quality. *Bioinformatics*
1121 **27**(8), 1157–1158 (2011). <https://doi.org/10.1093/bioinformatics/btr076>

1122 [63] Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., Korbel, J.O.:
1123 DELLY: structural variant discovery by integrated paired-end and split-
1124 read analysis. *Bioinformatics (Oxford, England)* **28**(18), 333–339 (2012).
1125 <https://doi.org/10.1093/bioinformatics/bts378>

1126 [64] Cameron, D.L., Schröder, J., Penington, J.S., Do, H., Molania, R.,
1127 Dobrovic, A., Speed, T.P., Papenfuss, A.T.: GRIDSS: Sensitive and spe-
1128 cific genomic rearrangement detection using positional de Bruijn graph
1129 assembly. *Genome Research* **27**(12), 2050–2060 (2017). <https://doi.org/10.1101/gr.222109.117>

1131 [65] Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H.,
1132 Muller, J.: AnnotSV: an integrated tool for structural variations annota-
1133 tion. *Bioinformatics* **34**(20), 3572–3574 (2018). <https://doi.org/10.1093/BIOINFORMATICS/BTY304>

1135 [66] Reiter, J.G., Makohon-Moore, A.P., Gerold, J.M., Bozic, I., Chatterjee,
1136 K., Iacobuzio-Donahue, C.A., Vogelstein, B., Nowak, M.A.: Reconstruct-
1137 ing metastatic seeding patterns of human cancers. *Nature Communica-
1138 tions* **8**, 14114 (2017). <https://doi.org/10.1038/ncomms14114>

1139 [67] Kimura, M.: The Number of Heterozygous Nucleotide Sites Maintained
1140 in a Finite Population Due to Steady Flux of Mutations. *Genetics* **61**(4),
1141 893 (1969). <https://doi.org/10.1093/genetics/61.4.893>