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Abstract

Purpose: The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity
of quantification methodology. In this study, alarge structured cross-sectional cohort of male and female
subj ects throughout adulthood was recruited to investigate neurometabolic changes as a function of age,

using consensus-recommended magnetic resonance spectroscopy quantification methods.

M ethods: 102 healthy volunteers, with approximately equal numbers of male and female participantsin
each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR
spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS
localization (TE = 30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex
(PCC). Water-suppressed spectrawere modeled using the Osprey a gorithm, employing abasis set of 18
simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson
correlations were conducted to assess rel ationships between metabolite concentrations and age for each
voxel; paired t-tests were run to determine whether metabolite concentrations differed between the PCC
and CSO.

Results: Two datasets were excluded (1 ethanol; 1 unacceptably large lipid signal). Statistically
significant age-by-metabolite correlations were seen for tCr (R°=0.36; p<0.001), tCho (R*=0.11; p<0.001),
sl (R®=0.11; p=0.004), and ml (R*=0.10; p<0.001) in the CSO, and tCr (R*=0.15; p<0.001), tCho
(R?=0.11; p<0.001), and GABA (R?=0.11; p=0.003) in the PCC. No significant correlations were seen
between tNAA, NAA, GSH, Glx or Glu and age in either region (all p>0.25). Levels of sl were
significantly higher in the PCC in female subjects (p<0.001) than in male subjects. There was a

significant positive correlation between linewidth and age.

Conclusion: The resultsindicated age correlations for tCho, tCr, sl, and ml in CSO and for tCr, tCho and
GABA in PCC, while no age-related changes were found for NAA, tNAA, GSH, Glu or GIx. Our results
provide a normative foundation for future work investigating the neurometabolic time course of healthy
aging using MRS.

K eywor ds: magnetic resonance spectroscopy, heurometabolite, PRESS, healthy aging

Highlights

1. A large structured cross-sectional cohort of neurometabolic aging dataset is presented;

2. Age correlations were observed for tCho, tCr, sl, and ml in CSO and for tCr, tCho and GABA in PCC;

3. No age correlations were found for NAA, tNAA, GSH, Glu or GIx in either region.
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Introduction

With the global population aging and the prevalence of Alzheimer’s disease increasing (Langa et al.,
2004), the study of the biochemical mechanisms of healthy and pathological aging is amaor research
priority. While cell-level neuroscience offers maximum scientific control and analytic precision, the need
to link neurometabolic changes in the brain to changes in cognition, especially with aview to developing
neuroprotective interventions, demands in vivo imaging methods. In-vivo magnetic resonance
spectroscopy (MRS) of the brain can potentially bridge between cellular neuroscience and in vivo
imaging of physical properties of tissue water by measuring the concentration of endogenous metabolites,

particularly those associated with neurotransmission, energy metabolism and oxidative stress defense.

Major neurometabolites quantifiable by MRS include the neuronal marker N-acetyl aspartate (NAA)
(Landim et al., 2016), as well as y-aminobutyric acid (GABA) (Mullins et al., 2014), the major inhibitory
neurotransmitter within the brain, and glutamate (Glu) (Cheng et a., 2021), the principal excitatory
neurotransmitter. Glutamine (GIn) is an MRS-detectable precursor for Glu, though often MRS studies
performed at 3T report Glx, the combination of Glu + GIn signals. N-acetyl aspartyl glutamate (NAAG)
functions as a neuromodulator, inhibiting synaptic release of GABA, Glu, and dopamine (Harriset al.,
2017). Aspartate (Asp) is an excitatory neuromodulator (Menshchikov et al., 2017) and precursor of NAA.
Myo-Inositol (ml) acts as an osmolyte, with involvement in maintaining cell volume and fluid balance
(Dai et al., 2016) aswell as brain cell signaling (Hoyer et al., 2014) and glial cell proliferation (Brand et
al., 1993). Scyllo-Inositol (sl) isformed from ml; the functional role of sl in the brain isless clear, though
it may decrease accumulation of amyloid-beta protein (McLaurin et al., 2000). The overlapping choline
signals (tCho) from free choline, glycerophosphocholine (GPC) and phosphocholine (PCh) are a cell
membrane marker which reflects changes in membrane turnover or cell density (Cleeland et d., 2019).
Creatine and phosphocreatine (reported in combination as tCr) and lactate (Lac) are al involved in energy
metabolism. Creatineis abrain osmoalyte and involved in maintenance of brain energy homeostasis (Ross
and Sachdev, 2004). Lac is the end product of anaerobic glycolysis, and isfound in very low
concentrations in the brain under normal physiologic conditions (Harris et a., 2017), but elevated in
conditions of altered energy metabolism such as tumor or stroke (Howe et al., 2003; Morana et al., 2015).
Glutathione (GSH) is one of the most abundant antioxidant sources in the central nervous system and

plays akey role in the maintenance of redox homeostasis (Dwivedi et al., 2020).

A number of cross-sectional studies have characterized the neurometabolic trajectory of aging. Although
the results were varied, the most consistent findings demonstrated that NAA and Glu concentration

decrease with age, while Cho, Cr and ml concentration increase with age (Cleeland et al., 2019; Haga et
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a., 2009). Studies using edited MRS methods targeting specific metabolites often show age-related
decreasein GABA levels (Gao et al., 2013; Porges et a ., 2021) which may be driven by tissue changes
(Maeset a., 2018; Porges et al., 2017), and have demonstrated an age-related increasein GSH (Hupfeld
et a., 2021).

This substantial body of MRS-aging literature has employed diverse methodological approaches, in terms
of study design, acquisition, and quantification (Cleeland et a., 2019; Haga et al., 2009). A majority of
studies (~65%) has used a dichotomized young-old between-groups design, and of those studies that do
consider age as a continuous variable, several have bimodal age distributions. The median total cohort
sizeis 62 subjects. In terms of acquisition, amajority of studies (~45%) has used PRESS localization for
single-voxel acquisitions, whereas some (~30%) studies employed multi-voxel MRSI methods. The
guantification approaches range from metabolite ratios (~30%) through water-referenced concentrations
with CSF correction (~30%) to full tissue-corrected water referencing (~10%). Given the relatively
diverse findings of this literature, which derivein part from limited statistical power, low SNR and
methodological diversity, we designed alarge structured cross-sectional cohort of male and female

subj ects throughout adulthood to investigate neurometabolic changes as a function of age, and used data
processing, modeling, and quantification practices recommended by recent MRS expert community
consensus (Near et al., 2021).

M ethods
Participants

One hundred and two healthy volunteers were recruited with local IRB approval (Shandong Provincial
Hospital). The cohort was structured to include approximately equal numbers of male and female
participants in each decade of age from the 20s, 30s, 40s, 50s, to the 60s. Exclusion criteriaincluded
contraindications for MRI and a history of neurological and psychiatric illness. Metabolite-nulled data
from the same cohort of subjects was recently published (Hui et al., 2022a) to investigate the age
trgjectory of macromolecular signalsin the spectrum. Since this analysis revealed no significant age- or
sex-related changes to the macromolecular spectrum, a cohort-mean macromol ecul e spectrum was

incorporated into the modeling (see Analysis).
MR protocol

Data were acquired on a 3T MRI scanner (Ingenia CX, Philips Healthcare, The Netherlands). Acquisition
of MRS data was preceded by a T;-weighted MPRAGE scan (TR/TE/ 6.9/3.2 ms; FA 8°) with 1 mm®

isotropic resolution for voxel positioning and tissue segmentation. Metabolite spectrawere acquired using
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PRESS localization (1.3 kHz refocusing bandwidth) with the following parameters: TR/TE: 2000/30 ms;
30 x 26 x 26 mm® voxels localized in the CSO (predominantly white matter) and PCC (predominantly
gray matter), as shown in Figure 1; 96 transients sampled at 2 kHz; water suppression was performed
using the VAPOR method (Tkéc et al., 1999). A slice-selective saturation pulse (20 mm thickness) was
applied to suppress subcutaneous lipid adjacent to the voxel in CSO and PCC acquisitions. Water

reference spectra were acquired without water suppression or pre-inversion.
Analysis

T1-weighted images were segmented using SPM 12 (Friston et al., 1994) algorithms called within Osprey
(Oeltzschner et al., 2020) after voxel co-registration. Water-suppressed spectra were modeled using the
Osprey algorithm, employing a basis set consisting of 18 simulated metabolite basis functions which were
generated from a fully localized 2D density-matrix simulation of a101 x 101 spatial grid (field of view 50%
larger than voxel) using real pulse waveforms and sequence timings, asimplemented inaMATLAB-
based simulation toolbox FID-A (Simpson et al., 2017). Metabolites included in the model are as follows:
ascorbate, Asp; creatine, Cr; negative creatine methylene, CrCH2; gamma-aminobutyric acid, GABA,;
glycerophosphocholine, GPC; glutathione, GSH; glutamine, GIn; glutamate, Glu; myo-inositol, ml;
lactate, Lac; N-acetylaspartate, NAA; N-acetylaspartyl glutamate, NAAG,; phosphocholine, PCh;
phosphocreatine, PCr; phosphoethanolamine, PE; scyllo-inositol, sl; and taurine, Tau. Osprey analysis
procedures match those previously described in, with the exception that experimentally derived in vivo
macromolecular (MM) basis spectra derived from a previous study (Hui et al., 2022b) are incorporated
into the basis set instead of 8 parameterized Gaussian basis functions. To create the MM basis function,
individual-subject ‘clean’ MM spectra (separate for PCC and CSO) were modeled with a flexible spline
(0.1 ppm knot spacing) across the full spectral range. The mean of these splines was taken across all
subjects (since no significant MM-age rel ationships were observed before (Hui et al., 2022b) to generate
the cohort-mean MM basis function. Water reference spectra were modeled with a simulated water basis
function in the frequency domain with a 6-parameter model (amplitude, zero- and first-order phase,
Gaussian and Lorentzian line-broadening, and frequency shift). Water-referenced metabolite
concentrations were cal culated according to (Gasparovic et a ., 2006), adjusted for tissue-specific water
visibility and relaxation times based on literature values (Wansapura et al., 1999) for each segmented
tissue fraction of the voxel. Signal-to-noise ratio (SNR) was determined as the ratio of the maximum
amplitude of the tNAA signal divided by the standard deviation of the noise, estimated from a de-trended
signal-free area of the spectrum. The full-width at half-maximum (FWHM) linewidth of the tNAA signal

was also determined.
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Satistical Analysis

All statistical analyses were performed using R (Version 4.1.1) in RStudio (Version 1.2.5019, Integrated
Development for R. RStudio, PBC, Boston, MA). Datawere analyzed for total NAA (tINAA =
NAA+NAAG); total choline (tCho = GPC + PCh); total creatine (tCr = Cr + PCr); Glx = Glu + GIn; and
individual contributions from GABA; GIn; Glu; GSH; ml; Lac; NAA; NAAG; PE; sl. Concentrations
equal to 0 were interpreted as evidence of failure to fit and those datapoints were excluded from further
analysis. Separate Pearson correlations were run assessing rel ationship between age and metabolite
concentration in each voxel. Inter-metabolite Pearson correlations were also generated. Paired t-tests
were used to investigate regiona within-subject concentration differences between the PCC and CSO

regions.
Results

Data were excluded for one subject due to the detection of ethanol signalsin the spectra. Data from one
further subject were excluded in each region due to the appearance of unacceptably large lipid signals,
presumably due to subject motion. The average NAA SNR was 160 in CSO and 150 in PCC, and the
average NAA linewidth was 6.8 Hz in CSO and 7.0 Hz in PCC, as shown in Figure 2, indicating high

data quality consistent with the acquisition parameters and the relatively favorable voxel locations.

Levels of Asp (t=-18, p<0.0001), GABA (t=-10, p<0.0001), GlIx (t=-30, p<0.0001), GSH (t=-16,
p<0.0001), Lac (t=-3.8, p<0.001), ml (t=-38, p<0.0001), sl (t=-14, p<0.0001), and tCr (t=-44, p<0.0001)
were significantly higher in PCC, while tCho (t=27, p<0.0001) and tNAA (t=6.4, p<0.0001) were
significantly higher in CSO.

Average spectra per decade from each region are shown in Figure 3. Age-by-metabolite correlation plots
for the major metabolites are seen in Figure 4. Statistically significant age-by-metabolite correlations

were seen for tCr (R?=0.36; p=0.0003), tCho (R?*=0.11; p<0.001), sl (R?*=0.11; p=0.004), and ml (R*=0.10;
p<0.0003) in CSO, and tCr (R?*=0.15; p<0.0001), tCho (R?=0.11; p<0.001), and GABA (R?=0.11;
p=0.003) in PCC. No significant correlations were seen between tNAA, NAA, GIx or Glu and agein
either region (all p>0.25). Thereis also significant positive correlation between linewidth and age, as seen
in Figure 2, with older subjects tending to have broader signals. Thisis aso reflected in SNR (peak height
being inversely related to linewidth for a given areq), as expected. Age correlations and inter-metabolite
correlations are illustrated in Figure 5.

Discussion
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In this study, MRS data from alarge structured cross-sectional cohort of male and femal e subjects
throughout adulthood were investigated for neurometabolic changes as afunction of age, using MRS
consensus-recommended quantification methods (Near et al., 2021; Wilson et al., 2019). Positive age
correlations in tCho, and tCr were observed for CSO and PCC, while none were found for NAA, tNAA,
Glu or GIx in either region. The study further found GABA level decreased with agein PCC, increased sl
levelsin CSO, and significantly higher sl in the PCC for female subjects. Our results provide a normative
assessment of the trajectories of MRS-measured metabolite levelsin CSO and PCC across the healthy
adult lifespan.

This study indicated that tCho and tCr increased with age in both CSO and PCC, in line with most
previous MRS studies (Cleeland et al., 2019), perhaps driven by glia proliferation, as higher Cho and Cr
levelsare found in glial cells (Brand et al., 1993). The glial metabolite ml demonstrated a positive
correlation with age in CSO, and atrend toward increase with age in PCC, that did not reach statistical
significance. The metabolically linked sl showed asimilar pattern (increasein CSO, no effect in PCC), in
line with prior work (Kaiser et al., 2005). sl was also significantly higher in the PCC in female subjects,
suggesting sex should be considered when investigating sl aterations.

Therelatively strong positive correlations between tCr levels and age suggest that more age-rel ated
declines in metabolite levels would be reported if Cr-referenced metabolite ratios were used for
guantification. While the quantification approach used here (relaxation and tissue correction based on
literature reference values) complies with community consensus (Near et al., 2021; Wilson et al., 2019), it
is still not free from potential confounds. There is strong literature evidence of age-related changesin the
relaxation rates of water signals (Knight et a., 2016; Soderberg et al., 1990) and metabolite signals
(Deelchand et d., 2020; Kirov et al., 2008; Mclintyre et al., 2007; Schenker et a ., 1993), that are not
considered by the quantification approach used here. There is a strong need in the community for age-

normed reference values to address this deficiency.

It is notable that age correlations were not observed for NAA, tNAA, Glu or GIx in either region, in spite
of the fact that this is one of the commonest findingsin the literature (Cleeland et a., 2019). One potential
explanation for thisis the age-range of our cohort (20-69 years), which would not be sensitive to changes
later in life. NAA and Glu declines often seen in metabolite ratios — most often ratios to Cr — and so might
be driven by the reference denominator as much as changes in the numerator. It may aso be the case that
non-linear metabolite by age relationships will be revealed in studies of wider age ranges, as we recently
reported in a meta-analysis of edited GABA MRS across the lifespan (Ec et ., 2021). The majority of
studies applying relaxation and tissue correction do not show age-related NAA changes (Wu et al., 2012).
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However, arecent study applying absolute quantification by phantom (Kirov et al., 2021) did report
decreases in whole-brain NAA concentration with age. This cohort included alarge number of subjects
above the age range of our cohort, so the difference in findings could be driven by either cohort, regional

variation or methodol ogy.

It isinteresting to note that, in spite of short-TE PRESS being a somewhat controversial approach to
measuring GABA levels, these data demonstrated significantly higher levels of GABA in GM than WM,
and areduction in GABA level with age. Both of these results are commonly seen in the edited GABA
literature (Porges et al., 2017). The potential linewidth confound is aso noteworthy — with increasing
linewidth, modeling will find it increasingly difficult to resolve GABA signals from those of Glu, GIn and
macromol ecules. Indeed, estimates of GABA from linear-combination modeling do depend on SNR and
increased linewidth (Near et d., 2013). Contrastingly, no age-rel ated changes in GSH were observed, in
contrast to the edited MRS literature (Hupfeld et al., 2021).

The inter-metabolite correlations reveal some interesting relationships. Overall, there are more positive
than negative correlations. While there is a concern that common variance in the reference signal drive
such correlations, they do not appear to be more prevalent within-region (common reference) compared to
between region (independent reference). We therefore interpret this as reflecting genuine biological
covariance. Several metabolites showed substantial positive correlations between PCC and CSO - tNAA,
tCho, tCr, ml, and sl. Negative correlations between metabolites with overlapping basis spectraare
potential evidence of the limitation of linear-combination modeling at 3T. These are seen between GABA

and GIx, and for GSH and PE, both exclusively within-region.

We used the publicly available Osprey a gorithm for perform linear-combination modeling of our data.
While similar in concept, implementation and performance to the de-facto gold standard LCModel and
other widely used methods like Tarquin (Wilson et al., 2011), we have recently demonstrated that results
obtained with different modeling al gorithms might differ in systematic fashion (Zollner et a., 2021), a
phenomenon commonly encountered in many neuroimaging disciplines. One key a gorithmic difference
isthat the Osprey agorithm does not apply soft constraints to regularize the contributions from typically
low-concentration metabolites like GABA and GSH, asis done by the LCModel, which may decrease

systematic biases.

There are some limitations in this study, first, even though an adequate sample size was achieved, the age
span was relatively narrow. In particular, we did not enrall participants above 70 years of age, i.e. when
effects of aging drastically accelerate. Future MRS-aging studies should increase the age range to
establish normative age trajectories during this important late-life stage. Second, only two selected ROIs
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(PCC and CSO) were analyzed in this study, oneis gray-matter predominant region, another white-matter
predominant. Neurochemica changes during aging are highly region-dependent (Eylers et al., 2016), and
data from more regions or even whole brain data will be needed to improve our understanding of age-
related changes.

Conclusion

The resultsindicated positive age correlations in tCho, tCr, and ml for CSO and in tCho, tCr, and GABA
for PCC, while no age-related changes for NAA, tNAA, Glu or GIx. Our results provide further evidence
of neurometabolic time course of healthy aging, suggesting that age matching is essential for comparative

studies of neuro-degenerative disease using MRS.
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FigureLegend

Figure 1. Voxels of interest a) left CSO and b) midline PCC in which spectral data were acquired.

Acquisition parameters. 96 transients, TR = 2s, TE =30 ms; 20 cm®voxels.

Figure 2. Correlations of age with the SNR and linewidth metrics of NAA. y= mean.

Figure 3. Average spectra per decade from CSO (upper panel) and PCC (lower panel).

Figure 4. Metabolite-age correlation plots from (a) CSO and (b) PCC.

Figure5. Age correlations and inter-metabolite correlations. Dot radius and color indicate correlation

strength, while color indicates correlation directionality.
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