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Abstract 22 

The coefficient of determination (𝑅2) is a well-established measure to indicate the predictive 23 

ability of polygenic scores (PGS). However, the sampling variance of 𝑅2 is rarely considered 24 

so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons 25 

are made between PGS based on different discovery samples, the sampling covariance of 𝑅2 26 

is necessary to test the difference between them. Here, we show how to estimate the variance 27 

and covariance of 𝑅2 values to assess the 95% CI and p-value of the 𝑅2 difference. We apply 28 

this approach to real data to predict into 28,880 European participants using UK Biobank 29 

(UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We 30 

quantify the significantly higher predictive ability of UKBB PGS compared to BBJ PGS (p-31 

value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGS 32 

significantly improves the predictive ability, compared to a model of UKBB PGS only (p-value 33 

3.5e-05 for cholesterol and 1.3e-28 for BMI). The proposed approach can also be applied to 34 

testing a significant difference between 𝑅2 values across different p-value thresholds. We also 35 

show that the predictive ability of regulatory SNPs is significantly enriched than non-regulatory 36 

SNPs for cholesterol (p-value 2.6e-19 for UKBB and 8.7e-08 for BBJ). We suggest that the 37 

proposed approach (available in R package ‘r2redux’) should be used to test the statistical 38 
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significance of difference between pairs of PGS, which may help to draw a correct conclusion 39 

about the predictive ability of PGS.  40 

 41 

 42 

Introduction 43 

Complex traits are affected by many risk factors including polygenic effects 1-3. Genetic profile 44 

analysis can quantify how polygenic effects are associated with future disease risk at the 45 

individual and population levels4; 5. Genetic profiling has potential benefits that can help people 46 

make informed decisions when they manage their health and medical care 6-8.  47 

Genome-wide association studies (GWAS) have provided an opportunity to estimate genetic 48 

profile or polygenic scores (PGS) that can make individual risk predictions from genetic data 49 

4; 9-14. Typically, the effects of genome-wide single nucleotide polymorphisms (SNPs) 50 

associated with complex traits are estimated in a discovery dataset, which are projected in an 51 

independent target dataset. Then, for each individual in the target samples the weighted 52 

genotypic coefficients according to the projected SNP effects (i.e. PGS) are derived and 53 

correlated with outcome (trait including affected/unaffected for disease) to quantify the 54 

prediction accuracy. The squared correlation or coefficient of determination (𝑅2) have been a 55 

useful measure to quantify the reliability of PGS. Note that 𝑅2  is equivalent to squared 56 

regression coefficients if the dependent and explanatory variables are column-standardised 15.   57 

Previously, we introduced a novel measure of 𝑅2 on the liability scale that can be comparable 58 

across different models and scales 16 when using disease traits or ascertained case-control data. 59 

Choi et al. 12 reported that this 𝑅2 measure on the liability scale outperforms the widely used 60 

Nagelkerke pseudo 𝑅2  in controlling for bias due to ascertained case-control samples. 61 

Nagelkerke pseudo 𝑅2 is not independent of the proportion of cases in the sample. In contrast, 62 

𝑅2 on the liability scale is not dependent on the proportion of cases in the sample, but does 63 

require an estimate of the lifetime population prevalence of diseases.  64 

Wand et al. 11 suggested that any PGS study should report 𝑅2 as an indicator of the predictive 65 

ability. Choi et al. 12 concluded that 𝑅2 is a useful metric to measure association and goodness 66 

of fit in the interpretation of PGS predictions. Many studies have demonstrated the predictive 67 

ability of PGS, using 𝑅2 12; 13; 17; 18. However, the variance of 𝑅2 15 has been rarely studied 68 

especially in the PGS analyses although it is the crucial parameter to estimate confidence 69 
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intervals of 𝑅2. Furthermore, estimates of the covariance between a pair of 𝑅2 values (e.g., 70 

from two sets of PGS) are needed to assess if they are significantly different to each other, or 71 

if the ratio of two 𝑅2 values is significantly deviated from the expectation. This significance 72 

test for the difference or ratio is important when comparing two or multiple sets of PGS that 73 

are derived from different sets of SNPs, e.g., genomic partitioning or genome-wide association 74 

p-value thresholds (𝑝𝑇) analysis.  75 

In this study, we use 𝑅2  measures and their variance-covariance matrix to assess if the 76 

predictive abilities of PGS based on different sources are significantly different to each other. 77 

We derive the variance and covariance of 𝑅2 values to generate estimates of its 95% CI and p-78 

value of the 𝑅2 difference, considering two sets of dependent or independent PGS. We also 79 

derive the variance and covariance (i.e. information matrix) of squared regression coefficients 80 

in a multiple regression model, testing if the proportion of the squared regression coefficient 81 

attributable to SNPs in the regulatory region is significantly higher than expected (i.e. PGS-82 

based genomic partitioning method). We apply this approach to real data to predict 28,880 83 

European individuals using UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary 84 

statistics for cholesterol and BMI.  85 

 86 

Methods 87 

PGS models 88 

We use a linear model that regresses the observed phenotypes on a single or multiple sets of 89 

PGS. It is assumed that the phenotypes are already adjusted for other non-genetic and 90 

environmental factors (e.g. demographic variables, ancestry principal components (PCs)).  91 

A PGS model can be written as  92 

 93 

y = Xß + e            (1) 94 

 95 

where y is the vector of standardised phenotypes of trait, X is a column-standardised N x M 96 

matrix including M sets of PGS, ß is the vector of regression coefficients and e is the vector of 97 

residuals. For example, with two sets of PGS (M=2), X and 𝛃̂ can be expressed as 98 

 99 

𝐗 = [𝐱𝟏, 𝐱𝟐],  100 

 101 
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𝛃̂ = [
𝛽̂1

𝛽̂2

] = (𝐗′𝐗)−𝟏𝐗′𝐲 = 𝚺𝟐𝟐
−𝟏𝚺𝟐𝟏,         (2) 102 

 103 

𝚺 = [
(𝚺𝟏𝟏) (𝚺𝟏𝟐)

(𝚺𝟐𝟏) (𝚺𝟐𝟐)
] = [

(𝟏) (𝑟𝑦,𝑥1
𝑟𝑦,𝑥2)

(
𝑟𝑦,𝑥1

𝑟𝑦,𝑥2
) (

𝟏 𝑟𝑥1,𝑥2

𝑟𝑥1,𝑥2
𝟏

)
]       (3) 104 

where 𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

 and 𝑟𝑥1,𝑥2
 are correlations between y and the first PGS (x1), y and the second 105 

PGS (x2), and between the two PGS (x1 and x2), respectively, in the sample. Using 𝛃̂ that are 106 

estimated in the multiple regression (eq. 2), the expected phenotypes (𝐲̂) can be obtained as  107 

 108 

𝐲̂ = 𝐗𝛃̂.  109 

 110 

The coefficient of determination for this multiple regression model with 𝐗 = [𝐱𝟏, 𝐱𝟐] in eq. (1) 111 

can be written as 112 

𝑟𝑦,(𝑥1,𝑥2)
2 = 1 − Ε(𝐲 − 𝐲̂)2 = E(𝐲̂2) = 𝛽̂1

2 + 𝛽̂2
2 + 2𝑟𝑥1,𝑥2

𝛽̂1𝛽̂2.     (4) 113 

 114 

With a single set of PGS, i.e. M=1 and 𝐗 = [𝐱𝟏] or [𝐱𝟐] in eq. (1), the expression of 𝑅2 can be 115 

reduced as 116 

𝑟𝑦,𝑥1
2 = E(𝐲̂2) = 𝛽̂1

2  with 𝐗 = [𝐱𝟏] 117 

or 118 

𝑟𝑦,𝑥2
2 = E(𝐲̂2) = 𝛽̂2

2 with 𝐗 = [𝐱𝟐]. 119 

 120 

Variance of 𝑹𝟐 121 

The distribution of 𝑅2 can be transformed to a non-central 𝜒2 distribution with mean = M+ 𝜆 122 

and variance = 2 × (𝑀 + 2𝜆) where 𝜆 =
𝑁×𝑅2

1−𝑅2
 is the non-centrality parameter. For example, 123 

the variance of the transformed value for 𝑟𝑦,𝑥1
2  is  124 

 125 

𝑣𝑎𝑟 [(
𝛽̂1

𝑠𝑑(𝛽̂1)
)

2

] =
1

𝑣𝑎𝑟(𝛽̂1)
2 𝑣𝑎𝑟(𝛽̂1

2) = 2(𝑀 + 2𝜆).   126 

Therefore, 𝑣𝑎𝑟(𝑟𝑦,𝑥1
2 ) = 𝑣𝑎𝑟(𝛽̂1

2) = 2𝑣𝑎𝑟(𝛽̂1)
2

(𝑀 + 2𝜆)      (5) 127 

where 𝑣𝑎𝑟(𝛽̂1) = 1/𝑁 ∙ (1 − 𝜌𝑦,𝑥1
2 )2 and 𝜌𝑦,𝑥1

2  is the squared correlation in the population and 128 

can be approximated as 𝜌𝑦,𝑥1
2 ≈ 𝑟𝑦,𝑥1

2  19; 20.  129 
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 130 

In a similar manner, eq. (5) can be extended to multiple explanatory variables as  131 

𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2,…,𝑥𝑀)
2 ) ≈ 2 [

1

𝑁
∙ (1 − 𝑟𝑦,(𝑥1,𝑥2,…,𝑥𝑀)

2 )
2

]
2

(𝑀 + 2𝜆)    (6) 132 

 133 

Wishart et al. 21 introduced a formula to obtain the variance of 𝑅2 as  134 

𝑉𝑎𝑟(𝑅2) =
[4 × 𝑅2 × (1 − 𝑅2)2  × {𝑁 − (𝑀 + 1)}2]

[(𝑁2 − 1) × (𝑁 + 3)]
 135 

which provides an equivalent estimate as in eq. (6). The s.e. of R2 estimate is the square root 136 

of 𝑣𝑎𝑟(𝑅2). 137 

 138 

Variance of the difference between two 𝑹𝟐 values 139 

Following Olkin and Finn 15, we use the delta method to estimate the variance of the difference 140 

between 𝑅2 values based on two sets of PGS (x1 and x2). Assuming that the difference of 𝑅2 141 

values can be formulated as a function of the correlations, i.e. 𝑓(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

, 𝑟𝑥1,𝑥2
), the delta 142 

method approximates the variance of the difference as  143 

 144 

𝑣𝑎𝑟(𝑓) = 𝛉′𝛀𝛉           (7) 145 

where 𝛉′ = (
𝜕𝑓

𝜕𝑟𝑦,𝑥1

,
𝜕𝑓

𝜕𝑟𝑦,𝑥2

,
𝜕𝑓

𝜕𝑟𝑥1,𝑥2

) is the derivatives of f with respect to the correlations (8) 146 

and  147 

𝛀 = [

𝑣𝑎𝑟(𝑟𝑦,𝑥1
) 𝑐𝑜𝑣(𝑟𝑦,𝑥1

, 𝑟𝑦,𝑥2
) 𝑐𝑜𝑣(𝑟𝑦,𝑥1

, 𝑟𝑥1,𝑥2
)

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

) 𝑣𝑎𝑟(𝑟𝑦,𝑥2
) 𝑐𝑜𝑣(𝑟𝑦,𝑥2

, 𝑟𝑥1,𝑥2
)

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑥1,𝑥2

) 𝑐𝑜𝑣(𝑟𝑦,𝑥2
, 𝑟𝑥1,𝑥2

) 𝑣𝑎𝑟(𝑟𝑥1,𝑥2
)

].   148 

Each element of 𝛀 is shown in Olkin and Finn 15 (also see Appendix).   149 

 150 

From eq. (7), the following variances of differences can be estimated and used in our PGS 151 

analyses. 152 

 153 

1. 𝑹𝟐 difference when using different discovery samples to generate the PGS 154 

𝑣𝑎𝑟(𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 ) with 𝑓(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

, 𝑟𝑥1,𝑥2
) = 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2 ,             (9) 155 

which allows us to compare two PGS models that are not nested to each other (see ‘𝑅2 156 

difference when using different information sources’ in Results section), for which the 157 

conventional log-likelihood ratio test cannot be applied. 158 
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 159 

In eq. (9), the values of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  from random samples in the population are normally 160 

distributed when the sample size is sufficient 15. Assuming that our PGS analysis is sufficiently 161 

powered (N > 25,000), the p-value for the significance test of the difference can be derived 162 

from  163 

(𝑟𝑦,𝑥1
2 −𝑟𝑦,𝑥2

2 )2

𝑣𝑎𝑟(𝑟𝑦,𝑥1
2 −𝑟𝑦,𝑥2

2 )
~𝜒1

2   164 

 165 

and the 95% confidence interval is 166 

[(𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 ) − 1.96√𝑣𝑎𝑟(𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 ),     (𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 ) + 1.96√𝑣𝑎𝑟(𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 )]  (10) 167 

 168 

2. 𝑹𝟐 difference when using nested models 169 

𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 )  with 𝑓(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

, 𝑟𝑥1,𝑥2
) = 𝑟𝑦,(𝑥1,𝑥2)

2 − 𝑟𝑦,𝑥2
2 = 𝛽̂1

2 + 𝛽̂2
2 +170 

2𝑟𝑥1,𝑥2
𝛽̂1𝛽̂2 − 𝑟𝑦,𝑥2

2                      (11) 171 

where 𝛽̂1 and 𝛽̂2 are the estimated regression coefficients from a multiple regression (eq. 2), 172 

calculated from 𝚺 (see eq. 2–4). Again, the derivative with respect to each of the correlations 173 

can be obtained for this function (eq. 8). Note that the comparison between 𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥2

2  174 

is equivalent to the log-likelihood ratio test (i.e. 𝐲 = 𝐱𝟏𝛽1 + 𝐱𝟐𝛽2 + 𝐞 vs. 𝐲 = 𝐱𝟐𝛽2 + 𝐞)15.  175 

 176 

The values of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2  in eq. (11) from random samples in the population follows a 177 

non-central chi-squared distribution with a non-centrality parameter 𝜆 = 𝑁 ×178 

𝑟𝑦,(𝑥1,𝑥2)
2 −𝑟𝑦,𝑥2

2

1−(𝑟𝑦,(𝑥1,𝑥2)
2 −𝑟𝑦,𝑥2

2 )2 . The p-value for the significance test of the difference can be derived from   179 

 180 

𝜆~𝜒1
2  181 

  182 

and the 95% confidence interval is  183 

[(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 ) + √𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 )
𝜉97.5%−𝜆−1

√2(1+2𝜆)
,      (𝑟𝑦,(𝑥1,𝑥2)

2 − 𝑟𝑦,𝑥2
2 ) +184 

√𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 )
𝜉2.5%−𝜆−1

√2(1+2𝜆)
]                                                                                         (12) 185 

where 𝜉% is the value at the percentile of the inverse of non-central chi-squared cumulative 186 

distribution function with mean = 𝜆 + 1 and d.f. = 1.  187 
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 188 

When the sample size is large, the values of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2  from random samples in the 189 

population are normally distributed 15. The p-value for the significance test of the difference 190 

can also be derived from  191 

(𝑟𝑦,(𝑥1,𝑥2)
2 −𝑟𝑦,𝑥2

2 )2

𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 −𝑟𝑦,𝑥2

2 )
~𝜒1

2   192 

 193 

and the 95% confidence interval is 194 

[(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 ) − 1.96√𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 ),     (𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 ) +195 

1.96√𝑣𝑎𝑟(𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2 )]           (13) 196 

 197 

Note that eq. 12 and 13 are equivalent when the sample size is sufficient 15.  198 

 199 

3. 𝑹𝟐 difference when using two independent sets of PGS 200 

In this case, there is no correlation structure between two independent sets of PGS (𝑟𝑥1,𝑥2
= 0, 201 

e.g., male and female PGS), therefore, the variance of 𝑅2 difference is simply the sum of the 202 

variances of each 𝑅2  value, which can be obtained from eq. (5). For example, assuming 203 

𝑟𝑥1,𝑥2
= 0, the variance of 𝑅2 difference can be written as 204 

 𝑣𝑎𝑟(𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2 ) = 2 [
1

𝑁1
∙ (1 − 𝑟𝑦1,(𝑥1)

2 )
2

]
2

(1 + 2𝜆1) + 2 [
1

𝑁2
∙ (1 − 𝑟𝑦2,(𝑥1)

2 )
2

]
2

(1 +205 

2𝜆2)  (14) 206 

where 𝑦1 and 𝑦2 are the vectors of standardised phenotypes and 𝑁1 and 𝑁2 are the sample sizes 207 

for the two independent sets of PGS. The non-centrality parameters (𝜆1  and 𝜆2 ) for two 208 

dependent PGS can be written as  209 

𝜆1 =
𝑁1×𝑟𝑦1,𝑥1

2

1−𝑟𝑦1,𝑥1
2  and 𝜆2 =

𝑁2×𝑟𝑦2,𝑥2
2

1−𝑟𝑦2,𝑥2
2  210 

p-value for the significance test of the difference can be derived from 
(𝑟𝑦1,𝑥1

2 −𝑟𝑦2,𝑥2
2 )2

𝑣𝑎𝑟(𝑟𝑦1,𝑥1
2 −𝑟𝑦2,𝑥2

2 )
~𝜒1

2 211 

and the 95% confidence interval is 212 

[(𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2 ) − 1.96√𝑣𝑎𝑟(𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2 ),   (𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2 ) + 1.96√𝑣𝑎𝑟(𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2 )]  213 

(15) 214 

 215 
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 216 

4. PGS-based genomic partitioning analysis 217 

𝑣𝑎𝑟(𝛽̂1
2 − 𝛽̂2

2) with 𝑓(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

, 𝑟𝑥1,𝑥2
) = 𝛽̂1

2 − 𝛽̂2
2                   (16) 218 

where 𝛽̂1 and 𝛽̂2 are the estimated regression coefficients from a multiple regression (eq. 2), 219 

calculated from 𝚺 (eq. 3). Therefore, it is possible to get the derivative with respect to each of 220 

the correlations, 𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

 and 𝑟𝑥1,𝑥2
 in eq. (8). 𝑣𝑎𝑟(𝛽̂1

2) and 𝑣𝑎𝑟(𝛽̂2
2) can be also obtained in 221 

a similar manner. Thus, we can get the variance covariance matrix (ℋ), i.e. the information 222 

matrix, as 223 

 224 

ℋ = [
𝑣𝑎𝑟(𝛽̂1

2) −
𝑣𝑎𝑟(𝛽̂1

2−𝛽̂2
2)−𝑣𝑎𝑟(𝛽̂1

2)−𝑣𝑎𝑟(𝛽̂2
2)

2

−
𝑣𝑎𝑟(𝛽̂1

2−𝛽̂2
2)−𝑣𝑎𝑟(𝛽̂1

2)−𝑣𝑎𝑟(𝛽̂2
2)

2
𝑣𝑎𝑟(𝛽̂2

2)
].  225 

 226 

The ℋ can be used to estimate the variance of the difference between 
𝛽̂1

2

𝑝𝑒𝑥𝑝
 and  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
  as  227 

 228 

𝑣𝑎𝑟 [
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
] = [

𝑣𝑎𝑟(𝛽̂1
2)

(𝑝𝑒𝑥𝑝)2  +  
𝑣𝑎𝑟(𝛽̂2

2)

(1−𝑝𝑒𝑥𝑝)2 +
𝑣𝑎𝑟(𝛽̂1

2−𝛽̂2
2)−𝑣𝑎𝑟(𝛽̂1

2)−𝑣𝑎𝑟(𝛽̂2
2)

𝑝𝑒𝑥𝑝(1−𝑝𝑒𝑥𝑝)
]        (17) 229 

 230 

where the expected proportion of phenotypic variance explained by 𝑥1  (PGS1) can be 231 

calculated from prior information, referred to as 𝑝𝑒𝑥𝑝 = # SNPs used for PGS1 / total # SNPs.  232 

This variance can be used to test if two squared regression coefficients scaled by their 233 

expectations are significantly different to each other.   234 

 235 

Analogous to eq. (9), the values of 
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 in eq. (17) with random samples in the 236 

population are asymptotically normal 15. Using a Wald test, the p-value for the significance test 237 

of the difference can be derived from  238 

 239 

[(
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
)]

2

𝑣𝑎𝑟(
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
)

~𝜒1
2 . 240 

 241 

The 95% confidence interval of the ratio is 242 
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[(
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2

2

(1−𝑝𝑒𝑥𝑝)
) − 1.96√𝑣𝑎𝑟 (

𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2

2

(1−𝑝𝑒𝑥𝑝)
),    (

𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2

2

(1−𝑝𝑒𝑥𝑝)
) +243 

1.96√𝑣𝑎𝑟 (
𝛽̂1

2

𝑝𝑒𝑥𝑝
−

𝛽̂2

2

(1−𝑝𝑒𝑥𝑝)
)]               (18) 244 

 245 

Data 246 

The UK Biobank is a large-scale biomedical database, that comprises 0.5 million individuals 247 

who had been recruited between 2006 to 2010 and their age ranged between 40 and 69 years 248 

22; 23. The data consists of health-related information for samples who are genotyped for 249 

genome-wide SNPs. A stringent quality control (QC) process was applied to UKBB data that 250 

excludes individuals with non-white British ancestries, mismatched gender between reported 251 

and genotypic information, genotype call rate <0.95 and putative sex chromosome aneuploidy. 252 

The SNP QC criteria filtered out SNPs with an imputation reliability <0.6, missingness >0.05, 253 

minor allele frequency (MAF) <0.01, Hardy-Weinberg equilibrium p-value < 10-07. We also 254 

applied a relatedness cut-off QC (>0.05) so that there was no high pairwise relatedness among 255 

samples. After QC, 288,792 individuals and 7,701,772 SNPs were remained.  256 

 257 

Discovery GWAS data 258 

Ninety percent of the individuals from the QCed data (N=288,792) were randomly selected as 259 

discovery samples (N=259,912, SNP # =7,701,772) to generate GWAS summary statistics 260 

(UKBB hereafter). For the GWAS with the 259,912 UKBB discovery samples, we used BMI 261 

and cholesterol that were adjusted for age, sex, birth year, Townsend deprivation Index (TDI), 262 

education, genotype measurement batch, assessment centre and the first 10 ancestry principal 263 

components (PCs) using a linear regression.      264 

 265 

We also have access to Japanese Biobank (BBJ) (http://jenger.riken.jp/en/result) GWAS 266 

summary statistics (BBJ hereafter) for BMI 24 (N=158,284) and cholesterol 25 (N=128,305) for 267 

5,961,601 SNPs.  268 

 269 

Target data 270 

Ten percent of the individuals from the QCed data (N=288,792) were randomly selected as an 271 

independent target dataset (N=28,880 and SNP # =7,701,772) that were non-overlapping and 272 

unrelated with the UKBB and BBJ discovery samples. In the PGS analyses, we used only 273 
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4,113,630 SNPs that were common between UKBB and BBJ GWAS data after excluding 274 

ambiguous SNPs and SNPs with any strand issue.  275 

 276 

In the target dataset (N=28,880), the phenotypes of each trait were adjusted for age, sex, birth 277 

year, TDI, education, genotype batch, assessment centre and the first 10 PCs using a linear 278 

regression. The pre-adjusted phenotypes were correlated with PGS estimated in the following 279 

step. For each trait, we used the UKBB and BBJ GWAS summary statistics to estimate two 280 

sets of PGS (UKBB PGS vs. BBJ PGS for the target individuals (n=28,880), using PLINK2 --281 

score function 26. Then, we estimated the correlation between the PGS and pre-adjusted 282 

phenotypes to obtain 𝑅2 values in the PGS analyses. 283 

 284 

Functional annotation of the genome 285 

We annotated the genome using pre-defined functional categories (regulatory vs. non-286 

regulatory genomic regions) 27. Regulatory region includes SNPs from coding regions, 287 

untranslated regions (UTR) and promotors. Non-regulatory region includes all the other 288 

regions except the regulatory region. The number of SNPs belong to regulatory and non-289 

regulatory is 158,653 and 3,954,947 (i.e. 4% of the total SNPs are located in the regulatory 290 

region).  291 

 292 

Simulation of dependent and explanatory variables 293 

For a quantitative trait, we simulated dependent variable (y) and PGS (𝑥1 and 𝑥2), varying the 294 

correlation structure of  [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
]  and the sample size (detailed simulation 295 

parameters are shown in Supplementary Figures 1-9).  For a disease trait, the same simulation 296 

procedure was used, and the simulated quantitative phenotypes were transformed to binary 297 

responses using a liability threshold model with a population prevalence of k=0.05. For 298 

example, case-control status was assigned to individuals according to their standardised 299 

quantitative phenotypes (i.e. liability), i.e. cases have liability greater than a threshold such that 300 

the proportion of cases is k=0.05. The empirical variances of 𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2 , 𝑟𝑦,(𝑥1,𝑥2)

2 −301 

𝑟𝑦,𝑥2
2  and 

𝛽̂1
2

𝑝𝑒𝑥𝑝
−  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 were obtained over 10,000 replicates, which were compared to the 302 

theoretical variances estimated using eqs. (6), (9), (11) and (17), respectively.  303 

 304 
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Results 305 

Simulation verification 306 

The theory of the proposed method has been explicitly verified using simulations, varying 307 

sample size and values of 𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2 , 𝑟𝑦,(𝑥1,𝑥2)

2 − 𝑟𝑦,𝑥2
2  and 

𝛽̂1
2

𝑝𝑒𝑥𝑝
−  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 308 

(Supplementary Figures 1 – 9). The empirical variances obtained from 10,000 simulated 309 

replicates are almost perfectly correlated with the theoretical variance for the values of  𝑟𝑦,𝑥1
2 , 310 

𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2 , 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2  and 
𝛽̂1

2

𝑝𝑒𝑥𝑝
−  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 when varying the sample size 311 

(Supplementary Figures 1 – 4) and when varying 𝑅2 values (Supplementary Figures 5 – 8). 312 

When considering two independent PGS, the theoretical and empirical variances are also 313 

agreed well (Supplementary Figure 9).  314 

  315 

𝑹𝟐 difference when using different information sources (UKBB vs. BBJ) 316 

It is of interest to determine whether different information sources (e.g., ancestries) have 317 

significantly different predictive abilities in PGS analyses, which can be assessed using eqs. (9) 318 

and (10). Figure 1 illustrates that when predicting the 28,880 European target samples, the 319 

coefficient of determinations (𝑅2) with the UKBB and BBJ PGS were 0.024 (95% CI = 0.021-320 

0.028) and 0.003 (95% CI = 0.002 - 0.004), respectively, for cholesterol. However, these 𝑅2 321 

values and CIs cannot be used to assess their difference because the two sets of PGS are not 322 

independent. Furthermore, the two PGS models with UKBB and BBJ are not nested to each 323 

other, therefore, the likelihood ratio test could not be used either. For this problem, we used 324 

eqs. (9) and (10) to obtain the variance, 95% CI (0.0247 - 0.0175) and p-value (7.6e-31) of the 325 

𝑅2 difference, accounting for the dependency between UKBB and BBJ PGS, for cholesterol 326 

(Figure 1). Similarly, the test statistics of the 𝑅2 difference was obtained for BMI, 0.035 - 327 

0.046 for 95% CI and p-value = 1.4e-50 (Figure 1).              328 

 329 

 330 
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Figure 1: The predictive ability (𝑹𝟐) of PGS when predicting 28,880 European 331 

individuals using UKBB or BBJ discovery GWAS dataset. 332 

Left panel: The main bars represent 𝑅2 values and error bars correspond 95% confidence 333 

intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery 334 

GWAS datasets to estimate two sets of PGS. 335 

Right panel: Dot points represent the differences of 𝑅2 values between UKBB and BBJ PGS 336 

models, and error bars indicate 95% confidence intervals of the difference.  337 

 338 

It is also interesting to test if BBJ PGS provides a significant improvement in the predictive 339 

ability, in addition to UKBB PGS, when predicting the 28,880 European target samples. Figure 340 

2 compares 𝑅2 value with each UKBB or BBJ PGS to 𝑅2 value from a joint model fitting 341 

UKBB and BBJ PGS simultaneously. Using eq. (11) and (12), we acquired the variance, 95% 342 

CI (0.0001–0.001) and p-value (3.5e-05) of 𝑅2 difference when comparing the joint model 343 

with a single model with UKBB, indicating that BBJ PGS contributed to a significant 344 

improvement for cholesterol. Similarly, BBJ PGS improved the predictive ability significantly 345 

(p-value = 1.3e-28) for BMI. As expected, excluding UKBB PGS from the joint model 346 

substantially decreased the prediction accuracy (p-value = 1.6e-136 for cholesterol and 3.0e-347 

308 for BMI).   348 

 349 
Figure 2: The predictive ability (𝑹𝟐) of the UKBB or BBJ PGS model or a joint model of 350 

UKBB and BBJ when predicting 28,880 European individuals. 351 

Left panel: The main bars represent 𝑅2 values and error bars correspond 95% confidence 352 

intervals. Two sets of GWAS summary statistics were obtained from UKBB and BBJ discovery 353 

GWAS datasets to estimate two sets of PGS, i.e. UKBB and BBJ PGS. In addition, a joint 354 

model fitting both UKBB and BBJ PGS was compared.  355 

Right Panel: Dot points represent the differences of 𝑅2 values between the joint model and 356 

UKBB or BBJ PGS model, and error bars indicate 95% confidence intervals of the difference.  357 

 358 

𝑹𝟐 difference when using two independent sets of PGS (male vs. female) 359 

We were also interested in testing if the PGS could predict the adjusted phenotypes of the target 360 

individuals equally well for males and females. In this case, there is no correlation structure 361 

between male and female PGS, therefore, the variance of 𝑅2 difference is simply the sum of 362 
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the variances of each 𝑅2 value, which can be obtained from eq. (5) or (6). Supplementary 363 

Figure 10 shows that there was no significant difference between male and female PGS in their 364 

predictive ability for cholesterol and BMI whether using UKBB or BBJ discovery GWAS 365 

dataset.  366 

 367 

PGS with genome-wide association p-value thresholds (𝒑𝑻) 368 

PGS also has been widely used to determine which 𝑝𝑇 provides the highest prediction accuracy, 369 

for example, using PGS software such as PLINK 26; 28. However, there is a lack of test statistics 370 

that can assess if the predictive ability of the best-performed 𝑝𝑇 is significantly different from 371 

the other 𝑝𝑇. Figure 3a illustrates that 𝑅2 value is the highest at 𝑝𝑇 = 0.3 when predicting 372 

28,880 European individuals in the target dataset, using BBJ discovery GWAS dataset (BMI). 373 

However, it is not clear if the predictive ability at 𝑝𝑇 = 0.3 is significantly higher than the 374 

adjacent 𝑝𝑇 (e.g. 𝑝𝑇  = 0.2 or 0.4), and it may be important to report 𝑝𝑇 of which the predictive 375 

ability is not statistically different from the best-performed 𝑝𝑇. Using eqs. (9) and (10), we 376 

assessed the significance of difference between the best-found 𝑝𝑇 and each of the other 𝑝𝑇 377 

(Figure 3b). From this analysis, we found that the best-performed 𝑝𝑇 was not significantly 378 

different from 𝑝𝑇 ranging between 0.1 – 1, but significantly different from 𝑝𝑇 ≤  0.05 (Figure 379 

3b). When using UKBB discovery GWAS dataset to predict the 28,880 European individuals, 380 

the highest 𝑅2  value at the 𝑝𝑇  of 1 was significantly different from all the other 𝑝𝑇 381 

(Supplementary Figure 11b).   382 

 383 

Interestingly, the highest 𝑅2 value was found at 𝑝𝑇 = 1e-04 (Figure 4a) when predicting the 384 

European target samples using BBJ discovery GWAS dataset for cholesterol, which was not 385 

statistically different from 𝑝𝑇 = 0.001, but was significantly higher than the other 𝑝𝑇 (Figure 386 

4b). For the same target samples and trait, the best 𝑅2 value was obtained from 𝑝𝑇 = 0.01 when 387 

using UKBB discovery GWAS dataset (Supplementary Figure 12a). Except for 𝑝𝑇 = 0.01, 388 

0.05 and 0.1, 𝑅2 values at the other 𝑝𝑇 were significantly different from the best 𝑅2 values 389 

(Supplementary Figure 12b).   390 

 391 

 392 

 393 

 394 
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 395 

Figure 3: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below 𝒑𝑻 when 396 

predicting BMI in 28,880 European samples using BBJ discovery samples (GWAS 397 

summary statistics). 398 

a) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The 399 

values above 95% CIs are p-values indicating that 𝑅2 values are not different from zero.  400 

b) The main bars represent the difference of 𝑅2 values between the corresponding 𝑝𝑇 and the 401 

best-performed 𝑝𝑇 and error bars indicate 95% confidence intervals. The values above 95% 402 

CIs are p-values indicating the significances of differences between the pairs of 𝑅2 values.  403 

 404 

 405 

 406 
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 407 

Figure 4: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below the 𝒑𝑻 when 408 

predicting cholesterol in 28,880 European samples using BBJ discovery samples (GWAS 409 

summary statistics). 410 

a) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The 411 

values above 95% CIs are p-values indicating that 𝑅2 values are not different from zero.  412 

b) The main bars represent the difference of 𝑅2 values between the corresponding 𝑝𝑇 and the 413 

best-performed 𝑝𝑇 and error bars indicate 95% confidence intervals. The values above 95% 414 

CIs are p-values indicating the significances of differences between the pairs of 𝑅2 values.  415 

 416 

PGS-based genomic partitioning analyses 417 

Genomic partitioning analyses have been widely applied 27; 29-31. Such analysis could be useful 418 

in the PGS context. Using eq. (17) and the information matrix, ℋ, we can estimate the variance 419 

of the difference between, 
𝛽̂𝑟𝑒𝑔𝑢

2

𝑝𝑒𝑥𝑝
  and  

𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢
2

(1−𝑝𝑒𝑥𝑝)
, where 𝛽̂𝑟𝑒𝑔𝑢 and 𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢 are the estimated 420 

regression coefficients from a multiple regression (eq. 2), and assess if the differences is 421 

significant (i.e. the coverage of the SNPs belonged to the category). For example, we 422 

partitioned the genome-wide SNPs into the regulatory (158,653) and non-regulatory regions 423 
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(3,954,947),  following Gusev et al. 27, resulting 4% of SNP coverage for the regulatory region 424 

as the expectation. We simultaneously fit two sets of PGS from regulatory and non-regulatory 425 

to get 𝛽̂𝑟𝑒𝑔𝑢
2  and 𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 , using a multiple regression, and assess if the difference, 
𝛽̂𝑟𝑒𝑔𝑢

2

𝑝𝑒𝑥𝑝
−426 

 
𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2

(1−𝑝𝑒𝑥𝑝)
 , is significant (eq. 18). Figure 5 shows that the predictive ability of regulatory SNPs 427 

was significantly higher than nonregulatory SNPs (p-value = 2.6e-19 for UKBB and 8.7e-08 428 

for BBJ) for cholesterol. In contrast, the predictive ability of regulatory SNPs was not different 429 

from the expectation (p-value = 1.0e-01 for UKBB and 8.2e-01 for BBJ) for BMI.    430 

 431 

 432 

Figure 5: PGS-based genomic partitioning method to assess if the predictive ability is 433 

enriched in the regulatory region for cholesterol and BMI. Here 0.04 is the expectation for 434 

the regulatory SNPs based on the proportion of SNPs allocated to this annotation. 435 

Left panel: The main bars represent squared regression coefficients attributable to SNPs in the 436 

regulatory region (𝛽̂𝑟𝑒𝑔𝑢
2 ) and non-regulatory region (𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 ), and error bars correspond 95% 437 

confidence intervals when predicting 28,880 European samples using UKBB or BBJ GWAS 438 

summary statistics. 439 

Middle panel: The main bars represent the ratio of 
𝛽̂𝑟𝑒𝑔𝑢

2

𝑝𝑒𝑥𝑝
 and

𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢
2

(1−𝑝𝑒𝑥𝑝)
 and error bars 440 

correspond 95% confidence intervals when predicting 28,880 European samples using UKBB 441 

or BBJ GWAS summary statistics. 442 

Right panel: Dot points represent the difference, (
𝛽̂𝑟𝑒𝑔𝑢

2

𝑝𝑒𝑥𝑝
−  

𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢
2

(1−𝑝𝑒𝑥𝑝)
)  between regulatory 443 

region (𝛽̂𝑟𝑒𝑔𝑢
2 ) and non-regulatory region (𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 ) and error bars indicate 95% confidence 444 

intervals of the ratio differences.  445 

 446 

 447 

Application to binary responses and ascertained case-control data 448 

The proposed method is also explicitly verified using simulation for binary or case-control data, 449 

varying sample size and values of 𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2 , 𝑟𝑦,(𝑥1,𝑥2)

2 − 𝑟𝑦,𝑥2
2  and 

𝛽̂1
2

𝑝𝑒𝑥𝑝
−  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 450 

(Supplementary Figures 13 – 20). The empirical variances obtained from 10,000 simulated 451 

replicates are almost identical with the theoretical variances for the values of  𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2 , 452 
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𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥2

2  and 
𝛽̂1

2

𝑝𝑒𝑥𝑝
−  

𝛽̂2
2

(1−𝑝𝑒𝑥𝑝)
 when varying the sample size (Supplementary Figures 453 

13 – 16) and when varying 𝑅2  values (Supplementary Figures 17 – 20). In the case of 454 

ascertained case-control, a similar pattern is shown, i.e. the empirically observed variances 455 

obtained from 10,000 simulated replicates are agreed well with the theoretical variances for the 456 

values (Supplementary Figures 21 – 24). This finding shows that the proposed method can 457 

be applied to test the significance of difference between predictive abilities of PGS for binary 458 

traits and ascertained case-control traits when 𝑅2  is not very high (< 0.1).  Note that the 459 

empirical and theoretical variances become disagreed when 𝑅2 values on the observed scale 460 

are more than 0.1 for binary responses and ascertained case control (Supplementary Figures 461 

25 and 26). Although 𝑅2 value > 0.1 is not frequently observed in the current PGS studies 462 

(Supplementary Table 2), a careful interpretation is required for the variance of such high 𝑅2, 463 

and we would not recommend using the theoretical approximation.  464 

 465 

Discussion 466 

𝑅2 has been widely used to measure the predictive ability of PGS 13. However, the confidence 467 

interval of 𝑅2 has rarely been reported, and the test statistic for the difference of two 𝑅2 values 468 

has not been well documented. Here, we show how to get the variance of each estimated 𝑅2 469 

value, and covariance between two 𝑅2 estimates (from two sets of PGS) that can be used to 470 

assess if they are significantly different to each other.  471 

 472 

Martin et al. 18 reported that the PGS prediction accuracy is higher when discovery and target 473 

samples are from the same ancestry background, compared to when the samples are from 474 

different ancestries. However, they did not formally assess the statistical significance of the 475 

increase (no p-value provided). More importantly, they did not consider the correlation 476 

structure between predictors when they compared two PGS (in their Figure 4). We applied the 477 

proposed approach and found that the predictive ability of PGS based on UKBB discovery 478 

GWAS is significantly higher than that of PGS based on BBJ discovery GWAS, by formally 479 

deriving the 95% CI and p-value of the 𝑅2 difference. 480 

 481 

Many studies evaluating PGS use the 𝑝𝑇  method 12, and report the 𝑝𝑇  that maximises 482 

performance. This provides useful information when inferring the genetic architecture of the 483 

trait of interest and when fine-tuning 𝑝𝑇  as a hyper-parameter in PGS methods 28; 32-34. For such 484 

cases, it may be crucial to determine if the best-performed 𝑝𝑇 is genuinely better than other 485 
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(adjacent) 𝑝𝑇 or it occurs just by random chance (i.e. sampling error). Our proposed approach 486 

can formally assess statistical difference among 𝑝𝑇, providing 95% CI of the difference with a 487 

significance p-value.      488 

 489 

We also derived an information matrix of squared regression coefficients in a multiple 490 

regression model, establishing a PGS-based genomic partitioning method that could test if the 491 

ratio of two squared regression coefficients is significantly deviated from its expectation given 492 

the proportion of SNPs allocated to each partition. This is analogous to the existing genomic 493 

partitioning approaches, using GREML or LDSC 27; 29-31 that may have an overfitting issue 494 

because SNP effects and genomic partitioning are estimated in the same samples.   495 

 496 

In conclusion, we show how to estimate the variance and covariance of 𝑅2  estimates to 497 

quantify the 95% CI and p-value of the difference and ratio when considering a pair of PGS, 498 

which is available in R package ‘r2redux’ (see Appendix B). We suggest that the proposed 499 

approach should be used to test the statistical significance of difference and ratio between pairs 500 

of PGS, which may help to draw a correct conclusion about the predictive ability of PGS. 501 

 502 

Code availability 503 

The genotype and phenotype data of the UK Biobank can be accessed through procedures 504 

described on its webpage (https://www.ukbiobank.ac.uk/) and summary statistics of BMI and 505 

cholesterol from Japanese Biobank (BBJ) can be obtained from its website 506 

(http://jenger.riken.jp/en/result) 507 

PLINK2 version can be downloaded from https://www.cog-genomics.org/plink/  508 

r2redux can be downloaded from (https://github.com/mommy003/r2redux_version4) and to be 509 

added in the CRAN soon (also see Appendix B).  510 

 511 
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Appendix A. The elements of 𝛀 in eq. (7)  536 

Following Olkin and Finn 15, each element of 𝛀 in eq. (7) can be expressed as  537 

𝑣𝑎𝑟(𝑟𝑦,𝑥1
) = (1 − 𝜌𝑦,𝑥1

2 )2 𝑁⁄    538 

𝑣𝑎𝑟(𝑟𝑦,𝑥2
) = (1 − 𝜌𝑦,𝑥2

2 )2 𝑁⁄  539 

𝑣𝑎𝑟(𝑟𝑥1,𝑥2
) = (1 − 𝜌𝑥1,𝑥2

2 )2 𝑁⁄  540 

 541 

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

) = [1/2(2𝜌𝑥1,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑦,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑥1,𝑥2
3 ] 𝑁⁄  542 

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥2
3 ] 𝑁⁄  543 

𝑐𝑜𝑣(𝑟𝑦,𝑥2
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥1
− 𝜌𝑦,𝑥2

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥1
3 ] 𝑁⁄  544 

 545 

 546 

Appendix B. r2redux manual 547 

The ‘r2redux’ package can be used to derive test statistics for 𝑅2 values from polygenic risk 548 

score (PRS) models (variance and covariance of 𝑅2  values, p-value and 95% confidence 549 

intervals (CI)). For example, it can test if two sets of 𝑅2 values from two different PRS models 550 

are significantly different to each other whether the two sets of PRS are independent or 551 

dependent. Because 𝑅2  value is often regarded as the predictive ability of PRS, r2redux 552 

package can be useful to assess the performances of PRS methods or multiple sets of PRS 553 

based on different information sources. Furthermore, the package can derive the information 554 

matrix of 𝛽̂1
2and 𝛽̂2

2 from a multiple regression (see olkin_beta1_2 or olkin_beta_info function 555 

in the manual), which is a basis of a novel PRS-based genomic partitioning method (see 556 

r2_enrich or r2_enrich_beta function in the manual). It is recommended that the target sample 557 

size in the PGS study should be more than 2,000 for quantitative traits (Supplementary Figure 558 

27) and more than 5,000 for binary responses or case-control studies (Supplementary Figures 559 

28 and 29). The p-value generated from r2redux is a two-tail test. Depending on hypothesis, 560 

one-tail p-value can be obtained as the two-tail p-value divided by 2. 561 

Installation 562 

To use r2redux: 563 

• install.packages("devtools") 564 

• library(devtools) 565 
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• devtools::install_github("mommy003/r2redux_version4") or 566 

• install.packages("r2redux") [to be added in the CRAN soon] 567 

• library(r2redux) 568 

Quick start  569 

We illustrate the usage of r2redux using multiple sets of PRS estimated based on GWAS 570 

summary statistics from UK Biobank or Biobank Japan (reference datasets). In a target dataset, 571 

the phenotypes of target samples (y) can be predicted with PRS (a PRS model, e.g. 𝑦 = 𝑃𝑅𝑆 +572 

𝑒, where y and PRS are column-standardised 15. Note that the target individuals should be 573 

independent from reference individuals. We can test the significant differences of the 574 

predictive ability (𝑅2) between a pair of PRS (see r2_diff function and example in the manual). 575 

Data preparation 576 

a. Statistical testing of significant difference between 𝑅2 values for p-value thresholds: 577 

r2redux requires only phenotype and estimated PRS (from PLINK or any other software). Note 578 

that any missing value in the phenotypes and PRS tested in the model should be removed. If 579 

we want to test the significant difference of 𝑅2 values for p-value thresholds, r2_diff function 580 

can be used with an input file that includes the following fields (also see 581 

test_ukbb_thresholds_scaled in the example directory form github 582 

(https://github.com/mommy003/r2redux_version4) and r2_diff function in the manual). 583 

• Phenotype (𝑦) 584 

• PRS for p value 1 (𝑥1) 585 

• PRS for p value 0.5 (𝑥2) 586 

• PRS for p value 0.4 (𝑥3) 587 

• PRS for p value 0.3 (𝑥4) 588 

• PRS for p value 0.2 (𝑥5) 589 

• PRS for p value 0.1 (𝑥6) 590 

• PRS for p value 0.05 (𝑥7) 591 

• PRS for p value 0.01 (𝑥8) 592 

• PRS for p value 0.001 (𝑥9) 593 

• PRS for p value 0.0001 (𝑥10) 594 
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To get the test statistics for the difference between 𝑅2(y~x[,v1]) and 𝑅2(y~x[,v2]). (here we 595 

define 𝑅1
2= 𝑅2(y~x[,v1])) and 𝑅2

2=𝑅2(y~x[,v2]))) 596 

 597 

dat=read.table("test_ukbb_thresholds_scaled") (see example files) 598 

nv=length(dat$V1) 599 

v1=c(1) 600 

v2=c(2) 601 

output=r2_diff(dat,v1,v2,nv) 602 

r2redux output 603 

output$var1 (variance of 𝑅1
2) 604 

0.0001437583 605 

output$var2 (variance of 𝑅2
2) 606 

0.0001452828 607 

output$var_diff (variance of difference between 𝑅1
2and 𝑅2

2) 608 

5.678517e-07 609 

output$r2_based_p (p-value for significant difference between 𝑅1
2 and 𝑅2

2) 610 

 0.5514562 611 

output$mean_diff (differences between 𝑅1
2 and 𝑅2

2) 612 

-0.0004488044 613 

output$upper_diff (upper limit of 95% CI for the difference) 614 

0.001028172 615 

output$lower_diff (lower limit of 95% CI for the difference) 616 

-0.001925781 617 
 618 

b. PRS-based genomic enrichment analysis: If we want to perform some enrichment analysis 619 

(e.g., regulatory vs non_regulatory) in the PRS context to test significantly different from the 620 

expectation (4% = # SNPs in the regulatory / total # SNPs). We simultaneously fit two sets of 621 

PRS from regulatory and non-regulatory to get 𝛽̂𝑟𝑒𝑔𝑢
2  and 𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 , using a multiple 622 

regression, and assess if the ratio, 𝛽̂𝑟𝑒𝑔𝑢
2 /( 𝛽̂𝑟𝑒𝑔𝑢

2  + 𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢
2 ) and/or  

𝛽̂𝑟𝑒𝑔𝑢
2

𝑝𝑒𝑥𝑝
− 

𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢
2

(1−𝑝𝑒𝑥𝑝)
, are 623 

significantly different from the expectation. To test this, we need to prepare input file for 624 

r2redux that includes the following fields (e.g. test_ukbb_enrichment_choles in example 625 

directory and r2_enrich_beta function in the manual). 626 

• Phenotype (𝑦) 627 

• PRS for regulatory region (𝑥1) 628 

• PRS for non-regulatory region (𝑥2) 629 

To get the test statistic for the ratio which is significantly different from the expectation. 630 

var(
𝑡1

𝑝𝑒𝑥𝑝
−

𝑡2

1−𝑝𝑒𝑥𝑝
), where 𝑡1 = 𝛽̂1

2 and 𝑡2 = 𝛽̂2
2. 𝛽1 and 𝛽2 are regression coefficients from a 631 

multiple regression model, i.e. 𝑦 = 𝑥1. 𝛽1 +  𝑥2. 𝛽2 + 𝑒 , where 𝑦 , 𝑥1  and 𝑥2  are column 632 

standardised. 633 

 634 
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dat=read.table("test_ukbb_enrichment_choles") (see example file) 635 

nv=length(dat$V1) 636 

v1=c(1) 637 

v2=c(2) 638 

expected_ratio=0.04 639 

output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio) 640 

output 641 

r2redux output 642 

output$beta1_sq (𝑡1) 643 

0.01118301 644 

output$beta2_sq (𝑡2) 645 

0.004980285 646 

output$var1 (variance of 𝑡1) 647 

7.072931e-05 648 

output$var2 (variance of 𝑡2) 649 

3.161929e-05 650 

output$var1_2 (variance of difference between 𝑡1 and 𝑡2)  651 

0.000162113   652 

output$cov (covariance between 𝑡1 and 𝑡2)  653 

-2.988221e-05 654 

output$enrich_p2 (p-value for testing the difference between 
𝑡1

𝑝𝑒𝑥𝑝
 and

𝑡2

1−𝑝𝑒𝑥𝑝
) 655 

0.1997805 656 

output$mean_diff (difference between 
𝑡1

𝑝𝑒𝑥𝑝
 and

𝑡2

1−𝑝𝑒𝑥𝑝
) 657 

0.2743874 658 

output$var_diff (variance of difference, 
𝑡1

𝑝𝑒𝑥𝑝
−

𝑡2

1−𝑝𝑒𝑥𝑝
) 659 

0.04579649 660 

output$upper_diff (upper limit of 95% CI for the mean difference) 661 

0.6938296 662 

output$lower_diff (lower limit of 95% CI for the mean difference) 663 

-0.1450549  664 
 665 
 666 
 667 

The r2redux manual and their example files can be downloaded from 668 

https://github.com/mommy003/r2redux_version4  669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 
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