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» Abstract

21 Accurate inference of who infected whom in an infectious disease outbreak is critical for the
22 delivery of effective infection prevention and control. The increased resolution of pathogen
23 whole-genome sequencing has significantly improved our ability to infer transmission events.
2o Despite this, transmission inference often remains limited by the lack of genomic variation
s between the source case and infected contacts. Although within-host genetic diversity is com-
26 mon among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic
27 approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only
28 the most prevalent nucleotide at each position and therefore fail to capture low frequency
20 variation within samples. We hypothesized that including within-sample variation in a phy-
30 logenetic model would help to identify who infected whom in instances in which this was
s previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional
32 outbreaks as an example, we show how within-sample diversity is stable among repeated
;3 serial samples from the same host, is transmitted between those cases with known epidemi-
s ological links, and how this improves phylogenetic inference and our understanding of who
35 infected whom. Our technique is applicable to other infectious diseases and has immediate
36 clinical utility in infection prevention and control.
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» Introduction

;s Understanding who infects whom in an infectious disease outbreak is a key component of
3o infection prevention and control [1]. The use of whole-genome sequencing allows for detailed
20 investigation of disease outbreaks, but the limited genetic diversity of many pathogens often
a1 hinders our understanding of transmission events [2|. As a consequence of the limited diver-
a2 sity, many index case and contact pairs will share identical genotypes, making it difficult to
a3 ascertain who infected whom.

44

a5 Within-sample genetic diversity is common among a wide variety of pathogens [3-7].
s This diversity may be generated de novo during infection, by a single transmission event of
a7 a diverse inoculum or by independent transmission events from multiple sources [8]. The
ss maintenance and dynamic of within-host diversity is then a product of natural selection,
s genetic drift, and fluctuating population size [1]. The transmission of within-host variation
so between individuals is also favored as a large inoculum exposure is more likely to give rise to
s1 infection [9-14].

52

53 Most genomic and phylogenetic workflows involve either genome assembly or alignment of
s« sequencing reads to a reference genome. In both cases, conventionally the resulting alignment
55 exclusively represents the most common nucleotide at each position. This is often referred
ss to as the consensus sequence. Although genome assemblers may output contigs (combined
s7 overlapping reads) representing low frequency haplotypes, only the majority contig is kept
ss in the final sequence. In a mapping approach, a frequency threshold for the major variant
so is usually pre-determined, under which a position is considered ambiguous. The lack of ge-
s netic variation between temporally proximate samples and the slow mutation rate of many
s1 pathogens results in direct transmission events sharing exact sequences between the hosts
&2 when using the consensus sequence approach. For instance, the substitution rate of SARS-
s CoV-2 has been inferred to be around 2 mutations per genome per month [15]. Given its
e« infectious period of 6 days |16, most consensus sequences in a small-scale outbreak will show
es no variation between them. This lack of resolution and poor phylogenetic signal complicate
es the determination of who infected whom, relying exclusively on epidemiological information.
67

68 We hypothesize that the failure of consensus sequence approaches to capture within-
so sample variation arbitrarily excludes meaningful data and limits the ability to determine
70 who infected whom, and that including within-sample diversity in a phylogenetic model
7 would significantly increase the evolutionary and temporal signal and thereby improve our
72 ability to infer infectious diseases transmission events.

73

74 We tested our hypothesis on multi-institutional SARS-CoV-2 outbreaks across London
75 hospitals that were part of the COVID-19 Genomics UK (COG-UK) consortia |17|. Tech-
76 nical replicates, repeated longitudinal sampling from the same patient, and epidemiological
77 data allowed us to evaluate the presence and stability of within-sample diversity within the
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7z host and in independently determined transmission chains. We also evaluated the use of
7o within-sample diversity in phylogenetic analysis by conducting simulations of sequencing
so data using a phylogenetic model that accounts for the presence and transmission of within-
s1 sample variation. We show the effects on phylogenetic inference of using consensus sequences
g2 in the presence of within-sample diversity, and propose that existing phylogenetic models
g3 can leverage the additional diversity given by the within-sample variation and reconstruct
s« the phylogenetic relationship between isolates. Lastly, we show that by taking into account
ss within-sample diversity in a phylogenetic model we improve the temporal signal in SARS-
ss CoV-2 outbreak analysis. Using both phylogenetic outbreak reconstruction and simulation
sz we show that our approach is superior to the current gold standard whole-genome consensus
g8 sequence methods.
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Results

Sampling, demographics and metadata

Between March 2020 and November 2020, 451 healthcare workers, patients and patient con-
tacts at the participating North London Hospitals were diagnosed at the Camelia Botnar
Laboratories with SARS-CoV-2 by PCR as part of a routine staff diagnostic service at Great
Ormond Street Hospital NHS Foundation Trust (GOSH). The mean participant age was 40
years old (median 38.5 years old, interquartile range (IQR) 30-50 years old), and 60% of
the participants were female (Supplementary Table . A total of 289 were whole-genome se-
quenced using the Illumina NextSeq platform, which resulted in 522 whole-genome sequences
including longitudinal and technical replicates (Supplementary Data File 1). All samples were
SARS-CoV-2 positive with real time qPCR cycle threshold (C;) values ranging from 16 to
35 cycles (Supplementary Table . The earliest sample was collected on 26th March 2020,
while the latest one dated to 4th November 2020 (Supplementary Fig. ) A total of 291
samples had self-reported symptom onset data, for which the mean time from symptom onset
to sample collection date was 5 days (IQR 2-7 days, Supplementary Fig. ) More than 90%
of the samples were taken from hospital staff, while the rest comprised patients and contacts
of either the patients or the staff members (Supplementary Table .

Genomic analysis of SARS-CoV-2 sequences

Whole-genome sequences were mapped to the reference genome resulting in a mean coverage
depth of 2177x (Supplementary Fig. . A total of 454 whole-genomes with mean coverage
higher than 10x were kept for further analysis. Allele frequencies were extracted using the
pileup functionality within bcftools [18] with a minimum base and mapping quality of 30,
which represents a base call error rate of 0.1%. Variants were filtered further for read position
bias and strand bias. Only minor variants with an allele frequency of at least 1% were kept as
putative variants. Samples with a frequency of missing bases higher than 10% were excluded,
keeping 350 isolates for analysis. The mean number of low frequency variants was 12 (median
3, IQR 1.00 — 9.75), although both the number of variants and its deviation increased at high
C; values (Supplementary Fig. [3).

Within-sample variation is stable between technical replicates

To understand the stability of within-sample variation and minimize spurious variant calls,
we sequenced and analyzed technical replicates of 17 samples. Overall, when the variant
was present in both duplicates the correlation of the variant frequencies was high (R* = 0.9,
Fig. [la right). The high correlation was also maintained at low variant frequencies (Fig.
left).

Minor variants were less likely to be detected or shared when one or more of the paired
samples had a low viral load. These discrepancies may appear because of amplification bias
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caused by low genetic material, base calling errors due to low coverage, or low base quality.
The mean proportion of discrepant within-sample variants between duplicated samples was
0.39 (sd = 0.29), although this varied between duplicates (Supplementary Fig. [4]). C; values
in RT-PCR obtained during viral amplification are inversely correlated with low viral load
[19]. The proportion of shared intra-host variants was negatively correlated with C; values
in a logistic model (estimate=-0.78, p-value=0.008), with higher C; values associated with a
lower amount of shared intra-host variants (Fig. [lg). The number of within-sample variants
detected also increased with C; value, as well as the deviation in the number of variants
between duplicates (Fig. [I[d). This could be explained either by an increase in the number
of spurious variants at low viral loads [20], biased amplification of low level sub-populations
minor rare alleles [21], or due to the accumulation of within-host variation through time, as
viral load (with rising C; values) also decreases from time since infection.

Based on these results, only samples with a C; value equal or lower than 30 cycles were
considered, which resulted in 249 samples kept for analysis. For the filtered dataset, 414 out
of 29903 positions were polymorphic for the consensus sequence, while the alignment with
within-sample diversity had 1039 SNPs. Of these, 699 positions had intra-host diversity, of
which 78% (549/699) were singletons. The majority of samples (207/249, 83%) contained at
least 1 position with a high quality within-host variant, and the median amount of intra-host
variants per sample was 2 (IQR 1-4.5).

Within-sample variation is shared between epidemiologically linked
samples

Given the limited genomic information in the consensus sequences, epidemiological data is
often necessary to infer the directionality of transmission. We performed a pairwise compar-
ison of all samples and calculated the proportion of shared within-sample variants (shared
variants divided by total variants in the pair). We compared samples that a) did not have
any recorded epidemiological link, b) samples that were from the same hospital (possibly
linked), ¢) samples that were part of the same department within the same hospital (prob-
able link), and d) samples that had an epidemiological link within the same department of
the same hospital (proven link), e) were a longitudinal replicate from the same patient and
f) a technical replicate from the same sample.

We tested the concordance between epidemiological and genomic data by determining the
genetic distance between pairs of samples with epidemiological links and without them. Pairs
of samples from the same hospital, department, epidemiologically linked, or longitudinal and
technical replicates were more closely located in the consensus phylogenetic tree than those
samples that did not have any relationship, although this difference was small in the case of
pairs of samples from the same hospital (Table .

The proportion of shared within-host variants was significantly higher between technical
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replicates, longitudinal duplicates, epidemiologically linked samples, and samples taken from
individuals from the same department when compared to pairs with no epidemiological links
(Fig. [2). The probability of sharing a low frequency variant was inferred using a logistic
regression model (Supplementary Fig. . There was a tendency for the probability to increase
with variant frequency, but the association was not strong (Odds ratio 1.8, 95% CI 0.9 — 3.5,
p=0.08). The probability of sharing a variant for samples with no epidemiological links was
9.5x 1075 (95% CI 8.8 x 107% — 1.02 x 1075). Samples from the same hospital did not have a
probability significantly higher than those without any link (3.3 x 1073, 95% CI 2.7 x 1073 —
4.03x1073). On the other hand, pairs from the same department, with epidemiological links,
replicates or technical replicates all had a higher probability of sharing a low frequency variant
when compared to those pairs with no link (all p-values < 0.001). The inferred probabilities
for pairs from the sample department was 1.4% (95% CI 0.9% — 2.1%), which increased to
5% for pairs with epidemiological links (95% CI 4.2% — 6.4%). For longitudinal replicates,
the probability was inferred to be 38% (95% CI 35% — 41%), while technical replicates were
estimated to have the highest probability (70%, 95% CI 64% — 76%).

Within-host diversity model outperforms the consensus model in sim-
ulations

The effect of within-sample diversity in phylogenetic inference was tested by evaluating the
accuracy in the reconstruction of known phylogenetic trees using a conventional phylogenetic
model and a model that accounts for within-sample variation.

The presence of within-sample diversity was coded in the genome alignment using exist-
ing ITUPAC nomenclature [22|. For the consensus sequence alignment, only the 4 canonical
nucleotides were used (Fig. ,b), while the proposed alignment retained the major and mi-
nor allele information as independent character states (Fig. [Be,d).

In order to evaluate the bias in tree inference with and without the inclusion of within-
sample diversity, we simulated genome alignments for 100 random trees using a phylogenetic
model where both major and minor variant combinations were considered, resulting in a total
of 16 possible states (Fig. ) and the substitution rates shown in Supplementary Table
From the simulated genomes, two types of alignments were generated: a consensus sequence,
where only the major allele was considered (Fig. ); and an alignment that retained the
major and minor allele information as independent character states (Fig. [Bc). From the
simulated alignments, RaxML-NG was used to infer phylogenetic trees [23]. The consensus
sequence was analyzed with a GTR+~v model, while the PROTGTR~+~ model was used in
order to accommodate the extra characters of the alignment with within-sample diversity
and major/minor variant information.

The two models were evaluated for their ability to infer the known phylogeny that in-
cluded within-host diversity. The estimated phylogenies were compared to the known tree
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using different measures to capture dissimilarities in a variety of aspects relevant to tree
inference (Supplementary Table . For all the metrics employed, the phylogenies inferred
explicitly using within-host diversity as independent characters approximated better to the
initial tree than the one using the consensus sequence (Fig. . Additionally, the transi-
tion/transversion rates inferred by the phylogenetic models accounting for within-host diver-
sity accurately reflect the rates used for the simulation of genomic sequences (Supplementary

Table [BIF).

Within-host diversity improves the resolution in SARS-CoV-2 phy-
logenetics

Genome sequences collected at different time points are expected to diverge as time pro-
gresses, resulting in a positive correlation between the isolation date and the number of
accumulated mutations (temporal signal) [24]. The alignment with consensus sequences and
the one reflecting within-sample variation were used to infer two different phylogenetic trees
(Supplementary Fig. [f]). Longitudinal samples in the phylogeny inferred using within-host
diversity reflected the expected temporal signal, with an increase in genetic distance as time
progressed between the longitudinal pairs in a linear model (coefficient 2.24, 0.59 - 3.88 95%
CI, p = 0.019, Supplementary Fig. . The difference in C; value among longitudinal dupli-
cates was not correlated with a higher genetic distance (coefficient 1.62, -0.66 - 3.91 95% CI,
p = 0.2).

We analyzed the impact of using within-sample variation on the temporal structure of
the phylogeny by systematically identifying clusters of tips in the phylogenetic tree with an
identical consensus sequence and no temporal signal. We then performed a root-to-tip anal-
ysis using the tree inferred with intra-sample diversity. Only clusters with more than 3 tips
were used for the root-to-tip analysis. The majority of clusters (10/11) showed a positive cor-
relation between the distance of the tips to the root and the collection dates, demonstrating
a significant temporal signal between samples when there was none using the conventional
consensus tree (Fig. [f)).

To illustrate the downstream application of the improved phylogenetic resolution, we in-
ferred a time-calibrated phylogeny with the collection dates of the tips using BactDating |25]
(Supplementary Fig. and calculated the likelihood of transmission events within poten-
tial epidemiologically identified outbreaks using a Susceptible-Exposed-Infectious-Removed
(SEIR) model [26]. The SEIR model was parameterized with an average latency period of 5.5
days [27], an infectious period of 6 days [16], and a within-host coalescent rate of 5 days as
previously estimated for SARS-CoV-2 [28]. The likelihood of transmission was calculated for
every pair of samples, while the Edmonds algorithm as implemented in the R package RBGL
[29] was used to infer the graph with the optimum branching (Fig. [6k,d; Supplementary

Fig. [9).
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Discussion

Detailed investigation of transmission events in an infectious disease outbreak is a prerequi-
site for effective prevention and control. Although whole-genome sequencing has transformed
the field of pathogen genomics, insufficient pathogen genetic diversity between cases in an
outbreak limits the ability to infer who infected whom. Using multi-hospital SARS-CoV-2
outbreaks and phylogenetic simulations, we show that including the genetic diversity of sub-
populations within a clinical sample improves phylogenetic reconstruction of SARS-CoV-2
outbreaks and determines the direction of transmission when using a consensus sequence
approach fails to do so.

The majority of samples sequenced harbored variants at low frequency that remained sta-
ble in technical replicates. However, within-host variation was less consistent between paired
samples with a lower viral load (higher C;). This is likely to be a consequence of low starting
genetic material giving rise to amplification bias during library preparation and sequencing.
Establishing a cut-off for high C; values is therefore important to accurately characterize
within-host variation. In our study, we excluded samples with a C; value higher than 30
cycles based on the diagnostic PCR used at GOSH. Since C; values are only a surrogate for
viral load and are not standardized across different assays [30], appropriate thresholds would
need to be determined for other primary PCR testing assays.

The generation, maintenance and evolution of subpopulations within the host reflect evo-
lutionary processes which are meaningful from phylogenetic and epidemiological perspectives.
Subpopulations within a host can emerge from three mechanisms: de novo diversification in
the host, transmission of a diverse inoculum, or multiple transmission events from different
sources. If the subpopulations are the result of de novo mutations, nucleotide polymorphisms
within the subpopulations accumulate over time and may therefore result in a phylogenetic
signal useful for phylogenetic inference. In our data, longitudinal samples taken at later
time points were demonstrated to accrue genomic variation. Although this pattern can be
confounded by decreasing viral load as infection progresses, C; values in our dataset were not
correlated with a higher genetic distance, and clusters in our data containing both longitudi-
nal and technical replicates also corroborate these results. Transmission of a diverse inoculum
also gives rise to phylogenetically informative shared low frequency variants, as our results
show that immediate transmission pairs are more likely to share variants at low frequency.
The effect of multiple transmission events in the phylogeny depends on the relatedness of
both index cases and the bottleneck size in each transmission event.

Paired samples with epidemiological links and from the same department shared a higher
proportion of low frequency variants and were located closer in the consensus tree than sam-
ples with no relationship. Similarly, samples with shorter distance in the consensus phylogeny
were more likely to share low frequency variants. These patterns suggest that the distribution
of low frequency variants is linked to events of evolutionary and epidemiological interest. The
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286 fact that technical duplicates shared more within-host diversity than longitudinal replicates
287 of the same sample suggests that much of the variation within hosts is transitory. There-
g fore, within-host diversity may be relevant on relatively short time scales, which is precisely
280 where consensus sequences lack resolution. Combining the data derived from fixed alleles in
200 the consensus sequences and transient within-sample minor variation enables an improved
201 understanding of the relatedness of pathogen populations between hosts.

202

203 The effects of neglecting within-host diversity in phylogenetic inference were analyzed
204 by using simulated sequences under a phylogenetic model that reflects the presence and evo-
205 lution of within-host diversity. We compared a conventional consensus phylogenetic model
206 and a model that leverages within-sample diversity, and evaluated their ability to infer the
207 known phylogeny. Our proposed phylogenetic model incorporates within-sample variation by
208 explicitly coding major and minor nucleotides as independent characters in the alignment.
200  We demonstrated that phylogenies inferred using the conventional consensus sequence ap-
300 proach were heavily biased and unrepresentative of the known structure of the simulated
s tree. However, sequences that included within-host diversity were shown to infer less biased
302 phylogenetic trees.

303

304 Previous studies have addressed the use of within-host variation to infer transmission
ss events. Wymant et al. [31] employed a framework based on phylogenetic inference and an-
306 cestral state reconstruction of each set of populations detected within read alignments using
307 genomic windows. Our study extends this work by coding genome-wide diversity within the
38 host directly in the alignment and the phylogenetic model. De Maio et al [32]| proposed direct
300 inference of transmission from sequencing data alongside host exposure time and sampling
a0 date within the bayesian framework BEAST?2 [33]. Our approach is focused on directly im-
si1 proving the temporal and phylogenetic signal of whole-genome sequences, and it’s especially
s12 suited for use in applications and analysis that employ a phylogenetic tree as input to infer
sz transmission [34].

314

315 Future work will extend this model by including allele frequency data in addition to
a6 independent characters for major and minor variants. Phylogenetic models that explicitly
a1z include dynamics of within-sample variation and sequencing error may further improve phy-
a8 logenetic inference or allow researchers to better estimate parameters of interest, including
si0 RO, bottleneck size, transmissibility and the origin of outbreaks.

320

321 Our study benefited from the availability of sequenced technical replicates that enabled us
32 to distinguish genuine variation from sequencing noise, especially at low variant frequencies.
323 Similarly, access to longitudinal samples from the same patient allowed us to characterize the
324 spectrum of within host variation and therefore reconstruct transmission chains with more
325 precision.

326

327 In line with conventional consensus sequencing approaches, we used a reference sequence

10
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for genome alignment and variant calling. Although widely used, one limitation of this ap-
proach is a potential mapping bias causing some reads to reflect the reference base at low
frequencies at a position where only a variant should be present. Although we applied strin-
gent quality filtering, we cannot rule out the persistence of some false positive minor variants.
Using genome graphs to map to a reference that encompasses a wider spectrum of variation
may alleviate this problem, and could be an interesting addition to pathogen population
genomic analysis.

Our results demonstrate that within-sample variation can be leveraged to increase the
resolution of phylogenetic trees and improve our understanding of who infected whom. Using
SARS-CoV-2 as an example, we show that variants at low frequencies are stable, phyloge-
netically informative and are more often shared among epidemiologically related contacts.
We propose that pathogen phylogenetic models should accommodate within-host variation
to improve the understanding of infectious disease transmission.

11
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Materials and methods

Model for within-host diversity

Whole-genome alignments were generated from 100 random phylogenetic trees with 100 tips
with the function SimSeq of the R package phangorn |35, |36] using a model with 16 char-
acter states that represent the combinations of the 4 nucleotides with each other as minor
and major alleles (Fig. Bld). Three substitution rates for the model were considered: a rate
at which minor variants evolve, equal to 1; the rate at which minor variants are lost, leaving
only the major nucleotide at that position, equal to 100; and the rate at which minor /major
variants are switched, equal to 200.

Two types of alignments were generated from the simulated genomes: a consensus se-
quence, where only the major allele was considered; and an alignment that retained the
major and minor allele information as independent character states. RaxML-NG [23] was
used to infer phylogenetic trees. The consensus sequence was analyzed with a GTR+~ model,
while the PROTGTR -+~ model was used for the alignment with intra-host diversity and ma-
jor/minor variant information.

Several metrics were used to compare the 200 inferred phylogenetic trees with their respec-
tive starting phylogeny from which the sequences were simulated (Supplementary Table .
We chose metrics available in R suitable for unrooted trees, using the option ‘rooted=FALSE’
where appropriate. The Robinson-Foulds (RF) distance [|37] calculates the number of splits
differing between both phylogenetic trees. For the weighted Robinson-Foulds (wRF), the
distance is expressed in terms of the branch lengths of the differing splits. The Kuhner-
Felsenstein distance [38] considers the edge length differences in all splits, regardless of
whether the topology is shared or not. Last, the Penny-Steel distance or path difference
metric [39] calculates the pairwise differences in the path of each pair of tips, with the
weighted Penny-Steel distance (wPS) using branch length to compute the path differences.
All functions were used as implemented in the package phangorn |36] within R [35].

Amplification and whole-genome sequencing

SARS-CoV-2 real-time qPCR confirmed isolates from London hospitals were collected as part
of the routine diagnostic service at Great Ormond Street Hospital NHS Foundation Trust
(GOSH) [40] and the COVID-19 Genomics UK Consortium (COG-UK) [17] between March
and December 2020, in addition to epidemiological and patient metadata (Supplementary
Table . SARS-CoV-2 whole-genome sequencing was performed by UCL Genomics. cDNA
and multiplex PCR reactions were prepared following the ARTIC nCoV-2019 sequencing
protocol [41]. The ARTIC V3 primer scheme [42] was used for the multiplex PCR, with a
65°C, 5 min annealing /extension temperature. Pools 1 and 2 multiplex PCRs were run for 35
cycles. 5puLs of each PCR were combined and 20pL nuclease-free water added. Libraries were
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prepared on the Agilent Bravo NGS workstation option B using Illumina DNA prep (Cat.
20018705) with unique dual indexes (Cat. 20027213/14/15/16). Equal volumes of the final
libraries were pooled, bead purified and sequenced on the Illumina NextSeq 500 platform
using a Mid Output 150 cycle flowcell (Cat. 20024904) (2 x 75bp paired ends) at a final
loading concentration of 1.1pM.

Whole-genome sequence analysis of SARS-CoV-2 sequences

Raw illumina reads were quality trimmed using Trimmomatic [43] with a minimum mean
quality per base of 20 in a 4-base wide sliding window. The 5 leading and trailing bases of each
read were removed, and reads with an average quality lower than 20 were discarded. The re-
sulting reads were aligned against the Wuhan-Hu-1 reference genome (GenBank NC _ 45512.2,
GISAID EPI ISL 402125) using BWA-mem v0.7.17 with default parameters [44]. The
alignments were subsequently sorted by position using SAMtools v1.14 [45]. Primer se-
quences were masked using ivar [46).

Single-nucleotide variants were identified using the pileup functionality of samtools [45|
via the pysam package in Python (https://github.com/pysam-developers/pysam). Vari-
ants were further filtered using bceftools [18]. Only variants with a minimum depth of 50x
and a minimum base quality and mapping quality of 30 were kept. Additionally, variants
within low complexity regions identified by sdust (https://github.com/lh3/sdust) were re-
moved. For positions where only one base was present, the minimum depth was 20 reads,
with at least 5 reads in each direction. Positions with low frequency variants were filtered if
the total coverage at that position was less than 100x, with at least 20 reads in total and 5
reads in each strand supporting each of the main two alleles.

Two different alignments were prepared from the data. First, an alignment of the con-
sensus sequence where the most prevalent base at each position was kept. Variants where
the most prevalent allele was not supported by more than 60% of the reads were considered
ambiguous. Additionally, an alignment reflecting within-sample variation at each position as
well as which base is the most prevalent and which one appears at a lower frequency by using
the IUPAC nomenclature for amino acids [22].

For the two different alignments, maximum likelihood phylogenies were inferred by us-
ing RAXML-NG [23] with 20 starting trees (10 random and 10 parsimony), 100 bootstrap
replicates, and a minimum branch length of 107. For the consensus sequence, the GTR
model was used. For the alignment reflecting within-host diversity, a model with amino acid
nomenclature (PROTGTR) was used. All models allowed for a v distributed rate of variation
among sites.
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Data availability

Samples sequenced as part of this study have been submitted to the European Nucleotide
Archive under accession PRJEB53224. Sample metadata is included in Supplementary Data
File 1.

Code availability

All custom code used in this article can be accessed at
https://github.com/arturotorreso/scov2_withinHost.git.
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= lables

Table 1: Phylogenetic distance (substitutions per genome per year) between pairs

of samples.

Sample relationship

Estimate (95%CI)

p-value

None

Hospital

Department
Epidemiological
Longitudinal duplicates
Technical replicate

11.73 (11.63 - 11.83)
10.3 (10.09 - 10.54)
5.35 (4.21 - 6.49)
1.62 (0.53 - 2.72)
0.01 (-1.84 - 1.86)

0 (-4.29 - 4.29)

Reference
<1x10™*
<1x1074
<1x10*
<1x10*
<1x10™4
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Figure 1: Genomic analysis of technical duplicates.

a Allele frequency comparison between technical replicates for all frequencies (right)
and for frequencies up to 1% (left). Colors represent the C; value for the sample. b
Proportion of shared mixed variants between technical replicates in relation to the
C¢ value. ¢ Total number of mixed variants in relation to the C; value. Lines linked
two technical replicates. Each sequence has a different color, with sequences from the
same patient having a different shade of the same color.
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Figure 2: Probability of sharing within-host variants in sample pairs.
The probability of variants shared between pairs of samples calculated as the number
of low frequency variants in both samples divided by the total number of variants
between the pair. Colors grouped samples by their relationship. Points represent the
mean probability a variant is shared between all pairwise samples within a group and
allele frequency. Error bars show the 95% CI.
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Figure 3: Model of within-host diversity.

Proposed evolutionary model of within-host diversity in genomic sequences. Upper-
case letters represent the major variant in the population, while lowercase letters
indicate presence of a minor variant alongside the major one. a, ¢ Genome sequences
where some positions show within-sample variation (top), represented by a major
allele (big size letter) and a minor one (smaller size), as well as its representation
in the alignment (bottom). b, d Models of nucleotide evolution. Character transi-
tions are indicated by arrows. a Consensus sequence, where only the major allele is
represented in the alignment. b Model of nucleotide evolution using the consensus
sequence, with four character states representing the four nucleotides. ¢ Sequence
with within-sample variation, represented by an uppercase letter for the major allele
and a lower case letter for the minor allele. d Model of nucleotide evolution with 16
character states accounting for within-sample variation.
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Figure 4: Similarity scores for inferred trees.

Comparison of the phylogenetic trees inferred using three simulated sequences and
different phylogenetic models with the known starting tree. Colors differentiate the
metrics used for the comparison.
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Figure 5: Previously uninformative clusters present temporal signal when
using within-sample diversity.

A set of 11 outbreak clusters (one per panel, each plotting the root to tip distance
against time) in which all samples had identical consensus genomes sequences (and
therefore no temporal signal). Blue colors indicate those regressions that after uti-
lizing within sample diversity now have a positive slope (temporal signal), and red
shows those regressions that have a negative slope (misleading or false positive tem-
poral signal).
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Figure 6: Within-sample variation improves resolution of infectious dis-
ease outbreaks.

Effect of using low frequency variants in phylogenetic inference. a Maximum like-
lihood phylogeny using the consensus sequences (left) and the alignment leveraging
within-sample variation. Replicates of the same sample share the same color. Sample
IDs are coded as follows: SF, for staff members; P, for patients; and PC, for patient
contacts. b Transmission network inferred using within sample variation. Edge width
is proportional to the likelihood of direct transmission using a Susceptible-Exposed-
Infectious-Removed (SEIR) model. Colored edges represent the Edmunds optimum
branching and thus the most likely chain. ¢ Heatmap of the likelihood of direct trans-
mission between all pairwise pairs of samples using a SEIR model. Vertical axis is
the infector while the horizontal axis shows the infectee.
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Supplementary Table 1: Sample collection and demographics.

Number Percentage

Total samples 451 100
Hospital
Barnet, Enfield & Haringey Mental Health 18 3.99
Camden and Islington Mental Health 3 0.67
Chase Farm 1 0.22
FLARE Trial 3 0.67
GOSH 182 40.35
North Middlesex University Hospital 105 23.28
Royal Free Hospital 50 11.09
UCLH 10 2.22
Whittington Health 79 17.52
Missing 0 0
Role
Staft 403 89.36
Patient 14 3.1
Contact 32 7.1
Missing 2 0.44
Sex
Female 274 60.75
Male 161 35.7
Undertermined 3 0.67
Missing 13 2.88
Age
(0,10] 8 1.77
(10,20] 9 2
(20,30] 111 24.61
(30,40] 111 24.61
(40,50] 98 21.73
(50,60] 74 16.41
(60,70] 22 4.88
(70,80] 10 2.22
(80,90] 3 0.67
Missing 5 1.11
Ct
(15,20 15 3.33
(20,25] 85 18.85
(25,30] 149 33.04
(30,35] 197 43.68
Missing 5 1.11
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Supplementary Table 2: Metrics used for phylogenetic tree comparison.

Rooted Branch

R function &

Abbreviation Name
trees length package
KF Kuhner and Felsenstein No Yes KF.dist, phangorn
RF Robinson Foulds No No RF.dist, phangorn
wRF Weighted Robinson Foulds No Yes wRF.dist, phangorn
PS Penny and Steel path No No path.dist, phangorn
wPS Penny and Steel path No Yes path.dist, phangorn

Supplementary Table 3: Transition/transversion rates and base frequencies of
the known simulated tree.

A Ag Ca Ga C Ta Gec G Tc Tg Gt Ac Cg T At Ct | Base freqgs.

A - - - - - - - - - - - - - - - 0.22
Ag 20 - - - - - - - - - - - - - - 0.01
Ca 0 O - - - - - - - - - - - - - 0.01
Ga 0 200 O - - - - - - - - - - - - 0.01

cC 0 0 1 0 - - - - - - - - - - - 0.22
Ta 0 O 0 0 O - - - - - - - - - - 0.01
Gec 0 O 0 0O 0 O - - - - - - - - - 0.01
G 0 0 0 1 0 O 1 - - - - - - - - 0.22
Te 0 O 0 0 0 O 0 O - - - - - - - 0.01
Tg 0 0 0 0 0 O 0 0 0 - - - - - - 0.01
Gt 0 O 0 0 0 O 0 20 0 200 - - - - - 0.01
Ac 20 0 200 O 0 O 0 0 O 0 0 - - - - 0.01
Cg 0 O 0 0 20 0 200 0 O 0 0 0 - - - 0.01

T 0 0 0 0 O 1 0 O 1 1 0 0 0 - - 0.22
At 20 O 0 0 0 200 0 0 O 0 0 0 0 - - 0.01
Ct 0 0 0 0 20 O 0 0 200 O 0 0 0 0 - 0.01
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Supplementary Table 4: Inferred transition/transversion rates and base fre-
quencies when using the consensus sequence. Numbers show the average of 100
simulations.

A C G T | Base freqs

A - - - - 0.255
C 0974 - - - 0.250
G 1.088 1.148 - - 0.247
T 085 099% 1 - 0.248

Supplementary Table 5: Inferred transition/transversion rates and base fre-
quencies when accounting for within-host diversity. Numbers show the average of 100

simulations
A Ag Ca Ga C Ta Gc G Tc Tg Gt Ac Cg T At Ct | Base fregs.
A - - - - - - - - - - - - - - - - 0.22
Ag 17.35 - - - - - - - - - - - - - - - 0.01
Ca 0 0 - - - - - - - - - - - - - - 0.01
Ga 0 185.96 0 - - - - - - - - - - - - - 0.01
C 0 0 1.86 0 - - - - - - - - - - - - 0.22
Ta 0 0 0 0 0 - - - - - - - - - - - 0.01
Gc 0 0 0 0 0 0 - - - - - - - - - - 0.01
G 0 0 0 1.16 0 0 1.08 - - - - - - - - - 0.21
Tc 0 0 0 0 0 0 0 0 - - - - - - - - 0.01
Tg 0 0 0 0 0 0 0 0 0 - - - - - - - 0.01
Gt 0 0 0 0 0 0 0 21.64 0 196.56 - - - - - - 0.01
Ac 16.51 0 18353 0 0 0 0 0 0 0 0 - - - - - 0.01
Cg 0 0 0 0 21.20 0 200 0 0 0 0 0 - - - - 0.01
T 0 0 0 0 0 0.98 0 0 1.05 1.26 0 0 0 - - 0.21
At 17.70 0 0 0 0 17558 0 0 0 0 0 0 0o 0 - - 0.01
Ct 0 0 0 0 20.09 0 0 0 188.86 0 0 0 o 0 0 - 0.01
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Supplementary Figure 1: Collection date distribution and time from
symptom and days from symptom onset.

(a) Distribution of collection dates. (b) Histogram of time from symptom onset to
sample collection.
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Supplementary Figure 2: Sample mean coverage distribution.
Density distribution of mean coverage.
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Supplementary Figure 3: Number of low frequency variants and C;
value.
Higher C; values were linked to a higher number of within-sample variation.
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Supplementary Figure 4: Proportion of shared mixed variants between

duplicated samples using different filters of allele frequency.

Individual plots of shared within-host variants between technical duplicates using
increasing thresholds of allele frequency. Colors represent C; value, while the size of
the point shows the total number of within-host variants between the two samples.
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Supplementary Figure 5: Probability that mixed variants are shared.
Probability that low frequency variants are shared inferred with a logistic model
with allele frequency and epidemiological relationship as independent variable and
whether a variant is shared or not as dependent variable. Y-axis in logarithmic scale
for representation.
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Supplementary Figure 6: Phylogenetic trees for SARS-CoV-2.
SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an align-
ment with major and minor variant information (right) .
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Supplementary Figure 7: Genetic distance between longitudinal sam-
ples.

The genetic distance in the phylogenetic tree inferred using within-sample diversity
increased as the between longitudinal samples progressed. Black line shows the best
fit in a linear model, while the blue shaded area represents the 95% CI.
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Supplementary Figure 8: Time calibrated phylogenetic trees for SARS-
CoV-2.

SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an align-

ment with major and minor variant information (right). Branch lengths are measured
in years.
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Supplementary Figure 9: Phylogenetic and transmission for SARS-CoV-
2 outbreaks.

a-d Phylogenies of SARS-CoV-2 outbreaks. The branch lengths are in units of substi-
tutions per genome, and the scales are shown under the trees. Colors represent sam-
ples from the same individual. Samples with the same name are technical replicates.
Left tree of each panel shows the phylogeny inferred with the consensus alignment.
Right tree represents the phylogeny inferred using within-sample variation. Heatmap
shows the likelihood of direct transmission for each pair of samples in a SEIR model
of transmission. Vertical axis is the infector while the horizontal axis shows the in-
fectee.
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