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Abstract

Charting the evolutionary history of rampant somatic copy number alter-
ations (SCNA) is an indispensable step toward a deeper understanding
of their roles in tumor development. However, the existing SCNA timing
analysis is limited to low copy number states and initiating gains, which
are not necessarily close to the onset of the malignant proliferation. More-
over, it remains a critical question if the timing of an SCNA reveals the
corresponding variant’s fitness effect. Here we propose a framework to
estimate the arrival time of a clonal SCNA, i.e., the time delay from its
last alteration to the start of population expansion, in addition to its initi-
ation time when the first alteration occurs. Our method leverages the bias
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2 Evolving gains promote tumor expansion

that a genomic segment, when resting on a copy number (CN) state, accu-
mulates somatic single nucleotide variants (SSNV) at a rate proportional
to its CN. From the whole genome sequencing data of 184 samples from
75 patients across five tumor types, we commonly observed late clonal
CN gains following early initiating events, which appear right before the
expansion leading to the observed tumor sample(s). Genome doubling
(GD) can be late, but post-GD CN evolution is prevalent in the geneal-
ogy of the most recent common ancestor of patient tumors. Notably,
mathematical modeling suggests that late evolving events could contain
rate-limiting drivers. The advantage of evolving gains could arise from
the dosage increase of cancer genes in proliferative signaling and ampli-
fication of early functional variants. In addition, evolving SCNAs bolster
the diversification of SSNVs between sub-populations, exacerbating the
vicious circle between malignant growth and accumulation of genomic
heterogeneity. Our findings have broad implications for resolving the tra-
jectory of SCNAs, discerning the CN markers of malignant growth in
vivo, and properly quantifying tumor heterogeneity in aneuploid tumors.

Keywords: Timing of Somatic Copy Number Alteration, Aneuploidy, Whole
genome sequencing, Cancer evolution, Tumor heterogeneity

1 Introduction

Underlying the maintained genomic diversity within a patient tumor is the
uncontrolled proliferation, a core hallmark of cancer [1], coupled with somatic
alterations occurring over time [2]. To prevent the disease, uncovering the
somatic aberrations responsible for the malignant growth is the primary
goal of precision oncology. At the genomic level, somatic alterations exist on
a spectrum, ranging from small changes such as somatic single nucleotide
variants (SSNV, often referred to as mutations) [3] to large somatic copy num-
ber alterations (SCNA). Frequent chromosomal mis-segregation (chromosomal
instability or CIN) leads to abnormal chromosome numbers (aneuploidy[4])
and unbalanced structural variations (SV) cause segmental SCNAs [5]. These
two genomic errors are intertwined in many solid tumors, leading to extensive
SCNAs, especially in advanced diseases [4] with poor clinical outcomes [6].
The inextricable relation of SCNAs to cancer initiation[7, 8] and
progression[9] has become a consensus in cancer genomics. It remains little
known, however, to what extent a specific SCNA accounts for the malignant
growth and how it affects the intra-tumor-heterogeneity (ITH) [4]. Indeed,
chaotic karyotype and widespread high copy number (CN) states in aneuploid
tumors[10] make it extremely challenging to identify SCNA drivers, limiting
the precision of using SCNA patterns for diagnostic and treatment purposes.
For example, the treatment strategy for osteosarcoma, the most common bone
tumor affecting teenagers with one of the most chaotic aneuploid genomes,
has stagnated for decades [11]. From an evolutionary perspective, discovering
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Evolving gains promote tumor expansion 3

the tempo of SCNA during somatic evolution is key to gaining knowledge of
SCNA drivers [12]. Here, we hypothesize that the timing of SCNAs can be sys-
tematically measured from whole genome sequencing (WGS) data of patient
tumors, and the temporal axis contains tangible information in isolating the
effect of specific SCNAs on tumorigenesis.

We should pause to clarify how bulk sequencing data capture somatic evo-
lution timeline. The tumor founder cell arose from the succession of clonal
expansions in the pre-cancerous context where beneficial alterations endow
progenitor cells with the ability to crowd out less advantageous populations
[13] (Figure 1A). The growth of the primary lesion gives rise to genomically
diverging lineages [14], some of which, after acquiring a more malignant poten-
tial, can initiate the re-growth of a secondary tumor, such as metastasis [15].
Bulk sequencing data provide us with the opportunity to anchor the roots of
expansion (the most recent common ancestor, or MRCA). Clonal variants in a
single sample refer to the root of the observed sample. In multi-region sequenc-
ing, truncal variants from multiple samples could trace back asymptotically
to the founder of the tumor [16]. For longitudinal sampling, e.g., of paired
primary and metastatic tumors, truncal variants could point to the MRCA
of the branched tumor progression [17]. Multi-samples reflect the population
expansion at a broader scale, i.e., they coalesce to an earlier progenitor cell
than a single sample does. Collectively, truncal variants revealed by a particu-
lar sampling strategy must map to the somatic evolution timeline prior to the
corresponding sampling-relevant expansion (SRE).

The timing of a truncal SCNA (more specifically, gains) on the evolution
toward the MRCA could shed light on the impact of this variant on promoting
the SRE. However, our knowledge about the SCNA timing remains fragmen-
tary as the existing methods are restricted to simple (single or double) gains
[16, 18, 19]. Single-sample based pan-cancer analysis from ICGC[19] revealed
extensive variation in the molecular time of these sample gains. Relative to
aneuploid tumors, these gains are likely the initiating events of copy number
evolution and may not be sufficient to induce the expansion. For example, sin-
gle chromosome gains have shown limited capability in driving proliferation in
in vitro systems [20]. As such, it would be critical to know when a genomic
segment further evolves beyond the initial gains, which can often culminate at
a state greater than four copies [10]. This requires a timing method applica-
ble to high SCNA states. In SCNA timing analysis, the following assumption
is made: the site frequency spectrum (SFS) of SSNVs in a genomic region
affected by SCNA depends on the trajectory (the order) and time span on
each CN state that the segment had ever rested on [21]. For a single gain, the
ratio between early (duplicated) and late (non-duplicated) SSNVs can be used
to estimate the relative timing of the gain [12]. For a high CN state (> 4) or
gains involving both maternal and paternal alleles, the detailed trajectory of
each SCNA evolution is not identifiable from the SFS [18], at least not with-
out further constraints on the trajectory or additional information that could
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4 Evolving gains promote tumor expansion

allow one to reconstruct the ordering [21]. We reason, however, that it is pos-
sible to obtain the upper bounds of the time duration of a segment resting
on its observed truncal CN state before the onset of SRE. In principle, once
a segment arrives at the final CN state, it can only accumulate single-copy
SSNVs; the longer the segment persists in the observed CN state, the more
overwhelming the single-copy SSNVs. Notably, for the first time, this allows
us to investigate the arrival time for SCNAs at high CN states.

An outstanding question is how the timing of an SCNA reflects its fitness
effect (Figure 1B). Whereas early gains could initiate and increase the risk
of disease, we argue that late-appearing SCNAs close to MRCA could pro-
mote the population expansion more directly. If an SCNA triggers SRE, one
may foresee that the progenitor cell proliferates vigorously upon acquiring the
corresponding SCNA. By contrast, before the SRE begins, if the clonal lin-
eage persists for many generations after receiving an SCNA, the corresponding
variant is unlikely to be sufficient to drive the SRE. Punctuated acquisition
of polyploidy (e.g., through genome doubling or GD) is prevalent in aneu-
ploid tumors [22] but it remains unclear how close the occurrence of GD is to
tumor transformation. Evidence exists that GD itself doesn’t confer a strong
fitness advantage[23]; instead, it can enhance the plasticity of the genome that
permits further CN evolution, such that aneuploid cells adapt to overcome pos-
sible fitness penalties incurred by GD [24]. Therefore, SCNAs that arrive after
GD could contain driver events. Moreover, depending on the precise location
of biopsied tissue, single-sample analyses may differ in the corresponding time
scale; subsequently, it is particularly essential to focus on the timeline toward
the malignant growth - the somatic evolution in collecting truncal SSNVs of
multiple samples of a tumor (e.g., multi-region samples or paired primary and
metastatic samples).

To broaden the “timable” genomic regions for SCNAs, we developed Butte
(BoUnds of Time Till Expansion), a computational framework to estimate the
upper bounds of SCNA arrival and initiation time from WGS data. By apply-
ing Butte onto multi-sampled WGS data of five cancer types with widespread
SCNAs, including osteosarcoma, we systematically charted the temporal pat-
terns of CN evolution in vivo. To see if late-appearing SCNAs may confer
fitness benefits, we constructed mathematical models to examine the evolu-
tionary mechanisms that give rise to these late truncal events. Furthermore,
we also interrogated potential ways the late culminating SCNAs could add to
the fitness and revealed its impact on mutational diversification during tumor
expansion.

2 Results

2.1 A computational framework to estimate the arrival
time of SCNA gains

From the WGS data, one can characterize with high certainty the dominant
SCNAs, inferring the integer allelic CN of a genomic region and the cellular
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Fig. 1 Measuring the arrival and initiation time of SCNAs. A drawing at the top marks
the concept of cancer somatic evolution, which leads to the establishment of the most recent
common ancestor (MRCA) of the primary tumor, as well as the roots of secondary tumors.
Tx: treatment. (A) For an SCNA present within the MRCA of a sampling-relevant tumor
expansion, we aim to characterize the time when the last gain and first gain appeared
(referred to as arrival and initiation time, respectively) for the corresponding genomic region.
(B) We further aim to address the question if the late truncal gains are neutral or beneficial
to tumor evolution. (C) The solid black line shows that the burden of SSNVs of a given
genomic locus correlates with its CN state in tumors sequenced by ICGC (single sampling,
with WGD). Two dashed lines assume the two extreme scenarios of SCNA arrival time. (D)
The proportion of SSNVs at different allele fractions depends on the SCNA history matrix
and the relative time span of each CN stage. The smoothed scatter plots show the burden
of single-copy SSNVs against the arrival time of an SCNA (g ), with an increasing density
from blue to orange. Two example SCNA states are shown (with CN configuration at 4:1
and 5:2, respectively).

prevalence of the corresponding SCNA, i.e., the percentage of cells sharing the
dominant SCNA state [25]. We refer to a unique version of a genomic region
(or segment) as an “allele”. We term the total CN as N; and the CN for the
minor allele as N, (“b” stands for b-allele determined by germline SNPs) for
a dominant SCNA. The “allele” fraction of an SSNV is the amount out of
the total IV; copies of the region that carry the corresponding variant. We
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6 Evolving gains promote tumor expansion

found that in the aneuploid tumors sequenced by ICGC (International Cancer
Genome Consortium), the SSNV burden increases with the dominant SCNA
states of the corresponding genomic region (Figure 1C). Such a pattern is due
to an intrinsic bias between SCNAs and SSNVs: a genomic segment resting
on a CN state accumulates SSNVs at a rate proportional to the corresponding
CN. Thereby, the burden and CN multiplicity of SSNVs are actively shaped
by SCNAs.

Generally, the observed SCNA of a genomic segment (with a configuration
N; : N, different from 2 : 1) is the result of a series of CN events. For an
SCNA involving at least K gain events, the total time of somatic evolution
can be divided into K + 1 stages. The genomic segment begins with the 2 : 1
setting in the first stage and keeps “climbing up” by duplicating one of its
existing copies in each subsequent stage, respectively, until it arrives at the
observed SCNA state in the last stage (Figure 1D). Accordingly, each stage
is associated with certain time proportion (¢ > 0) and Zé( tr = 1, the total
time for the somatic evolution. SSNVs occurring at stage k on a segment
copy that experiences duplication(s) in later stages will be presented on the
duplicated copies (a > 2/N;). By contrast, SSNVs acquired at stage k on
a copy without further duplication events remain at the single allele state
(a = 1/N;). One can define a history matrix A with entry A;, representing
the number of segment copies in stage k that result in a final allele state a;
[18, 21]. It can be seen that the abundance of SSNVs at allele state a; depends
on Y Ajity. From the site frequency spectrum (SFS) of SSNVs in a region
affected by SCNA, one can estimate the relative abundance of SSNVs at each
allele state, and in turn, solve for each t;. There has been much effort to infer
to, i.e., the timing of the first copy number event [18, 19]. These efforts focused
on single gain (2 : 0 and 3 : 1) and at most double gains (3 : 0 and 4 : 1),
where the history matrix A is invertible. By contrast, for other SCNA states,
multiple possible trajectories can exist and the underlying linear system is
underdetermined, i.e., there are more time stages (unknown variables) than
the possible allele states (equations). We note that, however, regardless of the
underlying history, multi-allele SSNVs (> 2/N;) can only occur before the last
stage (K) of CN evolution; once the genomic region arrives at the observed
clonal SCNA state, all the copies (IV;) would accumulate SSNVs at single
allele state (1/N;). Therefore, the longer the last stage of CN evolution (from
the emergence of the clonal SCNA to the onset of population expansion), the
more overwhelmingly the single allele SSNVs dominate the SFS (Figure 1D).
Such monotonicity allows one to calculate the bounds of the time duration
for the last stage even when the detailed SCNA history is unidentifiable.

To investigate how various SCNAs unfold during somatic evolution, we
developed Butte (BoUnds of Time Till Expansion), which adopts linear pro-
gramming to infer the upper bounds of arrival () and initiation time (¢g) of
SCNAs (see Methods). From a technical point of view Butte extends the full
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Evolving gains promote tumor expansion 7

maximum-likelihood estimation procedure implemented in cancerTiming [18].
Notably, Butte does not restrict the analysis to single and double gains, but
in addition allows the calculation of the upper bounds of tx and tg for SCNAs
up to seven total copies, broadening the “timable” SCNA regions. The upper
bounds, by definition, overestimate the time duration. Nevertheless, these esti-
mates systematically correlate with the actual timing of SCNA initiation and
culmination (Supplementary Figure 1). To test the performance of Butte on
real patient tumors, we first evaluated the timing predictions by analyzing
multi-region WGS data of colorectal adenocarcinomas (COAD) [16, 26]. Butte
successfully identified early CN gain of chromosome (chr) 5q (Supplementary
Figure 2), corresponding to the SCNA state of 2 : 0 (copy neutral loss of het-
erozygosity), a known early step in COAD initiation involving gene APC' [27].
As a benchmark for late-appearing events, private (sample-specific) SCNAs
should contain events that occur in the descendent lineage of the MRCA of
multi-samples. Butte predicted their arrival time to be later than the pub-
lic SCNAs on the timeline toward the MRCA, highlighting its capability in
revealing the late arriving SCNA events (Supplementary Figure 3).
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8 Evolving gains promote tumor expansion

2.2 Evolving SCNA gains define the tumor
transformation leading to the most recent clonal
expansion

To evaluate the tempo of SCNAs in solid tumors, we applied Butte on five
tumor types by analyzing eight published WGS datasets: osteosarcoma (OS)
[28, 29], breast invasive carcinoma (BRCA) [30, 31], colorectal adenocarci-
nomas (COAD) [16, 26], esophageal carcinoma (ESCA) [32], and prostate
adenocarcinoma (PRAD) [33], six of which comprise multi-sampling of patient
tumors (Figure 2, Table 1). 70% of the analyzed genomes (corresponding to
87% of the patients) were near triploid, with the median fraction (IQR) of the
high amplitude CN regions (> 4) being 0.37 (0.23 to 0.49). Loss of heterozy-
gosity (LOH) is prevalent but mostly is at copy neutral or amplified states in
the triploid tumors. High amplitude gains can be recurrent across cancer types
(e.g., chr 8q) or within a specific tumor type (e.g., chr 1q for BRCA, chr 17p
for OS, and chr 7 for COAD). These recurrent gains presumably contain driver
events [34], yet their tempo in somatic evolution remains uncharted. Notably,
karyotypes largely remain stable across different samples of the same tumor,
despite the presence of continued subclonal CN diversification in a relatively
minor fraction of the genome.

We note that 74 out 75 patient tumors acquired late-appearing gains close
to MRCA regardless of the overall ploidy or tumor type (Figure 3A, B), with
the only exception of COAD_C_4, which shows high microsatellite instabil-
ity. Punctuated copy number bursts were observed in the triploid samples,
reflecting the ability of the genome to leapfrog over intermediate states to
reach moderately high CN states through whole or partial genome doubling
(GD)[35, 36]. Whereas GD occurs late (close to the MRCA) in some adult
cancers (18 out of 34 patients), it appears to be an earlier event in many other
tumors. This is particularly evident in OS where 28 of 30 patients had GD
at the mid-stage of somatic evolution toward SRE (Figure 3B). The contrast-
ing tempo of GD suggests that it probably has a context-dependent fitness.
In tumors with early GD, Butte can characterize the post-GD CN evolution,
whereby progenitor cells continue to sample the aneuploid fitness landscape
[24]. Such an SCNA evolution involves stochastic chromosomal or structural
abnormalities; however, certain genomic regions preferentially exhibit late
gains across different patients in a particular tumor type, which, surprisingly
includes those recurrent high amplitude gains, such as chr 8q in OS (Figure 3C)
and chr 7 in COAD (Supplementary Figure 2). On the other hand, recurrent
SCNAs appear to initiate early, e.g., chr 1q (AKT3) in BRCA, chr 8q and
chr 17p (TP53) in OS and chr 5q (APC) in COAD (Figure 3C and Supple-
mentary Figure 2). These additional gains pre- and/or post-GD could result
from either high evolvability of the corresponding region, or persistent selection
upon driver genes within.

The earlier the timing of GD, the more post-GD CN gains (Figure 4A). The
late evolving gains are shorter in segment length than those associated with
GD (Supplementary Figure 4), except for a few patients where post-GD events
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are sparse (e.g. for patient PRAD_G_21 and PRAD_G_31). This suggests that
the post-GD CN evolution is driven by SVs, which occur at a higher rate than
chromosomal mis-segregation. Indeed, the breakpoints of structural variants
almost locate the boundary of SCNA segments (Supplementary Figure 5). As
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10 Evolving gains promote tumor expansion

SVs continued to occur, it could become more focally amplified for the driver
genes that are repetitively selected, making them more apparent in the late
appearing gains, e.g., MYC [37] and RUNX2[38] in OS (Figure 3C). In terms
of types of gains, amplified LOH (N, = 0 and N; >= 3) tend to culminate
later than other types of amplifications, such as allele specific amplifications
(Npy =1 and Ny >= 3, p < 3e —5), and this cannot be explained by the
overestimation of Butte (Supplementary Figure 6 and 1). Whereas truncal
LOH were supposedly acquired before GD [15] causing the complete loss of
tumor-suppressor activity, the late appearing gains of the only remaining allele
may indicate that these regions potentially acquire dosage-dependent gain-of-
functions [39].

2.3 Mathematical modeling suggests the role of late
gains in promoting tumor expansion

While early genomic changes during somatic evolution are suggested to be
functional initiating events, there is little known about the effect of late-
appearing alterations (e.g., close to the MRCA). To reveal the mechanism that
gives rise to the tempo of GD and the number of post-GD events, we math-
ematically modeled the somatic evolution based on a multi-type branching
process (see for example [40]), starting with a single tumor-initiating cell that
just acquired GD (Figure 4B). This cell gives birth at a rate of ag and dies
at a rate of by (with net growth rate A\g = ag — by > 0). During progression,
daughter cells acquire a passenger post-GD gain with a rate of ug, which does
not change the net growth rate. With a lower rate uy, they can also acquire
a driver post-GD gain, leading to increased fitness (A = a3 — by > Ao, see
Method for details). Our objective is to characterize the number of post-GD
gains that reach fixation or become dominant in the observed tumor under two
contrasting scenarios: one without and the other with driver post-GD gains.

We first assumed that all post-GD gains are passenger variants. Condi-
tioned on the non-extinction of the population, we obtained that the number
of post-GD gains accumulated before the MRCA that grows into detectable
tumor follows a geometric distribution with parameter /\O’l"ug and mean 7/{—3
The mode of this distribution is at zero, similar to the cases where GD appears
late and post-GD CN gains are rare. To tolerate the inclusion of subclonal but
dominant SCNAs as the clonal variants, we further evaluated the dominant
post-GD gains shared by the majority (> 90%) of cancer cells. Building on the
results of [41], we derived the expected number of dominant post-GD gains in
a tumor with size N as

= N Ug (')

S=——- —=111—, 1
[0.9N] Ao Ao (1)
which is only slightly larger than the clonal ones. Assuming that uo and Ag
are comparable, S would be no more than just a few. Moreover, numerical
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Fig. 4 Mathematical modeling suggests that advantageous CN gains can occur late. (A)
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tion of post-GD evolution towards MRCA for OS and other adult cancer types, respectively.
A linear regression line and the confidence intervals are indicated for tumors with post-GD
gains. (B) The schema shows the setup of the two contrasting mathematical models: (1)
GD is followed by neutral growth where additional gains do not confer a fitness advantage
and (2) post-GD gains increase the growth rate. (C) Scatter plots display the number of
post-GD passenger gains against the time of post-GD evolution characterized by the selec-
tion model. We studied the effects of the growth rate of GD (with a fixed growth rate of
the MRCA, the left panel) and the rate of beneficial post-GD driver gains (the right panel),
respectively. Each point refers to the average of 100 simulations. Contours of the 2d density
estimation are shown. Parameters for the left panel: bgp = 1, a; = 2, by = 1, ugp = 0.1, and
u1 = 0.0001; right panel: ap = 1.2, b0 =1, a1 =2, by =1, and uo = 0.1.

simulations show that the number of dominant post-GD gains continues to
follow a geometrical-like distribution with the mode at zero. Thus, if post-GD
gains do not provide growth benefits, GD would be one of the last events before
the MRCA as few of post-GD gains can become dominant in the observed
tumor.

However, if post-GD gains increase fitness, the situation drastically
changes. To emphasize how this happens, let us consider the first advantageous
cell (type 1), which is introduced via a beneficial post-GD gain and grows into
an infinite number of descendants. The original population without the new
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12 Evolving gains promote tumor expansion

driver forms the type 0 population. In this scenario it suffices to focus on type
1 cells as their population most likely overshadows the type 0 population upon
detection. The expected number of passenger post-GD gains (S) carried by a
type 1 cell would be proportional to the time of occurrence of the type 1 cell.
In Methods we show that the distribution of the birth time of the first non-
extinct type 1 cell, P (07 > t | Qs ), where o7 represents the birth time and Q.
represents the event that the population does not go extinct, can be charac-
terized as a function of the rate of beneficial gains u; and growth parameters
of type 1 and type 0 cells, respectively (Lemma 1). S is thus,

0

We explored various choices of growth parameters that capture the fitness
difference between type 0 (with GD) and type 1 cells (with advantageous post-
GD gain). Notably, lowering the fitness level of type 0 cells delays the birth of
the type 1 cell (Figure 4C), conditioned on a fixed net growth rate of the type
1 cell. Accordingly, the post-GD gains become abundant with a bell-shaped
distribution when the fitness difference is large. These model predictions are
consistent with timing patterns in tumors with early GD (Figure 4A). There-
fore, early GD observed in many patient tumors suggests that late-appearing
gains may confer additional advantages for promoting the expansion. We note
that the prolonged period of post-GD evolution could also be attributable to a
lower rate of beneficial post-GD gains (Figure 4C). Nevertheless, the beneficial
gain inevitably appears to be a late event since passenger gains introduced after
the beneficial one most likely will be undetectable. The inability of passenger
variants to become dominant themselves ensures such an outcome. Therefore,
a long waiting time after GD suggests that the late beneficial gain becomes a
rate-limiting event.

2.4 Ways evolving CN gains contribute to fitness
increase and mutational diversification

As SCNAs have a global impact on gene expression in cancer [42], the evolving
CN gains potentially affect dosage-sensitive genes whose gains have a func-
tional impact. In the OS and BRCA tumors, as the CN evolves, we can see
an enrichment of putative dosage-sensitive genes that are in pathogenic CNV
peak regions derived from dbVar [43, 44] (Figure 5A). Notably, we observed a
similar enrichment for genes involved in sustaining proliferative signaling: one
of the most fundamental capabilities of cancer cells [1]. MYC, EGFR and KIT
are among such genes with late gains in both OS and BRCA, emphasizing
their ability in stimulating cell multiplication in multiple tumor types.

The evolving gains could amplify the impact of early functional variants
by increasing their multiplicity (Figure 5B). Such a mechanism potentially
affects SV breakpoints in known oncogenes (e.g., MAP3K13, MECOM and
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Fig. 5 Ways the late CN gains contribute to the fitness of cancer progenitor cell. (A) The
gene set enrichment analysis (GSEA) was performed on the gene list ranked by the averaged
CN arrival time for BRCA and OS tumors, respectively. The scatter plot on the left shows
the normalized enrichment scores (NES) for each set of cancer census genes belonging to
the predefined cancer hallmarks by COSMIC database. The vertical bars on the right panels
visualize the timing-ranks of genes that belong to the highlighted gene sets. (B) A cartoon
illustrates the multiplicity increase of an early sequence variant due to the inclusion of that
variant by a late CN gain, with annotations indicating the type of variants (symbol shapes),
level of multiplicity (color hues) and the variants’ association with a late gain (right arrow)
or an early gain (vertical bar). (C) The SCNA timing plot of an example OS tumor similarly
arranged as in Figure 3, with additional links and symbols highlighting the SV breakpoints
in known cancer genes that are amplified by late gains. (D) The matrix plot demonstrates
genes with recurrent somatic variants and their multiplicity across the five tumor types.
Names for known cancer genes are in bold. Genes with variants showing higher multiplicity
levels than gene TTN are also included. Symbol annotations are the same as in (B).

PREXZ2), breakpoints in genes known to be involved in oncogenic fusions (e.g.,
AFF3, LPP and ERG), and simple mutations in oncogenes (e.g., SSNVs in
SMARCA/ and CACNA1A), see Figure 5C, D. MAP3K13 had been shown to
promote tumor growth in high MY C-expressing cells [45, 46], a similar context
as in the OS [37]. We note that highly mutated tumor suppressor genes (TSG),
such as TP53, RB1 and APC, also have their early mutants duplicated or
amplified (Figure 5D). Whereas these are presumably inactivation variants,
the retaining of multiple copies of the variants could suggest different roles
that remain unclear, such as a potential gain-of-function of APC mutants in
COAD [47]. The fact that SRE requires the duplication of these early variants,
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14 Evolving gains promote tumor expansion

rather than starting immediately upon acquiring a single copy of these variants,
suggests that late-appearing gains could cooperate with the early variants
to promote tumor expansion. On the other hand, late SV breakpoints (at
single copy state) coupling evolving gains are prominent in genes located in
common fragile sites, e.g., FHIT and MACROD?2. Late alterations of these
genome “caretakers” could facilitate further genome evolution and expedite
clonal expansion [48, 49].

Lastly, the quantitative relation between SCNA evolution and SSNV
accumulation, the rationale behind our timing method, implies that SCNA
gains bolster mutational diversification between sub-populations during tumor
growth. In principle, the higher the truncal CN state of a genomic segment,
the higher the mutational divergence between subclones for the correspond-
ing locus. As tumor expands, genomic regions at distinct SCNA states would
accumulate SSN'Vs at different rates, leading to the heterogeneity of the SSNV
burden along the genome. For example, when comparing two samples of a
tumor, the sample-specific SSNVs are more abundant for regions with higher
CN states (Figure 6A, B). Notably, the overall CN state affects the structure
of phylogenetic trees, i.e., it explains more than 50% of the variance of the rel-
ative branching distance measured by SSNVs in COAD and PRAD patients,
where extensive multi-region sampling is available (Figure 6C). Furthermore,
continued evolution of SCNAs between subpopulations would also alter the
SSNV divergence. For example, the SSNVs divergence is particularly enlarged
for regions showing different CN states between the two samples (Figure 6B).
As such, increased SSNV diversity in regions with CN gains provides more
materials for further selection within the expanding cell populations.

3 Discussion

The major impediment to devising better therapies for tumors with the CIN
phenotype is its highly complex somatic genome. In this study, we have created
a computational framework for measuring the arrival and initiation time of
SCNAs during the somatic evolution of the MRCA of tumor sample(s). By
applying this method on WGS data of patient tumors, we have found that late
truncal CN gains close to the most recent clonal expansion are common across
multiple tumor types. Mathematical modeling predicts that these late evolving
gains could contain rate-limiting driver events, promoting the tumor growth.
As CN gains increase the gene dosage and early functional variants, we further
demonstrated that an integrated analysis of SCNA timing, SV breakpoints
and simple mutations has a strong potential for isolating the functional effect
of specific genomic aberrations.

Early genomic changes are presumably beneficial for tumor initiation[27],
but it is unclear the effect of late truncal events. Here we have provided evi-
dence that gains occurring later in the somatic evolution, i.e., close to MRCA,
can also be beneficial. The simplified two-event cancer development model
posits that the cancer-initiating event is followed by the promoting event [50].
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Fig. 6 The effect of SCNA on SSNV diversification during tumor expansion. (A) The rate
of sample-private SSNVs when comparing two samples of a COAD patient tumor. The
segmental CN states (total and minor CN) along the autosomal chromosomes for the two
tumor samples are shown as gray rectangles above and below the x axis. The rate of sample
private SSNVs (per million base pairs, blue line) fluctuates with the CN states. Genomic
regions with different CN states between the two samples are in light red background. (B)
The box plots on the left panel illustrate the rate of private SSNVs in sample P1 detected
in regions at a given total CN state. The half-violin plots on the right panel demonstrate
such a rate for regions showing stable or diverging CN states between the two samples.
(C) The branching distance relative to truncal distance in a tumor’s phylogenetic tree was
calculated for each of the COAD, ESCA and PRAD tumors to evaluate the correlation with
the averaged CN of the corresponding tumor samples. Annotations show the percentage of
variance explained by a linear regression model.

We reason that the evolving CN gains might render the progenitor cell capa-
ble of “self-promoting,” as they act similarly as a tumor “promoter” by (a)
increasing the dosage of genes causing sustained proliferative signaling; (b)
amplifying the mutant allele with early initiating driver variants; and (c¢) accel-
erating the accumulation of further genomic alterations. As both the early and
late CN alterations could confer fitness advantages, chromosomal regions with
SCNAs initiated early and arrived late, i.e., showing repetitive gains accompa-
nying the entire course of the somatic evolution, could function as copy number
“addictions.”

GD, a landmark event in CN evolution, has context-dependent fitness
effect. The punctuated CN gains successfully induced the SRE in tumors that
underwent a late GD. By contrast, for many other tumors, especially osteosar-
coma, GD was followed by additional CN gains that produces the MRCA. GD
could tolerate the occurrence of deleterious passengers [51]. However, simply
escaping purifying selection was not sufficient to drive the ultimate outgrowth,
at least not in the tumors with post-GD gains, where some chromosomal
regions can reach higher CN states. Alternatively, GD may create an inflated
genome space, accelerating the accumulation of driver alterations. As GD itself
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16 Evolving gains promote tumor expansion

affects many genes, regions with pre- and/or post-GD gains could serve as a
reduced search space for CN drivers.

Our method is applicable to a wide range of SCNAs, yet it is still challeng-
ing to analyze extremely high CN states (i.e. above eight). We note that regions
with such a high CN likely evolve over time, such as the unequal segregation
of extra-chromosomal oncogene amplifications [52, 53]. As such, late-arriving
changes are expected for these amplified regions. Some focal high-level gains
could involve small segments where the number of SSNVs is inadequate for
calculation. This problem can be mitigated by borrowing information from
nearby segments with the identical CN state. This strategy is applicable to
synchronized SCNAs, such as chromothripsis [54, 55]. In addition, our anal-
ysis may have missed some late-appearing SCNAs due to overestimation.
This is particularly evident for bi-allelic gains (4:2), where the upper bounds
overestimate the actual timing (Supplementary Figure 1). Furthermore, dele-
tion was not modelled as it is unidentifiable [18]; by comparing CN profiles
between subpopulations, however, it is possible to study deletions during tumor
expansion.

Our findings also illustrate the existence of a fundamental connection
between CN evolution and SSNV diversity, which can explain the positive
correlation between aneuploidy and mutational burden when excluding hyper-
mutated tumors [56, 57]. Such a connection also indicates that we need to
account for the dynamic nature of ongoing SCNAs when measuring subclonal
evolution, which remains a challenge [58]. Finally, our results suggest that
much can be gained by including the SCNA arrival time in studying tumor
evolution, thereby shifting focus on exclusively early drivers to the evolving
genomic events that affect the rate of tumor progression.
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4 Methods

Table 1 WGS data included in this study

Tumor  Ref. Accession Code Sampling! #Samples?  #Patients

08 Negri[28] EGADO00001004482 MTS 17 9
Chen|[29] EGAS00001000263  Single, MTS 24 22

COAD Cross[16] EGADO00001004966 ~ MRS 43 7
Dang[26] phs001722.v1.pl MRS,MTS 7 2

BRCA Yates[30] EGADO00001002696 MTS 26 12
Kawazu[31] JGADO000095 Single 10 10

PRAD  Gundem[33] EGADO00001000891 MRS,MTS 47 9

ESCA  Ross-Innes[59] EGADO00001001394 MRS 11 4

IMRS: multi-region sampling; MTS: multi-tumor sampling

2Samples passed our quality assessment (Supplementary Figure 7, 8 and 9).

4.1 Somatic variant calling from WGS data

Raw WGS data in bam or fastq formats were downloaded from public
databases provided by the original publications (Table 1). The cumulative read
depth distribution along the human genome (hg38) and the tumor purity and
ploidy for each sample are illustrated in Supplementary Figure 7, 8, and 9. We
have extended our existing pipeline, which had achieved a balance in sensitivity
and specificity in detecting SSNVs by borrowing information across multiple
samples[60], to allow the detection of clonal SCNAs and the breakpoints of
structural variants.

SSNVs and INDELSs: Analysis-ready read alignment bam files (against
hg38) were generated according to the best practices, including indel realign-
ment, base recalibration and flagging of duplicated reads. Raw candidate
variants were produced by MuTect (v1.1.7) [3]. To reduce the false-positive
rate due to misalignments or other technical artifacts and to salvage the vari-
ants that may be missed due to uneven read coverage between samples, the
alignment features surrounding each candidate variant were collected for each
sample. The heuristic-based criterion for the read alignment patterns was
adopted to refine and variant calls as detailed previously [60]. Small insertions
and deletions were called by using Strelka (v1.0.15)[61].

SCNAs: Copy number and tumor purity were estimated by using
TitanCNA (v1.26.0)[25]. Germline heterozygous SNVs used as input to
TitanCNA were identified using Samtools (v1.5)[62] and subject to the same
filtering strategy as was applied to SSNVs. The one-clone solution reported
by TitanCNA (i.e., the sample is dominated by a clone with an SCNA pro-
file along the genome) globally fit the data of the read coverage and allelic
imbalance well, with a few exceptions for which the two-clones solution are
necessary to explain the data of specific genomic regions.
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SVs: We incorporated two distinct SV calling tools relying on orthog-
onal approaches, i.e., DELLY (v0.7.8, abnormal read pair and split-read
analysis)[63] and GRIDSS (v2.10.1, local assembly based algorithm)[64]. We
focused on the SV breakpoints found by both tools, as these shared calls gen-
erally have higher quality (e.g. with higher breakpoint confidence) than those
unique to each tool (Supplementary Figure 10). SV breakpoints were annotated
with AnnotSV[65].

4.2 Analysis of genomic divergence

SCNA divergence: When multi-samples are available for a patient, the trun-
cal and private SCNAs were identified as follows: (1) we partitioned the genome
into disjoint segments by considering all the SCNAs called from the samples of
the patient; (2) for each segment, we calculated a generalized likelihood ratio
statistics for the comparison between two samples. The statistics is the ratio
of the values of the likelihood function (the probability of observing the read
depth ratio and B-allele frequency for SNPs in the region) evaluated at the
maximum likelihood estimation in the sub-model (two samples have the same
CN profile) and at the maximum likelihood estimation in the full-model; and
(3) the statistics converges weakly to a random variable with chi-square dis-
tribution and thus can be used to determine if a segment shows significantly
different SCNA states between the two samples. The term “truncal SCNAs”
refers to SCNAs that exhibit no difference in pairwise comparisons.

Sample phylogeny: We applied Treeomics (v1.7.13) [66] to construct
sample phylogenies from SSNV data. Treeomics takes into account the uncer-
tainty due to purity differences and variations of read depth on the SSNV loci
to derive robust sample phylogenies.

Clonality, multiplicity of SSNVs and SV breakpoints: SSNVs were
classified as public (present in all tumor cells) or private according to the
criterion as previously described for multi-sampling data [60]. In individual
samples, clonal SSNVs were identified as those with the 95% confidence interval
of cancer cell fraction (CCF) covering 1 [60]. We focused on the public SSNVs
(multi-sampling) and clonal SSNVs (single sampling) for the timing analysis.
For SSNVs or SV breakpoints existing in an SCNA region, we applied a bino-
mial model to calculate the maximum likelihood estimates of the number of
segment copies containing that variant as previously described [21].

4.3 Inferring the arrival and initiation time of SCNAs
4.3.1 Allele state distribution of SSNVs for a clonal SCNA

For SSNV 4 in an SCNA region (with CN configuration of Ny : N, and M >
10 SSNVs in total), we obtained from WGS the read counts carrying the
mutant allele m; out of the total number of reads d;. Expectation Maximization
algorithm was used to estimate the proportion of SSNVs at each possible allele
fraction, i.e. a vector ¢ that gives the probability of randomly acquired SSNVs
in this region having an purity-adjusted allele frequency (f; = a;) for each
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possible allele state N . The rationale behind this is that the likelihood function
of observing a partlcular SSNV data is related to the probability vector ¢ as
well as tumor purity. The log-likelihood is given by,

M

Nt Ny T . = X
ZlogPr(mi lms > 0,q) Zlog (Z Nlj (mq | fi a])QJ) . 3)

=N .
i=1 - Zj:l "(1—a;)%q;

4.3.2 Estimating the upper bounds of initiation and arrival
time

For a genomic region affected by SCNA gains, let A be a possible history
matrix with entry A;j, representing the number of segment copies in stage k
that result in a final allele state a;. Let ¢ be a vector with entry g; represent-
ing the probability of a randomly acquired SSNV in this region having allele
frequency a;. For single and double gains (Nt : Nb at 3:1, 2:0, 4:1 or 3:0), the
initiation time (¢g) and arrival time (¢x ) are directly solved because matrix A
is unique and invertible. For other SCNAs, Butte uses linear programming to
obtain the upper bounds of timings across all possible history matrices for the
corresponding CN configuration (Supplementary Figure 11). Let s denote the
vector of the column sum of matrix A. Let ¢ denote the relative time vector in
which every component is a time fraction of the corresponding copy number
state. We solve the following optimization problem by linear programming;:

max tg
tk

st. (A—gshHt=0
1-t=1,

where tg is the last element in vector ¢t. The maximum value of {x gives us an
upper bound of the arrival time given A. For upper bounds of initiation, we
instead maximize tg which is the first element in . To tolerate noise in the allele
state distribution estimated from sequencing data, we add a slack variable on
each capacity constraint, having a penalty cost of 100. The confidence intervals
of the estimated upper bounds were calculated through bootstrapping the
SSNV data.

4.4 Mathematical modeling of the late evolving gains

Consider two contrasting models based on multi-type branching processes with
mutations. In both models, the tumor grows from a single tumor-initiating
cell which just acquired GD. During the tumor’s progression, cancer cells
accumulate mutations (post-GD gains).

In the first model, all mutations are passenger mutations. Therefore, all
cancer cells give birth at a rate of ag and die at a rate of by. The net growth
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rate is Ag = ag — bg > 0. Neutral mutations occur at rate ug per unit time
throughout the lifetime of a cell, and each mutation is distinct (the infinite-
sites model of Kimura [67]). We can obtain that the number of mutations
accumulated before the first cell division, which results in two descendants with
infinite lineage, follows a geometric distribution with parameter )\Ojf)u[) and
mean K—g (conditioned on the non-extinction of the cancer cell population). We
then investigated the number of mutations which are shared by more than 90%
of the total population (we refer to them as dominant mutations). Gunnarsson
and his co-authors [41] derived exact expressions for the expected SFS of a cell
population that evolves according to a branching process. We utilized their
results on the skeleton subpopulation (see Appendix C of [41]) — cells with
an infinite line of descents which determines the high frequency spectrum —
to express the expected number of dominant mutations S when the tumor
reaches a fixed size N as

N (') U
=~ 1.11—. 4
[0.9N] Ao o )

S:

In the second model, the tumor-initiating cell and its descendants with
only passenger mutations form the type 0 population. Type 0 cells give birth
at a rate of ag and die at a rate of by. The net growth rate is \g = ag — by > 0.
Type 0 cells mutate to type 1 cells at a rate of uy. Type 1 cells give birth at
a rate of a; and die at a rate of by. The net growth rate is Ay = a1 — by > Ag.
Both type 0 and type 1 cells accumulate passenger mutations at a rate of wuyg.
Due to the selective advantage type 1 cells have over type 0 cells, a tumor at
detection is most likely to be dominated by type 1 cells. As a result, it suffices
to focus on mutations shared by the majority of type 1 cells. For tractability,
we investigated the number of passenger mutations accrued in the first type 1
cell with infinite lineage. In Lemma 1, we obtained the distribution of the time
to the first such type 1 cell conditioned on the non-extinction of the tumor.

Lemma 1 Let o1 denote the time of occurrence of the first type 1 cell that gives rise
to a family which does not die out, and let Q0so denote the event of non-extinction of
the tumor. Then
(1-q1)
ag (1 - go) + “— 2
P(oy >t ] Qo) = 1= do

0 (1= ) + 2 G

where

ap +bo +u1 — \/(ao +bo +u1)” — 4ag (u1g1 + bo)

q0 = 2a0 s
qlzb—l, and

ay

uy (1 —
C:M+ao(1—%)-

1—qo
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With Lemma 1, we can obtain the expected number of passenger mutations
accumulated in the first type 1 cell with infinite lineage, denoted by S:

0

With (4) and (5), we obtained that the expected number of dominant post-GD
gains in the subpopulation generated from the first type 1 cell with infinite
lineage is S + S 4 1, where the last 1 represents the number of post-GD driver
mutation. Proof for Lemma 1 and details of (4) can be found in Supplementary
Methods.
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