

1 **Significance tests for R^2 of out-of-sample prediction using polygenic scores** 2

3 Md. Moksedul Momin,^{1,2,3,4*} Soohyun Lee,⁵ Naomi R Wray^{6,7} and S. Hong Lee^{1,2,4*}

4 ¹ Australian Centre for Precision Health, University of South Australia Cancer Research
5 Institute, University of South Australia, Adelaide, SA, 5000, Australia

6 ² UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA,
7 5000, Australia

8 ³Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine, Chattogram
9 Veterinary and Animal Sciences University (CVASU), Khulshi, Chattogram, 4225,
10 Bangladesh

11 ⁴South Australian Health and Medical Research Institute (SAHMRI), University of South
12 Australia, Adelaide, SA, 5000, Australia

13 ⁵Division of Animal Breeding and Genetics, National Institute of Animal Science (NIAS),
14 South Korea

15 ⁶Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland,
16 Australia

17 ⁷Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia

18 Correspondance : Cvasu.Momin@gmail.com and Hong.Lee@unisa.edu.au

22 **Abstract**

23 The coefficient of determination (R^2) is a well-established measure to indicate the predictive
24 ability of polygenic scores (PGS). However, the sampling variance of R^2 is rarely considered
25 so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons
26 are made between PGS based on different discovery samples, the sampling covariance of R^2
27 is necessary to test the difference between them. Here, we show how to estimate the variance
28 and covariance of R^2 values to assess the 95% CI and p-value of the R^2 difference. We apply
29 this approach to real data to predict into 28,880 European participants using UK Biobank
30 (UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We
31 quantify the significantly higher predictive ability of UKBB PGS compared to BBJ PGS (p-
32 value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGS
33 significantly improves the predictive ability, compared to a model of UKBB PGS only (p-value
34 3.5e-05 for cholesterol and 1.3e-28 for BMI). The proposed approach can also be applied to
35 testing a significant difference between R^2 values across different p-value thresholds. We also
36 show that the predictive ability of regulatory SNPs is significantly enriched than non-regulatory
37 SNPs for cholesterol (p-value 2.6e-19 for UKBB and 8.7e-08 for BBJ). We suggest that the
38 proposed approach (available in R package ‘r2redux’) should be used to test the statistical

39 significance of difference between pairs of PGS, which may help to draw a correct conclusion
40 about the predictive ability of PGS.

41

42

43 **Introduction**

44 Complex traits are affected by many risk factors including polygenic effects ¹⁻³. Genetic profile
45 analysis can quantify how polygenic effects are associated with future disease risk at the
46 individual and population levels^{4; 5}. Genetic profiling has potential benefits that can help people
47 make informed decisions when they manage their health and medical care ⁶⁻⁸.

48 Genome-wide association studies (GWAS) have provided an opportunity to estimate genetic
49 profile or polygenic scores (PGS) that can make individual risk predictions from genetic data
50 ^{4; 9-14}. Typically, the effects of genome-wide single nucleotide polymorphisms (SNPs)
51 associated with complex traits are estimated in a discovery dataset, which are projected in an
52 independent target dataset. Then, for each individual in the target samples the weighted
53 genotypic coefficients according to the projected SNP effects (i.e. PGS) are derived and
54 correlated with outcome (trait including affected/unaffected for disease) to quantify the
55 prediction accuracy. The squared correlation or coefficient of determination (R^2) have been a
56 useful measure to quantify the reliability of PGS. Note that R^2 is equivalent to squared
57 regression coefficients if the dependent and explanatory variables are column-standardised ¹⁵.

58 Previously, we introduced a novel measure of R^2 on the liability scale that can be comparable
59 across different models and scales ¹⁶ when using disease traits or ascertained case-control data.
60 Choi et al. ¹² reported that this R^2 measure on the liability scale outperforms the widely used
61 Nagelkerke pseudo R^2 in controlling for bias due to ascertained case-control samples.
62 Nagelkerke pseudo R^2 is not independent of the proportion of cases in the sample. In contrast,
63 R^2 on the liability scale is not dependent on the proportion of cases in the sample, but does
64 require an estimate of the lifetime population prevalence of diseases.

65 Wand et al. ¹¹ suggested that any PGS study should report R^2 as an indicator of the predictive
66 ability. Choi et al. ¹² concluded that R^2 is a useful metric to measure association and goodness
67 of fit in the interpretation of PGS predictions. Many studies have demonstrated the predictive
68 ability of PGS, using R^2 ^{12; 13; 17; 18}. However, the variance of R^2 ¹⁵ has been rarely studied
69 especially in the PGS analyses although it is the crucial parameter to estimate confidence

70 intervals of R^2 . Furthermore, estimates of the covariance between a pair of R^2 values (e.g.,
71 from two sets of PGS) are needed to assess if they are significantly different to each other, or
72 if the ratio of two R^2 values is significantly deviated from the expectation. This significance
73 test for the difference or ratio is important when comparing two or multiple sets of PGS that
74 are derived from different sets of SNPs, e.g., genomic partitioning or genome-wide association
75 p-value thresholds (p_T) analysis.

76 In this study, we use R^2 measures and their variance-covariance matrix to assess if the
77 predictive abilities of PGS based on different sources are significantly different to each other.
78 We derive the variance and covariance of R^2 values to generate estimates of its 95% CI and p-
79 value of the R^2 difference, considering two sets of dependent or independent PGS. We also
80 derive the variance and covariance (i.e. information matrix) of squared regression coefficients
81 in a multiple regression model, testing if the proportion of the squared regression coefficient
82 attributable to SNPs in the regulatory region is significantly higher than expected (i.e. PGS-
83 based genomic partitioning method). We apply this approach to real data to predict 28,880
84 European individuals using UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary
85 statistics for cholesterol and BMI.

86

87 **Methods**

88 **PGS models**

89 We use a linear model that regresses the observed phenotypes on a single or multiple sets of
90 PGS. It is assumed that the phenotypes are already adjusted for other non-genetic and
91 environmental factors (e.g. demographic variables, ancestry principal components (PCs)).

92 A PGS model can be written as

93

$$94 \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e} \quad (1)$$

95

96 where \mathbf{y} is the vector of standardised phenotypes of trait, \mathbf{X} is a column-standardised $N \times M$
97 matrix including M sets of PGS, $\boldsymbol{\beta}$ is the vector of regression coefficients and \mathbf{e} is the vector of
98 residuals. For example, with two sets of PGS ($M=2$), \mathbf{X} and $\hat{\boldsymbol{\beta}}$ can be expressed as

99

$$100 \mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2],$$

101

102
$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \Sigma_{22}^{-1}\Sigma_{21}, \quad (2)$$

103

104
$$\Sigma = \begin{bmatrix} (\Sigma_{11}) & (\Sigma_{12}) \\ (\Sigma_{21}) & (\Sigma_{22}) \end{bmatrix} = \begin{bmatrix} (\mathbf{1}) & (r_{y,x_1} & r_{y,x_2}) \\ (r_{y,x_1}) & (\mathbf{1} & r_{x_1,x_2}) \\ (r_{y,x_2}) & (r_{x_1,x_2} & \mathbf{1}) \end{bmatrix} \quad (3)$$

105 where r_{y,x_1} , r_{y,x_2} and r_{x_1,x_2} are correlations between \mathbf{y} and the first PGS (\mathbf{x}_1), \mathbf{y} and the second PGS (\mathbf{x}_2), and between the two PGS (\mathbf{x}_1 and \mathbf{x}_2), respectively, in the sample. Using $\hat{\beta}$ that are estimated in the multiple regression (eq. 2), the expected phenotypes ($\hat{\mathbf{y}}$) can be obtained as

108

109
$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}.$$

110

111 The coefficient of determination for this multiple regression model with $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2]$ in eq. (1) 112 can be written as

113
$$r_{y,(x_1,x_2)}^2 = 1 - E(\mathbf{y} - \hat{\mathbf{y}})^2 = E(\hat{\mathbf{y}}^2) = \hat{\beta}_1^2 + \hat{\beta}_2^2 + 2r_{x_1,x_2}\hat{\beta}_1\hat{\beta}_2. \quad (4)$$

114

115 With a single set of PGS, i.e. $M=1$ and $\mathbf{X} = [\mathbf{x}_1]$ or $[\mathbf{x}_2]$ in eq. (1), the expression of R^2 can be 116 reduced as

117
$$r_{y,x_1}^2 = E(\hat{\mathbf{y}}^2) = \hat{\beta}_1^2 \text{ with } \mathbf{X} = [\mathbf{x}_1]$$

118 or

119
$$r_{y,x_2}^2 = E(\hat{\mathbf{y}}^2) = \hat{\beta}_2^2 \text{ with } \mathbf{X} = [\mathbf{x}_2].$$

120

121 Variance of R^2

122 The distribution of R^2 can be transformed to a non-central χ^2 distribution with mean = $M + \lambda$ 123 and variance = $2 \times (M + 2\lambda)$ where $\lambda = \frac{N \times R^2}{1 - R^2}$ is the non-centrality parameter. For example, 124 the variance of the transformed value for r_{y,x_1}^2 is

125

126
$$var\left[\left(\frac{\hat{\beta}_1}{sd(\hat{\beta}_1)}\right)^2\right] = \frac{1}{var(\hat{\beta}_1)^2} var(\hat{\beta}_1^2) = 2(M + 2\lambda).$$

127 Therefore, $var(r_{y,x_1}^2) = var(\hat{\beta}_1^2) = 2var(\hat{\beta}_1)^2(M + 2\lambda) \quad (5)$

128 where $var(\hat{\beta}_1) = 1/N \cdot (1 - \rho_{y,x_1}^2)^2$ and ρ_{y,x_1}^2 is the squared correlation in the population and 129 can be approximated as $\rho_{y,x_1}^2 \approx r_{y,x_1}^2$ ^{19; 20}.

130
131 In a similar manner, eq. (5) can be extended to multiple explanatory variables as
132
$$var(r_{y,(x_1,x_2,\dots,x_M)}^2) \approx 2 \left[\frac{1}{N} \cdot (1 - r_{y,(x_1,x_2,\dots,x_M)}^2)^2 \right]^2 (M + 2\lambda) \quad (6)$$

133
134 Wishart et al.²¹ introduced a formula to obtain the variance of R^2 as
135
$$Var(R^2) = \frac{[4 \times R^2 \times (1 - R^2)^2 \times \{N - (M + 1)\}^2]}{[(N^2 - 1) \times (N + 3)]}$$

136 which provides an equivalent estimate as in eq. (6). The s.e. of R^2 estimate is the square root
137 of $var(R^2)$.

138
139 **Variance of the difference between two R^2 values**
140 Following Olkin and Finn¹⁵, we use the delta method to estimate the variance of the difference
141 between R^2 values based on two sets of PGS (\mathbf{x}_1 and \mathbf{x}_2). Assuming that the difference of R^2
142 values can be formulated as a function of the correlations, i.e. $f(r_{y,x_1}, r_{y,x_2}, r_{x_1,x_2})$, the delta
143 method approximates the variance of the difference as

144
145
$$var(f) = \boldsymbol{\Theta}' \boldsymbol{\Omega} \boldsymbol{\Theta} \quad (7)$$

146 where $\boldsymbol{\Theta}' = \left(\frac{\partial f}{\partial r_{y,x_1}}, \frac{\partial f}{\partial r_{y,x_2}}, \frac{\partial f}{\partial r_{x_1,x_2}} \right)$ is the derivatives of f with respect to the correlations (8)

147 and

148
$$\boldsymbol{\Omega} = \begin{bmatrix} var(r_{y,x_1}) & cov(r_{y,x_1}, r_{y,x_2}) & cov(r_{y,x_1}, r_{x_1,x_2}) \\ cov(r_{y,x_1}, r_{y,x_2}) & var(r_{y,x_2}) & cov(r_{y,x_2}, r_{x_1,x_2}) \\ cov(r_{y,x_1}, r_{x_1,x_2}) & cov(r_{y,x_2}, r_{x_1,x_2}) & var(r_{x_1,x_2}) \end{bmatrix}.$$

149 Each element of $\boldsymbol{\Omega}$ is shown in Olkin and Finn¹⁵ (also see Appendix).

150
151 From eq. (7), the following variances of differences can be estimated and used in our PGS
152 analyses.

153
154 **1. R^2 difference when using different discovery samples to generate the PGS**
155 $var(r_{y,x_1}^2 - r_{y,x_2}^2)$ with $f(r_{y,x_1}, r_{y,x_2}, r_{x_1,x_2}) = r_{y,x_1}^2 - r_{y,x_2}^2$, (9)
156 which allows us to compare two PGS models that are not nested to each other (see ‘ R^2
157 difference when using different information sources’ in Results section), for which the
158 conventional log-likelihood ratio test cannot be applied.

159

160 In eq. (9), the values of $r_{y,x_1}^2 - r_{y,x_2}^2$ from random samples in the population are normally
161 distributed when the sample size is sufficient¹⁵. Assuming that our PGS analysis is sufficiently
162 powered ($N > 25,000$), the p-value for the significance test of the difference can be derived
163 from

$$164 \frac{(r_{y,x_1}^2 - r_{y,x_2}^2)^2}{var(r_{y,x_1}^2 - r_{y,x_2}^2)} \sim \chi_1^2$$

165

166 and the 95% confidence interval is

$$167 \left[(r_{y,x_1}^2 - r_{y,x_2}^2) - 1.96 \sqrt{var(r_{y,x_1}^2 - r_{y,x_2}^2)}, \quad (r_{y,x_1}^2 - r_{y,x_2}^2) + 1.96 \sqrt{var(r_{y,x_1}^2 - r_{y,x_2}^2)} \right] \quad (10)$$

168

169 2. R^2 difference when using nested models

$$170 var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2) \quad \text{with} \quad f(r_{y,x_1}, r_{y,x_2}, r_{x_1,x_2}) = r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2 = \hat{\beta}_1^2 + \hat{\beta}_2^2 + \\ 171 2r_{x_1,x_2}\hat{\beta}_1\hat{\beta}_2 - r_{y,x_2}^2 \quad (11)$$

172 where $\hat{\beta}_1$ and $\hat{\beta}_2$ are the estimated regression coefficients from a multiple regression (eq. 2),
173 calculated from Σ (see eq. 2–4). Again, the derivative with respect to each of the correlations
174 can be obtained for this function (eq. 8). Note that the comparison between $r_{y,(x_1,x_2)}^2$ and r_{y,x_2}^2
175 is equivalent to the log-likelihood ratio test (i.e. $\mathbf{y} = \mathbf{x}_1\beta_1 + \mathbf{x}_2\beta_2 + \mathbf{e}$ vs. $\mathbf{y} = \mathbf{x}_2\beta_2 + \mathbf{e}$)¹⁵.

176

177 The values of $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ in eq. (11) from random samples in the population follows a
178 non-central chi-squared distribution with a non-centrality parameter $\lambda = N \times$
179 $\frac{r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2}{1 - (r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)^2}$. The p-value for the significance test of the difference can be derived from

180

$$181 \lambda \sim \chi_1^2$$

182

183 and the 95% confidence interval is

$$184 \left[(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2) + \sqrt{var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)} \frac{\xi_{97.5\%} - \lambda - 1}{\sqrt{2(1+2\lambda)}}, \quad (r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2) + \right. \\ 185 \left. \sqrt{var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)} \frac{\xi_{2.5\%} - \lambda - 1}{\sqrt{2(1+2\lambda)}} \right] \quad (12)$$

186 where $\xi_{\%}$ is the value at the percentile of the inverse of non-central chi-squared cumulative
187 distribution function with mean = $\lambda + 1$ and d.f. = 1.

188

189 When the sample size is large, the values of $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ from random samples in the
190 population are normally distributed ¹⁵. The p-value for the significance test of the difference
191 can also be derived from

$$192 \frac{(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)^2}{var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)} \sim \chi_1^2$$

193

194 and the 95% confidence interval is

$$195 \left[(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2) - 1.96 \sqrt{var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)}, \quad (r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2) + \right. \\ 196 \left. 1.96 \sqrt{var(r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2)} \right] \quad (13)$$

197

198 Note that eq. 12 and 13 are equivalent when the sample size is sufficient ¹⁵.

199

200 3. **R^2 difference when using two independent sets of PGS**

201 In this case, there is no correlation structure between two independent sets of PGS ($r_{x_1,x_2} = 0$,
202 e.g., male and female PGS), therefore, the variance of R^2 difference is simply the sum of the
203 variances of each R^2 value, which can be obtained from eq. (5). For example, assuming
204 $r_{x_1,x_2} = 0$, the variance of R^2 difference can be written as

$$205 var(r_{y_1,x_1}^2 - r_{y_2,x_2}^2) = 2 \left[\frac{1}{N_1} \cdot (1 - r_{y_1,(x_1)}^2)^2 \right]^2 (1 + 2\lambda_1) + 2 \left[\frac{1}{N_2} \cdot (1 - r_{y_2,(x_1)}^2)^2 \right]^2 (1 + \\ 206 2\lambda_2) \quad (14)$$

207 where y_1 and y_2 are the vectors of standardised phenotypes and N_1 and N_2 are the sample sizes
208 for the two independent sets of PGS. The non-centrality parameters (λ_1 and λ_2) for two
209 dependent PGS can be written as

$$210 \lambda_1 = \frac{N_1 \times r_{y_1,x_1}^2}{1 - r_{y_1,x_1}^2} \text{ and } \lambda_2 = \frac{N_2 \times r_{y_2,x_2}^2}{1 - r_{y_2,x_2}^2}$$

211 p-value for the significance test of the difference can be derived from $\frac{(r_{y_1,x_1}^2 - r_{y_2,x_2}^2)^2}{var(r_{y_1,x_1}^2 - r_{y_2,x_2}^2)} \sim \chi_1^2$

212 and the 95% confidence interval is

$$213 \left[(r_{y_1,x_1}^2 - r_{y_2,x_2}^2) - 1.96 \sqrt{var(r_{y_1,x_1}^2 - r_{y_2,x_2}^2)}, \quad (r_{y_1,x_1}^2 - r_{y_2,x_2}^2) + 1.96 \sqrt{var(r_{y_1,x_1}^2 - r_{y_2,x_2}^2)} \right] \\ 214 \quad (15)$$

215

216

217 4. PGS-based genomic partitioning analysis

218 $var(\hat{\beta}_1^2 - \hat{\beta}_2^2)$ with $f(r_{y,x_1}, r_{y,x_2}, r_{x_1,x_2}) = \hat{\beta}_1^2 - \hat{\beta}_2^2$ (16)

219 where $\hat{\beta}_1$ and $\hat{\beta}_2$ are the estimated regression coefficients from a multiple regression (eq. 2),
220 calculated from Σ (eq. 3). Therefore, it is possible to get the derivative with respect to each of
221 the correlations, r_{y,x_1} , r_{y,x_2} and r_{x_1,x_2} in eq. (8). $var(\hat{\beta}_1^2)$ and $var(\hat{\beta}_2^2)$ can be also obtained in
222 a similar manner. Thus, we can get the variance covariance matrix (\mathcal{H}), i.e. the information
223 matrix, as

224

225
$$\mathcal{H} = \begin{bmatrix} var(\hat{\beta}_1^2) & -\frac{var(\hat{\beta}_1^2 - \hat{\beta}_2^2) - var(\hat{\beta}_1^2) - var(\hat{\beta}_2^2)}{2} \\ -\frac{var(\hat{\beta}_1^2 - \hat{\beta}_2^2) - var(\hat{\beta}_1^2) - var(\hat{\beta}_2^2)}{2} & var(\hat{\beta}_2^2) \end{bmatrix}.$$

226

227 The \mathcal{H} can be used to estimate the variance of the difference between $\frac{\hat{\beta}_1^2}{p_{exp}}$ and $\frac{\hat{\beta}_2^2}{(1-p_{exp})}$ as

228

229
$$var\left[\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}\right] = \left[\frac{var(\hat{\beta}_1^2)}{(p_{exp})^2} + \frac{var(\hat{\beta}_2^2)}{(1-p_{exp})^2} + \frac{var(\hat{\beta}_1^2 - \hat{\beta}_2^2) - var(\hat{\beta}_1^2) - var(\hat{\beta}_2^2)}{p_{exp}(1-p_{exp})}\right] \quad (17)$$

230

231 where the expected proportion of phenotypic variance explained by x_1 (PGS1) can be
232 calculated from prior information, referred to as $p_{exp} = \# \text{ SNPs used for PGS1} / \text{total } \# \text{ SNPs}$.
233 This variance can be used to test if two squared regression coefficients scaled by their
234 expectations are significantly different to each other.

235

236 Analogous to eq. (9), the values of $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$ in eq. (17) with random samples in the
237 population are asymptotically normal¹⁵. Using a Wald test, the p-value for the significance test
238 of the difference can be derived from

239

240
$$\frac{\left[\left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}\right)\right]^2}{var\left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}\right)} \sim \chi_1^2.$$

241

242 The 95% confidence interval of the ratio is

243
$$\left[\left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})} \right) - 1.96 \sqrt{var \left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})} \right)}, \left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})} \right) + \right.$$

244
$$\left. 1.96 \sqrt{var \left(\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})} \right)} \right] \quad (18)$$

245

246 **Data**

247 The UK Biobank is a large-scale biomedical database, that comprises 0.5 million individuals
248 who had been recruited between 2006 to 2010 and their age ranged between 40 and 69 years
249 ^{22; 23}. The data consists of health-related information for samples who are genotyped for
250 genome-wide SNPs. A stringent quality control (QC) process was applied to UKBB data that
251 excludes individuals with non-white British ancestries, mismatched gender between reported
252 and genotypic information, genotype call rate <0.95 and putative sex chromosome aneuploidy.
253 The SNP QC criteria filtered out SNPs with an imputation reliability <0.6, missingness >0.05,
254 minor allele frequency (MAF) <0.01, Hardy-Weinberg equilibrium p-value < 10⁻⁰⁷. We also
255 applied a relatedness cut-off QC (>0.05) so that there was no high pairwise relatedness among
256 samples. After QC, 288,792 individuals and 7,701,772 SNPs were remained.

257

258 **Discovery GWAS data**

259 Ninety percent of the individuals from the QCed data (N=288,792) were randomly selected as
260 discovery samples (N=259,912, SNP # =7,701,772) to generate GWAS summary statistics
261 (UKBB hereafter). For the GWAS with the 259,912 UKBB discovery samples, we used BMI
262 and cholesterol that were adjusted for age, sex, birth year, Townsend deprivation Index (TDI),
263 education, genotype measurement batch, assessment centre and the first 10 ancestry principal
264 components (PCs) using a linear regression.

265

266 We also have access to Japanese Biobank (BBJ) (<http://jenger.riken.jp/en/result>) GWAS
267 summary statistics (BBJ hereafter) for BMI ²⁴ (N=158,284) and cholesterol ²⁵ (N=128,305) for
268 5,961,601 SNPs.

269

270 **Target data**

271 Ten percent of the individuals from the QCed data (N=288,792) were randomly selected as an
272 independent target dataset (N=28,880 and SNP # =7,701,772) that were non-overlapping and
273 unrelated with the UKBB and BBJ discovery samples. In the PGS analyses, we used only

274 4,113,630 SNPs that were common between UKBB and BBJ GWAS data after excluding
275 ambiguous SNPs and SNPs with any strand issue.

276
277 In the target dataset (N=28,880), the phenotypes of each trait were adjusted for age, sex, birth
278 year, TDI, education, genotype batch, assessment centre and the first 10 PCs using a linear
279 regression. The pre-adjusted phenotypes were correlated with PGS estimated in the following
280 step. For each trait, we used the UKBB and BBJ GWAS summary statistics to estimate two
281 sets of PGS (UKBB PGS vs. BBJ PGS for the target individuals (n=28,880), using PLINK2 --
282 score function ²⁶. Then, we estimated the correlation between the PGS and pre-adjusted
283 phenotypes to obtain R^2 values in the PGS analyses.

284
285 **Functional annotation of the genome**

286 We annotated the genome using pre-defined functional categories (regulatory vs. non-
287 regulatory genomic regions) ²⁷. Regulatory region includes SNPs from coding regions,
288 untranslated regions (UTR) and promotors. Non-regulatory region includes all the other
289 regions except the regulatory region. The number of SNPs belong to regulatory and non-
290 regulatory is 158,653 and 3,954,947 (i.e. 4% of the total SNPs are located in the regulatory
291 region).

292
293 **Simulation of dependent and explanatory variables**

294 For a quantitative trait, we simulated dependent variable (y) and PGS (x_1 and x_2), varying the
295 correlation structure of $\begin{bmatrix} 1 & r_{y,x_1} & r_{y,x_2} \\ r_{y,x_1} & 1 & r_{x_1,x_2} \\ r_{y,x_2} & r_{x_1,x_2} & 1 \end{bmatrix}$ and the sample size (detailed simulation

296 parameters are shown in Supplementary Figures 1-9). For a disease trait, the same simulation
297 procedure was used, and the simulated quantitative phenotypes were transformed to binary
298 responses using a liability threshold model with a population prevalence of $k=0.05$. For
299 example, case-control status was assigned to individuals according to their standardised
300 quantitative phenotypes (i.e. liability), i.e. cases have liability greater than a threshold such that
301 the proportion of cases is $k=0.05$. The empirical variances of r_{y,x_1}^2 , r_{y,x_2}^2 , $r_{y,(x_1,x_2)}^2$ –
302 r_{y,x_2}^2 and $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$ were obtained over 10,000 replicates, which were compared to the
303 theoretical variances estimated using eqs. (6), (9), (11) and (17), respectively.

304

305 **Results**

306 **Simulation verification**

307 The theory of the proposed method has been explicitly verified using simulations, varying

308 sample size and values of r_{y,x_1}^2 , $r_{y,x_1}^2 - r_{y,x_2}^2$, $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ and $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$

309 (**Supplementary Figures 1 – 9**). The empirical variances obtained from 10,000 simulated
310 replicates are almost perfectly correlated with the theoretical variance for the values of r_{y,x_1}^2 ,

311 $r_{y,x_1}^2 - r_{y,x_2}^2$, $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ and $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$ when varying the sample size

312 (**Supplementary Figures 1 – 4**) and when varying R^2 values (**Supplementary Figures 5 – 8**).

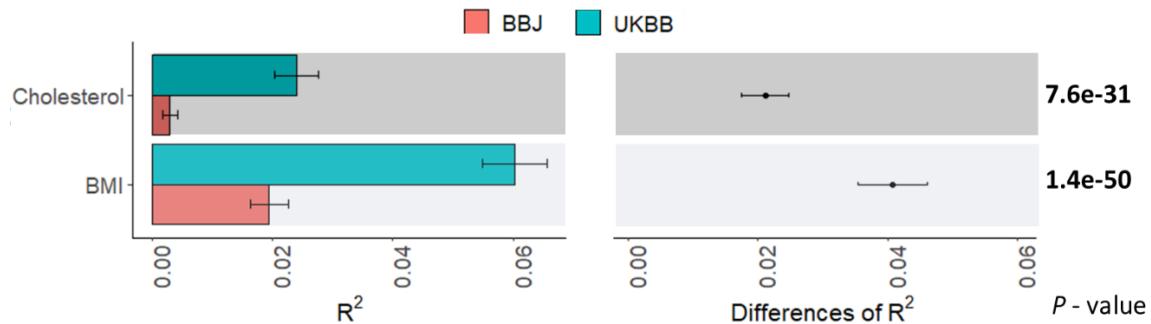
313 When considering two independent PGS, the theoretical and empirical variances are also
314 agreed well (**Supplementary Figure 9**).

315

316 **R^2 difference when using different information sources (UKBB vs. BBJ)**

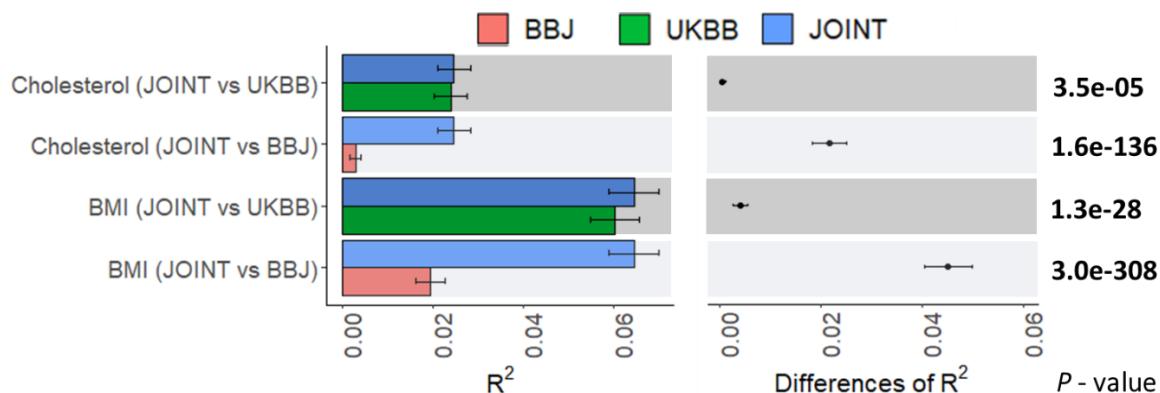
317 It is of interest to determine whether different information sources (e.g., ancestries) have
318 significantly different predictive abilities in PGS analyses, which can be assessed using eqs. (9)
319 and (10). **Figure 1** illustrates that when predicting the 28,880 European target samples, the
320 coefficient of determinations (R^2) with the UKBB and BBJ PGS were 0.024 (95% CI = 0.021-
321 0.028) and 0.003 (95% CI = 0.002 - 0.004), respectively, for cholesterol. However, these R^2
322 values and CIs cannot be used to assess their difference because the two sets of PGS are not
323 independent. Furthermore, the two PGS models with UKBB and BBJ are not nested to each
324 other, therefore, the likelihood ratio test could not be used either. For this problem, we used
325 eqs. (9) and (10) to obtain the variance, 95% CI (0.0247 - 0.0175) and p-value (7.6e-31) of the
326 R^2 difference, accounting for the dependency between UKBB and BBJ PGS, for cholesterol
327 (**Figure 1**). Similarly, the test statistics of the R^2 difference was obtained for BMI, 0.035 -
328 0.046 for 95% CI and p-value = 1.4e-50 (**Figure 1**).

329



330

331 **Figure 1: The predictive ability (R^2) of PGS when predicting 28,880 European**
332 **individuals using UKBB or BBJ discovery GWAS dataset.**
333 **Left panel:** The main bars represent R^2 values and error bars correspond 95% confidence
334 intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery
335 GWAS datasets to estimate two sets of PGS.
336 **Right panel:** Dot points represent the differences of R^2 values between UKBB and BBJ PGS
337 models, and error bars indicate 95% confidence intervals of the difference.
338
339 It is also interesting to test if BBJ PGS provides a significant improvement in the predictive
340 ability, in addition to UKBB PGS, when predicting the 28,880 European target samples. **Figure**
341 **2** compares R^2 value with each UKBB or BBJ PGS to R^2 value from a joint model fitting
342 UKBB and BBJ PGS simultaneously. Using eq. (11) and (12), we acquired the variance, 95%
343 CI (0.0001–0.001) and p-value (3.5e-05) of R^2 difference when comparing the joint model
344 with a single model with UKBB, indicating that BBJ PGS contributed to a significant
345 improvement for cholesterol. Similarly, BBJ PGS improved the predictive ability significantly
346 (p-value = 1.3e-28) for BMI. As expected, excluding UKBB PGS from the joint model
347 substantially decreased the prediction accuracy (p-value = 1.6e-136 for cholesterol and 3.0e-
348 308 for BMI).



349
350 **Figure 2: The predictive ability (R^2) of the UKBB or BBJ PGS model or a joint model of**
351 **UKBB and BBJ when predicting 28,880 European individuals.**
352 **Left panel:** The main bars represent R^2 values and error bars correspond 95% confidence
353 intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery
354 GWAS datasets to estimate two sets of PGS, i.e. UKBB and BBJ PGS. In addition, a joint
355 model fitting both UKBB and BBJ PGS was compared.
356 **Right Panel:** Dot points represent the differences of R^2 values between the joint model and
357 UKBB or BBJ PGS model, and error bars indicate 95% confidence intervals of the difference.
358

359 **R^2 difference when using two independent sets of PGS (male vs. female)**

360 We were also interested in testing if the PGS could predict the adjusted phenotypes of the target
361 individuals equally well for males and females. In this case, there is no correlation structure
362 between male and female PGS, therefore, the variance of R^2 difference is simply the sum of

363 the variances of each R^2 value, which can be obtained from eq. (5) or (6). **Supplementary**
364 **Figure 10** shows that there was no significant difference between male and female PGS in their
365 predictive ability for cholesterol and BMI whether using UKBB or BBJ discovery GWAS
366 dataset.

367

368 **PGS with genome-wide association p-value thresholds (p_T)**

369 PGS also has been widely used to determine which p_T provides the highest prediction accuracy,
370 for example, using PGS software such as PLINK^{26;28}. However, there is a lack of test statistics
371 that can assess if the predictive ability of the best-performed p_T is significantly different from
372 the other p_T . **Figure 3a** illustrates that R^2 value is the highest at $p_T = 0.3$ when predicting
373 28,880 European individuals in the target dataset, using BBJ discovery GWAS dataset (BMI).
374 However, it is not clear if the predictive ability at $p_T = 0.3$ is significantly higher than the
375 adjacent p_T (e.g. $p_T = 0.2$ or 0.4), and it may be important to report p_T of which the predictive
376 ability is not statistically different from the best-performed p_T . Using eqs. (9) and (10), we
377 assessed the significance of difference between the best-found p_T and each of the other p_T
378 (**Figure 3b**). From this analysis, we found that the best-performed p_T was not significantly
379 different from p_T ranging between $0.1 - 1$, but significantly different from $p_T \leq 0.05$ (**Figure**
380 **3b**). When using UKBB discovery GWAS dataset to predict the 28,880 European individuals,
381 the highest R^2 value at the p_T of 1 was significantly different from all the other p_T
382 (**Supplementary Figure 11b**).

383

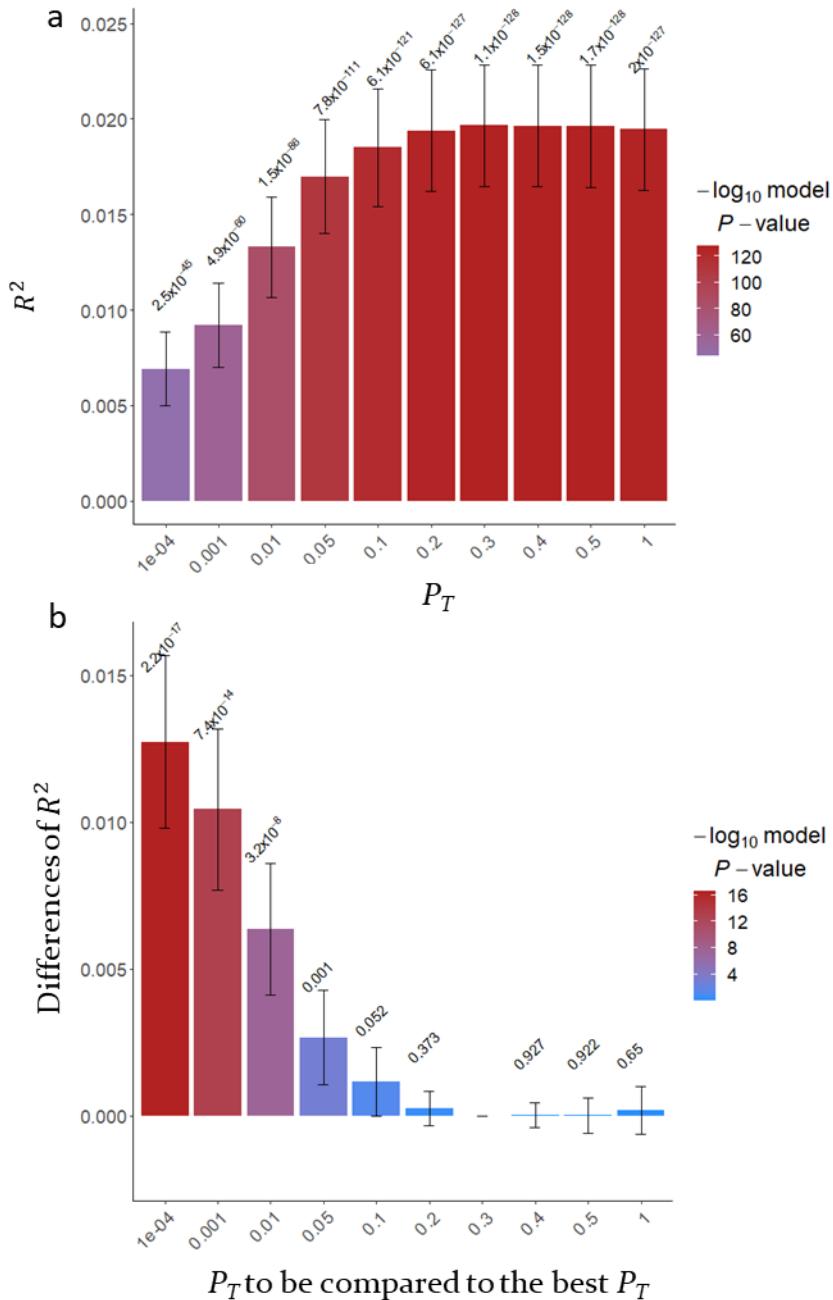
384 Interestingly, the highest R^2 value was found at $p_T = 1e-04$ (**Figure 4a**) when predicting the
385 European target samples using BBJ discovery GWAS dataset for cholesterol, which was not
386 statistically different from $p_T = 0.001$, but was significantly higher than the other p_T (**Figure**
387 **4b**). For the same target samples and trait, the best R^2 value was obtained from $p_T = 0.01$ when
388 using UKBB discovery GWAS dataset (**Supplementary Figure 12a**). Except for $p_T = 0.01$,
389 0.05 and 0.1, R^2 values at the other p_T were significantly different from the best R^2 values
390 (**Supplementary Figure 12b**).

391

392

393

394



395

396 **Figure 3: The predictive ability (R^2) of PGS estimated based on SNPs below p_T when**
397 **predicting BMI in 28,880 European samples using BBJ discovery samples (GWAS**
398 **summary statistics).**

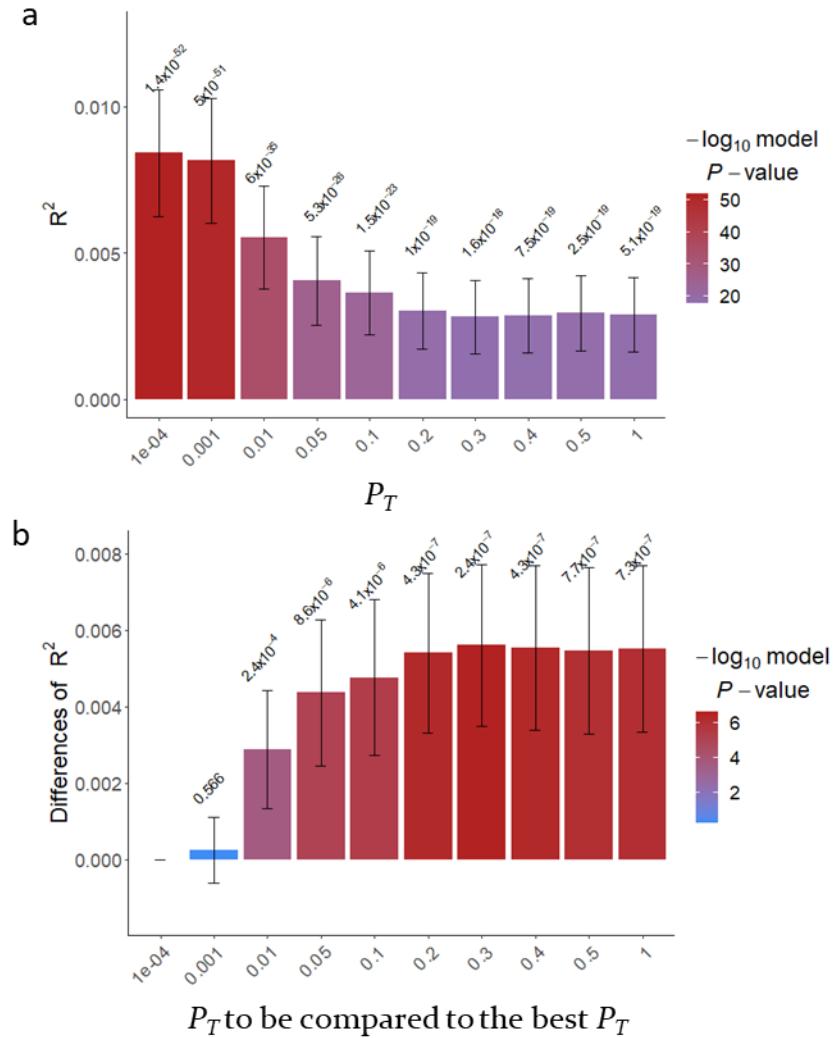
399 a) The main bars represent R^2 values and error bars correspond 95% confidence intervals. The
400 values above 95% CIs are p-values indicating that R^2 values are not different from zero.

401 b) The main bars represent the difference of R^2 values between the corresponding p_T and the
402 best-performed p_T and error bars indicate 95% confidence intervals. The values above 95%
403 CIs are p-values indicating the significances of differences between the pairs of R^2 values.

404

405

406



407

408 **Figure 4: The predictive ability (R^2) of PGS estimated based on SNPs below the p_T when**

409 **predicting cholesterol in 28,880 European samples using BBJ discovery samples (GWAS**

410 **summary statistics).**

411 a) The main bars represent R^2 values and error bars correspond 95% confidence intervals. The

412 values above 95% CIs are p-values indicating that R^2 values are not different from zero.

413 b) The main bars represent the difference of R^2 values between the corresponding p_T and the

414 best-performed p_T and error bars indicate 95% confidence intervals. The values above 95%

415 CIs are p-values indicating the significances of differences between the pairs of R^2 values.

416

417 PGS-based genomic partitioning analyses

418 Genomic partitioning analyses have been widely applied^{27, 29-31}. Such analysis could be useful

419 in the PGS context. Using eq. (17) and the information matrix, \mathcal{H} , we can estimate the variance

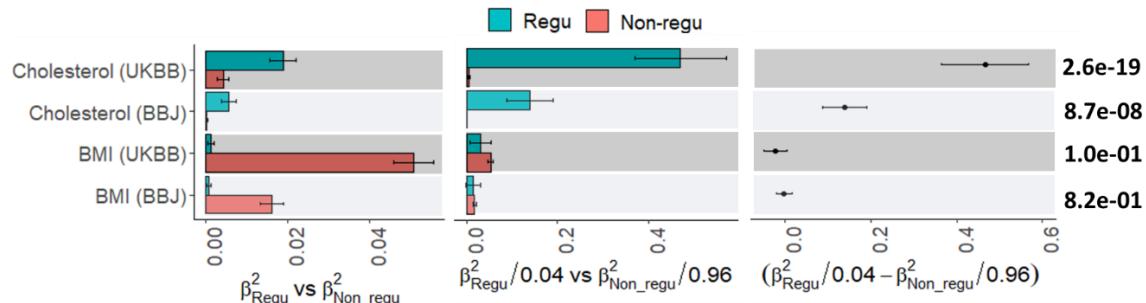
420 of the difference between, $\frac{\hat{\beta}_{regu}^2}{p_{exp}}$ and $\frac{\hat{\beta}_{non-regu}^2}{(1-p_{exp})}$, where $\hat{\beta}_{regu}$ and $\hat{\beta}_{non-regu}$ are the estimated

421 regression coefficients from a multiple regression (eq. 2), and assess if the differences is

422 significant (i.e. the coverage of the SNPs belonged to the category). For example, we

423 partitioned the genome-wide SNPs into the regulatory (158,653) and non-regulatory regions

424 (3,954,947), following Gusev et al. ²⁷, resulting 4% of SNP coverage for the regulatory region
 425 as the expectation. We simultaneously fit two sets of PGS from regulatory and non-regulatory
 426 to get $\hat{\beta}_{regu}^2$ and $\hat{\beta}_{non-regu}^2$, using a multiple regression, and assess if the difference, $\frac{\hat{\beta}_{regu}^2}{p_{exp}} -$
 427 $\frac{\hat{\beta}_{non-regu}^2}{(1-p_{exp})}$, is significant (eq. 18). **Figure 5** shows that the predictive ability of regulatory SNPs
 428 was significantly higher than nonregulatory SNPs (p-value = 2.6e-19 for UKBB and 8.7e-08
 429 for BBJ) for cholesterol. In contrast, the predictive ability of regulatory SNPs was not different
 430 from the expectation (p-value = 1.0e-01 for UKBB and 8.2e-01 for BBJ) for BMI.
 431



432 **Figure 5: PGS-based genomic partitioning method to assess if the predictive ability is
 433 enriched in the regulatory region for cholesterol and BMI.** Here 0.04 is the expectation for
 434 the regulatory SNPs based on the proportion of SNPs allocated to this annotation.
 435 **Left panel:** The main bars represent squared regression coefficients attributable to SNPs in the
 436 regulatory region ($\hat{\beta}_{regu}^2$) and non-regulatory region ($\hat{\beta}_{non-regu}^2$), and error bars correspond 95%
 437 confidence intervals when predicting 28,880 European samples using UKBB or BBJ GWAS
 438 summary statistics.
 439

440 **Middle panel:** The main bars represent the ratio of $\frac{\hat{\beta}_{regu}^2}{p_{exp}}$ and $\frac{\hat{\beta}_{non-regu}^2}{(1-p_{exp})}$ and error bars
 441 correspond 95% confidence intervals when predicting 28,880 European samples using UKBB
 442 or BBJ GWAS summary statistics.

443 **Right panel:** Dot points represent the difference, $(\frac{\hat{\beta}_{regu}^2}{p_{exp}} - \frac{\hat{\beta}_{non-regu}^2}{(1-p_{exp})})$ between regulatory
 444 region ($\hat{\beta}_{regu}^2$) and non-regulatory region ($\hat{\beta}_{non-regu}^2$) and error bars indicate 95% confidence
 445 intervals of the ratio differences.

446

447

448 Application to binary responses and ascertained case-control data

449 The proposed method is also explicitly verified using simulation for binary or case-control data,
 450 varying sample size and values of r_{y,x_1}^2 , $r_{y,x_1}^2 - r_{y,x_2}^2$, $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ and $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$
 451 (**Supplementary Figures 13 – 20**). The empirical variances obtained from 10,000 simulated
 452 replicates are almost identical with the theoretical variances for the values of r_{y,x_1}^2 , $r_{y,x_1}^2 - r_{y,x_2}^2$,

453 $r_{y,(x_1,x_2)}^2 - r_{y,x_2}^2$ and $\frac{\hat{\beta}_1^2}{p_{exp}} - \frac{\hat{\beta}_2^2}{(1-p_{exp})}$ when varying the sample size (**Supplementary Figures 13 – 16**) and when varying R^2 values (**Supplementary Figures 17 – 20**). In the case of ascertained case-control, a similar pattern is shown, i.e. the empirically observed variances obtained from 10,000 simulated replicates are agreed well with the theoretical variances for the values (**Supplementary Figures 21 – 24**). This finding shows that the proposed method can be applied to test the significance of difference between predictive abilities of PGS for binary traits and ascertained case-control traits when R^2 is not very high (< 0.1). Note that the empirical and theoretical variances become disagreed when R^2 values on the observed scale are more than 0.1 for binary responses and ascertained case control (**Supplementary Figures 25 and 26**). Although R^2 value > 0.1 is not frequently observed in the current PGS studies (**Supplementary Table 2**), a careful interpretation is required for the variance of such high R^2 , and we would not recommend using the theoretical approximation.

465

466 Discussion

467 R^2 has been widely used to measure the predictive ability of PGS¹³. However, the confidence interval of R^2 has rarely been reported, and the test statistic for the difference of two R^2 values has not been well documented. Here, we show how to get the variance of each estimated R^2 value, and covariance between two R^2 estimates (from two sets of PGS) that can be used to assess if they are significantly different to each other.

472

473 Martin et al.¹⁸ reported that the PGS prediction accuracy is higher when discovery and target samples are from the same ancestry background, compared to when the samples are from different ancestries. However, they did not formally assess the statistical significance of the increase (no p-value provided). More importantly, they did not consider the correlation structure between predictors when they compared two PGS (in their Figure 4). We applied the proposed approach and found that the predictive ability of PGS based on UKBB discovery GWAS is significantly higher than that of PGS based on BBJ discovery GWAS, by formally deriving the 95% CI and p-value of the R^2 difference.

481

482 Many studies evaluating PGS use the p_T method¹², and report the p_T that maximises 483 performance. This provides useful information when inferring the genetic architecture of the 484 trait of interest and when fine-tuning p_T as a hyper-parameter in PGS methods^{28;32-34}. For such 485 cases, it may be crucial to determine if the best-performed p_T is genuinely better than other

486 (adjacent) p_T or it occurs just by random chance (i.e. sampling error). Our proposed approach
487 can formally assess statistical difference among p_T , providing 95% CI of the difference with a
488 significance p-value.

489
490 We also derived an information matrix of squared regression coefficients in a multiple
491 regression model, establishing a PGS-based genomic partitioning method that could test if the
492 ratio of two squared regression coefficients is significantly deviated from its expectation given
493 the proportion of SNPs allocated to each partition. This is analogous to the existing genomic
494 partitioning approaches, using GREML or LDSC ^{27; 29-31} that may have an overfitting issue
495 because SNP effects and genomic partitioning are estimated in the same samples.

496
497 In conclusion, we show how to estimate the variance and covariance of R^2 estimates to
498 quantify the 95% CI and p-value of the difference and ratio when considering a pair of PGS,
499 which is available in R package ‘r2redux’ (see Appendix B). We suggest that the proposed
500 approach should be used to test the statistical significance of difference and ratio between pairs
501 of PGS, which may help to draw a correct conclusion about the predictive ability of PGS.

502
503 **Code availability**
504 The genotype and phenotype data of the UK Biobank can be accessed through procedures
505 described on its webpage (<https://www.ukbiobank.ac.uk/>) and summary statistics of BMI and
506 cholesterol from Japanese Biobank (BBJ) can be obtained from its website
507 (<http://jenger.riken.jp/en/result>)

508 PLINK2 version can be downloaded from <https://www.cog-genomics.org/plink/>
509 r2redux can be downloaded from (https://github.com/mommy003/r2redux_version4) and to be
510 added in the CRAN soon (also see Appendix B).

511
512 **Acknowledgements**
513 This research is supported by the Australian Research Council (DP190100766). The R package
514 development is supported by Cooperative Research Program for Agriculture Science and
515 Technology Development (PJ0160992021) from the Rural Development Administration,
516 Republic of Korea. We thank the staffs and samples of the UK Biobank and Biobank Japan for
517 their important contributions. Our reference number approved by UK Biobank is 14575. The
518 UK Biobank is funded by the UK Department of Health, the Medical Research Council, the

519 Scottish Executive, and the Wellcome Trust medical research charity. The analyses were
520 performed using computational resources provided by the Australian Government through
521 Gadi under the National Computational Merit Allocation Scheme (NCMAS), and HPCs
522 (Tango and Statgen server) managed by UniSA IT. NRW acknowledges funding from the
523 NHMRC (1113400, 1173790).

524

525 **Declaration of interest**

526 The authors declare that they have no competing interests.

527

528 **Author contribution**

529 S.H.L. and N.R.W. conceived the idea. S.H.L. derived theory and supervised the study. M.M.M
530 performed the analysis. M.M.M and S.H.L verified the theory and analytical methods, and
531 made the R package, with support from S.L. S.H.L and M.M.M wrote the first draft of the
532 manuscript. N.R.W. and S.L. provided critical feedback and suggestions. All the authors
533 discussed the results and contributed to the final manuscript.

534

535

536 **Appendix A. The elements of Ω in eq. (7)**

537 Following Olkin and Finn ¹⁵, each element of Ω in eq. (7) can be expressed as

538 $var(r_{y,x_1}) = (1 - \rho_{y,x_1}^2)^2 / N$

539 $var(r_{y,x_2}) = (1 - \rho_{y,x_2}^2)^2 / N$

540 $var(r_{x_1,x_2}) = (1 - \rho_{x_1,x_2}^2)^2 / N$

541

542 $cov(r_{y,x_1}, r_{y,x_2}) = [1/2(2\rho_{x_1,x_2} - \rho_{y,x_1}\rho_{y,x_2})(1 - \rho_{x_1,x_2}^2 - \rho_{y,x_1}^2 - \rho_{y,x_2}^2) + \rho_{x_1,x_2}^3] / N$

543 $cov(r_{y,x_1}, r_{x_1,x_2}) = [1/2(2\rho_{y,x_2} - \rho_{y,x_1}\rho_{x_1,x_2})(1 - \rho_{x_1,x_2}^2 - \rho_{y,x_1}^2 - \rho_{y,x_2}^2) + \rho_{y,x_2}^3] / N$

544 $cov(r_{y,x_2}, r_{x_1,x_2}) = [1/2(2\rho_{y,x_1} - \rho_{y,x_2}\rho_{x_1,x_2})(1 - \rho_{x_1,x_2}^2 - \rho_{y,x_1}^2 - \rho_{y,x_2}^2) + \rho_{y,x_1}^3] / N$

545

546

547 **Appendix B. r2redux manual**

548 The ‘r2redux’ package can be used to derive test statistics for R^2 values from polygenic risk
549 score (PRS) models (variance and covariance of R^2 values, p-value and 95% confidence
550 intervals (CI)). For example, it can test if two sets of R^2 values from two different PRS models
551 are significantly different to each other whether the two sets of PRS are independent or
552 dependent. Because R^2 value is often regarded as the predictive ability of PRS, r2redux
553 package can be useful to assess the performances of PRS methods or multiple sets of PRS
554 based on different information sources. Furthermore, the package can derive the information
555 matrix of $\hat{\beta}_1^2$ and $\hat{\beta}_2^2$ from a multiple regression (see olkin_beta1_2 or olkin_beta_info function
556 in the manual), which is a basis of a novel PRS-based genomic partitioning method (see
557 r2_enrich or r2_enrich_beta function in the manual). It is recommended that the target sample
558 size in the PGS study should be more than 2,000 for quantitative traits (Supplementary Figure
559 27) and more than 5,000 for binary responses or case-control studies (Supplementary Figures
560 28 and 29). The p-value generated from r2redux is a two-tail test. Depending on hypothesis,
561 one-tail p-value can be obtained as the two-tail p-value divided by 2.

562 **Installation**

563 To use r2redux:

564

- `install.packages("devtools")`

565

- `library(devtools)`

566 • `devtools:::install_github("mommy003/r2redux_version4")` or
567 • `install.packages("r2redux")` [to be added in the CRAN soon]
568 • `library(r2redux)`

569 **Quick start**

570 We illustrate the usage of r2redux using multiple sets of PRS estimated based on GWAS
571 summary statistics from UK Biobank or Biobank Japan (reference datasets). In a target dataset,
572 the phenotypes of target samples (y) can be predicted with PRS (a PRS model, e.g. $y = PRS +$
573 e , where y and PRS are column-standardised¹⁵). Note that the target individuals should be
574 independent from reference individuals. We can test the significant differences of the
575 predictive ability (R^2) between a pair of PRS (see `r2_diff` function and example in the manual).

576 **Data preparation**

577 **a. Statistical testing of significant difference between R^2 values for p-value thresholds:**
578 r2redux requires only phenotype and estimated PRS (from PLINK or any other software). Note
579 that any missing value in the phenotypes and PRS tested in the model should be removed. If
580 we want to test the significant difference of R^2 values for p-value thresholds, `r2_diff` function
581 can be used with an input file that includes the following fields (also see
582 `test_ukbb_thresholds_scaled` in the example directory from github
583 (https://github.com/mommy003/r2redux_version4) and `r2_diff` function in the manual).

584 • Phenotype (y)
585 • PRS for p value 1 (x_1)
586 • PRS for p value 0.5 (x_2)
587 • PRS for p value 0.4 (x_3)
588 • PRS for p value 0.3 (x_4)
589 • PRS for p value 0.2 (x_5)
590 • PRS for p value 0.1 (x_6)
591 • PRS for p value 0.05 (x_7)
592 • PRS for p value 0.01 (x_8)
593 • PRS for p value 0.001 (x_9)
594 • PRS for p value 0.0001 (x_{10})

595 To get the test statistics for the difference between $R^2(y \sim x[, v1])$ and $R^2(y \sim x[, v2])$. (here we
596 define $R_1^2 = R^2(y \sim x[, v1])$ and $R_2^2 = R^2(y \sim x[, v2])$)
597
598 dat=read.table("test_ukbb_thresholds_scaled") (see example files)
599 nv=length(dat\$V1)
600 v1=c(1)
601 v2=c(2)
602 output=r2_diff(dat,v1,v2,nv)
603 r2redux output
604 output\$var1 (variance of R_1^2)
605 0.0001437583
606 output\$var2 (variance of R_2^2)
607 0.0001452828
608 output\$var_diff (variance of difference between R_1^2 and R_2^2)
609 5.678517e-07
610 output\$r2_based_p (p-value for significant difference between R_1^2 and R_2^2)
611 0.5514562
612 output\$mean_diff (differences between R_1^2 and R_2^2)
613 -0.0004488044
614 output\$upper_diff (upper limit of 95% CI for the difference)
615 0.001028172
616 output\$lower_diff (lower limit of 95% CI for the difference)
617 -0.001925781
618

619 **b. PRS-based genomic enrichment analysis:** If we want to perform some enrichment analysis
620 (e.g., regulatory vs non_regulatory) in the PRS context to test significantly different from the
621 expectation (4% = # SNPs in the regulatory / total # SNPs). We simultaneously fit two sets of
622 PRS from regulatory and non-regulatory to get $\hat{\beta}_{regu}^2$ and $\hat{\beta}_{non-regu}^2$, using a multiple
623 regression, and assess if the ratio, $\hat{\beta}_{regu}^2 / (\hat{\beta}_{regu}^2 + \hat{\beta}_{non-regu}^2)$ and/or $\frac{\hat{\beta}_{regu}^2}{p_{exp}} - \frac{\hat{\beta}_{non-regu}^2}{(1-p_{exp})}$, are
624 significantly different from the expectation. To test this, we need to prepare input file for
625 r2redux that includes the following fields (e.g. test_ukbb_enrichment_choles in example
626 directory and r2_enrich_beta function in the manual).

627 • Phenotype (y)
628 • PRS for regulatory region (x_1)
629 • PRS for non-regulatory region (x_2)

630 To get the test statistic for the ratio which is significantly different from the expectation.
631 $\text{var}(\frac{t_1}{p_{exp}} - \frac{t_2}{1-p_{exp}})$, where $t_1 = \hat{\beta}_1^2$ and $t_2 = \hat{\beta}_2^2$. β_1 and β_2 are regression coefficients from a
632 multiple regression model, i.e. $y = x_1 \cdot \beta_1 + x_2 \cdot \beta_2 + e$, where y , x_1 and x_2 are column
633 standardised.
634

```
635 dat=read.table("test_ukbb_enrichment_choles") (see example file)
636 nv=length(dat$V1)
637 v1=c(1)
638 v2=c(2)
639 expected_ratio=0.04
640 output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
641 output
642 r2redux output
643 output$beta1_sq ( $t_1$ )
644 0.01118301
645 output$beta2_sq ( $t_2$ )
646 0.004980285
647 output$var1 (variance of  $t_1$ )
648 7.072931e-05
649 output$var2 (variance of  $t_2$ )
650 3.161929e-05
651 output$var1_2 (variance of difference between  $t_1$  and  $t_2$ )
652 0.000162113
653 output$cov (covariance between  $t_1$  and  $t_2$ )
654 -2.988221e-05
655 output$enrich_p2 (p-value for testing the difference between  $\frac{t_1}{p_{exp}}$  and  $\frac{t_2}{1-p_{exp}}$ )
656 0.1997805
657 output$mean_diff (difference between  $\frac{t_1}{p_{exp}}$  and  $\frac{t_2}{1-p_{exp}}$ )
658 0.2743874
659 output$var_diff (variance of difference,  $\frac{t_1}{p_{exp}} - \frac{t_2}{1-p_{exp}}$ )
660 0.04579649
661 output$upper_diff (upper limit of 95% CI for the mean difference)
662 0.6938296
663 output$lower_diff (lower limit of 95% CI for the mean difference)
664 -0.1450549
665
666
667
668 The r2redux manual and their example files can be downloaded from
669 https://github.com/mommy003/r2redux\_version4
670
671
672
673
674
675
676
677
```

678 **References**

- 679 1. Plomin, R., Haworth, C., and Davis, O.S. (2009). Common disorders are quantitative traits.
680 Nature reviews genetics 10, 872-878.
- 681 2. Schork, N.J. (1997). Genetics of complex disease: approaches, problems, and solutions.
682 American journal of respiratory and critical care medicine 156, S103-S109.
- 683 3. Gibson, G. (2009). Decanalization and the origin of complex disease. Nature Reviews
684 Genetics 10, 134-140.
- 685 4. Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C., Choi, S.H., Natarajan,
686 P., Lander, E.S., Lubitz, S.A., and Ellinor, P.T. (2018). Genome-wide polygenic
687 scores for common diseases identify individuals with risk equivalent to monogenic
688 mutations. Nature Genetics 50, 1219-1224.
- 689 5. Ding, Y., Hou, K., Burch, K.S., Lapinska, S., Privé, F., Vilhjálmsson, B., Sankararaman,
690 S., and Pasaniuc, B. (2022). Large uncertainty in individual polygenic risk score
691 estimation impacts PRS-based risk stratification. Nature Genetics 54, 30-39.
- 692 6. Bilkey, G.A., Burns, B.L., Coles, E.P., Bowman, F.L., Beilby, J.P., Pachter, N.S., Baynam,
693 G., JS Dawkins, H., Nowak, K.J., and Weeramanthri, T.S. (2019). Genomic testing
694 for human health and disease across the life cycle: applications and ethical, legal, and
695 social challenges. Frontiers in Public Health 7, 40.
- 696 7. Allyse, M.A., Robinson, D.H., Ferber, M.J., and Sharp, R.R. (2018). Direct-to-consumer
697 testing 2.0: emerging models of direct-to-consumer genetic testing. In Mayo clinic
698 proceedings. (Elsevier), pp 113-120.
- 699 8. Frerichs, F., Dingemans, K.P., and Brinkman, K. (2002). Cardiomyopathy with
700 mitochondrial damage associated with nucleoside reverse-transcriptase inhibitors. The
701 New England Journal of Medicine 347, 1895-1896.
- 702 9. Wray, N.R., Goddard, M.E., and Visscher, P.M. (2007). Prediction of individual genetic
703 risk to disease from genome-wide association studies. Genome research 17, 1520-
704 1528.
- 705 10. Wray, N.R., Yang, J., Goddard, M.E., and Visscher, P.M. (2010). The genetic
706 interpretation of area under the ROC curve in genomic profiling. PLoS Genet 6,
707 e1000864.
- 708 11. Wand, H., Lambert, S.A., Tamburro, C., Iacocca, M.A., O'Sullivan, J.W., Sillari, C.,
709 Kullo, I.J., Rowley, R., Dron, J.S., and Brockman, D. (2021). Improving reporting
710 standards for polygenic scores in risk prediction studies. Nature 591, 211-219.
- 711 12. Choi, S.W., Mak, T.S.H., and O'Reilly, P.F. (2020). A guide to performing Polygenic
712 Risk Score analyses. Nature protocols 15, 2759.
- 713 13. Lewis, C.M., and Vassos, E. (2020). Polygenic risk scores: from research tools to clinical
714 instruments. Genomic Medicine 12, 1-11.
- 715 14. Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O'Donovan, M.C., Sullivan, P.F.,
716 Sklar, P., and Consortium, I.S. (2009). Common polygenic variation contributes to
717 risk of schizophrenia that overlaps with bipolar disorder. 460, 748.
- 718 15. Olkin, I., and Finn, J.D. (1995). Correlations redux. Psychological Bulletin 118, 155.
- 719 16. Lee, S.H., Goddard, M.E., Wray, N.R., and Visscher, P.M. (2012). A better coefficient of
720 determination for genetic profile analysis. Genetic epidemiology 36, 214-224.
- 721 17. So, H.-C., and Sham, P.C. (2017). Exploring the predictive power of polygenic scores
722 derived from genome-wide association studies: a study of 10 complex traits.
723 Bioinformatics 33, 886-892.
- 724 18. Martin, A.R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M., and Daly, M.J. (2019).
725 Clinical use of current polygenic risk scores may exacerbate health disparities. Nature
726 Genetics 51, 584-591.

727 19. Olkin, I., and Siotani, M. (1976). Asymptotic distribution of functions of a correlation
728 matrix. *Essays in probability and statistics*, 235-251.

729 20. Olkin, I., and Finn, J.D. (1990). Testing correlated correlations. *Psychological Bulletin*
730 108, 330.

731 21. Wishart, J., Kondo, T., and Elderton, E. (1931). The mean and second moment coefficient
732 of the multiple correlation coefficient, in samples from a normal population.
733 *Biometrika* 22, 353-376.

734 22. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A.,
735 Vukcevic, D., Delaneau, O., and O'Connell, J. (2018). The UK Biobank resource with
736 deep phenotyping and genomic data. *Nature* 562, 203-209.

737 23. Fry, A., Littlejohns, T.J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., Collins, R.,
738 and Allen, N.E. (2017). Comparison of sociodemographic and health-related
739 characteristics of UK Biobank participants with those of the general population.
740 *American Journal of Epidemiology* 186, 1026-1034.

741 24. Akiyama, M., Okada, Y., Kanai, M., Takahashi, A., Momozawa, Y., Ikeda, M., Iwata, N.,
742 Ikegawa, S., Hirata, M., and Matsuda, K. (2017). Genome-wide association study
743 identifies 112 new loci for body mass index in the Japanese population. *Nature*
744 *genetics* 49, 1458-1467.

745 25. Kanai, M., Akiyama, M., Takahashi, A., Matoba, N., Momozawa, Y., Ikeda, M., Iwata,
746 N., Ikegawa, S., Hirata, M., and Matsuda, K. (2018). Genetic analysis of quantitative
747 traits in the Japanese population links cell types to complex human diseases. *Nature*
748 *genetics* 50, 390-400.

749 26. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller,
750 J., Sklar, P., De Bakker, P.I., and Daly, M.J. (2007). PLINK: a tool set for whole-
751 genome association and population-based linkage analyses. *The American Journal of*
752 *Human Genetics* 81, 559-575.

753 27. Gusev, A., Lee, S.H., Trynka, G., Finucane, H., Vilhjálmsson, B.J., Xu, H., Zang, C.,
754 Ripke, S., Bulik-Sullivan, B., and Stahl, E. (2014). Partitioning heritability of
755 regulatory and cell-type-specific variants across 11 common diseases. *The American*
756 *Journal of Human Genetics* 95, 535-552.

757 28. Euesden, J., Lewis, C.M., and O'Reilly, P.F. (2015). PRSice: polygenic risk score
758 software. *Bioinformatics* 31, 1466-1468.

759 29. Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E., Caporaso, N., Cunningham,
760 J.M., De Andrade, M., Feenstra, B., Feingold, E., and Hayes, M.G. (2011). Genome
761 partitioning of genetic variation for complex traits using common SNPs. *Nature*
762 *genetics* 43, 519-525.

763 30. Lee, S.H., DeCandia, T.R., Ripke, S., Yang, J., Sullivan, P.F., Goddard, M.E., Keller,
764 M.C., Visscher, P.M., and Wray, N.R. (2012). Estimating the proportion of variation
765 in susceptibility to schizophrenia captured by common SNPs. *Nature Genetics* 44,
766 247-250.

767 31. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R.,
768 Anttila, V., Xu, H., Zang, C., and Farh, K. (2015). Partitioning heritability by
769 functional annotation using genome-wide association summary statistics. *Nature*
770 *Genetics* 47, 1228.

771 32. Choi, S.W., and O'Reilly, P.F. (2019). PRSice-2: Polygenic Risk Score software for
772 biobank-scale data. *Gigascience* 8, giz082.

773 33. Zhao, Z., Yi, Y., Song, J., Wu, Y., Zhong, X., Lin, Y., Hohman, T.J., Fletcher, J., and Lu,
774 Q. (2021). PUMAS: fine-tuning polygenic risk scores with GWAS summary
775 statistics. *Genome biology* 22, 1-19.

776 34. Vilhjálmsson, B.J., Yang, J., Finucane, H.K., Gusev, A., Lindström, S., Ripke, S.,
777 Genovese, G., Loh, P.-R., Bhatia, G., and Do, R. (2015). Modeling linkage
778 disequilibrium increases accuracy of polygenic risk scores. *The American Journal of*
779 *Human Genetics* 97, 576-592.
780