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Abstract

The coefficient of determination (R?) is a well-established measure to indicate the predictive
ability of polygenic scores (PGS). However, the sampling variance of R? is rarely considered
so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons
are made between PGS based on different discovery samples, the sampling covariance of R?
IS necessary to test the difference between them. Here, we show how to estimate the variance
and covariance of R? values to assess the 95% CI and p-value of the R? difference. We apply
this approach to real data to predict into 28,880 European participants using UK Biobank
(UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We
quantify the significantly higher predictive ability of UKBB PGS compared to BBJ PGS (p-
value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGS
significantly improves the predictive ability, compared to a model of UKBB PGS only (p-value
3.5e-05 for cholesterol and 1.3e-28 for BMI). The proposed approach can also be applied to
testing a significant difference between R? values across different p-value thresholds. We also
show that the predictive ability of regulatory SNPs is significantly enriched than non-regulatory
SNPs for cholesterol (p-value 2.6e-19 for UKBB and 8.7e-08 for BBJ). We suggest that the
proposed approach (available in R package ‘r2redux’) should be used to test the statistical
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significance of difference between pairs of PGS, which may help to draw a correct conclusion
about the predictive ability of PGS.

Introduction

Complex traits are affected by many risk factors including polygenic effects 1-3. Genetic profile
analysis can quantify how polygenic effects are associated with future disease risk at the
individual and population levels*>. Genetic profiling has potential benefits that can help people

make informed decisions when they manage their health and medical care 6%,

Genome-wide association studies (GWAS) have provided an opportunity to estimate genetic
profile or polygenic scores (PGS) that can make individual risk predictions from genetic data
4 %14 Typically, the effects of genome-wide single nucleotide polymorphisms (SNPs)
associated with complex traits are estimated in a discovery dataset, which are projected in an
independent target dataset. Then, for each individual in the target samples the weighted
genotypic coefficients according to the projected SNP effects (i.e. PGS) are derived and
correlated with outcome (trait including affected/unaffected for disease) to quantify the
prediction accuracy. The squared correlation or coefficient of determination (R?) have been a
useful measure to quantify the reliability of PGS. Note that R? is equivalent to squared

regression coefficients if the dependent and explanatory variables are column-standardised °.

Previously, we introduced a novel measure of R? on the liability scale that can be comparable
across different models and scales *® when using disease traits or ascertained case-control data.
Choi et al. * reported that this R? measure on the liability scale outperforms the widely used
Nagelkerke pseudo R? in controlling for bias due to ascertained case-control samples.
Nagelkerke pseudo R? is not independent of the proportion of cases in the sample. In contrast,
R? on the liability scale is not dependent on the proportion of cases in the sample, but does

require an estimate of the lifetime population prevalence of diseases.

Wand et al. 1! suggested that any PGS study should report R? as an indicator of the predictive
ability. Choi et al. *? concluded that R? is a useful metric to measure association and goodness
of fit in the interpretation of PGS predictions. Many studies have demonstrated the predictive
ability of PGS, using R? 1% 13 1718 However, the variance of R? 1 has been rarely studied

especially in the PGS analyses although it is the crucial parameter to estimate confidence

2|Page


https://doi.org/10.1101/2022.06.08.495250
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495250; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

70 intervals of R?. Furthermore, estimates of the covariance between a pair of R? values (e.g.,
71 from two sets of PGS) are needed to assess if they are significantly different to each other, or
72 if the ratio of two R? values is significantly deviated from the expectation. This significance
73 test for the difference or ratio is important when comparing two or multiple sets of PGS that
74 are derived from different sets of SNPs, e.g., genomic partitioning or genome-wide association

75  p-value thresholds (p;) analysis.

76 In this study, we use R? measures and their variance-covariance matrix to assess if the
77  predictive abilities of PGS based on different sources are significantly different to each other.
78  We derive the variance and covariance of R? values to generate estimates of its 95% CI and p-
79  value of the R? difference, considering two sets of dependent or independent PGS. We also
80  derive the variance and covariance (i.e. information matrix) of squared regression coefficients
81 in a multiple regression model, testing if the proportion of the squared regression coefficient
82 attributable to SNPs in the regulatory region is significantly higher than expected (i.e. PGS-
83  based genomic partitioning method). We apply this approach to real data to predict 28,880
84  European individuals using UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary
85  statistics for cholesterol and BMI.

86
87  Methods
88 PGS models
89  We use a linear model that regresses the observed phenotypes on a single or multiple sets of
90 PGS. It is assumed that the phenotypes are already adjusted for other non-genetic and
91  environmental factors (e.g. demographic variables, ancestry principal components (PCs)).
92 A PGS model can be written as
93
94  y=XRB+e 1)
95
96  where vy is the vector of standardised phenotypes of trait, X is a column-standardised N x M
97  matrix including M sets of PGS, R is the vector of regression coefficients and e is the vector of
98  residuals. For example, with two sets of PGS (M=2), X and P can be expressed as
99

100 X = [xq,X2],

101
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102 B= [?] = (X'X) X'y = 257 251, )
2
103
(ryx1 ry,xz)
C[E1) (E12)
104 X = [(221) (222)] l ryZ . T'xll,xz) (3)

105 wherer, . ,7, 5, and 7y, are correlations between y and the first PGS (x1), y and the second

106 PGS (x2), and between the two PGS (x1 and x2), respectively, in the sample. Using P that are
107  estimated in the multiple regression (eg. 2), the expected phenotypes (¥) can be obtained as

108
109
110

111 The coefficient of determination for this multiple regression model with X = [x4,Xx,] ineq. (1)

<
Il
>

=)

112 can be written as

113 1y =1—E(@—9? =EF?) = ] + % + 212, 1,51 5. @)
114

115  With asingle set of PGS, i.e. M=1 and X = [x,] or [x;] in eq. (1), the expression of R? can be
116  reduced as

117 12, = E(¥%) = p? with X = [x4]

118 or
119 12, = E(¥%) = pZ with X = [x].
120

121  Variance of R?

122 The distribution of R? can be transformed to a non-central y? distribution with mean = M+ A

123 and variance =2 X (M + 2A) where A = NXRZZ

124  the variance of the transformed value for rjxl IS

125

126 var [(Sdf[gl))z] - W(lﬁl)z var(f?) = 2(M + 22).

127 Therefore, var(r2y, ) = var(p2) = 2var(B;)" (M + 22) 5)
128  where var(f;) = 1/N - (1 — p2,)? and p2 . is the squared correlation in the population and

129  can be approximated as p2 ., = 7, %%
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130

131 In a similar manner, eq. (5) can be extended to multiple explanatory variables as
1 212

132 Uar(rj:(xl,xz,...,xM)) =~ 2 I:ﬁ. (1 - r]i(xl,xZ,...,XM)) ] (M + 2)') (6)

133

134 Wishart et al. 2! introduced a formula to obtain the variance of R? as
[4 X R? x (1 —R?)2 x{N — (M + 1)}?]
[(N? =1) X (N + 3)]
136  which provides an equivalent estimate as in eq. (6). The s.e. of R? estimate is the square root
137  of var(R?).
138

135 Var(R?) =

139  Variance of the difference between two R? values

140  Following Olkin and Finn ¥, we use the delta method to estimate the variance of the difference
141  between R? values based on two sets of PGS (x1 and x2). Assuming that the difference of R?
142 values can be formulated as a function of the correlations, i.e. f (ry,xl,ry,xz,rxl,xz), the delta
143 method approximates the variance of the difference as

144

145  var(f) = 0’00 )

146 where @' = ( M 24 > is the derivatives of f with respect to the correlations  (8)

) )
OTyxs OTyx, O0Tx,x,

147  and
var(ryx,) cov(Tyx,Tyx,) COV(Tyx, T, x,)
148 Q= |cov(ryx,,Tyx,) var(ry,x,) cov(Ty x,0 Ty x,) |-
cov(Ty x s Ty x,)  COV(Tyxy0 Ty xy) var(ry, x,)
149  Each element of Q is shown in Olkin and Finn ° (also see Appendix).
150

151  From eq. (7), the following variances of differences can be estimated and used in our PGS
152  analyses.

153

154 1. R? difference when using different discovery samples to generate the PGS

155  var(rie, — 12x,) With £ (1500 Ty Teox,) = T, — Toays 9)
156  which allows us to compare two PGS models that are not nested to each other (see ‘R?
157  difference when using different information sources’ in Results section), for which the

158  conventional log-likelihood ratio test cannot be applied.
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159

160 In eq. (9), the values of ry%xl —rsz from random samples in the population are normally
161  distributed when the sample size is sufficient *°. Assuming that our PGS analysis is sufficiently
162  powered (N > 25,000), the p-value for the significance test of the difference can be derived

163  from

(r;h_r}%’fz)z 2
164 2 2 ~X1
var(ryx1 —ry,xz)

165
166  and the 95% confidence interval is

167 (ryz,xl - ryZ,xZ) - 1.96\/17ar(ry2,x1 - rﬁxz), (rjxl — ryz,xz) + 1.96\/var(ry2x1 - rﬁxz)l (10)

168

169 2. R? difference when using nested models

170 var(r) yox) — Tix,) with F(5y e Ty s Tepes) = Ty — Toows = Bi + B3 +
171 21y o p1Bs — 12, (11)

172 where 3, and 3, are the estimated regression coefficients from a multiple regression (eq. 2),
173 calculated from X (see eq. 2-4). Again, the derivative with respect to each of the correlations

174  can be obtained for this function (eq. 8). Note that the comparison between ) and Tyx,

2
ryr(xler
175  is equivalent to the log-likelihood ratio test (i.e. y = X1 5, + Xz, + e VS. y = X, 8, + e)*°.
176

177  The values of r2 Tyx, IN €q. (11) from random samples in the population follows a

y:(x11x2) -

178 non-central chi-squared distribution with a non-centrality parameter A =N X

2 2
179 - :: Ax1.2) r: - 7 The p-value for the significance test of the difference can be derived from
TV erx2) T VA2
180
181  A~y?
182

183  and the 95% confidence interval is

2 2 2 .2 \So75%—A-1 2 .2
184 [(ry,(xl,xz) Tix,) +\/var(ry,(x1,x2) ) Nk (ry,(x1.xz) Tx,) +

2 2 \S2s%—A-1
185 \/ var(ry‘(xl’xz) ry‘x2) NeeEen) (12)
186  where & is the value at the percentile of the inverse of non-central chi-squared cumulative

187  distribution function withmean=A1+ 1and d.f. = 1.
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188
189  When the sample size is large, the values of r. (x x2) — 137, from random samples in the

190  population are normally distributed . The p-value for the significance test of the difference
191  can also be derived from

190 DTl
”ar( S G THaz)

193

194  and the 95% confidence interval is

195 [( ,(X1,%2) ryz'xz) L 96\/17617‘( Ty x1x2) — 19, xz) ( ¥,(%1,%2) ryz'xz) +

196  1.96 \/var(rf,(xl,xz) —ryZ_xZ)] (13)

197

198  Note that eq. 12 and 13 are equivalent when the sample size is sufficient °.

199

200 3. R? difference when using two independent sets of PGS

201 In this case, there is no correlation structure between two independent sets of PGS (., , = 0,
202  e.g., male and female PGS), therefore, the variance of R? difference is simply the sum of the
203  variances of each R? value, which can be obtained from eq. (5). For example, assuming

204 1, ,, = 0, the variance of R? difference can be written as

1 212 1 212
205 var(i ., — ) = 2|5 (1= rhwy) | Q4220+ 2[5 (1-nh0) | a+
206 21,) (14)
207  where y; and y, are the vectors of standardised phenotypes and N; and N, are the sample sizes
208  for the two independent sets of PGS. The non-centrality parameters (1, and A,) for two

209  dependent PGS can be written as

N1><r X N2><r x
210 A= % nd A, = #
1=y 1- ryzxz

(5151755, xz)
(r —r2 ) Xl
yiXx1~ 'Y2.x2

211  p-value for the significance test of the difference can be derived from

212  and the 95% confidence interval is

213 ( J’1 X1 J’2 xz) -1 96\/17(11"( J’1 X1 J’2 xz) ( Y1 x1 Y2 xz) +1 96\/17617‘( J/1 X1 Tyzz;xz)

214 (15)
215
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216
217 4. PGS-based genomic partitioning analysis
218 war(B? — £2) with f(ry,xl,ry,xz,rxlsz) = p? — p2 (16)

219  where B, and §, are the estimated regression coefficients from a multiple regression (eq. 2),
220  calculated from X (eq. 3). Therefore, it is possible to get the derivative with respect to each of
221 the correlations, 7y, ., 73,», and 1y,_ ., in eq. (8). var(f?Z) and var (%) can be also obtained in
222  asimilar manner. Thus, we can get the variance covariance matrix (#), i.e. the information

223  matrix, as

224
N var(32)  ser PR -ver (BR)ver(FR)
J RS R R ) var(52)

226
n2 n2

227  The H can be used to estimate the variance of the difference between pB L and a [; 2 ) as
exp “FPexp

228

_ var(B2) var(B2) | var(B?-p2)-var(B?)- var([fz)]
229 var pexp 1- Pexp)] [(pexp)z 1- pexp) + pexp(1 pexp) (17)
230

231  where the expected proportion of phenotypic variance explained by x; (PGS1) can be
232 calculated from prior information, referred to as p,,, = # SNPs used for PGS1 / total # SNPs.
233  This variance can be used to test if two squared regression coefficients scaled by their
234  expectations are significantly different to each other.

235

(BB

236  Analogous to eq. (9), the values o S T R—"

in eg. (17) with random samples in the

237  population are asymptotically normal *°. Using a Wald test, the p-value for the significance test
238  of the difference can be derived from
239

(&<
240 Pexp (1-Pexp) 2

ar B — B3 AL
Pexp (1-Pexp)

241

242  The 95% confidence interval of the ratio is
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2 2 2 2 2 2
Bi B _ B B By By
243 [(pexp 0 1_pexp)> 1.96 J var (pexp (1—Pexp)>' (pexp (1_pexp)> +

BZ BZ

1 2

244 196 var(a (l_pexp)> (18)
245

246  Data

247  The UK Biobank is a large-scale biomedical database, that comprises 0.5 million individuals
248  who had been recruited between 2006 to 2010 and their age ranged between 40 and 69 years
249 2223 The data consists of health-related information for samples who are genotyped for
250 genome-wide SNPs. A stringent quality control (QC) process was applied to UKBB data that
251  excludes individuals with non-white British ancestries, mismatched gender between reported
252  and genotypic information, genotype call rate <0.95 and putative sex chromosome aneuploidy.
253  The SNP QC criteria filtered out SNPs with an imputation reliability <0.6, missingness >0.05,
254 minor allele frequency (MAF) <0.01, Hardy-Weinberg equilibrium p-value < 10%7. We also
255  applied a relatedness cut-off QC (>0.05) so that there was no high pairwise relatedness among
256  samples. After QC, 288,792 individuals and 7,701,772 SNPs were remained.

257

258 Discovery GWAS data

259  Ninety percent of the individuals from the QCed data (N=288,792) were randomly selected as
260  discovery samples (N=259,912, SNP # =7,701,772) to generate GWAS summary statistics
261 (UKBB hereafter). For the GWAS with the 259,912 UKBB discovery samples, we used BMI
262  and cholesterol that were adjusted for age, sex, birth year, Townsend deprivation Index (TDI),
263  education, genotype measurement batch, assessment centre and the first 10 ancestry principal
264  components (PCs) using a linear regression.

265

266  We also have access to Japanese Biobank (BBJ) (http://jenger.riken.jp/en/result) GWAS
267  summary statistics (BBJ hereafter) for BMI 24 (N=158,284) and cholesterol 2° (N=128,305) for
268 5,961,601 SNPs.

269

270  Target data

271  Ten percent of the individuals from the QCed data (N=288,792) were randomly selected as an
272  independent target dataset (N=28,880 and SNP # =7,701,772) that were non-overlapping and
273  unrelated with the UKBB and BBJ discovery samples. In the PGS analyses, we used only
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274 4,113,630 SNPs that were common between UKBB and BBJ GWAS data after excluding
275  ambiguous SNPs and SNPs with any strand issue.

276

277  In the target dataset (N=28,880), the phenotypes of each trait were adjusted for age, sex, birth
278  year, TDI, education, genotype batch, assessment centre and the first 10 PCs using a linear
279  regression. The pre-adjusted phenotypes were correlated with PGS estimated in the following
280  step. For each trait, we used the UKBB and BBJ GWAS summary statistics to estimate two
281  sets of PGS (UKBB PGS vs. BBJ PGS for the target individuals (n=28,880), using PLINK2 --
282  score function 2. Then, we estimated the correlation between the PGS and pre-adjusted
283  phenotypes to obtain R? values in the PGS analyses.

284

285  Functional annotation of the genome

286  We annotated the genome using pre-defined functional categories (regulatory vs. non-
287  regulatory genomic regions) 2’. Regulatory region includes SNPs from coding regions,
288  untranslated regions (UTR) and promotors. Non-regulatory region includes all the other
289  regions except the regulatory region. The number of SNPs belong to regulatory and non-
290  regulatory is 158,653 and 3,954,947 (i.e. 4% of the total SNPs are located in the regulatory
291  region).

292

293  Simulation of dependent and explanatory variables

294  For a quantitative trait, we simulated dependent variable (y) and PGS (x; and x,), varying the

1 r)’»x1 r)’»xz
295  correlation structure of |7x, 1 7y, x,| and the sample size (detailed simulation
r)’»xz rx1»x2 1

296  parameters are shown in Supplementary Figures 1-9). For a disease trait, the same simulation
297  procedure was used, and the simulated quantitative phenotypes were transformed to binary
298  responses using a liability threshold model with a population prevalence of k=0.05. For
299  example, case-control status was assigned to individuals according to their standardised
300 quantitative phenotypes (i.e. liability), i.e. cases have liability greater than a threshold such that

301  the proportion of cases is k=0.05. The empirical variances of 1,y , 72, = 15,0 Ty (xpxy) —

n2 n2
302 ry?xz and pﬁ - a [; 2 )were obtained over 10,000 replicates, which were compared to the
exp “VPexp

303 theoretical variances estimated using egs. (6), (9), (11) and (17), respectively.
304
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305 Results
306 Simulation verification

307  The theory of the proposed method has been explicitly verified using simulations, varying

r2 -2, and P _ B
y,(xpxz) VX2 pexp (1_pexp)

H 2 2 2
308 sample size and values of 77, , 7, —Tyx,

309 (Supplementary Figures 1 — 9). The empirical variances obtained from 10,000 simulated

310  replicates are almost perfectly correlated with the theoretical variance for the values of 77, ,

n2 n2
311 nly, =T, + Ty(eixy) — Dx, and B __F when varying the sample size

Pexp  (1—Dexp)
312  (Supplementary Figures 1 —4) and when varying R? values (Supplementary Figures 5 — 8).
313  When considering two independent PGS, the theoretical and empirical variances are also
314  agreed well (Supplementary Figure 9).
315
316  R? difference when using different information sources (UKBB vs. BBJ)
317 It is of interest to determine whether different information sources (e.g., ancestries) have
318 significantly different predictive abilities in PGS analyses, which can be assessed using egs. (9)
319 and (10). Figure 1 illustrates that when predicting the 28,880 European target samples, the
320 coefficient of determinations (R?) with the UKBB and BBJ PGS were 0.024 (95% CI = 0.021-
321  0.028) and 0.003 (95% CI = 0.002 - 0.004), respectively, for cholesterol. However, these R?
322  values and Cls cannot be used to assess their difference because the two sets of PGS are not
323  independent. Furthermore, the two PGS models with UKBB and BBJ are not nested to each
324  other, therefore, the likelihood ratio test could not be used either. For this problem, we used
325  egs. (9) and (10) to obtain the variance, 95% CI (0.0247 - 0.0175) and p-value (7.6e-31) of the
326  R? difference, accounting for the dependency between UKBB and BBJ PGS, for cholesterol
327  (Figure 1). Similarly, the test statistics of the R? difference was obtained for BMI, 0.035 -
328  0.046 for 95% Cl and p-value = 1.4e-50 (Figure 1).

329
[ BBY UKBB
Cholesterol F —— 7.6e-31
BMI 1 — 1.4e-50
o o < o o o™ < w
S o o S S S = S
o o o o o o o o
2 i 2 P - value
R Differences of R
330
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331  Figure 1: The predictive ability (R?) of PGS when predicting 28,880 European

332 individuals using UKBB or BBJ discovery GWAS dataset.

333  Left panel: The main bars represent R? values and error bars correspond 95% confidence
334  intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery
335 GWAS datasets to estimate two sets of PGS.

336 Right panel: Dot points represent the differences of R? values between UKBB and BBJ PGS
337  models, and error bars indicate 95% confidence intervals of the difference.

338

339 It is also interesting to test if BBJ PGS provides a significant improvement in the predictive

340 ability, in addition to UKBB PGS, when predicting the 28,880 European target samples. Figure
341 2 compares R? value with each UKBB or BBJ PGS to R? value from a joint model fitting
342 UKBB and BBJ PGS simultaneously. Using eq. (11) and (12), we acquired the variance, 95%
343  CI (0.0001-0.001) and p-value (3.5e-05) of R? difference when comparing the joint model
344  with a single model with UKBB, indicating that BBJ PGS contributed to a significant
345  improvement for cholesterol. Similarly, BBJ PGS improved the predictive ability significantly
346  (p-value = 1.3e-28) for BMI. As expected, excluding UKBB PGS from the joint model
347  substantially decreased the prediction accuracy (p-value = 1.6e-136 for cholesterol and 3.0e-
348 308 for BMI).
[ seJ [l ukee [l JOINT

Cholesterol (JOINT vs UKBB)1 ' G 3.5e-05
Cholesterol (JOINT vs BBJ)1 j‘:—‘ — 1.6e-136
BMI (JOINT vs UKBB)1 - - 1.3¢-28
BMI (JOINT vs BBJ)1 —_— 3.0e-308
o o o o [(e] o (2] =T [{e]
S o S o S o S S
o o o o o o o o
R Differences of R’ P-value

349
350 Figure 2: The predictive ability (R?) of the UKBB or BBJ PGS model or a joint model of

351 UKBB and BBJ when predicting 28,880 European individuals.

352  Left panel: The main bars represent R? values and error bars correspond 95% confidence
353 intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery
354  GWAS datasets to estimate two sets of PGS, i.e. UKBB and BBJ PGS. In addition, a joint
355  model fitting both UKBB and BBJ PGS was compared.

356  Right Panel: Dot points represent the differences of R? values between the joint model and
357 UKBB or BBJ PGS model, and error bars indicate 95% confidence intervals of the difference.
358

359  R? difference when using two independent sets of PGS (male vs. female)
360  We were also interested in testing if the PGS could predict the adjusted phenotypes of the target
361 individuals equally well for males and females. In this case, there is no correlation structure

362  between male and female PGS, therefore, the variance of R? difference is simply the sum of
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363  the variances of each R? value, which can be obtained from eq. (5) or (6). Supplementary
364  Figure 10 shows that there was no significant difference between male and female PGS in their
365  predictive ability for cholesterol and BMI whether using UKBB or BBJ discovery GWAS
366  dataset.

367

368 PGS with genome-wide association p-value thresholds (pr)

369 PGS also has been widely used to determine which p provides the highest prediction accuracy,
370  for example, using PGS software such as PLINK 2528, However, there is a lack of test statistics
371  that can assess if the predictive ability of the best-performed p is significantly different from
372  the other p;. Figure 3a illustrates that R? value is the highest at p; = 0.3 when predicting
373 28,880 European individuals in the target dataset, using BBJ discovery GWAS dataset (BMI).
374 However, it is not clear if the predictive ability at p; = 0.3 is significantly higher than the
375 adjacent p; (e.g. py = 0.2 or 0.4), and it may be important to report p, of which the predictive
376  ability is not statistically different from the best-performed p;. Using egs. (9) and (10), we
377  assessed the significance of difference between the best-found p; and each of the other p;
378  (Figure 3b). From this analysis, we found that the best-performed p; was not significantly
379  different from p; ranging between 0.1 — 1, but significantly different from p; < 0.05 (Figure
380  3b). When using UKBB discovery GWAS dataset to predict the 28,880 European individuals,
381 the highest R? value at the p; of 1 was significantly different from all the other p;
382  (Supplementary Figure 11b).

383

384 Interestingly, the highest R? value was found at p; = 1e-04 (Figure 4a) when predicting the
385  European target samples using BBJ discovery GWAS dataset for cholesterol, which was not
386 statistically different from p, = 0.001, but was significantly higher than the other p; (Figure
387  4b). For the same target samples and trait, the best R? value was obtained from p; = 0.01 when
388 using UKBB discovery GWAS dataset (Supplementary Figure 12a). Except for p; = 0.01,
389  0.05 and 0.1, R? values at the other p were significantly different from the best R? values
390  (Supplementary Figure 12b).

391

392

393

394
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Figure 3: The predictive ability (R?) of PGS estimated based on SNPs below p; when
predicting BMI in 28,880 European samples using BBJ discovery samples (GWAS
summary statistics).

a) The main bars represent R? values and error bars correspond 95% confidence intervals. The
values above 95% Cls are p-values indicating that R? values are not different from zero.

b) The main bars represent the difference of R? values between the corresponding p; and the
best-performed p; and error bars indicate 95% confidence intervals. The values above 95%
Cls are p-values indicating the significances of differences between the pairs of R? values.
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Figure 4: The predictive ability (R?) of PGS estimated based on SNPs below the py when
predicting cholesterol in 28,880 European samples using BBJ discovery samples (GWAS
summary statistics).

a) The main bars represent R? values and error bars correspond 95% confidence intervals. The
values above 95% Cls are p-values indicating that R? values are not different from zero.

b) The main bars represent the difference of R? values between the corresponding p; and the
best-performed p; and error bars indicate 95% confidence intervals. The values above 95%
Cls are p-values indicating the significances of differences between the pairs of R? values.

PGS-based genomic partitioning analyses
Genomic partitioning analyses have been widely applied 2231, Such analysis could be useful
in the PGS context. Using eg. (17) and the information matrix, £, we can estimate the variance

31gegu 3721on—regu

and

of the difference between,
Pexp (1-Pexp)

, Where fogu and Bron—regu are the estimated

regression coefficients from a multiple regression (eq. 2), and assess if the differences is
significant (i.e. the coverage of the SNPs belonged to the category). For example, we

partitioned the genome-wide SNPs into the regulatory (158,653) and non-regulatory regions
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424 (3,954,947), following Gusev et al. %, resulting 4% of SNP coverage for the regulatory region
425  as the expectation. We simultaneously fit two sets of PGS from regulatory and non-regulatory

A ~ - - - - H A%e u
426  to get ﬁrzegu and ﬁ,%on_regu, using a multiple regression, and assess if the difference, Fregu _

Pexp

"y
427 [Z"”p;”g)“ , is significant (eq. 18). Figure 5 shows that the predictive ability of regulatory SNPs
~Pexp

428  was significantly higher than nonregulatory SNPs (p-value = 2.6e-19 for UKBB and 8.7e-08
429  for BBJ) for cholesterol. In contrast, the predictive ability of regulatory SNPs was not different
430  from the expectation (p-value = 1.0e-01 for UKBB and 8.2e-01 for BBJ) for BMI.

431

[ Regu [ Non-regu
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g
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)
)
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432

433  Figure 5: PGS-based genomic partitioning method to assess if the predictive ability is
434 enriched in the regulatory region for cholesterol and BMI. Here 0.04 is the expectation for
435 the regulatory SNPs based on the proportion of SNPs allocated to this annotation.

436  Left panel: The main bars represent squared regression coefficients attributable to SNPs in the
437  regulatory region (,[?rzegu) and non-regulatory region ([?,%on_regu), and error bars correspond 95%
438  confidence intervals when predicting 28,880 European samples using UKBB or BBJ GWAS
439  summary statistics.

ﬁ%egu d ﬁrzwn—regu

440 Middle panel: The main bars represent the ratio of and error bars

Pexp (1_pexp)
441  correspond 95% confidence intervals when predicting 28,880 European samples using UKBB
442  or BBJ GWAS summary statistics.

443  Right panel: Dot points represent the difference, (

ﬁ?gegu

B2
_ ﬁnon-regu) between regulatory
Pexp (1-Pexp)

444 region (Brzegu) and non-regulatory region (B,ion_regu) and error bars indicate 95% confidence
445  intervals of the ratio differences.
446

447
448  Application to binary responses and ascertained case-control data

449  The proposed method is also explicitly verified using simulation for binary or case-control data,

: : 2 2 _ .2 2 .2 B B
450  varying sample size and values of 7y , 7y, — 15, s Ty x,) — Tyx, @N o T —,

451  (Supplementary Figures 13 — 20). The empirical variances obtained from 10,000 simulated

452  replicates are almost identical with the theoretical variances for the values of ry%xl, ryz,xl — rﬁxZ,
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n2 nR2
.2 BT B3
Ty, and

2
453 r)’:(xLXZ) DPexp (1-Pexp)

when varying the sample size (Supplementary Figures

454 13 — 16) and when varying R? values (Supplementary Figures 17 — 20). In the case of
455  ascertained case-control, a similar pattern is shown, i.e. the empirically observed variances
456  obtained from 10,000 simulated replicates are agreed well with the theoretical variances for the
457  values (Supplementary Figures 21 — 24). This finding shows that the proposed method can
458  be applied to test the significance of difference between predictive abilities of PGS for binary
459  traits and ascertained case-control traits when R? is not very high (< 0.1). Note that the
460 empirical and theoretical variances become disagreed when R? values on the observed scale
461  are more than 0.1 for binary responses and ascertained case control (Supplementary Figures
462 25 and 26). Although R? value > 0.1 is not frequently observed in the current PGS studies
463  (Supplementary Table 2), a careful interpretation is required for the variance of such high R?,
464  and we would not recommend using the theoretical approximation.

465

466  Discussion

467  R? has been widely used to measure the predictive ability of PGS 2. However, the confidence
468 interval of R? has rarely been reported, and the test statistic for the difference of two R? values
469  has not been well documented. Here, we show how to get the variance of each estimated R?
470  value, and covariance between two R? estimates (from two sets of PGS) that can be used to
471  assess if they are significantly different to each other.

472

473 Martin et al. '8 reported that the PGS prediction accuracy is higher when discovery and target
474 samples are from the same ancestry background, compared to when the samples are from
475  different ancestries. However, they did not formally assess the statistical significance of the
476  increase (no p-value provided). More importantly, they did not consider the correlation
477  structure between predictors when they compared two PGS (in their Figure 4). We applied the
478  proposed approach and found that the predictive ability of PGS based on UKBB discovery
479  GWAS is significantly higher than that of PGS based on BBJ discovery GWAS, by formally
480  deriving the 95% CI and p-value of the R? difference.

481

482 Many studies evaluating PGS use the p; method 2, and report the p, that maximises
483  performance. This provides useful information when inferring the genetic architecture of the
484  trait of interest and when fine-tuning pr as a hyper-parameter in PGS methods 2% 32-34, For such

485  cases, it may be crucial to determine if the best-performed p; is genuinely better than other
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486  (adjacent) py or it occurs just by random chance (i.e. sampling error). Our proposed approach
487  can formally assess statistical difference among pr, providing 95% CI of the difference with a
488  significance p-value.

489

490 We also derived an information matrix of squared regression coefficients in a multiple
491  regression model, establishing a PGS-based genomic partitioning method that could test if the
492  ratio of two squared regression coefficients is significantly deviated from its expectation given
493  the proportion of SNPs allocated to each partition. This is analogous to the existing genomic
494  partitioning approaches, using GREML or LDSC 2" 2°3! that may have an overfitting issue
495  because SNP effects and genomic partitioning are estimated in the same samples.

496

497  In conclusion, we show how to estimate the variance and covariance of R? estimates to
498  quantify the 95% CI and p-value of the difference and ratio when considering a pair of PGS,
499  which is available in R package ‘r2redux’ (see Appendix B). We suggest that the proposed
500 approach should be used to test the statistical significance of difference and ratio between pairs
501 of PGS, which may help to draw a correct conclusion about the predictive ability of PGS.

502

503 Code availability

504  The genotype and phenotype data of the UK Biobank can be accessed through procedures

505  described on its webpage (https://www.ukbiobank.ac.uk/) and summary statistics of BMI and

506 cholesterol from Japanese Biobank (BBJ) can be obtained from its website
507  (http://jenger.riken.jp/en/result)

508 PLINK2 version can be downloaded from https://www.cog-genomics.org/plink/

509  r2redux can be downloaded from (https://github.com/mommy003/r2redux_version4) and to be
510  added in the CRAN soon (also see Appendix B).

511
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536  Appendix A. The elements of Q in eq. (7)

537  Following Olkin and Finn °, each element of Q in eq. (7) can be expressed as

538  war(ry,) = (1 —p3.)*/N

539 war(ryy,) = (1= p5,)?/N

540 var(ty,x,) = (1= p2x,)?/N

541

542 cov(Tyxy Tyxy) = [1/2(20x, %, = PyiPye,) (1 = DE1xy = Poxs = Pixy) + Pyl /N
543 cov(Ty ey Tayx,) = [1/2(2Py0, = PyixsPry,) (1 = Py, = Poey = Poy) + Py, ]/N
544 cov(Ty iy Tayx,) = [1/2(2Py 0, = PyyPry,) (1 = Py, = Poey = Poy) + P32 ]/N
545

546
547  Appendix B. r2redux manual

548  The ‘r2redux’ package can be used to derive test statistics for R? values from polygenic risk
549  score (PRS) models (variance and covariance of R? values, p-value and 95% confidence
550 intervals (Cl)). For example, it can test if two sets of R? values from two different PRS models
551  are significantly different to each other whether the two sets of PRS are independent or
552  dependent. Because R? value is often regarded as the predictive ability of PRS, r2redux
553 package can be useful to assess the performances of PRS methods or multiple sets of PRS
554  Dbased on different information sources. Furthermore, the package can derive the information
555  matrix of fZand 2 from a multiple regression (see olkin_betal 2 or olkin_beta_info function
556  in the manual), which is a basis of a novel PRS-based genomic partitioning method (see
557  r2_enrich or r2_enrich_beta function in the manual). It is recommended that the target sample
558  size in the PGS study should be more than 2,000 for quantitative traits (Supplementary Figure
559  27) and more than 5,000 for binary responses or case-control studies (Supplementary Figures
560 28 and 29). The p-value generated from r2redux is a two-tail test. Depending on hypothesis,
561  one-tail p-value can be obtained as the two-tail p-value divided by 2.

562 Installation
563  To use r2redux:

564 e install.packages ("devtools")

565 e library(devtools)
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566 e devtools::install github ("mommy003/r2redux versiond") or
567 e install.packages("r2redux") [to be added in the CRAN soon]
568 e library(r2redux)

569  Quick start

570  We illustrate the usage of r2redux using multiple sets of PRS estimated based on GWAS
571  summary statistics from UK Biobank or Biobank Japan (reference datasets). In a target dataset,
572  the phenotypes of target samples (y) can be predicted with PRS (a PRS model, e.g. y = PRS +
573 e, where y and PRS are column-standardised °. Note that the target individuals should be
574  independent from reference individuals. We can test the significant differences of the

575  predictive ability (R?) between a pair of PRS (see r2_diff function and example in the manual).
576  Data preparation

577  a. Statistical testing of significant difference between R? values for p-value thresholds:
578  r2redux requires only phenotype and estimated PRS (from PLINK or any other software). Note
579  that any missing value in the phenotypes and PRS tested in the model should be removed. If
580  we want to test the significant difference of R? values for p-value thresholds, r2_diff function
581 can be wused with an input file that includes the following fields (also see
582  test_ukbb_thresholds_scaled in the example directory form github
583  (https://github.com/mommy003/r2redux_version4) and r2_diff function in the manual).

584 e Phenotype (y)

585 e PRS for p value 1 (x,)
586 e PRS for p value 0.5 (x,)
587 e PRS for p value 0.4 (x3)
588 e PRS for p value 0.3 (x,)
589 e PRS for p value 0.2 (xs)
590 e PRS for p value 0.1 (xg)
591 e PRS for p value 0.05 (x)
592 e PRS for p value 0.01 (xg)
593 e PRS for p value 0.001 (x,)
594 e PRS for p value 0.0001 (x4,)
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595  To get the test statistics for the difference between R?(y~x[,v1]) and R?(y~x[,v2]). (here we
596  define R?= R2(y~x[,v1])) and RZ=R?(y~x[,v2])))

597

598  dat=read.table("test_ukbb_thresholds_scaled") (see example files)
599  nv=length(dat$Vv1)

600  vil=c(1)

601 v2=c(2)

602  output=r2_diff(dat,v1,v2,nv)

603  r2redux output

604  output$varl (variance of R?)

605 0.0001437583

606  output$var2 (variance of R2)

607  0.0001452828

608  output$var_diff (variance of difference between R?and R3)

609 5.678517e-07

610  output$r2_based_p (p-value for significant difference between R? and R3)
611  0.5514562

612  output$Smean_diff (differences between R? and R3)

613  -0.0004488044

614  output$upper_diff (upper limit of 95% CI for the difference)

615 0.001028172

616  output$lower_diff (lower limit of 95% CI for the difference)

617 -0.001925781
618

619 b. PRS-based genomic enrichment analysis: If we want to perform some enrichment analysis
620 (e.g., regulatory vs non_regulatory) in the PRS context to test significantly different from the

621  expectation (4% = # SNPs in the regulatory / total # SNPs). We simultaneously fit two sets of

622 PRS from regulatory and non-regulatory to get ,@rzegu and [?ﬁon_regu, using a multiple

3¥egu _ .Brzzon—regu
Pexp (1_pexp) ’

623  regression, and assess if the ratio, B2 ,/( fegu + Baon—regu) andlor are

624  significantly different from the expectation. To test this, we need to prepare input file for
625 r2redux that includes the following fields (e.g. test _ukbb_enrichment_choles in example

626  directory and r2_enrich_beta function in the manual).

627 e Phenotype (y)
628 e PRS for regulatory region (x;)
629 e PRS for non-regulatory region (x,)

630 To get the test statistic for the ratio which is significantly different from the expectation.

t t A A . ..
631 var(p = — - pz ), where t; = fZ and t, = f2. B, and f3, are regression coefficients from a
exp “VPexp

632  multiple regression model, i.e. y = x;.0; + x,.0, + e, where y, x; and x, are column
633  standardised.
634
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635 dat=read.table(test_ukbb_enrichment_choles") (see example file)
636  nv=length(dat$V1)

637  vi=c(1)

638  v2=c(2)

639  expected ratio=0.04

640  output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)

641  output

642  r2redux output

643  output$hetal_sq (t;)

644 0.01118301

645  output$beta?_sq (t,)

646  0.004980285

647  output$varl (variance of t;)

648  7.072931e-05

649  output$var2 (variance of t,)

650 3.161929e-05

651  output$varl_2 (variance of difference between t, and t,)
652  0.000162113

653  output$cov (covariance between t, and t,)

654  -2.988221e-05

655  output$enrich_p2 (p-value for testing the difference between

656  0.1997805
657  output$mean_diff (difference between —— and —2—)

Pexp 1-Pexp
658 0.2743874
659  output$var_diff (variance of difference,

660  0.04579649

661  output$upper_diff (upper limit of 95% CI for the mean difference)
662  0.6938296

663  output$lower_diff (lower limit of 95% CI for the mean difference)

664  -0.1450549
665
666
667

668 The r2redux manual and their example files can be downloaded from

t1 ty

and
Pexp 1-Pexp

t1 ity

Pexp 1-Pexp

669  https://github.com/mommy003/r2redux_version4
670
671
672
673
674
675
676
677
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