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Abstract20

Charting the evolutionary history of rampant somatic copy number alter-21

ations (SCNA) is an indispensable step toward a deeper understanding22

of their roles in tumor development. However, the existing SCNA timing23

analysis is limited to low copy number states and initiating gains, which24

are not necessarily close to the onset of the malignant proliferation. More-25

over, it remains a critical question if the timing of an SCNA reveals the26

corresponding variant’s fitness effect. Here we propose a framework to27

estimate the arrival time of a clonal SCNA, i.e., the time delay from its28

last alteration to the start of population expansion, in addition to its initi-29

ation time when the first alteration occurs. Our method leverages the bias30
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2 Evolving gains promote tumor expansion

that a genomic segment, when resting on a copy number (CN) state, accu-31

mulates somatic single nucleotide variants (SSNV) at a rate proportional32

to its CN. From the whole genome sequencing data of 184 samples from33

75 patients across five tumor types, we commonly observed late clonal34

CN gains following early initiating events, which appear right before the35

expansion leading to the observed tumor sample(s). Genome doubling36

(GD) can be late, but post-GD CN evolution is prevalent in the geneal-37

ogy of the most recent common ancestor of patient tumors. Notably,38

mathematical modeling suggests that late evolving events could contain39

rate-limiting drivers. The advantage of evolving gains could arise from40

the dosage increase of cancer genes in proliferative signaling and ampli-41

fication of early functional variants. In addition, evolving SCNAs bolster42

the diversification of SSNVs between sub-populations, exacerbating the43

vicious circle between malignant growth and accumulation of genomic44

heterogeneity. Our findings have broad implications for resolving the tra-45

jectory of SCNAs, discerning the CN markers of malignant growth in46

vivo, and properly quantifying tumor heterogeneity in aneuploid tumors.47

Keywords: Timing of Somatic Copy Number Alteration, Aneuploidy, Whole48

genome sequencing, Cancer evolution, Tumor heterogeneity49

1 Introduction50

Underlying the maintained genomic diversity within a patient tumor is the51

uncontrolled proliferation, a core hallmark of cancer [1], coupled with somatic52

alterations occurring over time [2]. To prevent the disease, uncovering the53

somatic aberrations responsible for the malignant growth is the primary54

goal of precision oncology. At the genomic level, somatic alterations exist on55

a spectrum, ranging from small changes such as somatic single nucleotide56

variants (SSNV, often referred to as mutations) [3] to large somatic copy num-57

ber alterations (SCNA). Frequent chromosomal mis-segregation (chromosomal58

instability or CIN) leads to abnormal chromosome numbers (aneuploidy[4])59

and unbalanced structural variations (SV) cause segmental SCNAs [5]. These60

two genomic errors are intertwined in many solid tumors, leading to extensive61

SCNAs, especially in advanced diseases [4] with poor clinical outcomes [6].62

The inextricable relation of SCNAs to cancer initiation[7, 8] and63

progression[9] has become a consensus in cancer genomics. It remains little64

known, however, to what extent a specific SCNA accounts for the malignant65

growth and how it affects the intra-tumor-heterogeneity (ITH) [4]. Indeed,66

chaotic karyotype and widespread high copy number (CN) states in aneuploid67

tumors[10] make it extremely challenging to identify SCNA drivers, limiting68

the precision of using SCNA patterns for diagnostic and treatment purposes.69

For example, the treatment strategy for osteosarcoma, the most common bone70

tumor affecting teenagers with one of the most chaotic aneuploid genomes,71

has stagnated for decades [11]. From an evolutionary perspective, discovering72
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the tempo of SCNA during somatic evolution is key to gaining knowledge of73

SCNA drivers [12]. Here, we hypothesize that the timing of SCNAs can be sys-74

tematically measured from whole genome sequencing (WGS) data of patient75

tumors, and the temporal axis contains tangible information in isolating the76

effect of specific SCNAs on tumorigenesis.77

We should pause to clarify how bulk sequencing data capture somatic evo-78

lution timeline. The tumor founder cell arose from the succession of clonal79

expansions in the pre-cancerous context where beneficial alterations endow80

progenitor cells with the ability to crowd out less advantageous populations81

[13] (Figure 1A). The growth of the primary lesion gives rise to genomically82

diverging lineages [14], some of which, after acquiring a more malignant poten-83

tial, can initiate the re-growth of a secondary tumor, such as metastasis [15].84

Bulk sequencing data provide us with the opportunity to anchor the roots of85

expansion (the most recent common ancestor, or MRCA). Clonal variants in a86

single sample refer to the root of the observed sample. In multi-region sequenc-87

ing, truncal variants from multiple samples could trace back asymptotically88

to the founder of the tumor [16]. For longitudinal sampling, e.g., of paired89

primary and metastatic tumors, truncal variants could point to the MRCA90

of the branched tumor progression [17]. Multi-samples reflect the population91

expansion at a broader scale, i.e., they coalesce to an earlier progenitor cell92

than a single sample does. Collectively, truncal variants revealed by a particu-93

lar sampling strategy must map to the somatic evolution timeline prior to the94

corresponding sampling-relevant expansion (SRE).95

The timing of a truncal SCNA (more specifically, gains) on the evolution96

toward the MRCA could shed light on the impact of this variant on promoting97

the SRE. However, our knowledge about the SCNA timing remains fragmen-98

tary as the existing methods are restricted to simple (single or double) gains99

[16, 18, 19]. Single-sample based pan-cancer analysis from ICGC[19] revealed100

extensive variation in the molecular time of these sample gains. Relative to101

aneuploid tumors, these gains are likely the initiating events of copy number102

evolution and may not be sufficient to induce the expansion. For example, sin-103

gle chromosome gains have shown limited capability in driving proliferation in104

in vitro systems [20]. As such, it would be critical to know when a genomic105

segment further evolves beyond the initial gains, which can often culminate at106

a state greater than four copies [10]. This requires a timing method applica-107

ble to high SCNA states. In SCNA timing analysis, the following assumption108

is made: the site frequency spectrum (SFS) of SSNVs in a genomic region109

affected by SCNA depends on the trajectory (the order) and time span on110

each CN state that the segment had ever rested on [21]. For a single gain, the111

ratio between early (duplicated) and late (non-duplicated) SSNVs can be used112

to estimate the relative timing of the gain [12]. For a high CN state (> 4) or113

gains involving both maternal and paternal alleles, the detailed trajectory of114

each SCNA evolution is not identifiable from the SFS [18], at least not with-115

out further constraints on the trajectory or additional information that could116



4 Evolving gains promote tumor expansion

allow one to reconstruct the ordering [21]. We reason, however, that it is pos-117

sible to obtain the upper bounds of the time duration of a segment resting118

on its observed truncal CN state before the onset of SRE. In principle, once119

a segment arrives at the final CN state, it can only accumulate single-copy120

SSNVs; the longer the segment persists in the observed CN state, the more121

overwhelming the single-copy SSNVs. Notably, for the first time, this allows122

us to investigate the arrival time for SCNAs at high CN states.123

An outstanding question is how the timing of an SCNA reflects its fitness124

effect (Figure 1B). Whereas early gains could initiate and increase the risk125

of disease, we argue that late-appearing SCNAs close to MRCA could pro-126

mote the population expansion more directly. If an SCNA triggers SRE, one127

may foresee that the progenitor cell proliferates vigorously upon acquiring the128

corresponding SCNA. By contrast, before the SRE begins, if the clonal lin-129

eage persists for many generations after receiving an SCNA, the corresponding130

variant is unlikely to be sufficient to drive the SRE. Punctuated acquisition131

of polyploidy (e.g., through genome doubling or GD) is prevalent in aneu-132

ploid tumors [22] but it remains unclear how close the occurrence of GD is to133

tumor transformation. Evidence exists that GD itself doesn’t confer a strong134

fitness advantage[23]; instead, it can enhance the plasticity of the genome that135

permits further CN evolution, such that aneuploid cells adapt to overcome pos-136

sible fitness penalties incurred by GD [24]. Therefore, SCNAs that arrive after137

GD could contain driver events. Moreover, depending on the precise location138

of biopsied tissue, single-sample analyses may differ in the corresponding time139

scale; subsequently, it is particularly essential to focus on the timeline toward140

the malignant growth - the somatic evolution in collecting truncal SSNVs of141

multiple samples of a tumor (e.g., multi-region samples or paired primary and142

metastatic samples).143

To broaden the “timable” genomic regions for SCNAs, we developed Butte144

(BoUnds of Time Till Expansion), a computational framework to estimate the145

upper bounds of SCNA arrival and initiation time from WGS data. By apply-146

ing Butte onto multi-sampled WGS data of five cancer types with widespread147

SCNAs, including osteosarcoma, we systematically charted the temporal pat-148

terns of CN evolution in vivo. To see if late-appearing SCNAs may confer149

fitness benefits, we constructed mathematical models to examine the evolu-150

tionary mechanisms that give rise to these late truncal events. Furthermore,151

we also interrogated potential ways the late culminating SCNAs could add to152

the fitness and revealed its impact on mutational diversification during tumor153

expansion.154

2 Results155

2.1 A computational framework to estimate the arrival156

time of SCNA gains157

From the WGS data, one can characterize with high certainty the dominant158

SCNAs, inferring the integer allelic CN of a genomic region and the cellular159
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Fig. 1 Measuring the arrival and initiation time of SCNAs. A drawing at the top marks
the concept of cancer somatic evolution, which leads to the establishment of the most recent
common ancestor (MRCA) of the primary tumor, as well as the roots of secondary tumors.
Tx: treatment. (A) For an SCNA present within the MRCA of a sampling-relevant tumor
expansion, we aim to characterize the time when the last gain and first gain appeared
(referred to as arrival and initiation time, respectively) for the corresponding genomic region.
(B) We further aim to address the question if the late truncal gains are neutral or beneficial
to tumor evolution. (C) The solid black line shows that the burden of SSNVs of a given
genomic locus correlates with its CN state in tumors sequenced by ICGC (single sampling,
with WGD). Two dashed lines assume the two extreme scenarios of SCNA arrival time. (D)
The proportion of SSNVs at different allele fractions depends on the SCNA history matrix
and the relative time span of each CN stage. The smoothed scatter plots show the burden
of single-copy SSNVs against the arrival time of an SCNA (tK), with an increasing density
from blue to orange. Two example SCNA states are shown (with CN configuration at 4:1
and 5:2, respectively).

prevalence of the corresponding SCNA, i.e., the percentage of cells sharing the160

dominant SCNA state [25]. We refer to a unique version of a genomic region161

(or segment) as an “allele”. We term the total CN as Nt and the CN for the162

minor allele as Nb (“b” stands for b-allele determined by germline SNPs) for163

a dominant SCNA. The “allele” fraction of an SSNV is the amount out of164

the total Nt copies of the region that carry the corresponding variant. We165
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found that in the aneuploid tumors sequenced by ICGC (International Cancer166

Genome Consortium), the SSNV burden increases with the dominant SCNA167

states of the corresponding genomic region (Figure 1C). Such a pattern is due168

to an intrinsic bias between SCNAs and SSNVs: a genomic segment resting169

on a CN state accumulates SSNVs at a rate proportional to the corresponding170

CN. Thereby, the burden and CN multiplicity of SSNVs are actively shaped171

by SCNAs.172

173

Generally, the observed SCNA of a genomic segment (with a configuration174

Nt : Nb different from 2 : 1) is the result of a series of CN events. For an175

SCNA involving at least K gain events, the total time of somatic evolution176

can be divided into K + 1 stages. The genomic segment begins with the 2 : 1177

setting in the first stage and keeps “climbing up” by duplicating one of its178

existing copies in each subsequent stage, respectively, until it arrives at the179

observed SCNA state in the last stage (Figure 1D). Accordingly, each stage180

is associated with certain time proportion (tk ≥ 0) and
∑K

0 tk = 1, the total181

time for the somatic evolution. SSNVs occurring at stage k on a segment182

copy that experiences duplication(s) in later stages will be presented on the183

duplicated copies (a ≥ 2/Nt). By contrast, SSNVs acquired at stage k on184

a copy without further duplication events remain at the single allele state185

(a = 1/Nt). One can define a history matrix A with entry Ajk representing186

the number of segment copies in stage k that result in a final allele state aj187

[18, 21]. It can be seen that the abundance of SSNVs at allele state aj depends188

on
∑

Ajktk. From the site frequency spectrum (SFS) of SSNVs in a region189

affected by SCNA, one can estimate the relative abundance of SSNVs at each190

allele state, and in turn, solve for each tk. There has been much effort to infer191

t0, i.e., the timing of the first copy number event [18, 19]. These efforts focused192

on single gain (2 : 0 and 3 : 1) and at most double gains (3 : 0 and 4 : 1),193

where the history matrix A is invertible. By contrast, for other SCNA states,194

multiple possible trajectories can exist and the underlying linear system is195

underdetermined, i.e., there are more time stages (unknown variables) than196

the possible allele states (equations). We note that, however, regardless of the197

underlying history, multi-allele SSNVs (≥ 2/Nt) can only occur before the last198

stage (K) of CN evolution; once the genomic region arrives at the observed199

clonal SCNA state, all the copies (Nt) would accumulate SSNVs at single200

allele state (1/Nt). Therefore, the longer the last stage of CN evolution (from201

the emergence of the clonal SCNA to the onset of population expansion), the202

more overwhelmingly the single allele SSNVs dominate the SFS (Figure 1D).203

Such monotonicity allows one to calculate the bounds of the time duration204

for the last stage even when the detailed SCNA history is unidentifiable.205

206

To investigate how various SCNAs unfold during somatic evolution, we207

developed Butte (BoUnds of Time Till Expansion), which adopts linear pro-208

gramming to infer the upper bounds of arrival (tK) and initiation time (t0) of209

SCNAs (see Methods). From a technical point of view Butte extends the full210
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maximum-likelihood estimation procedure implemented in cancerTiming [18].211

Notably, Butte does not restrict the analysis to single and double gains, but212

in addition allows the calculation of the upper bounds of tK and t0 for SCNAs213

up to seven total copies, broadening the “timable” SCNA regions. The upper214

bounds, by definition, overestimate the time duration. Nevertheless, these esti-215

mates systematically correlate with the actual timing of SCNA initiation and216

culmination (Supplementary Figure 1). To test the performance of Butte on217

real patient tumors, we first evaluated the timing predictions by analyzing218

multi-region WGS data of colorectal adenocarcinomas (COAD) [16, 26]. Butte219

successfully identified early CN gain of chromosome (chr) 5q (Supplementary220

Figure 2), corresponding to the SCNA state of 2 : 0 (copy neutral loss of het-221

erozygosity), a known early step in COAD initiation involving gene APC [27].222

As a benchmark for late-appearing events, private (sample-specific) SCNAs223

should contain events that occur in the descendent lineage of the MRCA of224

multi-samples. Butte predicted their arrival time to be later than the pub-225

lic SCNAs on the timeline toward the MRCA, highlighting its capability in226

revealing the late arriving SCNA events (Supplementary Figure 3).227

Fig. 2 CN profiles across five tumor types from the re-analysis of published WGS data.
Vertical bars represent the segmental CN states along the autosomal chromosomes charac-
terized by the WGS data of tumor samples. For each sample, a color-coded thick bar shows
the total CN state of each genomic locus and a thin blue bar to the right indicates that
region has loss of heterozygosity (LOH). Samples belonging to the same patient are boxed.
The top panel highlights the fraction of high CN states in each sample’s genome. The lower
panel exhibits the sample phylogenetic trees constructed from SSNVs. Sample IDs, the ref-
erence where the WGS data was published, and tumor types are tabulated at the bottom.
In this manuscript, a tumor sample is named after the concatenation of the tumor type, the
first character of the author’s surname and the patient ID.
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2.2 Evolving SCNA gains define the tumor228

transformation leading to the most recent clonal229

expansion230

To evaluate the tempo of SCNAs in solid tumors, we applied Butte on five231

tumor types by analyzing eight published WGS datasets: osteosarcoma (OS)232

[28, 29], breast invasive carcinoma (BRCA) [30, 31], colorectal adenocarci-233

nomas (COAD) [16, 26], esophageal carcinoma (ESCA) [32], and prostate234

adenocarcinoma (PRAD) [33], six of which comprise multi-sampling of patient235

tumors (Figure 2, Table 1). 70% of the analyzed genomes (corresponding to236

87% of the patients) were near triploid, with the median fraction (IQR) of the237

high amplitude CN regions (≥ 4) being 0.37 (0.23 to 0.49). Loss of heterozy-238

gosity (LOH) is prevalent but mostly is at copy neutral or amplified states in239

the triploid tumors. High amplitude gains can be recurrent across cancer types240

(e.g., chr 8q) or within a specific tumor type (e.g., chr 1q for BRCA, chr 17p241

for OS, and chr 7 for COAD). These recurrent gains presumably contain driver242

events [34], yet their tempo in somatic evolution remains uncharted. Notably,243

karyotypes largely remain stable across different samples of the same tumor,244

despite the presence of continued subclonal CN diversification in a relatively245

minor fraction of the genome.246

We note that 74 out 75 patient tumors acquired late-appearing gains close247

to MRCA regardless of the overall ploidy or tumor type (Figure 3A, B), with248

the only exception of COAD C 4, which shows high microsatellite instabil-249

ity. Punctuated copy number bursts were observed in the triploid samples,250

reflecting the ability of the genome to leapfrog over intermediate states to251

reach moderately high CN states through whole or partial genome doubling252

(GD)[35, 36]. Whereas GD occurs late (close to the MRCA) in some adult253

cancers (18 out of 34 patients), it appears to be an earlier event in many other254

tumors. This is particularly evident in OS where 28 of 30 patients had GD255

at the mid-stage of somatic evolution toward SRE (Figure 3B). The contrast-256

ing tempo of GD suggests that it probably has a context-dependent fitness.257

In tumors with early GD, Butte can characterize the post-GD CN evolution,258

whereby progenitor cells continue to sample the aneuploid fitness landscape259

[24]. Such an SCNA evolution involves stochastic chromosomal or structural260

abnormalities; however, certain genomic regions preferentially exhibit late261

gains across different patients in a particular tumor type, which, surprisingly262

includes those recurrent high amplitude gains, such as chr 8q in OS (Figure 3C)263

and chr 7 in COAD (Supplementary Figure 2). On the other hand, recurrent264

SCNAs appear to initiate early, e.g., chr 1q (AKT3 ) in BRCA, chr 8q and265

chr 17p (TP53 ) in OS and chr 5q (APC ) in COAD (Figure 3C and Supple-266

mentary Figure 2). These additional gains pre- and/or post-GD could result267

from either high evolvability of the corresponding region, or persistent selection268

upon driver genes within.269

The earlier the timing of GD, the more post-GD CN gains (Figure 4A). The270

late evolving gains are shorter in segment length than those associated with271

GD (Supplementary Figure 4), except for a few patients where post-GD events272
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Fig. 3 The timing patterns of SCNAs across five tumor types. (A) Timing plots of three
exemplified tumors. CN states along the genome are shown on the left of each panel. The
right panel visualizes the time fraction of somatic evolution from germline to the MRCA of
the patient tumor. For each SCNA segment, the inferred timing is drawn by either rectan-
gle (exactly solved timing) or arrows (upper bounds of timing when the solutions are not
unique) with the same color-coding as its CN. The top panel shows the cumulative distri-
bution (CDF) of SCNA arrival time. (B) The CDF curve of SCNA arrival time is shown
for each patient categorised by the tumor type. (C) The average timing (both initiation
and arrival time) for each one Megabase genomic bin across OS and BRCA patients are
shown, respectively. Example genes in regions showing late arrival or early initiation times
are marked.

are sparse (e.g. for patient PRAD G 21 and PRAD G 31). This suggests that273

the post-GD CN evolution is driven by SVs, which occur at a higher rate than274

chromosomal mis-segregation. Indeed, the breakpoints of structural variants275

almost locate the boundary of SCNA segments (Supplementary Figure 5). As276
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SVs continued to occur, it could become more focally amplified for the driver277

genes that are repetitively selected, making them more apparent in the late278

appearing gains, e.g., MYC [37] and RUNX2 [38] in OS (Figure 3C). In terms279

of types of gains, amplified LOH (Nb = 0 and Nt >= 3) tend to culminate280

later than other types of amplifications, such as allele specific amplifications281

(Nb = 1 and Nt >= 3, p < 3e − 5), and this cannot be explained by the282

overestimation of Butte (Supplementary Figure 6 and 1). Whereas truncal283

LOH were supposedly acquired before GD [15] causing the complete loss of284

tumor-suppressor activity, the late appearing gains of the only remaining allele285

may indicate that these regions potentially acquire dosage-dependent gain-of-286

functions [39].287

2.3 Mathematical modeling suggests the role of late288

gains in promoting tumor expansion289

While early genomic changes during somatic evolution are suggested to be290

functional initiating events, there is little known about the effect of late-291

appearing alterations (e.g., close to the MRCA). To reveal the mechanism that292

gives rise to the tempo of GD and the number of post-GD events, we math-293

ematically modeled the somatic evolution based on a multi-type branching294

process (see for example [40]), starting with a single tumor-initiating cell that295

just acquired GD (Figure 4B). This cell gives birth at a rate of a0 and dies296

at a rate of b0 (with net growth rate λ0 = a0 − b0 > 0). During progression,297

daughter cells acquire a passenger post-GD gain with a rate of u0, which does298

not change the net growth rate. With a lower rate u1, they can also acquire299

a driver post-GD gain, leading to increased fitness (λ1 = a1 − b1 > λ0, see300

Method for details). Our objective is to characterize the number of post-GD301

gains that reach fixation or become dominant in the observed tumor under two302

contrasting scenarios: one without and the other with driver post-GD gains.303

We first assumed that all post-GD gains are passenger variants. Condi-304

tioned on the non-extinction of the population, we obtained that the number305

of post-GD gains accumulated before the MRCA that grows into detectable306

tumor follows a geometric distribution with parameter λ0

λ0+u0

and mean u0

λ0

.307

The mode of this distribution is at zero, similar to the cases where GD appears308

late and post-GD CN gains are rare. To tolerate the inclusion of subclonal but309

dominant SCNAs as the clonal variants, we further evaluated the dominant310

post-GD gains shared by the majority (≥ 90%) of cancer cells. Building on the311

results of [41], we derived the expected number of dominant post-GD gains in312

a tumor with size N as313

S̃ =
N

d0.9Ne
·
u0

λ0
≈ 1.11

u0

λ0
, (1)

which is only slightly larger than the clonal ones. Assuming that u0 and λ0314

are comparable, S̃ would be no more than just a few. Moreover, numerical315



Evolving gains promote tumor expansion 11

Fig. 4 Mathematical modeling suggests that advantageous CN gains can occur late. (A)
Scatter plots colored by density illustrate the number of post GD gains against the time frac-
tion of post-GD evolution towards MRCA for OS and other adult cancer types, respectively.
A linear regression line and the confidence intervals are indicated for tumors with post-GD
gains. (B) The schema shows the setup of the two contrasting mathematical models: (1)
GD is followed by neutral growth where additional gains do not confer a fitness advantage
and (2) post-GD gains increase the growth rate. (C) Scatter plots display the number of
post-GD passenger gains against the time of post-GD evolution characterized by the selec-
tion model. We studied the effects of the growth rate of GD (with a fixed growth rate of
the MRCA, the left panel) and the rate of beneficial post-GD driver gains (the right panel),
respectively. Each point refers to the average of 100 simulations. Contours of the 2d density
estimation are shown. Parameters for the left panel: b0 = 1, a1 = 2, b1 = 1, u0 = 0.1, and
u1 = 0.0001; right panel: a0 = 1.2, b0 = 1, a1 = 2, b1 = 1, and u0 = 0.1.

simulations show that the number of dominant post-GD gains continues to316

follow a geometrical-like distribution with the mode at zero. Thus, if post-GD317

gains do not provide growth benefits, GD would be one of the last events before318

the MRCA as few of post-GD gains can become dominant in the observed319

tumor.320

However, if post-GD gains increase fitness, the situation drastically321

changes. To emphasize how this happens, let us consider the first advantageous322

cell (type 1), which is introduced via a beneficial post-GD gain and grows into323

an infinite number of descendants. The original population without the new324
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driver forms the type 0 population. In this scenario it suffices to focus on type325

1 cells as their population most likely overshadows the type 0 population upon326

detection. The expected number of passenger post-GD gains (S̄) carried by a327

type 1 cell would be proportional to the time of occurrence of the type 1 cell.328

In Methods we show that the distribution of the birth time of the first non-329

extinct type 1 cell, P (σ1 > t | Ω∞), where σ1 represents the birth time and Ω∞330

represents the event that the population does not go extinct, can be charac-331

terized as a function of the rate of beneficial gains u1 and growth parameters332

of type 1 and type 0 cells, respectively (Lemma 1). S̄ is thus,333

S̄ =

∫

∞

0

P (σ1 > t | Ω∞)u0dt. (2)

We explored various choices of growth parameters that capture the fitness334

difference between type 0 (with GD) and type 1 cells (with advantageous post-335

GD gain). Notably, lowering the fitness level of type 0 cells delays the birth of336

the type 1 cell (Figure 4C), conditioned on a fixed net growth rate of the type337

1 cell. Accordingly, the post-GD gains become abundant with a bell-shaped338

distribution when the fitness difference is large. These model predictions are339

consistent with timing patterns in tumors with early GD (Figure 4A). There-340

fore, early GD observed in many patient tumors suggests that late-appearing341

gains may confer additional advantages for promoting the expansion. We note342

that the prolonged period of post-GD evolution could also be attributable to a343

lower rate of beneficial post-GD gains (Figure 4C). Nevertheless, the beneficial344

gain inevitably appears to be a late event since passenger gains introduced after345

the beneficial one most likely will be undetectable. The inability of passenger346

variants to become dominant themselves ensures such an outcome. Therefore,347

a long waiting time after GD suggests that the late beneficial gain becomes a348

rate-limiting event.349

2.4 Ways evolving CN gains contribute to fitness350

increase and mutational diversification351

As SCNAs have a global impact on gene expression in cancer [42], the evolving352

CN gains potentially affect dosage-sensitive genes whose gains have a func-353

tional impact. In the OS and BRCA tumors, as the CN evolves, we can see354

an enrichment of putative dosage-sensitive genes that are in pathogenic CNV355

peak regions derived from dbVar [43, 44] (Figure 5A). Notably, we observed a356

similar enrichment for genes involved in sustaining proliferative signaling: one357

of the most fundamental capabilities of cancer cells [1]. MYC, EGFR and KIT358

are among such genes with late gains in both OS and BRCA, emphasizing359

their ability in stimulating cell multiplication in multiple tumor types.360

The evolving gains could amplify the impact of early functional variants361

by increasing their multiplicity (Figure 5B). Such a mechanism potentially362

affects SV breakpoints in known oncogenes (e.g., MAP3K13, MECOM and363
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Fig. 5 Ways the late CN gains contribute to the fitness of cancer progenitor cell. (A) The
gene set enrichment analysis (GSEA) was performed on the gene list ranked by the averaged
CN arrival time for BRCA and OS tumors, respectively. The scatter plot on the left shows
the normalized enrichment scores (NES) for each set of cancer census genes belonging to
the predefined cancer hallmarks by COSMIC database. The vertical bars on the right panels
visualize the timing-ranks of genes that belong to the highlighted gene sets. (B) A cartoon
illustrates the multiplicity increase of an early sequence variant due to the inclusion of that
variant by a late CN gain, with annotations indicating the type of variants (symbol shapes),
level of multiplicity (color hues) and the variants’ association with a late gain (right arrow)
or an early gain (vertical bar). (C) The SCNA timing plot of an example OS tumor similarly
arranged as in Figure 3, with additional links and symbols highlighting the SV breakpoints
in known cancer genes that are amplified by late gains. (D) The matrix plot demonstrates
genes with recurrent somatic variants and their multiplicity across the five tumor types.
Names for known cancer genes are in bold. Genes with variants showing higher multiplicity
levels than gene TTN are also included. Symbol annotations are the same as in (B).

PREX2 ), breakpoints in genes known to be involved in oncogenic fusions (e.g.,364

AFF3, LPP and ERG), and simple mutations in oncogenes (e.g., SSNVs in365

SMARCA4 and CACNA1A), see Figure 5C, D. MAP3K13 had been shown to366

promote tumor growth in high MYC -expressing cells [45, 46], a similar context367

as in the OS [37]. We note that highly mutated tumor suppressor genes (TSG),368

such as TP53, RB1 and APC, also have their early mutants duplicated or369

amplified (Figure 5D). Whereas these are presumably inactivation variants,370

the retaining of multiple copies of the variants could suggest different roles371

that remain unclear, such as a potential gain-of-function of APC mutants in372

COAD [47]. The fact that SRE requires the duplication of these early variants,373
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rather than starting immediately upon acquiring a single copy of these variants,374

suggests that late-appearing gains could cooperate with the early variants375

to promote tumor expansion. On the other hand, late SV breakpoints (at376

single copy state) coupling evolving gains are prominent in genes located in377

common fragile sites, e.g., FHIT and MACROD2. Late alterations of these378

genome “caretakers” could facilitate further genome evolution and expedite379

clonal expansion [48, 49].380

Lastly, the quantitative relation between SCNA evolution and SSNV381

accumulation, the rationale behind our timing method, implies that SCNA382

gains bolster mutational diversification between sub-populations during tumor383

growth. In principle, the higher the truncal CN state of a genomic segment,384

the higher the mutational divergence between subclones for the correspond-385

ing locus. As tumor expands, genomic regions at distinct SCNA states would386

accumulate SSNVs at different rates, leading to the heterogeneity of the SSNV387

burden along the genome. For example, when comparing two samples of a388

tumor, the sample-specific SSNVs are more abundant for regions with higher389

CN states (Figure 6A, B). Notably, the overall CN state affects the structure390

of phylogenetic trees, i.e., it explains more than 50% of the variance of the rel-391

ative branching distance measured by SSNVs in COAD and PRAD patients,392

where extensive multi-region sampling is available (Figure 6C). Furthermore,393

continued evolution of SCNAs between subpopulations would also alter the394

SSNV divergence. For example, the SSNVs divergence is particularly enlarged395

for regions showing different CN states between the two samples (Figure 6B).396

As such, increased SSNV diversity in regions with CN gains provides more397

materials for further selection within the expanding cell populations.398

3 Discussion399

The major impediment to devising better therapies for tumors with the CIN400

phenotype is its highly complex somatic genome. In this study, we have created401

a computational framework for measuring the arrival and initiation time of402

SCNAs during the somatic evolution of the MRCA of tumor sample(s). By403

applying this method on WGS data of patient tumors, we have found that late404

truncal CN gains close to the most recent clonal expansion are common across405

multiple tumor types. Mathematical modeling predicts that these late evolving406

gains could contain rate-limiting driver events, promoting the tumor growth.407

As CN gains increase the gene dosage and early functional variants, we further408

demonstrated that an integrated analysis of SCNA timing, SV breakpoints409

and simple mutations has a strong potential for isolating the functional effect410

of specific genomic aberrations.411

Early genomic changes are presumably beneficial for tumor initiation[27],412

but it is unclear the effect of late truncal events. Here we have provided evi-413

dence that gains occurring later in the somatic evolution, i.e., close to MRCA,414

can also be beneficial. The simplified two-event cancer development model415

posits that the cancer-initiating event is followed by the promoting event [50].416
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Fig. 6 The effect of SCNA on SSNV diversification during tumor expansion. (A) The rate
of sample-private SSNVs when comparing two samples of a COAD patient tumor. The
segmental CN states (total and minor CN) along the autosomal chromosomes for the two
tumor samples are shown as gray rectangles above and below the x axis. The rate of sample
private SSNVs (per million base pairs, blue line) fluctuates with the CN states. Genomic
regions with different CN states between the two samples are in light red background. (B)
The box plots on the left panel illustrate the rate of private SSNVs in sample P1 detected
in regions at a given total CN state. The half-violin plots on the right panel demonstrate
such a rate for regions showing stable or diverging CN states between the two samples.
(C) The branching distance relative to truncal distance in a tumor’s phylogenetic tree was
calculated for each of the COAD, ESCA and PRAD tumors to evaluate the correlation with
the averaged CN of the corresponding tumor samples. Annotations show the percentage of
variance explained by a linear regression model.

We reason that the evolving CN gains might render the progenitor cell capa-417

ble of “self-promoting,” as they act similarly as a tumor “promoter” by (a)418

increasing the dosage of genes causing sustained proliferative signaling; (b)419

amplifying the mutant allele with early initiating driver variants; and (c) accel-420

erating the accumulation of further genomic alterations. As both the early and421

late CN alterations could confer fitness advantages, chromosomal regions with422

SCNAs initiated early and arrived late, i.e., showing repetitive gains accompa-423

nying the entire course of the somatic evolution, could function as copy number424

“addictions.”425

GD, a landmark event in CN evolution, has context-dependent fitness426

effect. The punctuated CN gains successfully induced the SRE in tumors that427

underwent a late GD. By contrast, for many other tumors, especially osteosar-428

coma, GD was followed by additional CN gains that produces the MRCA. GD429

could tolerate the occurrence of deleterious passengers [51]. However, simply430

escaping purifying selection was not sufficient to drive the ultimate outgrowth,431

at least not in the tumors with post-GD gains, where some chromosomal432

regions can reach higher CN states. Alternatively, GD may create an inflated433

genome space, accelerating the accumulation of driver alterations. As GD itself434
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affects many genes, regions with pre- and/or post-GD gains could serve as a435

reduced search space for CN drivers.436

Our method is applicable to a wide range of SCNAs, yet it is still challeng-437

ing to analyze extremely high CN states (i.e. above eight). We note that regions438

with such a high CN likely evolve over time, such as the unequal segregation439

of extra-chromosomal oncogene amplifications [52, 53]. As such, late-arriving440

changes are expected for these amplified regions. Some focal high-level gains441

could involve small segments where the number of SSNVs is inadequate for442

calculation. This problem can be mitigated by borrowing information from443

nearby segments with the identical CN state. This strategy is applicable to444

synchronized SCNAs, such as chromothripsis [54, 55]. In addition, our anal-445

ysis may have missed some late-appearing SCNAs due to overestimation.446

This is particularly evident for bi-allelic gains (4:2), where the upper bounds447

overestimate the actual timing (Supplementary Figure 1). Furthermore, dele-448

tion was not modelled as it is unidentifiable [18]; by comparing CN profiles449

between subpopulations, however, it is possible to study deletions during tumor450

expansion.451

Our findings also illustrate the existence of a fundamental connection452

between CN evolution and SSNV diversity, which can explain the positive453

correlation between aneuploidy and mutational burden when excluding hyper-454

mutated tumors [56, 57]. Such a connection also indicates that we need to455

account for the dynamic nature of ongoing SCNAs when measuring subclonal456

evolution, which remains a challenge [58]. Finally, our results suggest that457

much can be gained by including the SCNA arrival time in studying tumor458

evolution, thereby shifting focus on exclusively early drivers to the evolving459

genomic events that affect the rate of tumor progression.460
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4 Methods461

Table 1 WGS data included in this study

Tumor Ref. Accession Code Sampling1 #Samples2 #Patients

OS
Negri[28] EGAD00001004482 MTS 17 9
Chen[29] EGAS00001000263 Single,MTS 24 22

COAD
Cross[16] EGAD00001004966 MRS 43 7
Dang[26] phs001722.v1.p1 MRS,MTS 7 2

BRCA
Yates[30] EGAD00001002696 MTS 26 12
Kawazu[31] JGAD000095 Single 10 10

PRAD Gundem[33] EGAD00001000891 MRS,MTS 47 9
ESCA Ross-Innes[59] EGAD00001001394 MRS 11 4

1MRS: multi-region sampling; MTS: multi-tumor sampling
2Samples passed our quality assessment (Supplementary Figure 7, 8 and 9).

4.1 Somatic variant calling from WGS data462

Raw WGS data in bam or fastq formats were downloaded from public463

databases provided by the original publications (Table 1). The cumulative read464

depth distribution along the human genome (hg38) and the tumor purity and465

ploidy for each sample are illustrated in Supplementary Figure 7, 8, and 9. We466

have extended our existing pipeline, which had achieved a balance in sensitivity467

and specificity in detecting SSNVs by borrowing information across multiple468

samples[60], to allow the detection of clonal SCNAs and the breakpoints of469

structural variants.470

SSNVs and INDELs: Analysis-ready read alignment bam files (against471

hg38) were generated according to the best practices, including indel realign-472

ment, base recalibration and flagging of duplicated reads. Raw candidate473

variants were produced by MuTect (v1.1.7) [3]. To reduce the false-positive474

rate due to misalignments or other technical artifacts and to salvage the vari-475

ants that may be missed due to uneven read coverage between samples, the476

alignment features surrounding each candidate variant were collected for each477

sample. The heuristic-based criterion for the read alignment patterns was478

adopted to refine and variant calls as detailed previously [60]. Small insertions479

and deletions were called by using Strelka (v1.0.15)[61].480

SCNAs: Copy number and tumor purity were estimated by using481

TitanCNA (v1.26.0)[25]. Germline heterozygous SNVs used as input to482

TitanCNA were identified using Samtools (v1.5)[62] and subject to the same483

filtering strategy as was applied to SSNVs. The one-clone solution reported484

by TitanCNA (i.e., the sample is dominated by a clone with an SCNA pro-485

file along the genome) globally fit the data of the read coverage and allelic486

imbalance well, with a few exceptions for which the two-clones solution are487

necessary to explain the data of specific genomic regions.488
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SVs: We incorporated two distinct SV calling tools relying on orthog-489

onal approaches, i.e., DELLY (v0.7.8, abnormal read pair and split-read490

analysis)[63] and GRIDSS (v2.10.1, local assembly based algorithm)[64]. We491

focused on the SV breakpoints found by both tools, as these shared calls gen-492

erally have higher quality (e.g. with higher breakpoint confidence) than those493

unique to each tool (Supplementary Figure 10). SV breakpoints were annotated494

with AnnotSV[65].495

4.2 Analysis of genomic divergence496

SCNA divergence: When multi-samples are available for a patient, the trun-497

cal and private SCNAs were identified as follows: (1) we partitioned the genome498

into disjoint segments by considering all the SCNAs called from the samples of499

the patient; (2) for each segment, we calculated a generalized likelihood ratio500

statistics for the comparison between two samples. The statistics is the ratio501

of the values of the likelihood function (the probability of observing the read502

depth ratio and B-allele frequency for SNPs in the region) evaluated at the503

maximum likelihood estimation in the sub-model (two samples have the same504

CN profile) and at the maximum likelihood estimation in the full-model; and505

(3) the statistics converges weakly to a random variable with chi-square dis-506

tribution and thus can be used to determine if a segment shows significantly507

different SCNA states between the two samples. The term “truncal SCNAs”508

refers to SCNAs that exhibit no difference in pairwise comparisons.509

Sample phylogeny: We applied Treeomics (v1.7.13) [66] to construct510

sample phylogenies from SSNV data. Treeomics takes into account the uncer-511

tainty due to purity differences and variations of read depth on the SSNV loci512

to derive robust sample phylogenies.513

Clonality, multiplicity of SSNVs and SV breakpoints: SSNVs were514

classified as public (present in all tumor cells) or private according to the515

criterion as previously described for multi-sampling data [60]. In individual516

samples, clonal SSNVs were identified as those with the 95% confidence interval517

of cancer cell fraction (CCF) covering 1 [60]. We focused on the public SSNVs518

(multi-sampling) and clonal SSNVs (single sampling) for the timing analysis.519

For SSNVs or SV breakpoints existing in an SCNA region, we applied a bino-520

mial model to calculate the maximum likelihood estimates of the number of521

segment copies containing that variant as previously described [21].522

4.3 Inferring the arrival and initiation time of SCNAs523

4.3.1 Allele state distribution of SSNVs for a clonal SCNA524

For SSNV i in an SCNA region (with CN configuration of Nt : Nb and M ≥525

10 SSNVs in total), we obtained from WGS the read counts carrying the526

mutant allelemi out of the total number of reads di. Expectation Maximization527

algorithm was used to estimate the proportion of SSNVs at each possible allele528

fraction, i.e. a vector q that gives the probability of randomly acquired SSNVs529

in this region having an purity-adjusted allele frequency (fi = aj) for each530
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possible allele state j

Nt

. The rationale behind this is that the likelihood function531

of observing a particular SSNV data is related to the probability vector q as532

well as tumor purity. The log-likelihood is given by,533

M
∑

i=1

log Pr(mi | mi > 0, q) =

M
∑

i=1

log

(

∑Nt−Nb

j=1 Pr(mi | fi = aj)qj

1−
∑Nt−Nb

j=1 (1− aj)diqj

)

. (3)

4.3.2 Estimating the upper bounds of initiation and arrival534

time535

For a genomic region affected by SCNA gains, let A be a possible history536

matrix with entry Ajk representing the number of segment copies in stage k537

that result in a final allele state aj . Let q be a vector with entry qj represent-538

ing the probability of a randomly acquired SSNV in this region having allele539

frequency aj . For single and double gains (Nt : Nb at 3:1, 2:0, 4:1 or 3:0), the540

initiation time (t0) and arrival time (tK) are directly solved because matrix A541

is unique and invertible. For other SCNAs, Butte uses linear programming to542

obtain the upper bounds of timings across all possible history matrices for the543

corresponding CN configuration (Supplementary Figure 11). Let s denote the544

vector of the column sum of matrix A. Let t denote the relative time vector in545

which every component is a time fraction of the corresponding copy number546

state. We solve the following optimization problem by linear programming:547

max
tk

tK

s.t. (A− qsT )t = 0

1 · t = 1,

where tK is the last element in vector t. The maximum value of tK gives us an548

upper bound of the arrival time given A. For upper bounds of initiation, we549

instead maximize t0 which is the first element in t. To tolerate noise in the allele550

state distribution estimated from sequencing data, we add a slack variable on551

each capacity constraint, having a penalty cost of 100. The confidence intervals552

of the estimated upper bounds were calculated through bootstrapping the553

SSNV data.554

4.4 Mathematical modeling of the late evolving gains555

Consider two contrasting models based on multi-type branching processes with556

mutations. In both models, the tumor grows from a single tumor-initiating557

cell which just acquired GD. During the tumor’s progression, cancer cells558

accumulate mutations (post-GD gains).559

In the first model, all mutations are passenger mutations. Therefore, all
cancer cells give birth at a rate of a0 and die at a rate of b0. The net growth
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rate is λ0 = a0 − b0 > 0. Neutral mutations occur at rate u0 per unit time
throughout the lifetime of a cell, and each mutation is distinct (the infinite-
sites model of Kimura [67]). We can obtain that the number of mutations
accumulated before the first cell division, which results in two descendants with
infinite lineage, follows a geometric distribution with parameter λ0

λ0+u0

and
mean u0

λ0

(conditioned on the non-extinction of the cancer cell population). We
then investigated the number of mutations which are shared by more than 90%
of the total population (we refer to them as dominant mutations). Gunnarsson
and his co-authors [41] derived exact expressions for the expected SFS of a cell
population that evolves according to a branching process. We utilized their
results on the skeleton subpopulation (see Appendix C of [41]) — cells with
an infinite line of descents which determines the high frequency spectrum —
to express the expected number of dominant mutations S̃ when the tumor
reaches a fixed size N as

S̃ =
N

d0.9Ne
·
u0

λ0
≈ 1.11

u0

λ0
. (4)

In the second model, the tumor-initiating cell and its descendants with560

only passenger mutations form the type 0 population. Type 0 cells give birth561

at a rate of a0 and die at a rate of b0. The net growth rate is λ0 = a0− b0 > 0.562

Type 0 cells mutate to type 1 cells at a rate of u1. Type 1 cells give birth at563

a rate of a1 and die at a rate of b1. The net growth rate is λ1 = a1 − b1 > λ0.564

Both type 0 and type 1 cells accumulate passenger mutations at a rate of u0.565

Due to the selective advantage type 1 cells have over type 0 cells, a tumor at566

detection is most likely to be dominated by type 1 cells. As a result, it suffices567

to focus on mutations shared by the majority of type 1 cells. For tractability,568

we investigated the number of passenger mutations accrued in the first type 1569

cell with infinite lineage. In Lemma 1, we obtained the distribution of the time570

to the first such type 1 cell conditioned on the non-extinction of the tumor.571

Lemma 1 Let σ1 denote the time of occurrence of the first type 1 cell that gives rise

to a family which does not die out, and let Ω∞ denote the event of non-extinction of

the tumor. Then

P (σ1 > t | Ω∞) =
a0 (1− q0) +

u1(1−q1)
1−q0

a0 (1− q0) +
u1(1−q1)

1−q0
eζt

,

where

q0 =
a0 + b0 + u1 −

√

(a0 + b0 + u1)
2 − 4a0 (u1q1 + b0)

2a0
,

q1 =
b1

a1
, and

ζ =
u1 (1− q1)

1− q0
+ a0 (1− q0) .
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With Lemma 1, we can obtain the expected number of passenger mutations
accumulated in the first type 1 cell with infinite lineage, denoted by S̄:

S̄ =

∫

∞

0

P (σ1 > t | Ω∞)u0dt. (5)

With (4) and (5), we obtained that the expected number of dominant post-GD572

gains in the subpopulation generated from the first type 1 cell with infinite573

lineage is S̃+ S̄+1, where the last 1 represents the number of post-GD driver574

mutation. Proof for Lemma 1 and details of (4) can be found in Supplementary575

Methods.576
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