

1 The restriction factor *pastrel* is associated with host vigor, viral titer, and
2 variation in disease tolerance during Drosophila C Virus infection

3
4

5 Megan A.M. Kutzer^{1§}, Vanika Gupta^{1§}, Kyriaki Neophytou², Vincent Doublet^{1,3}, Katy M.
6 Monteith¹, Pedro F. Vale^{1*}

7

8 ¹ Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK.

9 ² Institute of Immunology and Infection Research, School of Biological Sciences, University of
10 Edinburgh, UK.

11 ³ Current address: Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm,
12 Germany.

13

14 *Correspondence: pedro.vale@ed.ac.uk

15 § These authors contributed equally

16 **Abstract**

17 Genetic variation for both resistance and disease tolerance has been described in a range of
18 species infected with bacterial, viral and fungal pathogens. In *Drosophila melanogaster*, genetic
19 variation in mortality following systemic Drosophila C Virus (DCV) infection has been shown to
20 be driven by large effect polymorphisms in the viral restriction factor *pastrel* (*pst*). However, it is
21 unclear if *pst* impacts variation in DCV titres (i.e. resistance), or if it also contributes to disease
22 tolerance. We investigated systemic infection across a range of DCV challenge doses spanning
23 nine orders of magnitude, in males and females of ten *Drosophila* Genetic Reference Panel
24 (DGRP) lines carrying either a susceptible (S) or resistant (R) *pst* allele. Our results uncover
25 among-line variation in fly survival, viral titers, and disease tolerance measured both as the
26 ability to maintain survival (mortality tolerance) and reproduction (fecundity tolerance). We
27 confirm the role of *pst* in resistance, as fly lines with the resistant (R) *pst* allele experienced
28 lower viral titers, and we uncover novel effects of *pst* on host vigor, as flies carrying the R allele
29 exhibited higher survival and fecundity even in the absence of infection. Finally, we found
30 significant variation in the expression of the JAK-STAT ligand *upd3* and the epigenetic regulator
31 of JAK-STAT *G9a*. While *G9a* has been previously shown to mediate tolerance of DCV
32 infection, we found no correlation between the expression of either *upd3* or *G9a* on fly tolerance
33 or resistance. Our work highlights the importance of both resistance and tolerance in viral
34 defence.

35

36 Introduction

37 Why do some hosts succumb to infection while others survive? Host heterogeneity in infection
38 outcomes can be attributed in part to two distinct but complimentary sets of mechanisms, which
39 together act to maintain host health: mechanisms that limit pathogen growth and mechanisms
40 that prevent, reduce or repair tissue damage caused during infection but without directly
41 affecting pathogen load. The relative balance between these mechanisms may result in
42 phenotypically distinct outcomes. We tend to associate a strong capacity to clear infection with a
43 'resistance' phenotype, while hosts with very efficient damage limitation mechanisms may
44 appear to be relatively healthy even if their ability to clear is not pronounced and pathogen loads
45 remain high - generally described as a 'disease tolerance' phenotype [1–7].

46

47 Beyond differences in their underlying mechanisms, resistance and tolerance can have
48 profoundly different epidemiological and evolutionary outcomes [8–11]. If disease tolerance
49 improves host survival, the infectious period is prolonged, thus increasing pathogen transmission
50 and infection prevalence. In this case, hosts with an allele that confers mortality tolerance (high
51 survival relative to their pathogen load) have a fitness advantage, so the tolerance allele spreads
52 throughout the host population, leading to the eventual fixation of tolerance in the population
53 [12]. However, this prediction contrasts with many studies that find evidence for genetic
54 variation in disease tolerance within a population [13–17]. One possible explanation for this
55 divergence between predicted and observed levels of genetic variation is that disease tolerance
56 may incur fitness costs that are not captured in models of tolerance evolution. A related point is
57 that many evolutionary models make specific assumptions about a trade-off between resistance
58 and tolerance [12,18]. While such a trade-off may exist in some systems [13,16], it is by no

59 means universal [19–21]. Further, if disease tolerance acts only to maintain or improve host
60 fecundity, it should be neutral with respect to pathogen prevalence because host lifespan is
61 unaffected, thus the pathogen's transmission period is neither prolonged nor shortened [12].
62 Therefore, theoretical predictions suggest that we might expect to observe heterogeneity for
63 fecundity tolerance but not mortality tolerance in natural populations [12].

64

65 Here, we tested how two intrinsic sources of variation – genetic background and sex – interact to
66 contribute to host heterogeneity in disease defence measured as resistance and tolerance. We
67 focused on the interaction between the fruit fly *Drosophila melanogaster* and Drosophila C
68 Virus (DCV), a horizontally transmitted, positive sense RNA virus, that naturally infects
69 multiple *Drosophila* species [22–24]. Systemic infection with high doses of DCV leads to
70 infection of the smooth muscles around the crop, which causes pathology and results in intestinal
71 obstruction, reduced metabolic rate, and reduced locomotor activity [25–28]. The majority of
72 genetic variance in host mortality during DCV infection is controlled by large effect
73 polymorphisms in and around the *pastrel* (*pst*) gene, a viral restriction factor [22,29]. The
74 protective effect of *pst* was confirmed by loss-of-function mutants and an overexpression study
75 [29]. However, it is unclear if variation in the protective effects of *pst* act by increasing the fly's
76 ability to clear the viral infection, or to tolerate its pathological effects. Further, DCV infection is
77 associated with increased fecundity as well as accelerated developmental time in larvae at both
78 lethal and sublethal doses [26]. Since *D. melanogaster* may tolerate infections by increasing their
79 reproductive output and/ or improving survival outcomes, we used lines that varied in their
80 susceptibility to DCV infection [30] in order to capture the entire range of genetic variation in
81 resistance and tolerance available across the DGRP panel.

82

83 We used males and females flies from ten DGRP lines [31] carrying either a resistant (R) or
84 susceptible (S) *pst* allele. We systemically challenged male and female flies with five doses of
85 DCV. We measured host lifespan and viral titre in both sexes, as well as cumulative fecundity
86 and reproductive rate in females. By doing so, we were able to characterize natural variation in
87 resistance, mortality tolerance, and fecundity tolerance to DCV. Tolerance is frequently
88 measured as a reaction norm, where host fitness is regressed against parasite load assayed at a
89 fixed dose [1,4]. Instead of relying on host heterogeneity at a single dose, we regressed host
90 lifespan and cumulative fecundity against five viral doses spanning nine orders of magnitude to
91 examine variation in mortality and fecundity tolerance (see also [32,33]. This allowed us to
92 assess how each fly genotype and sex contribute to host defence across a broad range of infection
93 intensities.

94

95 In addition to characterizing variation in resistance to and tolerance of DCV infection, we also
96 aimed to link this variation with potential mechanisms, particularly for disease tolerance, where
97 knowledge of the underlying mechanisms has lagged behind the description of their phenotypic
98 effects. As disease tolerance relates to a reduction of pathology independently of pathogen
99 clearance, tolerance mechanisms described to date have included those that prevent, limit or
100 repair tissue damage [3,34–38]. Inflammation is one common cause of such damage during
101 infection. Pro-inflammatory cytokines tend to be associated with decreased tolerance to infection
102 – for example, a tolerant house finch population (*Haemorhous mexicanus*) infected with a
103 bacterial pathogen, *Mycoplasma gallisepticum*, exhibited lower cytokine expression compared
104 with a less tolerant population [35]; mice receiving the anti-inflammatory drug Ibuprofen showed

105 improved increased tolerance during *Mycobacterium tuberculosis* infection [39]; and lower
106 levels of circulating pro-inflammatory cytokines are associated with tolerance of malaria after re-
107 exposure to the parasite [40]. Negative regulation of immune responses that minimize
108 inflammation would therefore appear to be prime candidates for mechanisms that promote
109 disease tolerance [34,40–42]. This is supported by previous work showing that the epigenetic
110 modifier, *G9a*, which regulates JAK-STAT signalling to prevent hyperactivation of the immune
111 response, increases tolerance to RNA virus infection by limiting immunopathology [43,44]. We
112 therefore also investigated if variation in resistance or tolerance in the tested lines were
113 associated with the expression of either *G9a* or of *upd3*, a JAK-STAT pathway target gene that
114 encodes a cytokine-like protein [45].

115

116

117 **Methods**

118

119 *D. melanogaster* culture conditions and experimental lines

120 To assess genetic variation in resistance and tolerance to *Drosophila* C virus (DCV), we chose
121 ten lines from the *Drosophila* Genetic Reference Panel (DGRP) [31] spanning the range of
122 variation in fly survival within the DGRP when infected systemically with DCV [22]. Because
123 the transcription factor *pastrel* (*pst*) is known to affect survival to DCV infection, we specifically
124 selected five susceptible (S) lines (RAL-138, RAL-373, RAL-380, RAL-765, RAL-818) and five
125 resistant (R) lines (RAL-59, RAL-75, RAL-379, RAL-502, RAL-738). All lines were previously
126 cleared of *Wolbachia* infection, as it known to confer protection against DCV. All fly stocks in
127 the lab, including the DGRP panel, are routinely checked for several viral pathogens using PCR;
128 no viral contamination has ever been detected [46–48]. All lines were maintained on standard
129 cornmeal medium (cite) at 25°C on a 12h: 12h light: dark cycle.

130

131 *Virus preparation*

132 DCV was grown in a *Drosophila* S2 cell culture as described previously [27]. The homogenized
133 culture was passed through a sucrose cushion, ultracentrifuged and re-suspended in 10mM Tris-
134 HCl (pH 7.3). The suspended virus was stored at -80°C in 10 µl aliquots. Virus titres were
135 measured using quantitative Real Time PCR as described previously [44]. Briefly, total RNA
136 was extracted using TRI reagent (Ambion) and then reverse transcribed using M-MLV Reverse
137 Transcriptase (Promega) and random hexamers. The manufacturer's protocol was followed to
138 synthesize cDNA. Ten-fold serial dilutions of this cDNA was done up to 10^{-10} dilution. The
139 number of DCV copies in these samples was quantified using DCV specific primers
140 (DCV_Forward: 5' AATAAATCATAAGCCACTGTGATTGATACAACAGAC 3',

141 DCV_Reverse: 5' AATAAACATAAGAACGACGATCTTCTTCCAAACC 3') and Fast
142 SYBR green (Applied Biosystems) based qRT- PCR (Applied Biosystems StepOne Plus). The
143 dilution at which no copies were detected was set as zero reference. The viral quantity was back
144 calculated from this point and viral copies in the stock were estimated to be 10^9 DCV infective
145 units (IU) ml⁻¹.

146

147 *Infections*

148 All experimental flies were reared under constant density of between 80-100 eggs per vial for at
149 least two generations. We infected 3 – 5 day old adult male and female flies with five
150 concentrations of DCV inoculum 10^3 , 10^5 , 10^6 , 10^8 , and 10^9 DCV IU ml⁻¹. All the viral
151 inoculums were obtained by diluting the same viral stock solution in sterile 10mM Tris-HCl.
152 Flies were infected systemically by intra-thoracic pricking using a needle (Minutein pin,
153 0.14mm) dipped in the viral suspension. A control group were pricked with a needle dipped in
154 sterile 10mM Tris-HCl (pH - 7.3). In total, we infected 20 individual replicate flies for each
155 combination of DGRP line, DCV concentration and sex, resulting in a total of 2400 flies (20
156 replicates x 10 DGRP lines x 6 DCV concentrations x 2 sexes). Given the large number of
157 infections (5 replicates per Line x Dose x Sex, ~ 600 flies per day), we blocked the experiment
158 across four days, and collected eggs separately from each of the ten DGRP lines on each day.
159 Each fly was housed individually in a vial after infection and flies were monitored for mortality
160 daily. Flies were transferred to new food vials every week until day 28 post infection, while the
161 previous vials were stored at 25°C until all progeny eclosed as adults. We quantified the
162 cumulative fecundity of each individual fly as the total number of adult offspring produced
163 during this 28-day period (or until death, if this happened prior to the 28th day).

164

165 *Viral load*

166 In addition to the 2400 flies exposed to DCV to monitor survival, a further five individuals for a
167 given Line \times Dose \times Sex combination (600 flies in total) were infected to measure the viral load
168 at three days post infection (3 DPI). We chose this time-point because we wanted to quantify
169 viral load in the flies before the onset of mortality due to infection across all doses as flies in the
170 higher DCV concentrations started dying within four days of infection. Each fly was transferred
171 to TRI reagent at 3 DPI, and flies were frozen at -80°C until RNA extraction. We measured viral
172 load as described above and previously in Gupta and Vale (2017). We generated the DCV
173 standard curve by quantifying DCV titers in serially-diluted samples of DCV. This standard
174 curve was used for absolute quantification of virus titers in the fly samples.

175

176 *Gene expression*

177 The Jak-Stat pathway has been described previously as being involved in the response to DCV
178 [43]. To test if measures of resistance or tolerance were correlated with the expression of Jak-
179 Stat pathway genes, we pricked 3 – 7 day old flies with 10 mM Tris-HCl (pH 7.3) (control) or
180 10^7 DCV IU ml⁻¹. We used 10^7 DCV IU ml⁻¹ because it reflected the half maximal effective
181 concentration (EC50) across the 10 tested lines and elicits an immune response in *D.*
182 *melanogaster* at this dose. Following infection, the flies were housed by Line x Treatment x Sex
183 in vials containing standard Lewis Cornmeal medium. Three days post-infection, we set up five
184 replicates of each treatment combination containing three live flies in 1.5 mL Eppendorf tubes.
185 We anesthetized the flies on ice, placed them in 60 μ l of TRIzol reagent (Invitrogen), and stored
186 them at -70°C for gene expression analyses.

187 To quantify the differences in transcription levels of *G9a* and the Jak-Stat pathway gene *upd3*,
188 we used quantitative Reverse Transcription PCR (RT-qPCR). First, we homogenized flies
189 submerged in TRIzol Reagent using a pestle motor. Total RNA was extracted using a Direct-zol
190 RNA Miniprep kit (Zymo Research) in accordance with the manufacturer's instructions and
191 stored at -70°C. We included a DNase treatment step per the manufacturer's recommendation, to
192 digest genomic DNA. The isolated RNA was reverse transcribed with M-MLV reverse
193 transcriptase (Promega) and random hexamer primers (ligation at 70°C for 5 mins, cDNA
194 synthesis at 37°C for 1 hr), diluted 1:7 with triple-distilled water and stored at -20°C. Gene
195 expression was quantified using Fast SYBR Green Master Mix (Applied Biosystems) and the
196 primers detailed in Supplementary Table S1, on the Applied Biosystems StepOnePlus instrument
197 using the following protocol: 95°C for 2 mins, followed by 40 cycles of denaturation at 95°C for
198 10 s and annealing and amplification at 60°C for 30 s. We normalized gene expression of the
199 target genes with the reference gene *rp49* and reported expression as fold change relative to the
200 control flies. We calculated fold change in gene expression as $2^{-\Delta\Delta Ct[49]}$.

201 To correct for the systematic error among qPCR plates (n = 10), we used two calibrators (male
202 RAL-501, replicate 1, infected; male RAL-501, replicate 1, uninfected). Eight μ l aliquots were
203 stored at -20°C for later use. The calibrators' mean Ct values were used to calculate correction
204 factors per run, per target gene. Between-plate variation was removed prior to calculating
205 relative gene expression, as described by [50]. Missing values for the *G9a* calibrators for one
206 plate were determined from the correlation of *G9a* expression from all runs between calibrators'
207 mean Ct and Ct values of samples.

208 *Statistical methods*

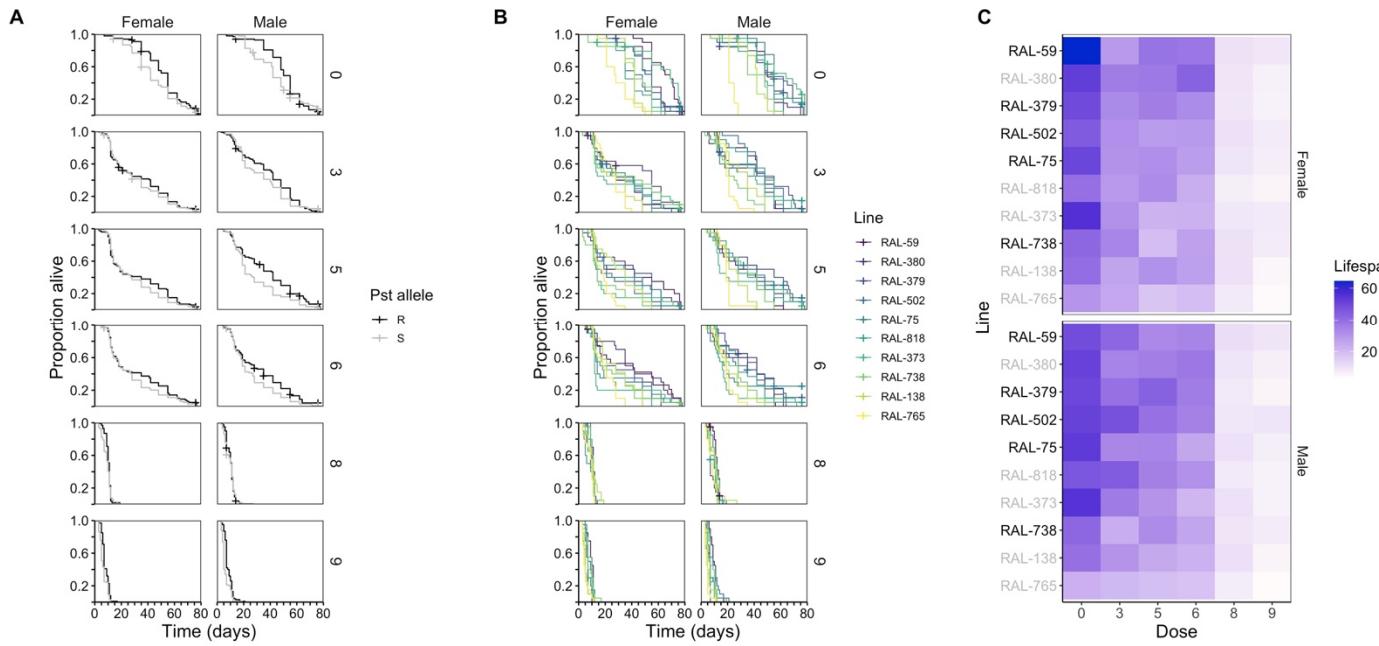
209 Statistical analyses were performed in R version 4.0.4 and R Studio 1.4.1106. Models 1a and 1b
210 were analyzed with a Cox mixed effects survival model using the coxme function in the coxme
211 package [51]. We used Gamma glms (glm function in R base stats package) to evaluate Models
212 2a and 2b and multiple linear regressions (lm function in the R base stats package) to evaluate
213 Models 5a – 8b. Generalized linear mixed models (Models 3a, 3b, 4a, and 4b) were analyzed
214 using the glmmTMB function with negative binomial error structures with a quadratic
215 parameterization (nbinom2) for Models 3a and 3b or with a linear parameterization (nbinom1)
216 and zero inflation for Models 4a and 4b [52]. Models 4a and 4b included lifespan as an offset
217 term to control for its effects on cumulative fecundity. We tested for significant interactions
218 and/or main effects using type 2 or 3 Wald χ^2 or F tests [53] as appropriate. Experimental block
219 was included as a random effect in Models 1a, 1b, 3a, 3b, 4a, and 4b. All models were evaluated
220 using model selection criteria [54] and using the check_model function in the performance
221 package if applicable. Interactions were excluded from the final models if $p < 0.1$. Models are
222 further described in Tables 1 – 4 and individual model parameter estimates are included
223 in Supplementary Tables S2 – S17 within Appendix S1. Correlations were assessed using Kendall's
224 *tau* coefficient. In Figure 3c, the y-intercept of each function was standardized at 0 to account for
225 differences in general vigor, *e.g.*, Råberg *et al* 2009, before integration.

226

227 **Results**

228 ***pastrel* affects fly survival during infection and vigor in the absence of infection**

229 First, we examined the effects of DCV dose and sex on survival across ten genotypes to determine if
230 hosts varied in their susceptibility to viral infection. Because *pst* is known to affect fly mortality
231 following DCV infection, we selected five S lines (138, 373, 380, 765, 818) and five R lines (59, 75,
232 379, 502, 738), based on previously described infected lifespans [22]. As expected, R lines tended to
233 live longer than S lines (Figure 1a, Table 1, Model 1a, *pst* allele: $p < 0.0001$), though this was also
234 the case in the absence of infection (*i.e.*, general vigor). Examining all ten lines separately, we
235 detected genetic variation in survival and found that the ten tested lines differed in their responses to
236 dose (Figure 1B and 1C; Table 1, Model 1b, Line x Dose: $p = 0.013$), while sex and genetic
237 background affected survival independently of dose (Figure 1B and 1C; Table 1, Model 1b, Line x
238 Sex: $p = 0.0004$).


239

Response	Model #	Predictor	Df	χ^2	P-value
Lifespan	1a	Dose	1	948.7459	<0.0001
		Pst allele	1	28.103	<0.0001
		Sex	1	2.8748	0.0899
	1b	Dose	1	110.1135	<0.0001
		Line	9	44.4518	<0.0001
		Sex	1	3.2453	0.0716
		Dose x Line	9	20.9098	0.0131
		Line x Sex	9	29.9929	0.0004

240 **Table 1.** The effects of DCV dose, sex, and *pst* or DGRP line on lifespan and mortality tolerance.
241 Model 1a tested survival differences between R and S *pst* alleles. Model 2a tested survival
242 differences among DGRP lines and Models 3a and 3b tested for differences in mortality tolerance
243 between *pst* alleles or among DGRP lines (indicated by a statistically significant interaction with
244 dose or dose²). Values in bold are statistically significant.

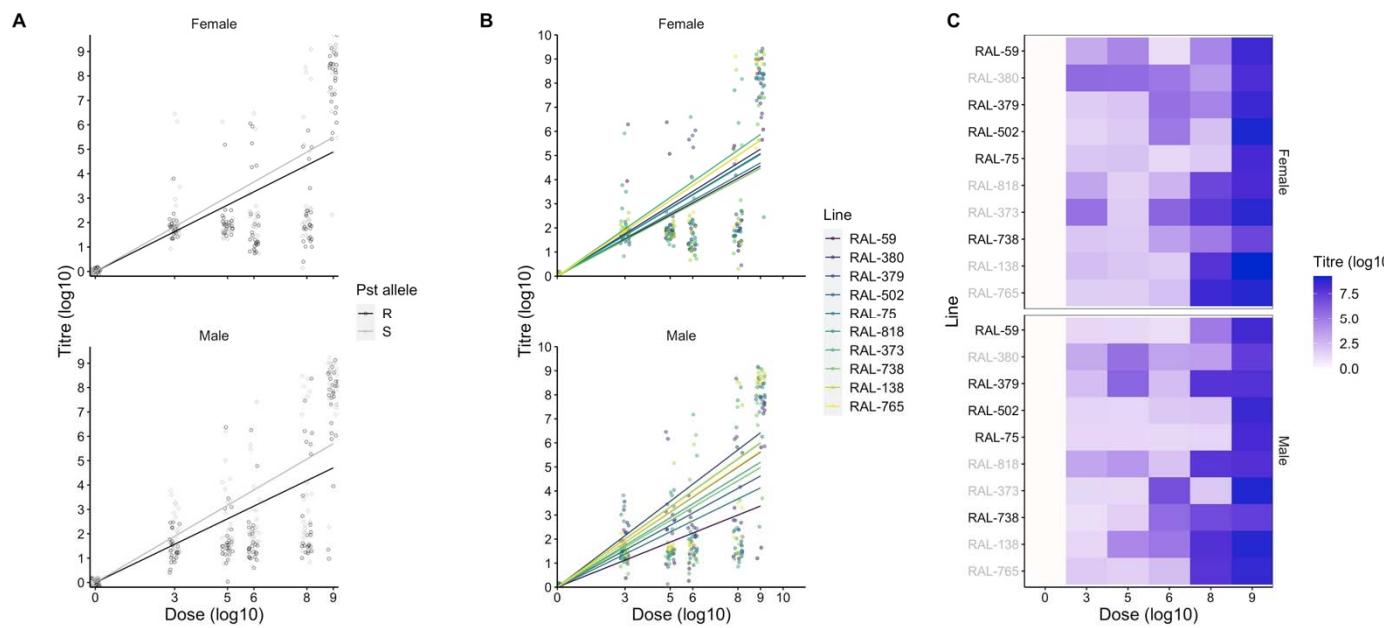
245

246

247

248 **Figure 1.** Effects of *pst*, genetic variation, sex and virus dose on survival up to 78 days post
249 infection. Flies were sham treated (Dose 0) or infected with one of five doses (10^3 , 10^5 , 10^6 , 10^8 ,
250 10^9) of *Drosophila* C Virus. (A) Survival in resistant (R) and susceptible (S) line types. (R lines:
251 RAL-59, RAL-75, RAL-379, RAL-502, RAL-738; S lines: RAL-138, RAL-373, RAL-380, RAL-
252 765, RAL-818). Uninfected resistant lines have a survival advantage in comparison to susceptible
253 lines. Survival tends to improve later in life at low to intermediate infection intensities, but this
254 effect is nearly absent at high DCV doses. (B) Each Kaplan-Meier curve represents the cumulative
255 survival of 20 individuals. Viral dose is logged for ease of interpretation. (C) Heatmaps showing
256 mean lifespan for female (top) and male (bottom) flies, where DGRP lines are arranged according to
257 mean total survival time of males and females. There were differential effects of both line and dose
258 and line and sex on survival after viral infection (B) and (C). R lines are shown in black and S lines
259 are shown in grey. For statistics, see Table 1.

260


261 *pastrel is associated with variation in the ability to control viral titres*

262 While *pastrel* has been previously associated with variation in survival following systemic DCV
263 infection, it is not known if *pastrel* acts by improving viral clearance, or if flies carrying the
264 resistant (R) alleles are instead better able to tolerate high viral titres. To test this, we quantified
265 resistance as the rate at which viral titers increased with increasing doses of viral inoculum. This
266 allows a more complete measure of viral clearance for each fly line and sex across several orders of
267 magnitude of viral titre, where a shallow slope indicates the ability to control viral growth even at
268 higher doses, while a steep positive slope suggests that flies lose the ability to control viral growth
269 when exposed to very high doses of DCV. Overall, male and female flies with a resistant (R) *pastrel*
270 allele had significantly lower viral titres compared to susceptible (S) lines (Figure 2A Table 2,
271 Model 2b, *pst* allele: $p = 0.003$), indicating that *pastrel* explains at least some of the variation in
272 viral titres. For all lines and in both sexes, exposure to higher concentrations of DCV resulted in
273 higher viral titres measured 3 days post infection. However, the magnitude of this increase across
274 DCV doses varied among lines (Figure 2B and 2C, Table 2, Model 2B, Line x Dose: $p = 0.0009$).

Response	Model #	Predictor	Df	F	P-value
Titre	2a	Dose	1	417.904	<0.0001
		<i>pst</i> allele	1	8.897	0.003
		Sex	1	0.004	0.953
		Dose \times <i>pst</i> allele	1	6.751	0.0096
	2b	Dose	1	77.931	<0.0001
		Line	9	4.259	<0.0001
		Sex	1	0.004	0.952
		Dose \times Line	9	3.626	0.0002

275 **Table 2.** The effects of DCV dose, sex, and *pst* or DGRP line on resistance. Values in bold are
276 statistically significant.

277

278

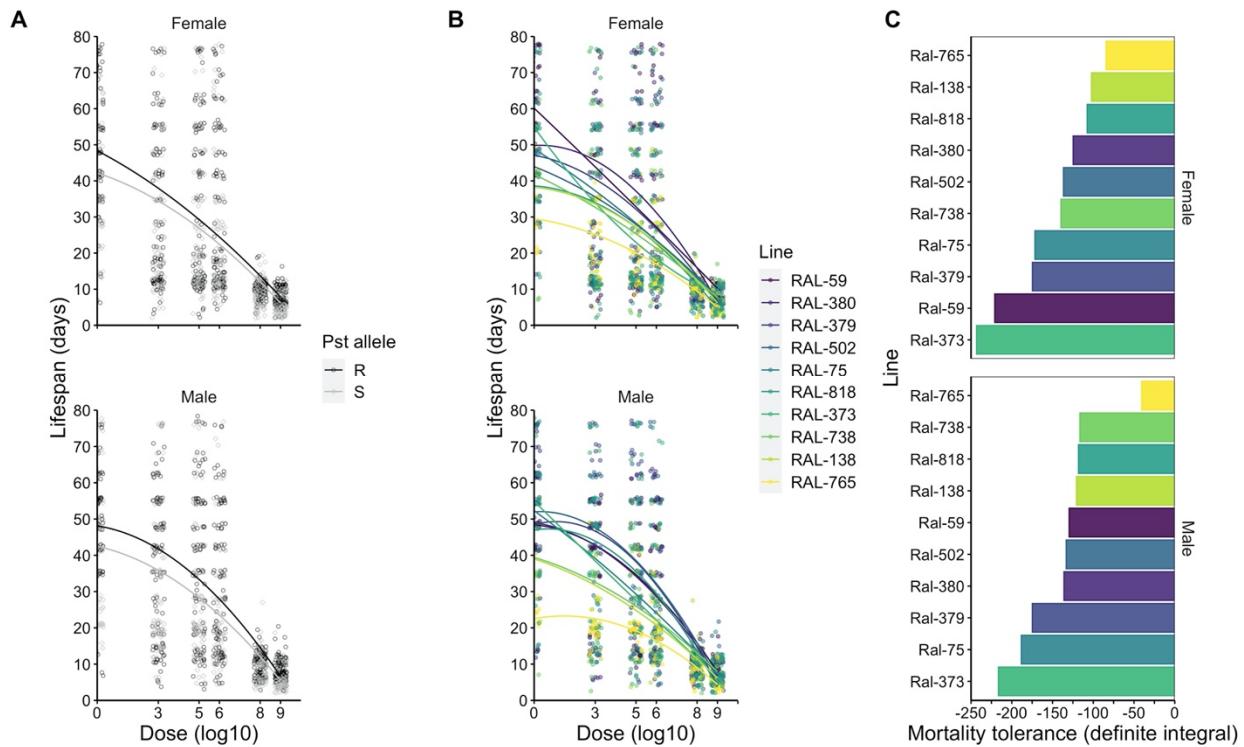
279 **Figure 2. *D. melanogaster* resistance to DCV.** (A) DCV titre in R and S DGRP lines, measured
280 three days post infection (3 DPI). R lines: RAL-59, RAL-75, RAL-379, RAL-502, RAL-738; S
281 lines: RAL-138, RAL-373, RAL-380, RAL-, RAL-765, RAL-818. DCV titre is generally lower in
282 resistant DGRP lines. (B) Viral titre measured at 3 DPI differs as a function of sex and line and
283 increase as dose increases. Each data point (n = 5, Line × Sex × Dose) represents the viral titre from
284 a single fly. Values are plotted on log₁₀ transformed x- and y- axes. (C) Variation in mean titre for
285 each level of line and dose. Titre is logged for clarity. R lines are shown in black and S lines are
286 shown in grey. For statistics, see Table 2.

287
288

289 ***Mortality tolerance to DCV is genetically variable***

290 Since we established that dose was a good indicator of viral load (Figure 2), we used dose as a
291 covariate and a proxy for viral titre in our tolerance models. First, we examined the effect of *pst* on
292 mortality tolerance and found that flies carrying the R allele tended to maintain higher survival over
293 the range of tested doses (higher intercept in Figure 3a; Table 3, Model 3a; *pst* allele: $p < 0.0001$) but
294 we did not detect an effect of *pst* on mortality tolerance (similar definite integrals, when accounting
295 for differences in the intercept). When analysing how survival changes with increasing
296 concentrations of viral challenge, we observed that there was a quadratic relationship between
297 genotype and dose and found that mortality tolerance to DCV was genetically variable (Figure 3B
298 and 3C; Table 3, Model 3b; $Dose^2 \times \text{Line}$: $p < 0.0001$). In order to examine differences in tolerance
299 among lines, the y-intercept of each function was standardized at 0 to account for differences in
300 general vigor, *e.g.* Raberg et al 2009, before integration. Here, a small negative integral value (*e.g.*,
301 RAL-765) indicates a small change in mortality across the tested doses (high tolerance), whereas a
302 large negative integral value (*e.g.*, RAL-373) indicates large changes in mortality across several
303 orders of magnitude of viral exposure (lower tolerance) (Figure 3C).

304


305

Response	Model #	Predictor	Df	χ^2	P-value
Lifespan	3a	Dose	1	38.227	<0.0001
		Dose ²	1	510.012	<0.0001
		pst allele	1	38.6731	<0.0001
		Sex	1	2.7915	0.09477
	3b	Dose	1	1.429	0.232
		Dose ²	1	45.451	<0.0001
		Line	9	55.658	<0.0001
		Sex	1	0.367	0.545
Cumulative fecundity	4a	Dose × Line	9	33.009	0.00013
		Dose ² × Line	9	36.088	<0.0001
	4b	Line × Sex	9	20.872	0.013
		Dose	1	5.5437	0.0186
		Pst allele	1	97.5767	<0.0001

306

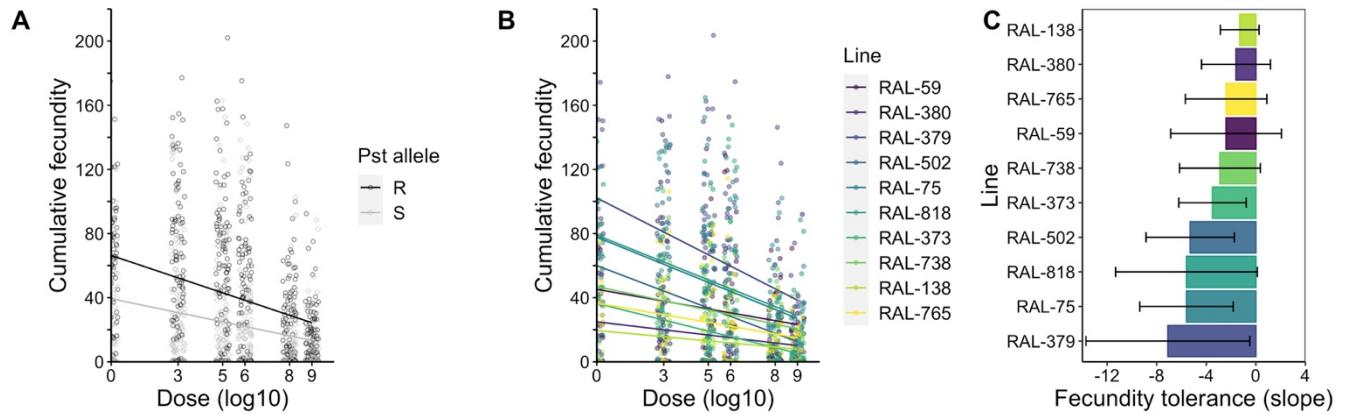
307 **Table 3.** The effects of DCV dose and *pst* or DGRP line on mortality tolerance and fecundity
308 tolerance. Values in bold are statistically significant. Models 3a and 3b tested for differences in
309 mortality tolerance between *pst* alleles or among DGRP lines (indicated by a statistically
310 significant interaction with dose or dose²). Models 4a and 4b tested for differences in fecundity
311 tolerance between *pst* alleles or among DGRP lines.

312

313

314 **Figure 3.** Mortality tolerance in DCV infected flies shows evidence of genetic variation and non-
315 linearity. (A) Lifespan in resistant (R) and susceptible (S) DGRP lines. Resistant lines tend to
316 live longer than susceptible lines and are equally tolerant to DCV infection. R lines: RAL-59,
317 RAL-75, RAL-379, RAL-502, RAL-738; S lines: RAL-138, RAL-373, RAL-380, RAL-, RAL-
318 765, RAL-818. (B) Reaction norms are plotted for each line and split by sex. We use dose in
319 place of titre (*i.e.* Lefevre et al 2011, Vale and Gupta 2017) to estimate variation in tolerance. (C)
320 Integrals for each DGRP line, split by sex. The y-intercept of each function was standardized at 0
321 to account for differences in general vigor, *e.g.* [1], before integration. Bars are ordered from
322 least tolerant (Ral-373) to most tolerant (Ral-765).

323


324 **Fecundity tolerance of DCV shows evidence of genetic variation**

325 Hosts may tolerate an infection by limiting its negative effects not only on survival but also on
326 reproduction (known as fecundity or sterility tolerance) [7,12,16,20,55,56] so we asked if
327 females from the ten DGRP lines showed variation in fecundity tolerance to DCV. We therefore
328 measured cumulative fecundity (adult offspring production) in single flies over a 28-day period
329 and then quantified fecundity tolerance as the ability to maintain reproduction for increasing
330 viral doses. When accounting for differences in infected lifespan, females with the resistant (R)
331 *pst* allele tended to have more offspring than females with the susceptible (S) allele, (Figure 4A,
332 Table 3; Model 4a, *pst* allele: $p < 0.0001$). This effect occurred regardless of infection status and
333 R and S lines were equally tolerant, indicated by the similar slopes. The fecundity data further
334 suggest that the R allele is associated with improved reproductive fitness even in the absence of
335 infection (Figure 4A, dose 0).

336

337 In contrast to mortality tolerance, here the relationship between dose and fecundity was linear
338 and we observed significant differences between lines in the slopes of these linear relationships
339 (Figure 4B, Table 3, Model 4b; Dose \times Line: $p = 0.0488$), although we note that this effect was
340 only marginally significant. To quantify the extent of this decline, we used the slope for each
341 line, where a shallow slope indicates a small change in fecundity across several orders of
342 magnitude of DCV exposure (Figure 4C, *e.g.*, RAL-138, RAL-380), while steep negative slopes
343 indicate large changes in fecundity with increasing DCV dose, suggesting low fecundity
344 tolerance (Figure 4C, *e.g.*, RAL-379).

345

346

347 **Figure 4.** DCV infected DGRP lines show evidence of genetic variation in fecundity tolerance.

348 (A) Cumulative fecundity in R and S DGRP lines. Susceptible lines have fewer offspring than
349 resistant lines regardless of infection status but are equally as tolerant as R lines (similar slopes).
350 (R lines: RAL-59, RAL-75, RAL-138, RAL-373, RAL-379; S lines: RAL-380, RAL-502, RAL-
351 738, RAL-765, RAL-818). (B) Reaction norms are plotted for each DGRP line. Each data point
352 represents the cumulative fecundity of a single fly during its lifetime. (C) Slopes \pm SE of reaction
353 norms plotted in (B). Bars represent the fecundity tolerance of each DGRP line. Lines are
354 ordered from the least tolerant (RAL-379) to most tolerant (RAL-138). For statistics see Table 3.

355

356

357 ***No evidence of trade-offs between resistance and tolerance***

358 After observing genetic variation in mortality tolerance and fecundity tolerance to DCV, we
359 asked if there was a trade-off between resistance and tolerance. The two strategies are often
360 assumed to exist along a continuum [12,13], but we did not find evidence of such a trade-off
361 (Supplementary Figures S1 and S2). We wondered if we could detect a trade-off between
362 fecundity tolerance and mortality tolerance, as might be expected if investing in fecundity comes
363 at a trade-off with investing in immunity and/or lifespan [57,58]. However, we did not find any
364 evidence of a trade-off between mortality tolerance and fecundity tolerance (Supplementary
365 Figure S3). Overall, our data suggests that the ability to resist or tolerate DCV infection is
366 decoupled in *D. melanogaster*.

367

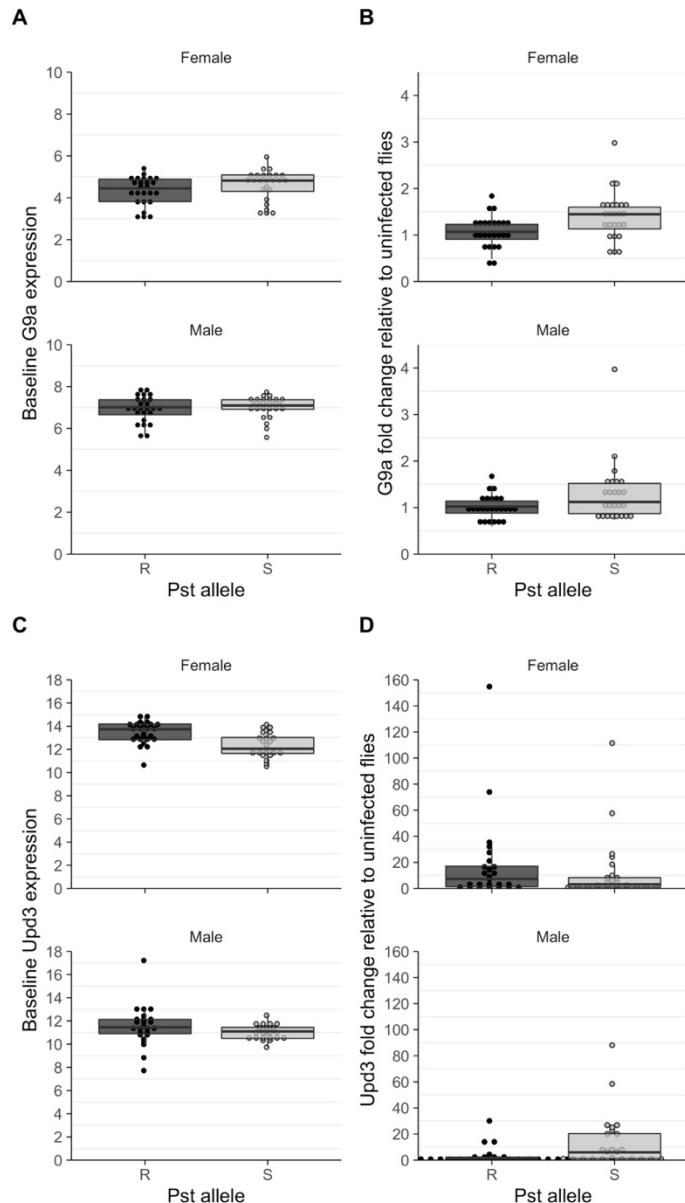
368 ***pastrel affects upd3 expression in the absence of infection and G9a expression in infected***
369 ***lines***

370 In a separate experiment, we examined *G9a* and *upd3* expression in males and females infected
371 with a viral concentration of 10^7 DCV IU ml⁻¹. We chose *G9a* because it has been shown to
372 mediate tolerance to DCV infection by regulating the JAK-STAT response[43,44], whereas *upd3*
373 encodes a cytokine-like protein and is the main JAK-STAT ligand induced in response to viral
374 challenge [59]. We reasoned that their expression may explain some variation in disease
375 tolerance and resistance to DCV infection in the ten DGRP lines (Figures 1-3). *pastrel* status was
376 not associated with baseline *G9a* expression in uninfected flies (Figure 5A, Table 4, Model 5a)
377 but we found that *G9a* expression in infected flies was lower in flies carrying a resistant (R)
378 allele versus those carrying a susceptible (S) allele (Figure 5B, Table 4, Model 6a, *pst* allele: p =
379 0.0007). Baseline *upd3* expression was lower in the S lines (Figure 5C, Table 4, Model 7a, *Pst*

380 allele: p 0.0006) but infected flies showed similar levels of *upd3* expression regardless of their
381 *pastrel* allele (Figure 5D, Table 4, Model 8a).

382

383 ***Genetic variation in the expression of upd3 and G9a does not explain variation in resistance***
384 ***or tolerance***


385 Examining gene expression across all ten lines, we found evidence of genetic variation in *G9a*
386 expression (Figure S4; Table 4; Model 5b, Line: p < 0.0001), and females tended to have lower
387 baseline expression compared with males (Figure S4; Table 4; Model 5b, Sex: p < 0.0001). We
388 found differential effects of sex and line on uninfected *upd3* expression (Figure S4; Table 4;
389 Model 7b; Line × Sex: p = 0.022). In infected flies, *G9a* expression varied between fly lines
390 (Figure S5, Table 4, Model 6b; Line: p = 0.028), and males and females differed in their
391 expression of *upd3* following infection, with males showing generally lower *upd3* expression,
392 although the magnitude of these sex differences varied between DGRP lines (Figure S5; Table 4;
393 Model 8b; Sex x Line: p = 0.002). While both the baseline and infected gene expression differed
394 among fly lines for *G9a* and *upd3*, we did not detect a significant correlation between the
395 expression of either gene and resistance to DCV, mortality tolerance, or fecundity tolerance
396 (Supplementary Figures S6-S17).

397

398

Response	Model #	Predictor	Df	F	P-value
Baseline <i>G9a</i> expression	5a	<i>pst</i> allele	1	1.972	0.1634
		Sex	1	381.715	<0.0001
	5b	Line	9	24.087	<0.0001
		Sex	1	136.325	<0.0001
		Line \times Sex	9	1.984	0.0519
Infected <i>G9a</i> expression	6a	<i>pst</i> allele	1	12.2295	0.0007
		Sex	1	0.6344	0.4277
	6b	Line	9	2.2359	0.0277
		Sex	1	0.1019	0.7504
		Line \times Sex	9	1.4423	0.18439
Baseline <i>upd3</i> expression	7a	<i>pst</i> allele	1	12.448	0.0006
		Sex	1	49.137	<0.0001
	7b	Line	9	3.278	0.0019
		Sex	1	29.133	<0.0001
		Line \times Sex	9	2.334	0.0217
Infected <i>upd3</i> expression	8a	<i>pst</i> allele	1	0.8945	0.3466
		Sex	1	5.1221	0.0259
		<i>pst</i> allele \times Sex	1	3.1105	0.081
	8b	Line	9	4.2044	0.0002
		Sex	1	0.0857	0.7704
		Line \times Sex	9	3.1997	0.00235

399 **Table 4.** The effects of Sex and *pst* or DGRP line on baseline (relative to rp49) and infected *G9a*
400 or *upd3* expression. Values in bold are statistically significant.

401

402 **Figure 5.** *pst* has differential effects on gene expression between uninfected and infected flies.
403 (A) *G9a* expression relative to *rp49* in the absence of infection is not significantly affected by
404 *pst*. (B) Infected flies *G9a* expression is higher in (S) susceptible DGRP lines but is unaffected
405 by sex. (C) *upd3* expression relative to *rp49* is higher in (R) resistant DGRP lines and tends to be
406 lower in males. (D) Sex affects infected expression of *upd3*. R lines: RAL-59, RAL-75, RAL-
407 379, RAL-502, RAL-738; S lines: RAL-138, RAL-373, RAL-380, RAL-, RAL-765, RAL-818.
408 For statistics see Table 4.

409 **Discussion**

410 We found evidence of genetic variation in disease tolerance in *D. melanogaster* during systemic
411 infection with DCV, measured both as the ability to maintain survival and reproduction, across a
412 wide range of concentrations of viral challenge. We also confirmed results that the viral
413 restriction factor *pastrel* increases fly survival by reducing viral titers, and we further uncovered
414 previously undescribed effects of *pastrel* on general fly vigor in the absence of infection, and it
415 effects on the expression of the JAK-STAT ligand *upd3* and the epigenetic regulator of JAK-
416 STAT, *G9a*.

417

418 ***pastrel affects host vigor in the absence of infection***

419 The restriction factor *pastrel* has been previously shown to explain most of the variance in fly
420 mortality following systemic DCV infection [22]. Our data confirm these effects, and further
421 confirm that *pst*-mediated increase in fly survival is mainly due to its effects on suppressing
422 DCV titres, which is consistent with its proposed role as a viral restriction factor [29]. The
423 resistant *pst* allele results from a nonsynonymous substitution (A/G; Threonine → Alanine) in
424 the coding region of the gene [29]. The susceptible allele is ancestral and has been shown to play
425 some part in antiviral defense, as overexpression of the allele improves survival after DCV
426 infection and knockdown of the allele makes flies more susceptible to infection. The resulting
427 amino acid substitution is therefore an improvement on an already existing antiviral defense [29].

428

429 However, our data also suggest that the effects of *pastrel* extend beyond viral clearance, and in
430 the case of the resistant (R) allele, *pastrel* was associated with a general improvement in fly
431 reproduction and lifespan, even in the absence of infection. To our knowledge, this is the first

432 study to demonstrate *pastrel*'s effects on general vigor. This result is somewhat surprising,
433 because we might expect a mutation that confers antiviral protection to trade-off against other
434 life-history traits [60]. Indeed, in previous work, sham infected control flies that over expressed
435 the S allele tended to live longer than those that over expressed the R allele, suggesting that
436 overexpression of R comes with costs [29]. That study also found natural variation in *pst* gene
437 expression and that its expression is associated with improved survival outcomes after DCV
438 infection, but it is unclear if this is also associated with improved vigor in the absence of
439 infection. Likewise, in a separate study where flies were selected for survival to DCV, *pastrel*
440 was also identified as being involved in adaptation to DCV, with no apparent detrimental effects
441 on egg viability, reproductive output or developmental time [61,62]. Our study confirms that the
442 R allele does not seem to carry costs, but is associated with fitness benefits in the absence of
443 infection. Taken together, it is therefore puzzling why the R allele has not risen to fixation, and
444 why S alleles are maintained in the population. It seems likely that the R allele may come with
445 hidden costs that are not manifested under *ad libitum* laboratory conditions. For example, dietary
446 manipulation can sometimes uncover the costs associated with immunity [16,55,60].

447

448 ***pastrel* controls resistance to DCV**

449 While previous studies established that 'susceptibility' to DCV is controlled by *pastrel*, those
450 studies did not directly assay viral loads in resistant versus susceptible natural variants but based
451 their classification on survival data from the DGRP or titre data from knockdown and over
452 expression experiments. These confirmed that the *pastrel* gene confers resistance – viral titres
453 were higher in knockdown flies versus controls and overexpression of both S and R alleles
454 increased resistance – but, crucially, they do not establish whether *pastrel* underlies variation in

455 viral titre in natural fly populations [22,29]. Given these results, there were two possibilities: 1)
456 the R allele confers resistance by controlling viral titres or 2) the R allele confers tolerance to
457 DCV by maintaining survival or reducing damage in the face of infection. Our results support the
458 first possibility that the R allele promotes resistance, demonstrated by lower viral titres in DGRP
459 lines carrying the R allele, and that this protective effect was present in males and female flies,
460 across several orders of magnitude of viral challenge.

461

462 ***Genetic variation in mortality tolerance and fecundity tolerance***

463 Fly genetic background affected the ability of flies to tolerate DCV infection, both when
464 tolerating the mortality caused by infection, and by maintaining fecundity at low and
465 intermediate viral challenge doses. Previous theoretical work showed that variation in fecundity
466 tolerance is more likely to occur if it comes at a cost to host lifespan or another life history trait
467 [12]. Although we did not observe a trade-off with survival or mortality tolerance in our system,
468 it is possible that fecundity tolerance comes at a cost to another trait that we did not measure.
469 Evidence for genetic variation in both mortality and fecundity tolerance phenotypes is
470 widespread throughout the animal kingdom (reviewed in [4,5]), reinforcing the idea that disease
471 tolerance is an important defence strategy in response to a range of pathogens. It is notable
472 however, that most experimental studies examining genetic variation in disease tolerance have
473 rarely measured it in the context of viral infections [63]. Our work is, to our knowledge, the first
474 to describe genetic variation in both mortality and fecundity tolerance of a viral infection.

475

476 ***Linear and non-linear changes in health***

477 The majority of tolerance experiments often assume a linear relationship between pathogen load
478 and host health (or other fitness trait), but there is no reason to assume that health should
479 decrease at a constant rate in relation to pathogen burden [1,44,64–66]. We show that some
480 genotypes maintain their health (measured as lifespan) at a low and intermediate DCV doses,
481 whereas health declines rapidly in others. Similar nonlinear relationships between pathogen load
482 and health occur over the course of natural HIV infection in humans [65], in blue tits (*Cyanistes*
483 *caeruleus*) infected with the blood parasite, *Haemoproteus majoris* [64], and in *Drosophila*
484 *melanogaster* infected with *Listeria monocytogenes* [66] or DCV [44]. In contrast, we found that
485 the relationship between cumulative fecundity and viral dose was best explained by a linear
486 relationship although previous studies on DCV's effects on fecundity note that offspring
487 production tends to increase at low or intermediate viral doses [26].

488

489 ***No sex differences in tolerance or resistance to DCV***

490 Sexual dimorphism in immunity is widespread across metazoans, and to a large extent has
491 frequently been overlooked in experimental studies of infection [67–69]. The sexes can differ in
492 optimal immune investment and allocate resources to different areas of the immune response
493 [15,70–72]. In general, females tend to be more immunocompetent than males because they
494 improve their fitness by increasing investment in immune defence, known as Bateman's
495 principle [70,71,73]. In systems where resistance and tolerance are negatively correlated as
496 shown in malaria infected mice [13], one sex may invest more into resistance, while the other
497 may invest in tolerance. Sex differences in disease tolerance are also predicted to have
498 qualitatively different consequences for pathogen evolutionary trajectories [72].

499

500 It was therefore an explicit aim of the present study to quantify sex differences in lifespan,
501 resistance and disease tolerance following DCV infection, to examine potential sexual
502 dimorphism in disease tolerance. However, we were surprised to find that fly sex contributed
503 little to the variation in the disease phenotypes we investigated, particularly viral titers or
504 mortality tolerance. This contrasts with some results from disease tolerance in other host-
505 pathogen systems where sexual dimorphism in tolerance has been observed (reviewed in [72]).
506 For example, males infected with *P. aeruginosa* were more tolerant and resistant than females,
507 with evidence of sexual antagonism for tolerance, indicated by a negative genetic intersexual
508 correlation[15]. By contrast, Gupta and Vale [26] noted that *D. melanogaster* males are more
509 susceptible than females to systemic DCV infection, while no difference between males and
510 females was detected in tolerance of HIV [65]. It is therefore difficult to make generalizations
511 concerning disease outcomes between the sexes, which will depend on the specific host and
512 pathogen species, particularly as the expression of many infection-related traits is often the
513 outcome of complex interactions between host sex, genetic background, and mating status [30].
514 What is clearer is that work reporting sex-specific infection outcomes are less common than is
515 desirable, especially regarding disease tolerance phenotypes.

516

517 ***pastrel* is associated with changes in pre- and post-infection gene expression**

518 Given previous work [43,44], we expected that *G9a* and *upd3* expression would correlate with
519 disease tolerance and explain some of the phenotypic variation we see among DGRP lines.
520 Although we observed differential effects of genetic background and sex in gene expression, this
521 appeared to be independent of disease tolerance phenotypes. We note that *pastrel* was associated
522 with differences in baseline *upd3* expression as well as infected *G9a* expression. Baseline *upd3*

523 expression was lower in susceptible lines, suggesting that expression levels prior to infection
524 may dictate the speed or strength of the antiviral immune response. Differences in baseline gene
525 expression have been shown to affect chronic disease outcomes (e.g., rheumatoid arthritis,
526 multiple sclerosis, lung cancer, autoimmune diseases) [68,74–76], so we suggest that basal
527 expression levels may be important predictors of resistance and tolerance. Similarly, infected
528 *G9a* expression was higher in susceptible lines, which may point to differences in the damage
529 control response which we were unable to detect as a tolerance phenotype in our experiments. In
530 fact, it is possible that *G9a* expression may not be directly related to DCV infection at all, as
531 recent work has highlighted the likely role of this methyltransferase as a master regulator of
532 metabolic homeostasis and tolerance to a variety of biotic and abiotic stressors in many different
533 species [77].

534

535 ***Concluding remarks***

536 In summary, we describe genetic variation in disease tolerance in *Drosophila* following systemic
537 DCV infection, in males and females, across a range of infectious challenges spanning several
538 orders of magnitude. Further, we find that the *pastrel* gene is associated with general vigor in the
539 absence of infection and confirm its role in reducing DCV titres during infection. This work
540 offers, to our knowledge, one of the first descriptions of genetic variation in mortality and
541 fecundity tolerance in a viral infection of invertebrates, adding to the growing effort to describe
542 the causes of host heterogeneity in order to predict the consequences of this heterogeneity for
543 pathogen spread and evolution [78–80].

544

545 **Acknowledgements**

546 We are grateful to H. Borthwick and H. Cowan for help with media preparation and members of
547 the Obbard lab for advice on DCV infection culture.

548

549 **Funding**

550 This work was funded by a Chancellor's fellowship from the University of Edinburgh and a
551 Society in Science Branco Weiss Fellowship, both to P. Vale. M. Kutzer is funded by a
552 Leverhulme Research Project Grant RPG-2018-369 awarded to P. Vale. V. Doublet was funded
553 by H2020-MSCA-IF-2015 (701591). K. Neophytou was funded by the Wellcome Trust PhD
554 Program in Hosts, Pathogens and Global Health (Edinburgh).

555

556 **References**

- 557 1. Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites
558 in animals. *Philosophical transactions of the Royal Society of London Series B, Biological
559 sciences*. 2009;364: 37–49. doi:10.1098/rstb.2008.0184
- 560 2. Medzhitov R, Schneider DS, Soares MP. Disease Tolerance as a Defense Strategy. *Science*.
561 2012;335: 936–941. doi:10.1126/science.1214935
- 562 3. Ayres JS, Schneider DS. Tolerance of Infections. *Annual Review of Immunology*. 2012;30:
563 271–294. doi:10.1146/annurev-immunol-020711-075030
- 564 4. Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host
565 tolerance. *Zoology*. 2016;119: 281–289. doi:10.1016/j.zool.2016.05.011
- 566 5. Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections:
567 A missing experimental paradigm. *eLife*. 2021;10: 1–30. doi:10.7554/eLife.68874
- 568 6. Miller MR, White A, Boots M. The evolution of host resistance: tolerance and control as
569 distinct strategies. *Journal of Theoretical Biology*. 2005;236: 198–207.
- 570 7. Restif O, Koella JC. Concurrent evolution of resistance and tolerance to pathogens. *The
571 American Naturalist*. 2004;164: E90–E102. doi:10.1086/423713

- 572 8. Miller MR, White A, Boots M. The evolution of parasites in response to tolerance in their
573 hosts: the good, the bad, and apparent commensalism. *Evolution; international journal of*
574 *organic evolution.* 2006;60: 945–956. doi:10.1111/j.0014-3820.2006.tb01173.x
- 575 9. Vale PF, Wilson AJ, Best A, Boots M, Little TJ. Epidemiological, evolutionary, and
576 coevolutionary implications of context-dependent parasitism. *The American naturalist.*
577 2011;177: 510–21. doi:10.1086/659002
- 578 10. Vale PF, Fenton A, Brown SP. Limiting Damage during Infection: Lessons from Infection
579 Tolerance for Novel Therapeutics. *PLoS Biology.* 2014;12.
580 doi:10.1371/journal.pbio.1001769
- 581 11. Hoze N, Bonhoeffer S, Regoes RR. Assessing the public health impact of tolerance-based
582 therapies with mathematical models. *PLoS Computational Biology.* 2018;14: e1006119.
- 583 12. Best A, White A, Boots M. Maintenance of host variation in tolerance to pathogens and
584 parasites. *Proceedings of the National Academy of Sciences of the United States of*
585 *America.* 2008;105: 20786–20791. doi:10.1073/pnas.0809558105
- 586 13. Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to
587 infectious diseases in animals. *Science.* 2007;318: 812–814. doi:10.1126/science.1148526
- 588 14. Graham AL, Shuker DM, Pollitt LC, Auld SKJR, Wilson AJ, Little TJ. Fitness
589 consequences of immune responses: Strengthening the empirical framework for
590 ecoimmunology. *Functional Ecology.* 2011;25: 5–17. doi:10.1111/j.1365-
591 2435.2010.01777.x
- 592 15. Vincent CM, Sharp NP. Sexual antagonism for resistance and tolerance to infection in
593 *Drosophila melanogaster.* *Proceedings of the Royal Society B.* 2014;281: 20140987.
594 doi:10.1098/rspb.2014.0987
- 595 16. Howick VM, Lazzaro BP. Genotype and diet shape resistance and tolerance across distinct
596 phases of bacterial infection. *BMC Evolutionary Biology.* 2014;14: 56. doi:10.1186/1471-
597 2148-14-56
- 598 17. Sternberg ED, Li H, Wang R, Gowler C, de Roode JC. Patterns of host-parasite adaptation
599 in three populations of monarch butterflies infected with a naturally occurring protozoan
600 disease: virulence, resistance, and tolerance. *The American Naturalist.* 2013;182: E235–
601 E248. doi:10.1086/673442
- 602 18. Best A, White A, Boots M. The coevolutionary implications of host tolerance. *Evolution.*
603 2014;68: 1426–1435. doi:10.1111/evo.12368
- 604 19. Kutzer MAM, Kurtz J, Armitage SAO. A multifaceted approach testing the effects of
605 previous bacterial exposure on resistance and tolerance. *Journal of Animal Ecology.*
606 2019;88: 566–578.

- 607 20. Vale PF, Little TJ. Fecundity compensation and tolerance to a sterilizing pathogen in
608 Daphnia. *Journal of Evolutionary Biology*. 2012;25: 1888–1896. doi:10.1111/j.1420-
609 9101.2012.02579.x
- 610 21. Sternberg ED, Lefèvre T, Li J, de Castillejo CLF, Li H, Hunter MD, et al. Food plant
611 derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.
612 *Evolution*. 2012;66: 3367–3376. doi:10.1111/j.1558-5646.2012.01693.x
- 613 22. Magwire MM, Fabian DK, Schweyen H, Cao C, Longdon B, Bayer F, et al. Genome-Wide
614 Association Studies Reveal a Simple Genetic Basis of Resistance to Naturally Coevolving
615 Viruses in *Drosophila melanogaster*. *PLoS Genet*. 2012;8: e1003057.
- 616 23. Huszar T, Imler J-L. Drosophila viruses and the study of antiviral host-defense. *Advances*
617 in *Virus Research*. 2008;72: 227–265.
- 618 24. Mondotte JA, Saleh MC. Antiviral Immune Response and the Route of Infection in
619 *Drosophila melanogaster*. *Advances in Virus Research*. 2018;100: 247–278.
620 doi:10.1016/bs.aivir.2017.10.006
- 621 25. Chtarbanova S, Lamiable O, Lee K-Z, Galiana D, Troxler L, Meignin C, et al. *Drosophila C*
622 Virus Systemic Infection Leads to Intestinal Obstruction. *Journal of Virology*. 2014;88:
623 14057–14069. doi:10.1128/jvi.02320-14
- 624 26. Gupta V, Stewart CO, Rund SSC, Monteith K, Vale PF. Costs and benefits of sublethal
625 *Drosophila C* virus infection. *Journal of Evolutionary Biology*. 2017;30: 1325–1335.
626 doi:10.1111/jeb.13096
- 627 27. Vale PF, Jardine MD. Sex-specific behavioural symptoms of viral gut infection and
628 Wolbachia in *Drosophila melanogaster*. *Journal of Insect Physiology*. 2015;82: 28–32.
629 doi:10.1016/j.jinsphys.2015.08.005
- 630 28. Arnold PA, Johnson KN, White CR. Physiological and metabolic consequences of viral
631 infection in *drosophila melanogaster*. *Journal of Experimental Biology*. 2013;216: 3350–
632 3357. doi:10.1242/jeb.088138
- 633 29. Cao C, Cogni R, Barbier V, Jiggins FM. Complex coding and regulatory polymorphisms in
634 a restriction factor determine the susceptibility of *Drosophila* to viral infection. *Genetics*.
635 2017;206: 2159–2173. doi:10.1534/genetics.117.201970
- 636 30. Siva-Jothy JA, Vale PF. Dissecting genetic and sex-specific sources of host heterogeneity
637 in pathogen shedding and spread. *PLoS Pathogens*. 2021;17: 1–22.
638 doi:10.1371/journal.ppat.1009196
- 639 31. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The
640 *Drosophila melanogaster* Genetic Reference Panel. *Nature*. 2012;482: 173–178.

- 641 32. Lefèvre T, Williams AJ, de Roode JC. Genetic variation in resistance, but not tolerance, to
642 a protozoan parasite in the monarch butterfly. *Proceedings of the Royal Society B*.
643 2011;278: 751–759. doi:10.1098/rspb.2010.1479
- 644 33. Parker BJ, Garcia JR, Gerardo NM. Genetic variation in resistance and fecundity tolerance
645 in a natural host-pathogen interaction. *Evolution*. 2014;68: 2421–2429.
646 doi:10.1111/evo.12418
- 647 34. Soares MP, Teixeira L, Moita LF. Disease tolerance and immunity in host protection
648 against infection. *Nature Reviews Immunology*. 2017;17: 83–96.
- 649 35. Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM. House finch populations differ in early
650 inflammatory signaling and pathogen tolerance at the peak of *Mycoplasma gallisepticum*
651 infection. *The American Naturalist*. 2013;181: 674–89. doi:10.1086/670024
- 652 36. Silva RC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections:
653 a tale of resistance and disease tolerance. *PLoS Pathogens*. 2020;16: e1008599.
- 654 37. Medzhitov R. Damage control in host-pathogen interactions. *Proceedings of the National
655 Academy of Sciences*. 2009;37: 15525–15526.
- 656 38. Prakash A, Monteith KM, Vale PF. Mechanisms of damage prevention, signalling, and
657 repair impact the ability of *Drosophila* to tolerate enteric bacterial infection. *bioRxiv*. 2021.
658 doi:10.1101/2021.10.03.462916
- 659 39. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona PJ. Ibuprofen therapy resulted in
660 significantly decreased tissue bacillary loads and increased survival in a new murine
661 experimental model of active tuberculosis. *The Journal of Infectious Diseases*. 2013;208:
662 199–202.
- 663 40. Nahrendorf W, Ivens A, Spence PJ. Inducible mechanisms of disease tolerance provide an
664 alternative strategy of acquired immunity to malaria. Ginhoux F, Rath S, editors. *eLife*.
665 2021;10: e63838. doi:10.7554/eLife.63838
- 666 41. Prakash A, Monteith KM, Vale PF. Negative regulation of IMD contributes to disease
667 tolerance during systemic bacterial infection in *Drosophila*. *bioRxiv*. 2021;
668 2021.09.23.461574. doi:10.1101/2021.09.23.461574
- 669 42. Prakash A, Bonnet M, Monteith KM, Vale PF. The Jak/Stat pathway mediates disease
670 tolerance during systemic bacterial infection in *Drosophila*. *bioRxiv*. 2021;
671 2021.09.23.461578. doi:10.1101/2021.09.23.461578
- 672 43. Merkling SH, Bronkhorst AW, Kramer JM, Overheul GJ, Schenck A, Van Rij RP. The
673 Epigenetic Regulator G9a Mediates Tolerance to RNA Virus Infection in *Drosophila*. *PLoS
674 Pathogens*. 2015;11. doi:10.1371/journal.ppat.1004692
- 675 44. Gupta V, Vale PF. Nonlinear disease tolerance curves reveal distinct components of host
676 responses to viral infection. *Royal Society Open Science*. 2017;4. doi:10.1098/rsos.170342

- 677 45. Myllymäki H, Valanne S, Rämet M. The *Drosophila* *imd* signaling pathway. *Journal of*
678 *immunology* (Baltimore, Md□: 1950). 2014;192: 3455–62. doi:10.4049/jimmunol.1303309
- 679 46. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance
680 to RNA viral infection in *Drosophila melanogaster*. *PLoS Biology*. 2008;6: e1000002.
- 681 47. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. Wolbachia and virus protection in
682 insects. *Science*. 2008;322: 702–702.
- 683 48. Chrostek E, Marialva MS, Esteves SS, Weinert LA, Martinez J, Jiggins FM, et al.
684 Wolbachia variants induce differential protection to viruses in *Drosophila melanogaster*: a
685 phenotypic and phylogenomic analysis. *PLoS Genetics*. 2013;9: e1003896.
- 686 49. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method.
687 *Nat Protocols*. 2008;3: 1101–1108. doi:10.1038/nprot.2008.73
- 688 50. Ruijter JM, Ruiz Villalba A, Hellemans J, Untergasser A, van den Hoff MJB. Removal of
689 between-run variation in a multi-plate qPCR experiment. *Biomolecular Detection and*
690 *Quantification*. 2015;5: 10–14. doi:10.1016/j.bdq.2015.07.001
- 691 51. Therneau TM. *coxme: Mixed Effects Cox Models*. 2015.
- 692 52. Brooks ME, K K, KJ van B, A M, CW B, A N, et al. *glmmTMB* Balances Speed and
693 Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. *The R*
694 *journal*. 2017;9: 378–400.
- 695 53. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al.
696 Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in*
697 *Ecology & Evolution*. 2009;24: 127–135. doi:<http://dx.doi.org/10.1016/j.tree.2008.10.008>
- 698 54. Brooks ME, Kristensen K, Darrigo MR, Rubim P, Uriarte M, Bruna E, et al. Statistical
699 modeling of patterns in annual reproductive rates. *Ecology*. 2019;100: 1–7.
700 doi:10.1002/ecy.2706
- 701 55. Kutzer MAM, Armitage SAO. The effect of diet and time after bacterial infection
702 on fecundity, resistance, and tolerance in *Drosophila melanogaster*. *Ecology and evolution*.
703 2016;6: 4229–42. doi:10.1002/ece3.2185
- 704 56. Hudson AL, Moatt JP, Vale PF. Terminal investment strategies following infection are
705 dependent on diet. *Journal of Evolutionary Biology*. 2020;33: 309–317.
706 doi:10.1111/jeb.13566
- 707 57. Schwenke RA, Lazzaro BP, Wolfner MF. Reproduction-immunity trade-offs in insects.
708 *Annual Review of Entomology*. 2016;61: 239–256.
- 709 58. Flatt T. Survival costs of reproduction in *Drosophila*. *Experimental Gerontology*. 2011;46:
710 369–375.

- 711 59. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, et al. The Jak-
712 STAT signaling pathway is required but not sufficient for the antiviral response of
713 drosophila. *Nature Immunology*. 2005;6: 946–953. doi:10.1038/ni1237
- 714 60. McKean KA, Yourth CP, Lazzaro BP, Clark AG. The evolutionary costs of immunological
715 maintenance and deployment. *BMC evolutionary biology*. 2008;8: 76. doi:10.1186/1471-
716 2148-8-76
- 717 61. Martins NE, Faria VG, Teixeira L, Magalhães S, Sucena É. Host Adaptation Is Contingent
718 upon the Infection Route Taken by Pathogens. *PLoS Pathogens*. 2013;9.
719 doi:10.1371/journal.ppat.1003601
- 720 62. Faria VG, Martins NE, Paulo T, Teixeira L, Sucena É, Magalhães S. Evolution of
721 Drosophila resistance against different pathogens and infection routes entails no detectable
722 maintenance costs. *Evolution*. 2015;69: 2799–2809. doi:10.1111/evo.12782
- 723 63. Carr DE, Murphy JF, Eubanks MD. Genetic variation and covariation for resistance and
724 tolerance to Cucumber mosaic virus in *Mimulus guttatus* (Phrymaceae): a test for costs and
725 constraints. *Heredity*. 2006;96: 29–38.
- 726 64. Stjernman M, Råberg L, Nilsson JÅ. Maximum host survival at intermediate parasite
727 infection intensities. *PLoS ONE*. 2008;3: e2463. doi:10.1371/journal.pone.0002463
- 728 65. Regoes RR, McLaren PJ, Battegay M, Bernasconi E, Calmy A, Günthard HF, et al.
729 Disentangling Human Tolerance and Resistance Against HIV. *PLoS Biology*. 2014;12:
730 e1001951. doi:10.1371/journal.pbio.1001951
- 731 66. Louie A, Song KH, Hotson A, Thomas Tate A, Schneider DS. How Many Parameters Does
732 It Take to Describe Disease Tolerance? *PLoS Biology*. 2016;14.
733 doi:10.1371/journal.pbio.1002435
- 734 67. Kelly CD, Stoehr AM, Nunn C, Smyth KN, Prokop ZM. Sexual dimorphism in immunity
735 across animals: a meta-analysis. *Ecology Letters*. 2018;21: 1885–1894.
- 736 68. Gal-Oz ST, Maier B, Yoshida H, Seddu K, Elbaz N, Czysz C. ImmGen report: sexual
737 dimorphism in the immune system transcriptome. *Nature Communications*. 2019;10: 1–14.
- 738 69. Belmonte RL, Corbally MK, Duneau D, Regan JC. Sexual dimorphisms in innate immunity
739 and responses to infection in *Drosophila melanogaster*. *Frontiers in Immunology*. 2020;10:
740 3075.
- 741 70. Rolff J. Bateman's principle and immunity. *Proceedings of the Royal Society B: Biological
742 Sciences*. 2002;269: 867–872. doi:10.1098/rspb.2002.1959
- 743 71. McKean KA, Nunney L. Bateman's principle and immunity: phenotypically plastic
744 reproductive strategies predict changes in immunological sex differences. *Evolution; international
745 journal of organic evolution*. 2005;59: 1510–1517. doi:10.1554/04-657

- 746 72. Cousineau S V., Alizon S. Parasite evolution in response to sex-based host heterogeneity in
747 resistance and tolerance. *Journal of Evolutionary Biology*. 2014;27: 2753–2766.
748 doi:10.1111/jeb.12541
- 749 73. Nunn CL, Lindenfors P, Pursall ER, Rolff J. On sexual dimorphism in immune function.
750 *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2009;364: 61–69.
751 doi:10.1098/rstb.2008.0148
- 752 74. Nakamura S, Suzuki K, Iijima H, Hata Y, Lim CR, Ishizawa Y, et al. Identification of
753 baseline gene expression signatures predicting therapeutic responses to three biologic
754 agents in rheumatoid arthritis: A retrospective observational study. *Arthritis Research and*
755 *Therapy*. 2016;18: 1–12. doi:10.1186/s13075-016-1052-8
- 756 75. Coldren CD, Helfrich BA, Witta SE, Sugita M, Lapadat R, Zeng C, et al. Baseline gene
757 expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines.
758 *Molecular Cancer Research*. 2006;4: 521–528. doi:10.1158/1541-7786.MCR-06-0095
- 759 76. Bustamante MF, Nurtdinov RN, Río J, Montalban X, Comabella M. Baseline Gene
760 Expression Signatures in Monocytes from Multiple Sclerosis Patients Treated with
761 Interferon-beta. *PLoS ONE*. 2013;8. doi:10.1371/journal.pone.0060994
- 762 77. Riahi H, Fenckova M, Goruk KJ, Schenck A, Kramer JM. The epigenetic regulator G9a
763 attenuates stress-induced resistance and metabolic transcriptional programs across different
764 stressors and species. *BMC Biology*. 2021;19: 1–15. doi:10.1186/s12915-021-01025-0
- 765 78. White LA, Siva-Jothy JA, Craft ME, Vale PF. Genotype and sex-based host variation in
766 behaviour and susceptibility drives population disease dynamics. *Proceedings of the Royal*
767 *Society B-Biological Sciences*. 2020;287: 1606–1622.
- 768 79. VanderWaal KL, Ezenwa VO. Heterogeneity in pathogen transmission: mechanisms and
769 methodology. *Functional Ecology*. 2016;30: 1606–1622. doi:10.1111/1365-2435.12645
- 770 80. Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection? *Dev*
771 *Comp Immunol*. 2019;103: 103514. doi:10.1016/j.dci.2019.103514
- 772