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Abstract 

Purpose: The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity 

of quantification methodology. In this study, a large structured cross-sectional cohort of male and female 

subjects throughout adulthood was recruited to investigate neurometabolic changes as a function of age, 

using consensus-recommended magnetic resonance spectroscopy quantification methods. 

Methods: 102 healthy volunteers, with approximately equal numbers of male and female participants in 

each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR 

spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS 

localization (TE = 30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex 

(PCC). Water-suppressed spectra were modeled using the Osprey algorithm, employing a basis set of 18 

simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson 

correlations were conducted to assess relationships between metabolite concentrations and age for each 

voxel; paired t-tests were run to determine whether metabolite concentrations differed between the PCC 

and CSO.  

Results: Two datasets were excluded (1 ethanol; 1 unacceptably large lipid signal). Statistically 

significant age-by-metabolite correlations were seen for tCr (R2=0.36; p<0.001), tCho (R2=0.11; p<0.001), 

sI (R2=0.11; p=0.004), and mI (R2=0.10; p<0.001) in the CSO, and tCr (R2=0.15; p<0.001), tCho 

(R2=0.11; p<0.001), and GABA (R2=0.11; p=0.003) in the PCC. No significant correlations were seen 

between tNAA, NAA, GSH, Glx or Glu and age in either region (all p>0.25). Levels of sI were 

significantly higher in the PCC in female subjects (p<0.001) than in male subjects. There was a 

significant positive correlation between linewidth and age. 

Conclusion: The results indicated age correlations for tCho, tCr, sI, and mI in CSO and for tCr, tCho and 

GABA in PCC, while no age-related changes were found for NAA, tNAA, GSH, Glu or Glx. Our results 

provide a normative foundation for future work investigating the neurometabolic time course of healthy 

aging using MRS. 

Keywords: magnetic resonance spectroscopy, neurometabolite, PRESS, healthy aging 

Highlights 

1. A large structured cross-sectional cohort of neurometabolic aging dataset is presented; 

2. Age correlations were observed for tCho, tCr, sI, and mI in CSO and for tCr, tCho and GABA in PCC;  

3. No age correlations were found for NAA, tNAA, GSH, Glu or Glx in either region.  
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Introduction 

With the global population aging and the prevalence of Alzheimer’s disease increasing (Langa et al., 

2004), the study of the biochemical mechanisms of healthy and pathological aging is a major research 

priority. While cell-level neuroscience offers maximum scientific control and analytic precision, the need 

to link neurometabolic changes in the brain to changes in cognition, especially with a view to developing 

neuroprotective interventions, demands in vivo imaging methods.  In-vivo magnetic resonance 

spectroscopy (MRS) of the brain can potentially bridge between cellular neuroscience and in vivo 

imaging of physical properties of tissue water by measuring the concentration of endogenous metabolites, 

particularly those associated with neurotransmission, energy metabolism and oxidative stress defense.  

Major neurometabolites quantifiable by MRS include the neuronal marker N-acetyl aspartate (NAA) 

(Landim et al., 2016), as well as γ-aminobutyric acid (GABA) (Mullins et al., 2014), the major inhibitory 

neurotransmitter within the brain, and glutamate (Glu) (Cheng et al., 2021), the principal excitatory 

neurotransmitter. Glutamine (Gln) is an MRS-detectable precursor for Glu, though often MRS studies 

performed at 3T report Glx, the combination of Glu + Gln signals. N-acetyl aspartyl glutamate (NAAG) 

functions as a neuromodulator, inhibiting synaptic release of GABA, Glu, and dopamine (Harris et al., 

2017). Aspartate (Asp) is an excitatory neuromodulator (Menshchikov et al., 2017) and precursor of NAA. 

Myo-Inositol (mI) acts as an osmolyte, with involvement in maintaining cell volume and fluid balance 

(Dai et al., 2016) as well as brain cell signaling (Hoyer et al., 2014) and glial cell proliferation (Brand et 

al., 1993). Scyllo-Inositol (sI) is formed from mI; the functional role of sI in the brain is less clear, though 

it may decrease accumulation of amyloid-beta protein (McLaurin et al., 2000). The overlapping choline 

signals (tCho) from free choline, glycerophosphocholine (GPC) and phosphocholine (PCh) are a cell 

membrane marker which reflects changes in membrane turnover or cell density (Cleeland et al., 2019). 

Creatine and phosphocreatine (reported in combination as tCr) and lactate (Lac) are all involved in energy 

metabolism. Creatine is a brain osmolyte and involved in maintenance of brain energy homeostasis (Ross 

and Sachdev, 2004). Lac is the end product of anaerobic glycolysis, and is found in very low 

concentrations in the brain under normal physiologic conditions (Harris et al., 2017), but elevated in 

conditions of altered energy metabolism such as tumor or stroke (Howe et al., 2003; Morana et al., 2015). 

Glutathione (GSH) is one of the most abundant antioxidant sources in the central nervous system and 

plays a key role in the maintenance of redox homeostasis (Dwivedi et al., 2020). 

A number of cross-sectional studies have characterized the neurometabolic trajectory of aging. Although 

the results were varied, the most consistent findings demonstrated that NAA and Glu concentration 

decrease with age, while Cho, Cr and mI concentration increase with age (Cleeland et al., 2019; Haga et 
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al., 2009). Studies using edited MRS methods targeting specific metabolites often show age-related 

decrease in GABA levels (Gao et al., 2013; Porges et al., 2021) which may be driven by tissue changes 

(Maes et al., 2018; Porges et al., 2017), and have demonstrated an age-related increase in GSH (Hupfeld 

et al., 2021). 

This substantial body of MRS-aging literature has employed diverse methodological approaches, in terms 

of study design, acquisition, and quantification (Cleeland et al., 2019; Haga et al., 2009). A majority of 

studies (~65%) has used a dichotomized young-old between-groups design, and of those studies that do 

consider age as a continuous variable, several have bimodal age distributions. The median total cohort 

size is 62 subjects. In terms of acquisition, a majority of studies (~45%) has used PRESS localization for 

single-voxel acquisitions, whereas some (~30%) studies employed multi-voxel MRSI methods. The 

quantification approaches range from metabolite ratios (~30%) through water-referenced concentrations 

with CSF correction (~30%) to full tissue-corrected water referencing (~10%). Given the relatively 

diverse findings of this literature, which derive in part from limited statistical power, low SNR and 

methodological diversity, we designed a large structured cross-sectional cohort of male and female 

subjects throughout adulthood to investigate neurometabolic changes as a function of age, and used data 

processing, modeling, and quantification practices recommended by recent MRS expert community 

consensus (Near et al., 2021). 

Methods 

Participants  

One hundred and two healthy volunteers were recruited with local IRB approval (Shandong Provincial 

Hospital). The cohort was structured to include approximately equal numbers of male and female 

participants in each decade of age from the 20s, 30s, 40s, 50s, to the 60s. Exclusion criteria included 

contraindications for MRI and a history of neurological and psychiatric illness. Metabolite-nulled data 

from the same cohort of subjects was recently published (Hui et al., 2022a) to investigate the age 

trajectory of macromolecular signals in the spectrum. Since this analysis revealed no significant age- or 

sex-related changes to the macromolecular spectrum, a cohort-mean macromolecule spectrum was 

incorporated into the modeling (see Analysis). 

MR protocol  

Data were acquired on a 3T MRI scanner (Ingenia CX, Philips Healthcare, The Netherlands). Acquisition 

of MRS data was preceded by a T1-weighted MPRAGE scan (TR/TE/ 6.9/3.2 ms; FA 8°) with 1 mm3 

isotropic resolution for voxel positioning and tissue segmentation. Metabolite spectra were acquired using 
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PRESS localization (1.3 kHz refocusing bandwidth) with the following parameters: TR/TE: 2000/30 ms; 

30 × 26 × 26 mm3 voxels localized in the CSO (predominantly white matter) and PCC (predominantly 

gray matter), as shown in Figure 1; 96 transients sampled at 2 kHz; water suppression was performed 

using the VAPOR method (Tkác et al., 1999). A slice-selective saturation pulse (20 mm thickness) was 

applied to suppress subcutaneous lipid adjacent to the voxel in CSO and PCC acquisitions. Water 

reference spectra were acquired without water suppression or pre-inversion. 

Analysis  

T1-weighted images were segmented using SPM12 (Friston et al., 1994) algorithms called within Osprey 

(Oeltzschner et al., 2020) after voxel co-registration. Water-suppressed spectra were modeled using the 

Osprey algorithm, employing a basis set consisting of 18 simulated metabolite basis functions which were 

generated from a fully localized 2D density-matrix simulation of a 101 x 101 spatial grid (field of view 50% 

larger than voxel) using real pulse waveforms and sequence timings, as implemented in a MATLAB-

based simulation toolbox FID-A (Simpson et al., 2017). Metabolites included in the model are as follows: 

ascorbate, Asp; creatine, Cr; negative creatine methylene, CrCH2; gamma-aminobutyric acid, GABA; 

glycerophosphocholine, GPC; glutathione, GSH; glutamine, Gln; glutamate, Glu; myo-inositol, mI; 

lactate, Lac; N-acetylaspartate, NAA; N-acetylaspartylglutamate, NAAG; phosphocholine, PCh; 

phosphocreatine, PCr; phosphoethanolamine, PE; scyllo-inositol, sI; and taurine, Tau. Osprey analysis 

procedures match those previously described in, with the exception that experimentally derived in vivo 

macromolecular (MM) basis spectra derived from a previous study (Hui et al., 2022b) are incorporated 

into the basis set instead of 8 parameterized Gaussian basis functions. To create the MM basis function, 

individual-subject ‘clean’ MM spectra (separate for PCC and CSO) were modeled with a flexible spline 

(0.1 ppm knot spacing) across the full spectral range. The mean of these splines was taken across all 

subjects (since no significant MM-age relationships were observed before (Hui et al., 2022b) to generate 

the cohort-mean MM basis function. Water reference spectra were modeled with a simulated water basis 

function in the frequency domain with a 6-parameter model (amplitude, zero- and first-order phase, 

Gaussian and Lorentzian line-broadening, and frequency shift). Water-referenced metabolite 

concentrations were calculated according to (Gasparovic et al., 2006), adjusted for tissue-specific water 

visibility and relaxation times based on literature values (Wansapura et al., 1999) for each segmented 

tissue fraction of the voxel. Signal-to-noise ratio (SNR) was determined as the ratio of the maximum 

amplitude of the tNAA signal divided by the standard deviation of the noise, estimated from a de-trended 

signal-free area of the spectrum. The full-width at half-maximum (FWHM) linewidth of the tNAA signal 

was also determined. 
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Statistical Analysis  

All statistical analyses were performed using R (Version 4.1.1) in RStudio (Version 1.2.5019, Integrated 

Development for R. RStudio, PBC, Boston, MA). Data were analyzed for total NAA (tNAA = 

NAA+NAAG); total choline (tCho = GPC + PCh); total creatine (tCr = Cr + PCr); Glx = Glu + Gln; and 

individual contributions from GABA; Gln; Glu; GSH; mI; Lac; NAA; NAAG; PE; sI. Concentrations 

equal to 0 were interpreted as evidence of failure to fit and those datapoints were excluded from further 

analysis. Separate Pearson correlations were run assessing relationship between age and metabolite 

concentration in each voxel.  Inter-metabolite Pearson correlations were also generated. Paired t-tests 

were used to investigate regional within-subject concentration differences between the PCC and CSO 

regions.     

Results 

Data were excluded for one subject due to the detection of ethanol signals in the spectra. Data from one 

further subject were excluded in each region due to the appearance of unacceptably large lipid signals, 

presumably due to subject motion. The average NAA SNR was 160 in CSO and 150 in PCC, and the 

average NAA linewidth was 6.8 Hz in CSO and 7.0 Hz in PCC, as shown in Figure 2, indicating high 

data quality consistent with the acquisition parameters and the relatively favorable voxel locations. 

Levels of Asp (t=-18, p<0.0001), GABA (t=-10, p<0.0001), Glx (t=-30, p<0.0001), GSH (t=-16, 

p<0.0001), Lac (t=-3.8, p<0.001), mI (t=-38, p<0.0001), sI (t=-14, p<0.0001), and tCr (t=-44, p<0.0001) 

were significantly higher in PCC, while tCho (t=27, p<0.0001) and tNAA (t=6.4, p<0.0001) were 

significantly higher in CSO.  

Average spectra per decade from each region are shown in Figure 3. Age-by-metabolite correlation plots 

for the major metabolites are seen in Figure 4. Statistically significant age-by-metabolite correlations 

were seen for tCr (R2=0.36; p=0.0003), tCho (R2=0.11; p<0.001), sI (R2=0.11; p=0.004), and mI (R2=0.10; 

p<0.0003) in CSO, and tCr (R2=0.15; p<0.0001), tCho (R2=0.11; p<0.001), and GABA (R2=0.11; 

p=0.003) in PCC. No significant correlations were seen between tNAA, NAA, Glx or Glu and age in 

either region (all p>0.25). There is also significant positive correlation between linewidth and age, as seen 

in Figure 2, with older subjects tending to have broader signals. This is also reflected in SNR (peak height 

being inversely related to linewidth for a given area), as expected. Age correlations and inter-metabolite 

correlations are illustrated in Figure 5. 

Discussion 
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 In this study, MRS data from a large structured cross-sectional cohort of male and female subjects 

throughout adulthood were investigated for neurometabolic changes as a function of age, using MRS 

consensus-recommended quantification methods (Near et al., 2021; Wilson et al., 2019). Positive age 

correlations in tCho, and tCr were observed for CSO and PCC, while none were found for NAA, tNAA, 

Glu or Glx in either region. The study further found GABA level decreased with age in PCC, increased sI 

levels in CSO, and significantly higher sI in the PCC for female subjects. Our results provide a normative 

assessment of the trajectories of MRS-measured metabolite levels in CSO and PCC across the healthy 

adult lifespan. 

This study indicated that tCho and tCr increased with age in both CSO and PCC, in line with most 

previous MRS studies (Cleeland et al., 2019), perhaps driven by glial proliferation, as higher Cho and Cr 

levels are found in glial cells (Brand et al., 1993). The glial metabolite mI demonstrated a positive 

correlation with age in CSO, and a trend toward increase with age in PCC, that did not reach statistical 

significance. The metabolically linked sI showed a similar pattern (increase in CSO, no effect in PCC), in 

line with prior work (Kaiser et al., 2005). sI was also significantly higher in the PCC in female subjects, 

suggesting sex should be considered when investigating sI alterations.  

The relatively strong positive correlations between tCr levels and age suggest that more age-related 

declines in metabolite levels would be reported if Cr-referenced metabolite ratios were used for 

quantification. While the quantification approach used here (relaxation and tissue correction based on 

literature reference values) complies with community consensus (Near et al., 2021; Wilson et al., 2019), it 

is still not free from potential confounds. There is strong literature evidence of age-related changes in the 

relaxation rates of water signals (Knight et al., 2016; Söderberg et al., 1990) and metabolite signals  

(Deelchand et al., 2020; Kirov et al., 2008; McIntyre et al., 2007; Schenker et al., 1993), that are not 

considered by the quantification approach used here. There is a strong need in the community for age-

normed reference values to address this deficiency.  

It is notable that age correlations were not observed for NAA, tNAA, Glu or Glx in either region, in spite 

of the fact that this is one of the commonest findings in the literature (Cleeland et al., 2019). One potential 

explanation for this is the age-range of our cohort (20-69 years), which would not be sensitive to changes 

later in life. NAA and Glu declines often seen in metabolite ratios – most often ratios to Cr – and so might 

be driven by the reference denominator as much as changes in the numerator. It may also be the case that  

non-linear metabolite by age relationships will be revealed in studies of wider age ranges, as we recently  

reported in a meta-analysis of edited GABA MRS across the lifespan (Ec et al., 2021). The majority of 

studies applying relaxation and tissue correction do not show age-related NAA changes (Wu et al., 2012). 
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However, a recent study applying absolute quantification by phantom (Kirov et al., 2021) did report 

decreases in whole-brain NAA concentration with age. This cohort included a large number of subjects 

above the age range of our cohort, so the difference in findings could be driven by either cohort, regional 

variation or methodology. 

It is interesting to note that, in spite of short-TE PRESS being a somewhat controversial approach to 

measuring GABA levels, these data demonstrated significantly higher levels of GABA in GM than WM, 

and a reduction in GABA level with age. Both of these results are commonly seen in the edited GABA 

literature (Porges et al., 2017). The potential linewidth confound is also noteworthy – with increasing 

linewidth, modeling will find it increasingly difficult to resolve GABA signals from those of Glu, Gln and 

macromolecules. Indeed, estimates of GABA from linear-combination modeling do depend on SNR and 

increased linewidth (Near et al., 2013). Contrastingly, no age-related changes in GSH were observed, in 

contrast to the edited MRS literature (Hupfeld et al., 2021). 

The inter-metabolite correlations reveal some interesting relationships. Overall, there are more positive 

than negative correlations. While there is a concern that common variance in the reference signal drive 

such correlations, they do not appear to be more prevalent within-region (common reference) compared to 

between region (independent reference). We therefore interpret this as reflecting genuine biological 

covariance. Several metabolites showed substantial positive correlations between PCC and CSO - tNAA, 

tCho, tCr, mI, and sI. Negative correlations between metabolites with overlapping basis spectra are 

potential evidence of the limitation of linear-combination modeling at 3T. These are seen between GABA 

and Glx, and for GSH and PE, both exclusively within-region.  

We used the publicly available Osprey algorithm for perform linear-combination modeling of our data. 

While similar in concept, implementation and performance to the de-facto gold standard LCModel and 

other widely used methods like Tarquin (Wilson et al., 2011), we have recently demonstrated that results 

obtained with different modeling algorithms might differ in systematic fashion (Zöllner et al., 2021), a 

phenomenon commonly encountered in many neuroimaging disciplines. One key algorithmic difference 

is that the Osprey algorithm does not apply soft constraints to regularize the contributions from typically 

low-concentration metabolites like GABA and GSH, as is done by the LCModel, which may decrease 

systematic biases. 

There are some limitations in this study, first, even though an adequate sample size was achieved, the age 

span was relatively narrow. In particular, we did not enroll participants above 70 years of age, i.e. when 

effects of aging drastically accelerate. Future MRS-aging studies should increase the age range to 

establish normative age trajectories during this important late-life stage. Second, only two selected ROIs 
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(PCC and CSO) were analyzed in this study, one is gray-matter predominant region, another white-matter 

predominant. Neurochemical changes during aging are highly region-dependent (Eylers et al., 2016), and 

data from more regions or even whole brain data will be needed to improve our understanding of age-

related changes.  

Conclusion 

The results indicated positive age correlations in tCho, tCr, and mI for CSO and in tCho, tCr, and GABA 

for PCC, while no age-related changes for NAA, tNAA, Glu or Glx. Our results provide further evidence 

of neurometabolic time course of healthy aging, suggesting that age matching is essential for comparative 

studies of neuro-degenerative disease using MRS. 

 

Acknowledgements 

This work was supported by Natural Science Foundation of Shandong (grant number: ZR2020QH267); 

Major Research Project of Shandong Province (grant number: 2016ZDJS07A16); and National Institutes 

of Health (grant number: R01 EB016089; P41 EB031771; R00 AG062230; K00 AG068440). 

 

Disclosures of Conflicts of Interest 

All authors declare no conflicts of interest. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.08.495050doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495050
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legend 

 

Figure 1. Voxels of interest a) left CSO and b) midline PCC in which spectral data were acquired. 

Acquisition parameters: 96 transients; TR = 2s; TE = 30 ms; 20 cm3 voxels.  

 

Figure 2. Correlations of age with the SNR and linewidth metrics of NAA. μ= mean. 

 

Figure 3. Average spectra per decade from CSO (upper panel) and PCC (lower panel). 

 

Figure 4. Metabolite-age correlation plots from (a) CSO and (b) PCC. 

 

Figure 5. Age correlations and inter-metabolite correlations. Dot radius and color indicate correlation 

strength, while color indicates correlation directionality. 
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