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Abstract20

Accurate inference of who infected whom in an infectious disease outbreak is critical for the21

delivery of effective infection prevention and control. The increased resolution of pathogen22

whole-genome sequencing has significantly improved our ability to infer transmission events.23

Despite this, transmission inference often remains limited by the lack of genomic variation24

between the source case and infected contacts. Although within-host genetic diversity is com-25

mon among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic26

approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only27

the most prevalent nucleotide at each position and therefore fail to capture low frequency28

variation within samples. We hypothesized that including within-sample variation in a phy-29

logenetic model would help to identify who infected whom in instances in which this was30

previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional31

outbreaks as an example, we show how within-sample diversity is stable among repeated32

serial samples from the same host, is transmitted between those cases with known epidemi-33

ological links, and how this improves phylogenetic inference and our understanding of who34

infected whom. Our technique is applicable to other infectious diseases and has immediate35

clinical utility in infection prevention and control.36
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Introduction37

Understanding who infects whom in an infectious disease outbreak is a key component of38

infection prevention and control [1]. The use of whole-genome sequencing allows for detailed39

investigation of disease outbreaks, but the limited genetic diversity of many pathogens often40

hinders our understanding of transmission events [2]. As a consequence of the limited diver-41

sity, many index case and contact pairs will share identical genotypes, making it difficult to42

ascertain who infected whom.43

44

Within-sample genetic diversity is common among a wide variety of pathogens [3–7].45

This diversity may be generated de novo during infection, by a single transmission event of46

a diverse inoculum or by independent transmission events from multiple sources [8]. The47

maintenance and dynamic of within-host diversity is then a product of natural selection,48

genetic drift, and fluctuating population size [1]. The transmission of within-host variation49

between individuals is also favored as a large inoculum exposure is more likely to give rise to50

infection [9–14].51

52

Most genomic and phylogenetic workflows involve either genome assembly or alignment of53

sequencing reads to a reference genome. In both cases, conventionally the resulting alignment54

exclusively represents the most common nucleotide at each position. This is often referred55

to as the consensus sequence. Although genome assemblers may output contigs (combined56

overlapping reads) representing low frequency haplotypes, only the majority contig is kept57

in the final sequence. In a mapping approach, a frequency threshold for the major variant58

is usually pre-determined, under which a position is considered ambiguous. The lack of ge-59

netic variation between temporally proximate samples and the slow mutation rate of many60

pathogens results in direct transmission events sharing exact sequences between the hosts61

when using the consensus sequence approach. For instance, the substitution rate of SARS-62

CoV-2 has been inferred to be around 2 mutations per genome per month [15]. Given its63

infectious period of 6 days [16], most consensus sequences in a small-scale outbreak will show64

no variation between them. This lack of resolution and poor phylogenetic signal complicate65

the determination of who infected whom, relying exclusively on epidemiological information.66

67

We hypothesize that the failure of consensus sequence approaches to capture within-68

sample variation arbitrarily excludes meaningful data and limits the ability to determine69

who infected whom, and that including within-sample diversity in a phylogenetic model70

would significantly increase the evolutionary and temporal signal and thereby improve our71

ability to infer infectious diseases transmission events.72

73

We tested our hypothesis on multi-institutional SARS-CoV-2 outbreaks across London74

hospitals that were part of the COVID-19 Genomics UK (COG-UK) consortia [17]. Tech-75

nical replicates, repeated longitudinal sampling from the same patient, and epidemiological76

data allowed us to evaluate the presence and stability of within-sample diversity within the77

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495142
http://creativecommons.org/licenses/by-nc-nd/4.0/


host and in independently determined transmission chains. We also evaluated the use of78

within-sample diversity in phylogenetic analysis by conducting simulations of sequencing79

data using a phylogenetic model that accounts for the presence and transmission of within-80

sample variation. We show the effects on phylogenetic inference of using consensus sequences81

in the presence of within-sample diversity, and propose that existing phylogenetic models82

can leverage the additional diversity given by the within-sample variation and reconstruct83

the phylogenetic relationship between isolates. Lastly, we show that by taking into account84

within-sample diversity in a phylogenetic model we improve the temporal signal in SARS-85

CoV-2 outbreak analysis. Using both phylogenetic outbreak reconstruction and simulation86

we show that our approach is superior to the current gold standard whole-genome consensus87

sequence methods.88
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Results89

Sampling, demographics and metadata90

Between March 2020 and November 2020, 451 healthcare workers, patients and patient con-91

tacts at the participating North London Hospitals were diagnosed at the Camelia Botnar92

Laboratories with SARS-CoV-2 by PCR as part of a routine staff diagnostic service at Great93

Ormond Street Hospital NHS Foundation Trust (GOSH). The mean participant age was 4094

years old (median 38.5 years old, interquartile range (IQR) 30-50 years old), and 60% of95

the participants were female (Supplementary Table 1). A total of 289 were whole-genome se-96

quenced using the Illumina NextSeq platform, which resulted in 522 whole-genome sequences97

including longitudinal and technical replicates (Supplementary Data File 1). All samples were98

SARS-CoV-2 positive with real time qPCR cycle threshold (Ct) values ranging from 16 to99

35 cycles (Supplementary Table 1). The earliest sample was collected on 26th March 2020,100

while the latest one dated to 4th November 2020 (Supplementary Fig. 1a). A total of 291101

samples had self-reported symptom onset data, for which the mean time from symptom onset102

to sample collection date was 5 days (IQR 2-7 days, Supplementary Fig. 1b). More than 90%103

of the samples were taken from hospital staff, while the rest comprised patients and contacts104

of either the patients or the staff members (Supplementary Table 1).105

Genomic analysis of SARS-CoV-2 sequences106

Whole-genome sequences were mapped to the reference genome resulting in a mean coverage107

depth of 2177x (Supplementary Fig. 2). A total of 454 whole-genomes with mean coverage108

higher than 10x were kept for further analysis. Allele frequencies were extracted using the109

pileup functionality within bcftools [18] with a minimum base and mapping quality of 30,110

which represents a base call error rate of 0.1%. Variants were filtered further for read position111

bias and strand bias. Only minor variants with an allele frequency of at least 1% were kept as112

putative variants. Samples with a frequency of missing bases higher than 10% were excluded,113

keeping 350 isolates for analysis. The mean number of low frequency variants was 12 (median114

3, IQR 1.00 – 9.75), although both the number of variants and its deviation increased at high115

Ct values (Supplementary Fig. 3).116

Within-sample variation is stable between technical replicates117

To understand the stability of within-sample variation and minimize spurious variant calls,118

we sequenced and analyzed technical replicates of 17 samples. Overall, when the variant119

was present in both duplicates the correlation of the variant frequencies was high (R2
= 0.9,120

Fig. 1a right). The high correlation was also maintained at low variant frequencies (Fig. 1a121

left).122

123

Minor variants were less likely to be detected or shared when one or more of the paired124

samples had a low viral load. These discrepancies may appear because of amplification bias125
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caused by low genetic material, base calling errors due to low coverage, or low base quality.126

The mean proportion of discrepant within-sample variants between duplicated samples was127

0.39 (sd = 0.29), although this varied between duplicates (Supplementary Fig. 4). Ct values128

in RT-PCR obtained during viral amplification are inversely correlated with low viral load129

[19]. The proportion of shared intra-host variants was negatively correlated with Ct values130

in a logistic model (estimate=-0.78, p-value=0.008), with higher Ct values associated with a131

lower amount of shared intra-host variants (Fig. 1c). The number of within-sample variants132

detected also increased with Ct value, as well as the deviation in the number of variants133

between duplicates (Fig. 1d). This could be explained either by an increase in the number134

of spurious variants at low viral loads [20], biased amplification of low level sub-populations135

minor rare alleles [21], or due to the accumulation of within-host variation through time, as136

viral load (with rising Ct values) also decreases from time since infection.137

138

Based on these results, only samples with a Ct value equal or lower than 30 cycles were139

considered, which resulted in 249 samples kept for analysis. For the filtered dataset, 414 out140

of 29903 positions were polymorphic for the consensus sequence, while the alignment with141

within-sample diversity had 1039 SNPs. Of these, 699 positions had intra-host diversity, of142

which 78% (549/699) were singletons. The majority of samples (207/249, 83%) contained at143

least 1 position with a high quality within-host variant, and the median amount of intra-host144

variants per sample was 2 (IQR 1-4.5).145

Within-sample variation is shared between epidemiologically linked146

samples147

Given the limited genomic information in the consensus sequences, epidemiological data is148

often necessary to infer the directionality of transmission. We performed a pairwise compar-149

ison of all samples and calculated the proportion of shared within-sample variants (shared150

variants divided by total variants in the pair). We compared samples that a) did not have151

any recorded epidemiological link, b) samples that were from the same hospital (possibly152

linked), c) samples that were part of the same department within the same hospital (prob-153

able link), and d) samples that had an epidemiological link within the same department of154

the same hospital (proven link), e) were a longitudinal replicate from the same patient and155

f) a technical replicate from the same sample.156

157

We tested the concordance between epidemiological and genomic data by determining the158

genetic distance between pairs of samples with epidemiological links and without them. Pairs159

of samples from the same hospital, department, epidemiologically linked, or longitudinal and160

technical replicates were more closely located in the consensus phylogenetic tree than those161

samples that did not have any relationship, although this difference was small in the case of162

pairs of samples from the same hospital (Table 1).163

164

The proportion of shared within-host variants was significantly higher between technical165

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495142
http://creativecommons.org/licenses/by-nc-nd/4.0/


replicates, longitudinal duplicates, epidemiologically linked samples, and samples taken from166

individuals from the same department when compared to pairs with no epidemiological links167

(Fig. 2). The probability of sharing a low frequency variant was inferred using a logistic168

regression model (Supplementary Fig. 5). There was a tendency for the probability to increase169

with variant frequency, but the association was not strong (Odds ratio 1.8, 95% CI 0.9 – 3.5,170

p=0.08). The probability of sharing a variant for samples with no epidemiological links was171

9.5× 10
−6 (95% CI 8.8× 10

−6 – 1.02× 10
−5). Samples from the same hospital did not have a172

probability significantly higher than those without any link (3.3× 10
−3, 95% CI 2.7× 10

−3 –173

4.03×10
−3). On the other hand, pairs from the same department, with epidemiological links,174

replicates or technical replicates all had a higher probability of sharing a low frequency variant175

when compared to those pairs with no link (all p-values < 0.001). The inferred probabilities176

for pairs from the sample department was 1.4% (95% CI 0.9% – 2.1%), which increased to177

5% for pairs with epidemiological links (95% CI 4.2% – 6.4%). For longitudinal replicates,178

the probability was inferred to be 38% (95% CI 35% – 41%), while technical replicates were179

estimated to have the highest probability (70%, 95% CI 64% – 76%).180

Within-host diversity model outperforms the consensus model in sim-181

ulations182

The effect of within-sample diversity in phylogenetic inference was tested by evaluating the183

accuracy in the reconstruction of known phylogenetic trees using a conventional phylogenetic184

model and a model that accounts for within-sample variation.185

186

The presence of within-sample diversity was coded in the genome alignment using exist-187

ing IUPAC nomenclature [22]. For the consensus sequence alignment, only the 4 canonical188

nucleotides were used (Fig. 3a,b), while the proposed alignment retained the major and mi-189

nor allele information as independent character states (Fig. 3c,d).190

191

In order to evaluate the bias in tree inference with and without the inclusion of within-192

sample diversity, we simulated genome alignments for 100 random trees using a phylogenetic193

model where both major and minor variant combinations were considered, resulting in a total194

of 16 possible states (Fig. 3d) and the substitution rates shown in Supplementary Table 3.195

From the simulated genomes, two types of alignments were generated: a consensus sequence,196

where only the major allele was considered (Fig. 3a); and an alignment that retained the197

major and minor allele information as independent character states (Fig. 3c). From the198

simulated alignments, RaxML-NG was used to infer phylogenetic trees [23]. The consensus199

sequence was analyzed with a GTR+γ model, while the PROTGTR+γ model was used in200

order to accommodate the extra characters of the alignment with within-sample diversity201

and major/minor variant information.202

203

The two models were evaluated for their ability to infer the known phylogeny that in-204

cluded within-host diversity. The estimated phylogenies were compared to the known tree205
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using different measures to capture dissimilarities in a variety of aspects relevant to tree206

inference (Supplementary Table 2). For all the metrics employed, the phylogenies inferred207

explicitly using within-host diversity as independent characters approximated better to the208

initial tree than the one using the consensus sequence (Fig. 4). Additionally, the transi-209

tion/transversion rates inferred by the phylogenetic models accounting for within-host diver-210

sity accurately reflect the rates used for the simulation of genomic sequences (Supplementary211

Table 3-5).212

Within-host diversity improves the resolution in SARS-CoV-2 phy-213

logenetics214

Genome sequences collected at different time points are expected to diverge as time pro-215

gresses, resulting in a positive correlation between the isolation date and the number of216

accumulated mutations (temporal signal) [24]. The alignment with consensus sequences and217

the one reflecting within-sample variation were used to infer two different phylogenetic trees218

(Supplementary Fig. 6). Longitudinal samples in the phylogeny inferred using within-host219

diversity reflected the expected temporal signal, with an increase in genetic distance as time220

progressed between the longitudinal pairs in a linear model (coefficient 2.24, 0.59 - 3.88 95%221

CI, p = 0.019, Supplementary Fig. 7). The difference in Ct value among longitudinal dupli-222

cates was not correlated with a higher genetic distance (coefficient 1.62, -0.66 - 3.91 95% CI,223

p = 0.2).224

225

We analyzed the impact of using within-sample variation on the temporal structure of226

the phylogeny by systematically identifying clusters of tips in the phylogenetic tree with an227

identical consensus sequence and no temporal signal. We then performed a root-to-tip anal-228

ysis using the tree inferred with intra-sample diversity. Only clusters with more than 3 tips229

were used for the root-to-tip analysis. The majority of clusters (10/11) showed a positive cor-230

relation between the distance of the tips to the root and the collection dates, demonstrating231

a significant temporal signal between samples when there was none using the conventional232

consensus tree (Fig. 5).233

234

To illustrate the downstream application of the improved phylogenetic resolution, we in-235

ferred a time-calibrated phylogeny with the collection dates of the tips using BactDating [25]236

(Supplementary Fig. 8) and calculated the likelihood of transmission events within poten-237

tial epidemiologically identified outbreaks using a Susceptible-Exposed-Infectious-Removed238

(SEIR) model [26]. The SEIR model was parameterized with an average latency period of 5.5239

days [27], an infectious period of 6 days [16], and a within-host coalescent rate of 5 days as240

previously estimated for SARS-CoV-2 [28]. The likelihood of transmission was calculated for241

every pair of samples, while the Edmonds algorithm as implemented in the R package RBGL242

[29] was used to infer the graph with the optimum branching (Fig. 6c,d; Supplementary243

Fig. 9).244
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Discussion245

Detailed investigation of transmission events in an infectious disease outbreak is a prerequi-246

site for effective prevention and control. Although whole-genome sequencing has transformed247

the field of pathogen genomics, insufficient pathogen genetic diversity between cases in an248

outbreak limits the ability to infer who infected whom. Using multi-hospital SARS-CoV-2249

outbreaks and phylogenetic simulations, we show that including the genetic diversity of sub-250

populations within a clinical sample improves phylogenetic reconstruction of SARS-CoV-2251

outbreaks and determines the direction of transmission when using a consensus sequence252

approach fails to do so.253

254

The majority of samples sequenced harbored variants at low frequency that remained sta-255

ble in technical replicates. However, within-host variation was less consistent between paired256

samples with a lower viral load (higher Ct). This is likely to be a consequence of low starting257

genetic material giving rise to amplification bias during library preparation and sequencing.258

Establishing a cut-off for high Ct values is therefore important to accurately characterize259

within-host variation. In our study, we excluded samples with a Ct value higher than 30260

cycles based on the diagnostic PCR used at GOSH. Since Ct values are only a surrogate for261

viral load and are not standardized across different assays [30], appropriate thresholds would262

need to be determined for other primary PCR testing assays.263

264

The generation, maintenance and evolution of subpopulations within the host reflect evo-265

lutionary processes which are meaningful from phylogenetic and epidemiological perspectives.266

Subpopulations within a host can emerge from three mechanisms: de novo diversification in267

the host, transmission of a diverse inoculum, or multiple transmission events from different268

sources. If the subpopulations are the result of de novo mutations, nucleotide polymorphisms269

within the subpopulations accumulate over time and may therefore result in a phylogenetic270

signal useful for phylogenetic inference. In our data, longitudinal samples taken at later271

time points were demonstrated to accrue genomic variation. Although this pattern can be272

confounded by decreasing viral load as infection progresses, Ct values in our dataset were not273

correlated with a higher genetic distance, and clusters in our data containing both longitudi-274

nal and technical replicates also corroborate these results. Transmission of a diverse inoculum275

also gives rise to phylogenetically informative shared low frequency variants, as our results276

show that immediate transmission pairs are more likely to share variants at low frequency.277

The effect of multiple transmission events in the phylogeny depends on the relatedness of278

both index cases and the bottleneck size in each transmission event.279

280

Paired samples with epidemiological links and from the same department shared a higher281

proportion of low frequency variants and were located closer in the consensus tree than sam-282

ples with no relationship. Similarly, samples with shorter distance in the consensus phylogeny283

were more likely to share low frequency variants. These patterns suggest that the distribution284

of low frequency variants is linked to events of evolutionary and epidemiological interest. The285
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fact that technical duplicates shared more within-host diversity than longitudinal replicates286

of the same sample suggests that much of the variation within hosts is transitory. There-287

fore, within-host diversity may be relevant on relatively short time scales, which is precisely288

where consensus sequences lack resolution. Combining the data derived from fixed alleles in289

the consensus sequences and transient within-sample minor variation enables an improved290

understanding of the relatedness of pathogen populations between hosts.291

292

The effects of neglecting within-host diversity in phylogenetic inference were analyzed293

by using simulated sequences under a phylogenetic model that reflects the presence and evo-294

lution of within-host diversity. We compared a conventional consensus phylogenetic model295

and a model that leverages within-sample diversity, and evaluated their ability to infer the296

known phylogeny. Our proposed phylogenetic model incorporates within-sample variation by297

explicitly coding major and minor nucleotides as independent characters in the alignment.298

We demonstrated that phylogenies inferred using the conventional consensus sequence ap-299

proach were heavily biased and unrepresentative of the known structure of the simulated300

tree. However, sequences that included within-host diversity were shown to infer less biased301

phylogenetic trees.302

303

Previous studies have addressed the use of within-host variation to infer transmission304

events. Wymant et al. [31] employed a framework based on phylogenetic inference and an-305

cestral state reconstruction of each set of populations detected within read alignments using306

genomic windows. Our study extends this work by coding genome-wide diversity within the307

host directly in the alignment and the phylogenetic model. De Maio et al [32] proposed direct308

inference of transmission from sequencing data alongside host exposure time and sampling309

date within the bayesian framework BEAST2 [33]. Our approach is focused on directly im-310

proving the temporal and phylogenetic signal of whole-genome sequences, and it’s especially311

suited for use in applications and analysis that employ a phylogenetic tree as input to infer312

transmission [34].313

314

Future work will extend this model by including allele frequency data in addition to315

independent characters for major and minor variants. Phylogenetic models that explicitly316

include dynamics of within-sample variation and sequencing error may further improve phy-317

logenetic inference or allow researchers to better estimate parameters of interest, including318

R0, bottleneck size, transmissibility and the origin of outbreaks.319

320

Our study benefited from the availability of sequenced technical replicates that enabled us321

to distinguish genuine variation from sequencing noise, especially at low variant frequencies.322

Similarly, access to longitudinal samples from the same patient allowed us to characterize the323

spectrum of within host variation and therefore reconstruct transmission chains with more324

precision.325

326

In line with conventional consensus sequencing approaches, we used a reference sequence327
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for genome alignment and variant calling. Although widely used, one limitation of this ap-328

proach is a potential mapping bias causing some reads to reflect the reference base at low329

frequencies at a position where only a variant should be present. Although we applied strin-330

gent quality filtering, we cannot rule out the persistence of some false positive minor variants.331

Using genome graphs to map to a reference that encompasses a wider spectrum of variation332

may alleviate this problem, and could be an interesting addition to pathogen population333

genomic analysis.334

335

Our results demonstrate that within-sample variation can be leveraged to increase the336

resolution of phylogenetic trees and improve our understanding of who infected whom. Using337

SARS-CoV-2 as an example, we show that variants at low frequencies are stable, phyloge-338

netically informative and are more often shared among epidemiologically related contacts.339

We propose that pathogen phylogenetic models should accommodate within-host variation340

to improve the understanding of infectious disease transmission.341
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Materials and methods342

Model for within-host diversity343

Whole-genome alignments were generated from 100 random phylogenetic trees with 100 tips344

with the function SimSeq of the R package phangorn [35, 36] using a model with 16 char-345

acter states that represent the combinations of the 4 nucleotides with each other as minor346

and major alleles (Fig. 3d). Three substitution rates for the model were considered: a rate347

at which minor variants evolve, equal to 1; the rate at which minor variants are lost, leaving348

only the major nucleotide at that position, equal to 100; and the rate at which minor/major349

variants are switched, equal to 200.350

351

Two types of alignments were generated from the simulated genomes: a consensus se-352

quence, where only the major allele was considered; and an alignment that retained the353

major and minor allele information as independent character states. RaxML-NG [23] was354

used to infer phylogenetic trees. The consensus sequence was analyzed with a GTR+γ model,355

while the PROTGTR+γ model was used for the alignment with intra-host diversity and ma-356

jor/minor variant information.357

358

Several metrics were used to compare the 200 inferred phylogenetic trees with their respec-359

tive starting phylogeny from which the sequences were simulated (Supplementary Table 2).360

We chose metrics available in R suitable for unrooted trees, using the option ‘rooted=FALSE’361

where appropriate. The Robinson-Foulds (RF) distance [37] calculates the number of splits362

differing between both phylogenetic trees. For the weighted Robinson-Foulds (wRF), the363

distance is expressed in terms of the branch lengths of the differing splits. The Kuhner-364

Felsenstein distance [38] considers the edge length differences in all splits, regardless of365

whether the topology is shared or not. Last, the Penny-Steel distance or path difference366

metric [39] calculates the pairwise differences in the path of each pair of tips, with the367

weighted Penny-Steel distance (wPS) using branch length to compute the path differences.368

All functions were used as implemented in the package phangorn [36] within R [35].369

Amplification and whole-genome sequencing370

SARS-CoV-2 real-time qPCR confirmed isolates from London hospitals were collected as part371

of the routine diagnostic service at Great Ormond Street Hospital NHS Foundation Trust372

(GOSH) [40] and the COVID-19 Genomics UK Consortium (COG-UK) [17] between March373

and December 2020, in addition to epidemiological and patient metadata (Supplementary374

Table 1). SARS-CoV-2 whole-genome sequencing was performed by UCL Genomics. cDNA375

and multiplex PCR reactions were prepared following the ARTIC nCoV-2019 sequencing376

protocol [41]. The ARTIC V3 primer scheme [42] was used for the multiplex PCR, with a377

65°C, 5 min annealing/extension temperature. Pools 1 and 2 multiplex PCRs were run for 35378

cycles. 5µL of each PCR were combined and 20µL nuclease-free water added. Libraries were379
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prepared on the Agilent Bravo NGS workstation option B using Illumina DNA prep (Cat.380

20018705) with unique dual indexes (Cat. 20027213/14/15/16). Equal volumes of the final381

libraries were pooled, bead purified and sequenced on the Illumina NextSeq 500 platform382

using a Mid Output 150 cycle flowcell (Cat. 20024904) (2 x 75bp paired ends) at a final383

loading concentration of 1.1pM.384

Whole-genome sequence analysis of SARS-CoV-2 sequences385

Raw illumina reads were quality trimmed using Trimmomatic [43] with a minimum mean386

quality per base of 20 in a 4-base wide sliding window. The 5 leading and trailing bases of each387

read were removed, and reads with an average quality lower than 20 were discarded. The re-388

sulting reads were aligned against the Wuhan-Hu-1 reference genome (GenBank NC_45512.2,389

GISAID EPI_ISL_402125) using BWA-mem v0.7.17 with default parameters [44]. The390

alignments were subsequently sorted by position using SAMtools v1.14 [45]. Primer se-391

quences were masked using ivar [46].392

393

Single-nucleotide variants were identified using the pileup functionality of samtools [45]394

via the pysam package in Python (https://github.com/pysam-developers/pysam). Vari-395

ants were further filtered using bcftools [18]. Only variants with a minimum depth of 50x396

and a minimum base quality and mapping quality of 30 were kept. Additionally, variants397

within low complexity regions identified by sdust (https://github.com/lh3/sdust) were re-398

moved. For positions where only one base was present, the minimum depth was 20 reads,399

with at least 5 reads in each direction. Positions with low frequency variants were filtered if400

the total coverage at that position was less than 100x, with at least 20 reads in total and 5401

reads in each strand supporting each of the main two alleles.402

403

Two different alignments were prepared from the data. First, an alignment of the con-404

sensus sequence where the most prevalent base at each position was kept. Variants where405

the most prevalent allele was not supported by more than 60% of the reads were considered406

ambiguous. Additionally, an alignment reflecting within-sample variation at each position as407

well as which base is the most prevalent and which one appears at a lower frequency by using408

the IUPAC nomenclature for amino acids [22].409

410

For the two different alignments, maximum likelihood phylogenies were inferred by us-411

ing RAxML-NG [23] with 20 starting trees (10 random and 10 parsimony), 100 bootstrap412

replicates, and a minimum branch length of 10−9. For the consensus sequence, the GTR413

model was used. For the alignment reflecting within-host diversity, a model with amino acid414

nomenclature (PROTGTR) was used. All models allowed for a γ distributed rate of variation415

among sites.416
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Data availability417

Samples sequenced as part of this study have been submitted to the European Nucleotide418

Archive under accession PRJEB53224. Sample metadata is included in Supplementary Data419

File 1.420

Code availability421

All custom code used in this article can be accessed at422

https://github.com/arturotorreso/scov2_withinHost.git.423
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Tables540

Table 1: Phylogenetic distance (substitutions per genome per year) between pairs

of samples.

Sample relationship Estimate (95%CI) p-value

None 11.73 (11.63 - 11.83) Reference

Hospital 10.3 (10.09 - 10.54) <1× 10
−4

Department 5.35 (4.21 - 6.49) <1× 10
−4

Epidemiological 1.62 (0.53 - 2.72) <1× 10
−4

Longitudinal duplicates 0.01 (-1.84 - 1.86) <1× 10
−4

Technical replicate 0 (-4.29 - 4.29) <1× 10
−4
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Figure 1: Genomic analysis of technical duplicates.

a Allele frequency comparison between technical replicates for all frequencies (right)

and for frequencies up to 1% (left). Colors represent the Ct value for the sample. b

Proportion of shared mixed variants between technical replicates in relation to the

Ct value. c Total number of mixed variants in relation to the Ct value. Lines linked

two technical replicates. Each sequence has a different color, with sequences from the

same patient having a different shade of the same color.
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Figure 2: Probability of sharing within-host variants in sample pairs.

The probability of variants shared between pairs of samples calculated as the number

of low frequency variants in both samples divided by the total number of variants

between the pair. Colors grouped samples by their relationship. Points represent the

mean probability a variant is shared between all pairwise samples within a group and

allele frequency. Error bars show the 95% CI.
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Figure 3: Model of within-host diversity.

Proposed evolutionary model of within-host diversity in genomic sequences. Upper-

case letters represent the major variant in the population, while lowercase letters

indicate presence of a minor variant alongside the major one. a, c Genome sequences

where some positions show within-sample variation (top), represented by a major

allele (big size letter) and a minor one (smaller size), as well as its representation

in the alignment (bottom). b, d Models of nucleotide evolution. Character transi-

tions are indicated by arrows. a Consensus sequence, where only the major allele is

represented in the alignment. b Model of nucleotide evolution using the consensus

sequence, with four character states representing the four nucleotides. c Sequence

with within-sample variation, represented by an uppercase letter for the major allele

and a lower case letter for the minor allele. d Model of nucleotide evolution with 16

character states accounting for within-sample variation.
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Figure 4: Similarity scores for inferred trees.

Comparison of the phylogenetic trees inferred using three simulated sequences and

different phylogenetic models with the known starting tree. Colors differentiate the

metrics used for the comparison.
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Figure 5: Previously uninformative clusters present temporal signal when

using within-sample diversity.

A set of 11 outbreak clusters (one per panel, each plotting the root to tip distance

against time) in which all samples had identical consensus genomes sequences (and

therefore no temporal signal). Blue colors indicate those regressions that after uti-

lizing within sample diversity now have a positive slope (temporal signal), and red

shows those regressions that have a negative slope (misleading or false positive tem-

poral signal).

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.495142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.07.495142
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 5 10 15

Likelihood

SF089

SF090

P005

PC001

S
F
0
8
9

S
F
0
9
0

P
0
0
5

P
C
0
0
1

SF089
SF090

P005

PC001

a

LOND−D9AE4 (SF089)

LOND−D9BA5 (P005)

LOND−D9AF3 (SF090)

LOND−D9BA5 (P005)

LOND−D9B0F (P005)

LOND−D9B5A  (PC001)

LOND−D9B5A (PC001)

LOND−D9B0F (P005)

LOND−D9AF3 (SF090)

0.5

Consensus

LOND−D9AE4 (SF089)

LOND−D9AF3 (SF090)

LOND−D9AF3 (SF090)

LOND−D9B0F (P005)

LOND−D9B0F (P005)

LOND−D9BA5 (P005)

LOND−D9BA5 (P005)

LOND−D9B5A (PC001)

LOND−D9B5A (PC001)

5

Within−sample
b c

In
de

x 
ca

se

Contact

Figure 6: Within-sample variation improves resolution of infectious dis-

ease outbreaks.

Effect of using low frequency variants in phylogenetic inference. a Maximum like-

lihood phylogeny using the consensus sequences (left) and the alignment leveraging

within-sample variation. Replicates of the same sample share the same color. Sample

IDs are coded as follows: SF, for staff members; P, for patients; and PC, for patient

contacts. b Transmission network inferred using within sample variation. Edge width

is proportional to the likelihood of direct transmission using a Susceptible-Exposed-

Infectious-Removed (SEIR) model. Colored edges represent the Edmunds optimum

branching and thus the most likely chain. c Heatmap of the likelihood of direct trans-

mission between all pairwise pairs of samples using a SEIR model. Vertical axis is

the infector while the horizontal axis shows the infectee.
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Supplementary Information542
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Supplementary Table 1: Sample collection and demographics.

Number Percentage

Total samples 451 100

Hospital

Barnet, Enfield & Haringey Mental Health 18 3.99

Camden and Islington Mental Health 3 0.67

Chase Farm 1 0.22

FLARE Trial 3 0.67

GOSH 182 40.35

North Middlesex University Hospital 105 23.28

Royal Free Hospital 50 11.09

UCLH 10 2.22

Whittington Health 79 17.52

Missing 0 0

Role

Staff 403 89.36

Patient 14 3.1

Contact 32 7.1

Missing 2 0.44

Sex

Female 274 60.75

Male 161 35.7

Undertermined 3 0.67

Missing 13 2.88

Age

(0,10] 8 1.77

(10,20] 9 2

(20,30] 111 24.61

(30,40] 111 24.61

(40,50] 98 21.73

(50,60] 74 16.41

(60,70] 22 4.88

(70,80] 10 2.22

(80,90] 3 0.67

Missing 5 1.11

Ct

(15,20] 15 3.33

(20,25] 85 18.85

(25,30] 149 33.04

(30,35] 197 43.68

Missing 5 1.11
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Supplementary Table 2: Metrics used for phylogenetic tree comparison.

Abbreviation Name
Rooted

trees

Branch

length

R function &

package

KF Kuhner and Felsenstein No Yes KF.dist, phangorn

RF Robinson Foulds No No RF.dist, phangorn

wRF Weighted Robinson Foulds No Yes wRF.dist, phangorn

PS Penny and Steel path No No path.dist, phangorn

wPS Penny and Steel path No Yes path.dist, phangorn

Supplementary Table 3: Transition/transversion rates and base frequencies of

the known simulated tree.

A Ag Ca Ga C Ta Gc G Tc Tg Gt Ac Cg T At Ct Base freqs.

A - - - - - - - - - - - - - - - - 0.22

Ag 20 - - - - - - - - - - - - - - - 0.01

Ca 0 0 - - - - - - - - - - - - - - 0.01

Ga 0 200 0 - - - - - - - - - - - - - 0.01

C 0 0 1 0 - - - - - - - - - - - - 0.22

Ta 0 0 0 0 0 - - - - - - - - - - - 0.01

Gc 0 0 0 0 0 0 - - - - - - - - - - 0.01

G 0 0 0 1 0 0 1 - - - - - - - - - 0.22

Tc 0 0 0 0 0 0 0 0 - - - - - - - - 0.01

Tg 0 0 0 0 0 0 0 0 0 - - - - - - - 0.01

Gt 0 0 0 0 0 0 0 20 0 200 - - - - - - 0.01

Ac 20 0 200 0 0 0 0 0 0 0 0 - - - - - 0.01

Cg 0 0 0 0 20 0 200 0 0 0 0 0 - - - - 0.01

T 0 0 0 0 0 1 0 0 1 1 0 0 0 - - - 0.22

At 20 0 0 0 0 200 0 0 0 0 0 0 0 0 - - 0.01

Ct 0 0 0 0 20 0 0 0 200 0 0 0 0 0 0 - 0.01
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Supplementary Table 4: Inferred transition/transversion rates and base fre-

quencies when using the consensus sequence. Numbers show the average of 100

simulations.

A C G T Base freqs

A - - - - 0.255

C 0.974 - - - 0.250

G 1.088 1.148 - - 0.247

T 0.854 0.996 1 - 0.248

Supplementary Table 5: Inferred transition/transversion rates and base fre-

quencies when accounting for within-host diversity. Numbers show the average of 100

simulations

A Ag Ca Ga C Ta Gc G Tc Tg Gt Ac Cg T At Ct Base freqs.

A - - - - - - - - - - - - - - - - 0.22

Ag 17.35 - - - - - - - - - - - - - - - 0.01

Ca 0 0 - - - - - - - - - - - - - - 0.01

Ga 0 185.96 0 - - - - - - - - - - - - - 0.01

C 0 0 1.86 0 - - - - - - - - - - - - 0.22

Ta 0 0 0 0 0 - - - - - - - - - - - 0.01

Gc 0 0 0 0 0 0 - - - - - - - - - - 0.01

G 0 0 0 1.16 0 0 1.08 - - - - - - - - - 0.21

Tc 0 0 0 0 0 0 0 0 - - - - - - - - 0.01

Tg 0 0 0 0 0 0 0 0 0 - - - - - - - 0.01

Gt 0 0 0 0 0 0 0 21.64 0 196.56 - - - - - - 0.01

Ac 16.51 0 183.53 0 0 0 0 0 0 0 0 - - - - - 0.01

Cg 0 0 0 0 21.20 0 200 0 0 0 0 0 - - - - 0.01

T 0 0 0 0 0 0.98 0 0 1.05 1.26 0 0 0 - - - 0.21

At 17.70 0 0 0 0 175.58 0 0 0 0 0 0 0 0 - - 0.01

Ct 0 0 0 0 20.09 0 0 0 188.86 0 0 0 0 0 0 - 0.01
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Supplementary Figure 1: Collection date distribution and time from

symptom and days from symptom onset.

(a) Distribution of collection dates. (b) Histogram of time from symptom onset to

sample collection.
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Supplementary Figure 2: Sample mean coverage distribution.

Density distribution of mean coverage.
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Supplementary Figure 3: Number of low frequency variants and Ct

value.

Higher Ct values were linked to a higher number of within-sample variation.
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Supplementary Figure 4: Proportion of shared mixed variants between

duplicated samples using different filters of allele frequency.

Individual plots of shared within-host variants between technical duplicates using

increasing thresholds of allele frequency. Colors represent Ct value, while the size of

the point shows the total number of within-host variants between the two samples.
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Supplementary Figure 5: Probability that mixed variants are shared.

Probability that low frequency variants are shared inferred with a logistic model

with allele frequency and epidemiological relationship as independent variable and

whether a variant is shared or not as dependent variable. Y-axis in logarithmic scale

for representation.
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Supplementary Figure 6: Phylogenetic trees for SARS-CoV-2.

SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an align-

ment with major and minor variant information (right) .

0 2 4 6 8

Days between pairs

0

5

10

15

20

G
en

et
ic

 d
is

ta
nc

e

Supplementary Figure 7: Genetic distance between longitudinal sam-

ples.

The genetic distance in the phylogenetic tree inferred using within-sample diversity

increased as the between longitudinal samples progressed. Black line shows the best

fit in a linear model, while the blue shaded area represents the 95% CI.
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Supplementary Figure 8: Time calibrated phylogenetic trees for SARS-

CoV-2.

SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an align-

ment with major and minor variant information (right). Branch lengths are measured

in years.
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Supplementary Figure 9: Phylogenetic and transmission for SARS-CoV-

2 outbreaks.

a-d Phylogenies of SARS-CoV-2 outbreaks. The branch lengths are in units of substi-

tutions per genome, and the scales are shown under the trees. Colors represent sam-

ples from the same individual. Samples with the same name are technical replicates.

Left tree of each panel shows the phylogeny inferred with the consensus alignment.

Right tree represents the phylogeny inferred using within-sample variation. Heatmap

shows the likelihood of direct transmission for each pair of samples in a SEIR model

of transmission. Vertical axis is the infector while the horizontal axis shows the in-

fectee.
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