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ABSTRACT 

The ability to efficiently isolate antigen-specific B cells in high throughput will greatly accelerate 
the discovery of therapeutic monoclonal antibodies (mAbs) and catalyze rational vaccine 
development. Traditional mAb discovery is a costly and labor-intensive process, although recent 
advances in single-cell genomics using emulsion microfluidics allow simultaneous processing of 
thousands of individual cells. Here we present a streamlined method for isolation and analysis 
of large numbers of antigen-specific B cells, including next generation antigen barcoding and an 
integrated computational framework for B cell multi-omics. We demonstrate the power of this 
approach by recovering thousands of antigen-specific mAbs, including the efficient isolation of 
extremely rare precursors of VRC01-class and IOMA-class broadly neutralizing HIV mAbs. 

INTRODUCTION 

The antibody repertoire is exceptionally diverse, allowing the humoral immune system to 
recognize and respond to a broad range of invading pathogens. The pre-immune antibody 
repertoire is generated by somatic recombination of variable (V), diversity (D) and joining (J) 
immunoglobulin gene segments, which occurs independently in each developing B cell [1]. In 
humans, it is estimated that the recombination process is capable of generating as many as 1018 
unique antibody molecules [2]. Following antigen recognition, antibodies are affinity matured 
through an iterative process of clonal expansion, somatic hypermutation, and antigen-driven 
selection [3,4]. Following pathogen clearance, a subset of B cells encoding affinity matured 
antibodies are retained as an immune “memory” of the pathogen encounter. Humoral immune 
memory, which can persist for decades [5], rapidly reactivates in response to subsequent 
exposure to the same pathogen and is the primary mechanism of protection for most available 
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vaccines [6,7]. Monoclonal antibodies (mAbs) are invaluable tools for the treatment and 
prevention of human disease. Antigen-specific mAbs are useful as templates for rational vaccine 
development, in which immunization strategies are designed to preferentially elicit antibodies 
encoding a defined set of genetic or structural properties [8–11]. Additionally, passively delivered 
therapeutic mAbs have a variety of clinical applications, including cancer, autoimmunity and 
infectious disease [12,13].  

Exceptionally potent neutralizing antibodies (nAbs) are often quite rare and may be found only 
in a subset of seropositive individuals, meaning their discovery typically requires deep 
interrogation of the pathogen-specific B cell repertoire [14]. Traditional techniques for isolating 
antigen-specific human mAbs are expensive and immensely labor intensive; despite these 
obstacles, mAb-based therapies against emerging infectious diseases have a distinct advantage 
in that their discovery and clinical advancement may proceed more quickly than traditional small 

Figure 1. Optimization of next-generation AgBCs. (a) Schematic overview of the antigen barcoding approach. (b) Pre-optimization 

recovery of features (light gray), paired VDJ sequences (dark gray) or both features and VDJ (blue) when sorting cells after pre-sort 

hold times of varying duration. (c) Pre-optimization recovery of features (light gray), paired VDJ sequences (dark gray) or both features 

and VDJ (blue) when processing sorted cells after post-sort hold times of varying duration. (d) Optimized recovery of features (light 

gray), paired VDJ sequences (dark gray) or both features and VDJ (green) when processing sorted cells after post-sort hold times of 

varying duration. (e) Correlation between recovery AgBC UMI counts of two differently barcoded aliquots of eOD-GT8.1. Plot was 

generated in scab using scab.pl.feature_scatter(). (f) Kernel density estimate plot of the log2-normalized UMI counts of eOD-GT8.1 

AgBC and eOD-GT8.1 KO AgBC is shown in gray. Cells classified as positive for an HSA AgBC are highlighted in pink. Plot was 

generated in scab using scab.pl.feature_kde(). 
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molecule drugs. This was highlighted during the COVID-19 pandemic, in which clinical trials of 
novel mAb-based therapeutics were initiated just months after the first known cases of SARS-
CoV-2 infection [15–17]. Additionally, broadly neutralizing antibodies (bnAbs) with the ability to 
recognize a wide range of viral variants or even entire families of related viruses [18–29] are also 
useful as templates to guide rational vaccine development strategies by revealing conserved 
sites of viral vulnerability [30,31].         

Recovery of natively paired mAb sequences is most commonly performed by sequestering 
individual B cells prior to amplifying and sequencing the heavy and light chains from each cell. 
There are various methods of sequestration, including limiting dilution of immortalized or 
transiently activated primary B cells [23,32–34], deposition of single B cells into discrete wells 
[35–37], or in-cell amplification techniques in which the cell itself serves as the encapsulation 
vessel [38,39]. These processes are immensely costly and labor intensive, meaning even large-
scale studies are often only able to isolate dozens or hundreds of mAbs with the desired 
specificity. Recent advances in emulsion microfluidics have dramatically increased the scale at 
which cellular sequestration can be performed, removing a significant bottleneck in the mAb 
discovery process and enabling routine recovery of up to thousands of natively paired mAbs in 
a single experiment. Indeed, the largest single collection of natively paired mAb sequences, 
containing sequences from 1.6x106 single B cells, was recently obtained using the emulsion 
microfluidics-based 10x Genomics Chromium X platform [40]. 

In 2017, CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by sequencing) pioneered 
the use of DNA-barcoded antibodies to simultaneously quantify transcription and protein 
expression using single cell droplet microfluidics [41]. Briefly, antibodies against a defined panel 
of cell surface markers were tagged with a unique DNA barcode and used to label cells. The 
barcoding oligonucleotides contain an antibody-specific barcode, a unique molecular identifier 
(UMI) and sequencing platform-specific primer annealing sites. During single cell library 
preparation, barcodes and cellular mRNAs are recovered and sequenced, and the UMI-
normalized sequencing read counts can be used to quantify both transcription and protein 
abundance. The available number of distinct CITE-seq barcodes is effectively unlimited, allowing 
the use of much larger antibody panels than would be feasible with even the most sophisticated 
flow cytometers currently available [42]. Building on the technical and conceptual foundation 
established by CITE-seq, approaches for linking adaptive immune receptor sequences with 
antigen specificity were developed, first for T cell receptors (TCRs) and subsequently for B cell 
receptors (BCRs) [43,44]. LIBRA-seq (LInking B cell Receptor and Antigen through sequencing) 
enables simultaneous assessment of BCR sequence and specificity using DNA-barcoded 
antigens [44]. By modifying the CITE-seq and TCR antigen specificity approaches that preceded 
it, LIBRA-seq entails labeling antigen-specific B cells with one or more DNA-barcoded antigens 
prior to single cell library generation using the 10x Genomics platform, thus linking BCR 
sequence and specificity (Figure 1a). Like CITE-seq, the available number of unique antigen 
barcode sequences is not a limiting factor, however, the number of antigen baits which compete 
for BCR binding will be somewhat constrained by the finite number of BCR molecules on the cell 
surface and the need to ensure the signal of each antigen bait is distinguishable from 
background. 

Here we present an optimized version of the original LIBRA-seq technique, including the 
development of next-generation antigen barcodes (AgBCs), as a streamlined method for 
isolating antigen-specific B cells. We also report the development of a computational framework 
for large-scale analysis of B cell-derived single cell omics data, which provides tools for multi-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.495029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.495029
http://creativecommons.org/licenses/by/4.0/


 

omics data integration, accurate assignment of BCR specificity using AgBCs, clonal lineage 
assignment, and visualization. Finally, we demonstrate the power of this improved approach by 
simultaneously isolating multiple classes of extremely rare HIV broadly neutralizing antibody 
(bnAb) precursors from HIV-uninfected donors using a panel of germline targeting immunogens. 

RESULTS 

Optimizing experimental conditions to maximize recovery of FACS-enriched live B cells.  
Discovering rare antibodies often requires antigen-driven enrichment using samples containing 
many millions of B cells, which translates into prolonged fluorescence activated cell sorting 
(FACS) experiments lasting several hours. A critical factor affecting sequence recovery from the 
10x Genomics platform is cell viability. In the original LIBRA-seq study, paired BCR sequences 
and antigen barcodes were recovered from 6-22% of input cells (see Methods and Methods for 
details about the LIBRA-seq recovery efficiency calculations). We hypothesized that the 
incubations required during extended FACS experiments, either pre-sort (queued cells waiting 
to be sorted) or post-sort (cells already sorted but awaiting completion of the experiment) 
contributed to the low yield and high variability in recovery between samples. To test this, 
splenocytes from four C57BL/6 mice and four VRC01 gH mice, which express a germline-
reverted heavy chain from the HIV bnAb VRC01 [8,45], were individually labeled with unique cell 
hashes and pooled. Aliquots of the hashed splenocyte pool were either (1) held on ice for varying 
intervals (0, 1, 2 or 4 hours) prior to sorting and library generation using a 10x Genomics 
Chromium Controller, or (2) immediately sorted and held on ice for varying intervals post-sort (0, 
1, 2, or 4 hours) before proceeding to library generation. For each aliquot, 1x105 random CD19+ 

Figure 2. Workflow of single cell multi-omics data processing using scab. Example commands are shown for several common 

data processing and analysis tasks. Briefly, starting with the unmodified output files from CellRanger, this sample workflow (1) reads 

CellRanger output data and annotates BCR sequences using abstar [52]; (2) demultiplexes samples using cell hashes; (3) classifies 

BCR specificity using two AgBCs (“H1” and “H2”) and a single specificity group (“flu”), which includes both AgBCs; (4) assigns BCR 

sequences to clonal lineages using clonify [55]; (5) writes the integrated AnnData object to file in h5ad format. 
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cells were sorted and used to prepare BCR and feature barcode sequencing libraries. We 
observed no difference in recovery for samples subjected to a pre-sort hold, but noted a 
substantial decline in recovery efficiency for samples held on ice after sorting (Figure 1b-c). 
Notably, recovery using the unoptimized protocol closely matched the range of efficiencies in 
the original LIBRA-seq protocol. We evaluated a variety of experimental conditions to identify 
optimal parameters that maximize recovery of B cells held for several hours following FACS 
enrichment. These included cell fixation using paraformaldehyde or methanol, sorting into tubes 
and plates of varying sizes and types, and systematically assessing catch buffer volume and 
composition (data not shown). In the end, we found that the optimal conditions involved bulk 
sorting unfixed cells into a 96-well PCR plate well containing a low volume catch buffer of 20¿L 
of 100% fetal bovine serum (FBS). Using these conditions, we consistently obtained high 
recovery efficiency (>25%) regardless of the post-sort hold duration (Figure 1d).   

Streamlined production of next-generation DNA barcoded antigens.     
We sought to improve the LIBRA-seq method by enhancing the antigen barcode complexes 
(AgBCs) used to link BCR sequence and specificity. Previously, AgBCs were generated in a 
multi-step process consisting of (1) site-specific biotinylation of protein antigens, (2) direct 
conjugation of barcode oligonucleotides to the biotinylated antigen, and (3) addition of a 
streptavidin-linked fluorophore to the barcoded and biotinylated protein antigen. This approach 
has a significant drawback in that the oligonucleotide conjugation is not performed in a site-
specific manner. As a result, critical B cell epitopes are likely to be occluded or disrupted by the 
barcode oligonucleotide. The original LIBRA-seq publication also cautions that the direct 
oligonucleotide conjugation approach may result in substantial heterogeneity in the number of 
barcode oligonucleotides attached to each antigen molecule, particularly across different 
antigens and between different conjugation batches of the same antigen, which may confound 
downstream analyses [44]. We have simplified the construction of next-generation AgBCs 
through the use of a barcoding reagent generated by incubating a fluorophore-linked streptavidin 
(or plain streptavidin, if a fluorophore is not desired) with a 5’-biotinylated barcode 
oligonucleotide. Importantly, the biotinylated oligonucleotide is added at a sub-saturating 
concentration (2.5:1 molar ratio of oligonucleotide:streptavidin), which ensures that the majority 
of the resulting barcoding reagent molecules will have unoccupied biotin binding sites as well as 
a similar number of barcode oligonucleotides. The barcoding reagent is then incubated with a 
site-specifically biotinylated protein antigen. Each antigen molecule is thus linked to the 
barcoding reagent in a site-specific manner that minimizes alterations to the native structure of 
the antigen. 

Selective enrichment of antigen-specific B cells using AgBCs.    
Dual antigen labeling strategies, in which aliquots of the same antigen are conjugated to different 
fluorophores and used to select B cells positive for both fluorescent markers, are commonly 
used to reduce background when performing antigen-driven enrichment of B cells [46,47]. By 
constructing two AgBCs for each antigen, each with a different fluorophore and barcode, we can 
reduce background and improve enrichment selectivity both during sorting using dual 
fluorophores and post-sort data analysis using dual barcodes. To evaluate the reproducibility of 
our AgBCs, we stained B cells from transgenic mice expressing the human IGHV1-2*02 variable 
gene (huVH1-2 KI mice, [48]) with differently barcoded aliquots of the engineered HIV 
immunogen eOD-GT8.1 [49], which is designed to target germline precursors of VRC01-class 
HIV bnAbs. UMI-normalized read counts of the differently barcoded eOD-GT8.1 AgBCs were 
well correlated (r2=0.95), indicating a high level of reproducibility (Figure 1e). In each of our mAb 
discovery experiments, we also include a dark (lacking a fluorophore) human serum albumin 
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(HSA) AgBC. This negative control AgBC, which is not detectable during sorting, allows us to 
identify and remove cells during downstream data analysis to which AgBCs are binding in a 
nonspecific manner. This is particularly important when assessing BCR breadth against a panel 
of AgBCs, as nonspecific binding to “sticky” cells can mimic the expected binding patterns of 
broadly reactive BCRs. Demonstrating the importance of including a negative control AgBC, a 
representative sample of B cells from VRC01 gH mice sorted using two competing AgBCs (eOD-
GT8.1 and eOD-GT8.1 KO, an epitope knockout variant that disrupts binding of antibodies that 
recognize the CD4 binding site), a substantial fraction of cells that appeared to specifically bind 
both eOD-GT8.1 and eOD-GT8.1 KO were also positive for HSA (Figure 1f). HSA+ and HSA- B 
cells were not distinguishable based solely on binding to eOD-GT8 and eOD-GT8 KO, 
emphasizing the importance of control AgBCs to assigning specificity profiles with high 
confidence.   

Computational analysis and integration of single B cell multi-omics data.       
To process and integrate the various datasets obtained by single cell sequencing using AgBCs 
and the 10x Genomics platform, which can include gene expression (GEX), paired BCR and TCR 
sequences, AgBCs, cell hashes and other feature barcodes such as CITE-seq antibodies, we 
have developed scab, a Python package for Single Cell Analysis of B cells. We developed scab 
primarily as a means to perform interactive analyses in combination with notebook-like 

Figure 3. Classification of cell hashes and AgBCs. (a) Representative KDE plot of log2-transformed cell hash UMI counts. The 

classification cutoff is highlighted, and clearly separates the positive and negative cell hash populations. KDE plots are optionally 

generated when running scab.tl.demultiplex(). (b) UMAP plot of cells clustered using log2-transformed cell hash UMI counts. Cells 

are colored by cell hash assignment. Of note, cell hashes 1-4 each comprise 20-25% of all input cells, while cell hashes 5-8 each 

comprise 2-5% of all input cells. (c) Ridgeplot showing the distribution of log2-transformed UMI counts of cell hash 1 for all cell hash 

assignment groups. Plot was generated with scab by calling scab.pl.cellhash_ridge(). (d) Fraction of cells classified as positive for 

increasing numbers of differently barcoded aliquots of eOD-GT8.1 AgBC when performing classification on each AgBC separately. 

A total of 9 different AgBCs were used, meaning approximately 40% of all recovered cells were classified as positive for all AgBCs. 

(e) Fraction of cells classified as positive for each of 9 differently barcoded eOD-GT8.1 AgBCs when classification was performed 

separately for each AgBC (colored points). The dashed line shows the number of cells classified as eOD-GT8.1 positive when using 

a specificity group containing all 9 eOD-GT8.1 AgBCs. 
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programming environments such as Jupyter [50,51]. To integrate these datasets, scab utilizes 
the Sequence and Pair objects introduced in our ab[x] toolkit for antibody sequence analysis [52] 
to link annotated BCR/TCR sequence information with GEX, antigen specificity, and feature 
barcode (FBC) data for each cell in an integrated AnnData object [53]. Scab includes utilities to 
read and integrate data produced by CellRanger [54] and write integrated AnnData objects as 
.h5ad-formatted hdf5 files. During data ingestion, scab will automatically annotate BCR and TCR 
contigs using abstar [52]. Scab also includes a variety of tools for interactive single cell data 
analysis and exploration, including sample demultiplexing using cell hashes, BCR specificity 
classification using AgBCs, and clonal lineage assignment using the clonify algorithm [55], as 
well as sophisticated visualization tools for exploratory data analyses and generating 
publication-quality figures. An illustrated code example is shown in Figure 2, which performs a 
common sequence of operations: data ingestion and automatic BCR sequence annotation, 
demultiplexing, specificity classification, clonal lineage assignment and saving the fully 
annotated AnnData object to disk as an h5ad-formatted file. 

Tools for cell hash-based sample demultiplexing have previously been reported [56,57], 
however, our experience with existing methods based on Gaussian mixture models (GMMs) or 
k-means clustering have shown reduced accuracy when the distribution of hashes is highly 
unequal (that is, when some hashes are found much more or much less frequently than others). 
Specifically, we noted degraded performance of GMM-based cell hash classification for 
individual samples comprising less than 5% of the overall sample pool. Because the frequency 
of antigen-specific B cells can vary substantially between individuals, we often multiplex samples 
that differ greatly in cell number. Thus, we sought to develop an alternative approach designed 
to accurately demultiplex highly heterogeneous cell hash pools. For each cell hash, we compute 
a kernel density estimate (KDE) of the log2-transformed, UMI-normalized read counts. We then 
identify the local minimum that optimally separates the KDE into two populations: positive and 
negative (Figure 3a). This inflection point is used as the cell hash classification threshold. This 
approach accurately demultiplexes samples even when the frequency of individual cell hashes 
differs by nearly an order of magnitude (Figure 3b). Cells that exceed the threshold for multiple 
hashes are considered doublets, and cells that do not exceed any threshold are considered 
unassigned (Figure 3c).  

Classification of BCR specificity using AgBCs is made more complex by the potentially wide 
range of binding affinities displayed by antigen-specific BCRs and a variable number of 
membrane-bound BCR molecules on the cell surface of each B cell. These factors combine to 
produce a gradient of UMI-normalized count values for each AgBC rather than the clearly defined 
positive and negative populations typical of CITE-seq or cell hash data (Figure 3a). Separately 
for each AgBC, we first inspect “empty” droplets in which CellRanger did not identify a cell. We 
then compute a negative binomial distribution of UMI-normalized AgBC counts and establish the 
background threshold at the 99.7th percentile (3Ã). Any cell-containing droplets with UMI-
normalized AgBC counts above this threshold are considered antigen positive. When working 
with large AgBC panels containing antigens that may compete for BCR binding (for example, 
epitope mapping panels or panels containing multiple antigen variants to identify cross-reactive 
BCRs), it is possible that competition for the finite number of BCR molecules on the B cell surface 
may reduce the number of bound AgBCs for one or more of the competing antigens, resulting 
in incorrect specificity classification. To combat this, we introduced the concept of specificity 
groups, which represent a group of AgBCs that are expected to compete for BCR binding. When 
performing specificity classification, the classification threshold is set by considering the sum of 
all grouped AgBC UMI counts in empty droplets, and any cell-containing droplets whose 
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summed AgBC UMI counts exceeding the threshold are considered positive. To demonstrate 
the utility of this approach, we separately barcoded nine aliquots of eOD-GT8.1 and sorted 
antigen-positive B cells using the pool of eOD-GT8.1 AgBCs. While approximately 40% of all 
sorted cells were classified as positive for all nine AgBCs individually (Figure 3d), the use of a 
specificity group containing all nine AgBCs correctly classified a significantly higher number of 
cells than did any of the competing AgBC individually (Figure 3e). 

Isolation of ultra-rare HIV broadly neutralizing antibody precursors  
The design of vaccine immunogens that reliably activate unmutated bnAb precursors and guide 
their development toward mature bnAbs is the foundation of germline-targeting and epitope-
focusing vaccine development strategies [58]. For HIV in particular, bnAbs tend to require 
uncommon genetic features and their precursors are expected to be found at very low 
frequencies in the circulating naive B cell repertoire [59–61]. VRC01-class HIV bnAbs, which all 
encode a conserved set of required genetic features including the IGHV1-2 heavy chain variable 
gene and a short (5 amino acid [AA]) light chain complementarity determining region 3 (LCDR3), 
target the CD4 binding site (CD4bs) on HIV Env and are among the most broad and potent 
classes of HIV bnAbs [62]. Although inferred germline variants of VRC01-class bnAbs typically 

Figure 4. Characterization of VRC01-class and IOMA-class HIV bnAb precursors. (a) Density plot of log2-normalized AgBC UMI 

counts for eOD-GT8.1 (x-axis) and eOD-GT8.1 KO (y-axis). Cells positive for eOD-GT8.1 and negative for eOD-GT8.1 KO (indicating 

binding to the CD4bs epitope) are indicated in red, all others are in gray. VRC01-class (X) and IOMA-class (O) are highlighted. Plot 

was generated with scab by calling scab.pl.feature_kde(). (b) LCDR3 logo plots for all recovered VRC01-class precursors (top) and 

all other 5AA LCDR3s, which were not paired to a heavy chain encoding IGHV1-2 (bottom). Residues found in mature VRC01-class 

bnAbs are colored dark gray, all other residues are light gray. (c) Light chain V-gene use in isolated VRC01-class precursors. Light 

chain V-genes used by mature VRC01-class bnAbs are colored dark gray, all others are colored light gray. (d) Heavy chain and light 

chain CDR3 sequences for isolated IOMA-class precursors. LCDR3s that have been previously reported in IOMA-class precursors 

[65] are highlighted in red. (e) UMAP plots using single cell RNA-seq data for all recovered cells from D931. On the left, cells are 

colored by subset, with naive B cells in blue and memory B cells in green. The same UMAP embedding is plotted on the right in gray 

with cells encoding VRC01-class (X) or IOMA-class (O) precursors highlighted. (f) UMAP plots using single cell RNA-seq data for all 

recovered cells from D326651. On the left, cells are colored by subset, with naive B cells in blue, memory B cells in green, and 

atypical B cells in pink. The same UMAP embedding is plotted on the right in gray with cells encoding VRC01-class (X) or IOMA-

class (O) precursors highlighted. Plots in (e) and (f) were generated with scab by calling scab.pl.umap(). 
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do not detectably bind HIV, germline targeting immunogens have been designed which 
selectively target naive B cell precursors which encode the genetic features required of VRC01-
class bnAbs [8,10,49,63,64]. Interrogating the B cell repertoires of HIV-uninfected individuals 
with these immunogens revealed the frequency of VRC01-class bnAb precursors to be roughly 
1 in 3x105-2.4x106 circulating naive B cells [49,65]. IOMA-class HIV bnAbs are similar to VRC01-
class bnAbs in that they also target the CD4bs and use IGHV1-2, but IOMA-class light chains 
using IGLV2-23 and encode an 8 AA LCDR3 [66]. Although less broad and potent than VRC01-
class bnAbs, it has been hypothesized that IOMA-class bnAbs will be easier to elicit by 
vaccination due to its lower level of somatic mutation and the use of a much more common 
LCDR3 length. 

We constructed two separately barcoded AgBCs for eOD-GT8.1 and eOD-GT8.1 KO. Combined 
with a dark HSA AgBC and a dually barcoded positive control antigen (BG505 SOSIP), the 
complete AgBC panel was used to isolate antigen-specific B cells from a total of 7.04x108 
peripheral blood B cells from two healthy adult donors (D931 and D326651). We processed a 
total of 24,792 sorted cells across two Chromium 5’ Single Cell v2 reactions and recovered 9,216 
paired antibody sequences for an overall paired sequence recovery efficiency of 37.2%. After 
AgBC processing and removal of “sticky” cells that displayed substantial HSA AgBC binding, 
we recovered a total of 2,618 eOD-GT8.1-specific B cells. Of these, 162 B cells were classified 
as positive for eOD-GT8.1 and negative for eOD-GT8.1-KO, indicating epitope specific binding 
to the HIV CD4bs. From the eOD-GT8.1 positive population, we identified 18 VRC01-class B 
cells (encoding IGHV1-2 and a 5AA LCDR3) and four IOMA-class B cells (encoding IGHV1-2, 
IGLV2-23, and an 8AA LCDR3). Notably, all of the VRC01-class and IOMA-class B cells 
displayed AgBC binding patterns consistent with CD4bs specificity (Figure 4a). Our VRC01-class 
recovery equates to an overall frequency of 1 in ~3.9x106 B cells (unadjusted for expected losses 
during sorting and library preparation), which is consistent with other unadjusted precursor 
frequency estimates [49,65,67]. Our recovery of IOMA-like precursors mirrors previous work 
using eOD-GT8.1 tetramers and 60-mers [65].  

The genetics of the isolated bnAb precursors (VRC01-class and IOMA-class) closely matched 
our expectations, based on the sequences of their respective bnAbs and prior studies which 
isolated CD4bs-targeting bnAb precursors with more traditional techniques. The LCDR3s of 
isolated VRC01-class precursors showed enrichment of residues found in mature VRC01-class 
bnAbs (Figure 4b) and 16 of 18 precursors encode light chain V genes used by mature VRC01-
class bnAbs (Figure 4c). The two remaining light chain V genes, IGKV1-9 and IGKV3-11, have 
been observed in previously reported VRC01-class precursors isolated with eOD-GT8.1 [67]. As 
in previous studies, IOMA-class precursors encode diverse HCDR3s of varying lengths, but the 
critical LCDR3 region is well conserved (Figure 4d). Indeed, two of the LCDR3 sequences we 
recovered were identical to previously isolated IOMA-class bnAb precursors [65]. 

A significant advantage of our next-generation antigen barcoding approach compared to 
traditional techniques based on single cell sorting and PCR is the ability to simultaneously 
recover single cell transcriptional profiles together with full-length BCR sequences and AgBC 
data. This enables a more holistic analysis of the B cell repertoire, linking phenotypic properties 
like cellular activation and differentiation states with BCR genetics and antigen specificity. All of 
the VRC01-class and IOMA-class precursor sequences we isolated were completely unmutated 
in both heavy and light chains and were of the IgM isotype, suggesting they were recovered from 
naive B cells. Analysis of single cell transcriptomics data, however, shows that two of the B cells 
encoding VRC01-class precursors from donor D931 belong to the memory B cell subset (Figure 
4e). Additionally, three VRC01-class precursors and one IOMA-class precursor from donor 
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D326651 are encoded by atypical B cells (Figure 4f), a B cell subset that was recently shown to 
be more frequent in healthy individuals than previously thought [68]. 

DISCUSSION 

Efficient isolation of large numbers of pathogen-specific mAbs is critically important for 
fundamental immunological analyses of host/pathogen interactions, discovery of biological 
therapeutics for a variety of human diseases, and the development of efficacious vaccines. Here, 
we present an optimized protocol for mAb isolation using next-generation antigen barcoding as 
well as an integrated computational framework for analysis and visualization of B cell multi-omics 
data. We demonstrated the utility of our improved protocol by isolating thousands of natively 
paired mAb sequences specific for eOD-GT8.1, an HIV germline targeting immunogen, including 
several extremely rare VRC01-class and IOMA-class bnAb precursors. This streamlined 
approach removes a significant obstacle to the large-scale study of humoral immune responses 
to vaccination and infection. 

As is common, however, removal of one experimental hurdle reveals the existence of yet another 
bottleneck further downstream in the process. In this case, streamlining the isolation of natively 
paired sequences for large numbers of antigen-specific mAbs results in sequence datasets that 
far exceed our capacity for biophysical characterization, including structural analyses, fine 
epitope mapping, and evaluation of additional functional properties beyond binding specificity 
(neutralization, effector function, protection, etc). In the future, it is possible that paradigm-
shifting advances such as those seen recently with AlphaFold [69] will produce computational 
models capable of accurately inferring many or all of these functional properties directly from 
mAb sequences. Such models will be crucially important moving forward, even if they do not 
completely eliminate the need for recombinant expression and evaluation. One can easily 
envision a scenario in which large numbers of mAbs with desirable binding properties (isolated 
using techniques similar to those described here) can be screened in silico using models adept 
at predicting structure [70,71], fine epitope specificity [72–75], and other functional properties 
[76]. The results of in silico screening can be used to make informed down-selection decisions 
to focus limited biophysical characterization efforts toward the most interesting mAbs. As an 
example, structure and epitope predictions can be used to group similar antibodies and identify 
a relatively small number of representative mAbs that epitomize the functional properties of each 
group. Moving forward, we envision a virtuous cycle in which large mAb/specificity datasets are 
used to train better models and algorithms, which will in turn allow accurate analysis of larger or 
more complex mAb/specificity datasets. Increasingly rich datasets that accurately link natively 
paired antibody sequences with specificity information will be invaluable tools for training 
predictive models that may one day reduce or eliminate entirely the need for recombinant 
expression and characterization of large numbers of mAbs and unlock far more comprehensive 
studies of humoral immunology than are currently possible.  

MATERIALS AND METHODS 

Mouse samples 

Three mouse models were used in this study: (1) VRC01-gH mice, which contain a transgene 
encoding the recombined, germline-reverted heavy chain of the human anti-HIV antibody VRC01 
[8]; (2) huVH1-2 KI mice, which contain a transgene encoding the human variable gene IGHV1-
2*02, which is a necessary genetic feature of the human anti-HIV antibody VRC01 [48]; and (3) 
C57BL/6J mice (Jackson Laboratories). Mouse studies were approved and carried out in 
accordance with the Institutional Animal Care and Use Committee at Scripps Research (La Jolla, 
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CA). The mice were housed, immunized, and euthanized at Scripps in compliance with the Guide 
for the Care and Use of Laboratory Animals (National Research Council, 1996). 

Human samples  
Human leukapheresis samples were obtained from healthy donors of the San Diego Blood Bank 
or procured commercially (HemaCare). Peripheral blood mononuclear cells (PBMCs) were 
isolated by gradient centrifugation (Lymphoprep, StemCell Technologies) and cryopreserved in 
FBS with 10% DMSO pending further processing. 

Synthesis of barcoding oligonucleotides 
Barcoding oligonucleotides all use the following format: 

CGGAGATGTGTATAAGAGACAGNNNNNNNNNNXXXXXXXXXXXXXXXNNNNNNNNNCCCATATAAGA*A*A 

Where X represents the barcode sequence, and A* represents a phosphorothioated bond to 
inhibit nuclease degradation. Barcode sequences are shown in Table S1. Barcode sequence 
sets were designed with a minimum edit distance of 7 nucleotides from all other barcodes in the 
set. CellRanger allows a single barcode mismatch, meaning at least 6 sequencing and/or PCR 
errors would be required for one barcode to be miscounted as another. 

Preparation of next-generation DNA-barcoded antigen baits  
Protein antigens encoding a C-terminal Avi-tag [77] were expressed and purified as described 
previously [49,63,65], and site-specifically biotinylated (BirA500 biotin-protein ligase kit, Avidity 
LLC) according to the manufacturer’s protocol. Barcoding complexes containing streptavidin 
(SAV), a barcode oligonucleotide and, optionally, a fluorophore were either procured 
commercially (TotalSeq-C, Biolegend) or created in-house. To create custom antigen barcoding 
reagents, 5’-biotinylated barcode oligonucleotides (Integrated DNA Technologies) were 
incubated with streptavidin (ThermoFisher Scientific) or a streptavidin-conjugated fluorophore 
(AF647 or AF488, ThermoFisher Scientific; BV421, BD Horizon) at a 2.5:1 molar ratio at room 
temperature for 30 minutes. AgBCs were generated by incubating biotinylated protein antigens 
with custom or commercially procured barcoding reagents at a molar ratio of either 2:1 or 4:1, 
depending on the molecular weight of the protein antigen (Table S2). The conjugation reaction 
was incubated at room temperature and protected from light for a minimum of 30 minutes. Lastly, 
200 nM of free unlabeled biotin was added to the AgBCs and left to incubate at room 
temperature for 15 min to saturate any unoccupied binding sites on streptavidin.  

Cell labeling  
Aliquots of cryopreserved PBMCs were thawed by gentle agitation in a 37°C water bath and, 
when completely thawed, transferred to a 15 mL conical tube containing 10 mL of sterile, pre-
warmed post-thaw medium consisting of RPMI 1640 with 50% FBS. Cells were centrifuged at 
400g for 5 min, supernatant was discarded, and cell pellets were gently resuspended in 5 mL 
cold sterile FACS Buffer (1X DPBS with 1% FBS, 1 mM EDTA and 25 mM HEPES). An aliquot of 
20 ¿L of each PBMC sample was set aside for cell counting and verification of viability. The 
FACS antibody master mix (Table S3) was freshly prepared on ice while protected from light. 
Aliquots of 10-20 million PBMCs were resuspended on ice with 100 ¿L master mix along with 
200 nM of a “dark” (no fluorophore) HSA (Acro Biosciences) AgBC and 1.25 µg of a unique cell 
hashing antibody for each sample (TotalSeq-C anti-human or anti-mouse Hashtag, BioLegend). 
Cells were incubated for 15 min on ice. For experiments involving epitope knockout AgBCs, 
200nM of each KO AgBC was added and cells were incubated for an additional 15 min on ice in 
the dark. Next, 200 nM of the remaining AgBCs were added and cells were incubated for 30 min 
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on ice in the dark. Finally, 1 mL of 1:300 diluted dead cell staining reagent (LIVE/DEAD Fixable 
Aqua, ThermoFisher Scientific) was added and cells were incubated on ice in the dark for 15 
mins. Cells were washed twice with 10 mL of cold FACS buffer, resuspended at the desired 
concentration using FACS buffer and filtered twice through a 35 ¿m nylon mesh filter (Falcon) to 
remove cell aggregates. The second filtration was done immediately prior to sorting. 

Cell sorting and post-sort processing  
Prior to sorting, an appropriate number of capture wells in a 96-well PCR plate were prepared 
by filling with sterile 100% FBS to completely coat the well surface. FBS was then removed from 
each capture well and 20 ¿L of fresh FBS was added. Plates were sealed with sterile foil seals 
(AlumaFoil, Qiagen) and kept at 4°C until the start of the sorting process. When ready to sort, 
the seal was removed, and the plate was placed onto the pre-chilled plate sample collection 
platform of a FACSMelody (BD Biosciences). Cells were bulk sorted into the 96-well collection 
plate using the Purity sort mode and at a flow rate not higher than 1500-2000 events per second 
to ensure sorting efficiency of 85-95%. Up to 15,000 cells were sorted into a single well. Once 
sorting was completed, the 96-well capture plate was removed and 80 ¿L of cold, sterile PBS 
was added to each capture well to dilute the FBS concentration to 10% v/v or less. The capture 
plate was again sealed with a sterile foil seal and centrifuged at 2500 rpm for 2 minutes. The seal 
was removed and 38.6 ¿L of buffer was added to an adjacent empty well to serve as a reference 
point for buffer removal. Excess 10% FBS was carefully removed from each sort well until the 
remaining volume matched the Trypan Blue reference well.  

Single cell library generation   
Single cell sequencing libraries were prepared using the Chromium Controller (10x Genomics) 
by following the provided protocol (Chromium Single Cell 5' Reagent Kits User Guide (v2 

Chemistry Dual Index) with Feature Barcoding technology for Cell Surface Protein and Immune 

Receptor Mapping; CG000330, Rev C) with a few critical modifications: 

ï Step 1.2b-c: Master Mix was added to the pelleted cells (rather than suspended cells 
being added to the Master Mix). Cells + Master Mix were mixed by very gently pipetting 
5-7 times while being careful not to introduce bubbles. Cells + Master Mix were then 
carefully added to the appropriate well of the Next GEM Chip. This is the MOST 

CRITICAL step of the process and should be performed as gently as possible, as any 
additional cell stress can significantly affect downstream recovery. 

ï Step 1.4e: After completing the Chromium reaction, the resulting emulsions were 
aspirated very slowly (aspiration should take 20 seconds) and very slowly transferred into 
a chilled PCR tube (dispensing should take 20 seconds). 

ï Step 3.0e: If fewer than 1,000 cells were sorted, the total number of amplification cycles 
was increased to 10. 

ï Step 3.3d: If fewer than 1,000 cells were sorted, the total number of amplification cycles 
was increased to 10. 

ï Step 3.5a: If the BioAnalyzer trace showed an extra “shoulder” peak adjacent to the 
expected V(D)J library peak, an additional SPRI cleanup (Step 3.4) was performed.  

Sequencing  
The resulting libraries were quantified (Qubit) and pooled at a 5:1 mass ratio between V(D)J and 
feature barcode libraries, and sequenced with a target depth of at least 10,000 reads per cell 
(5,000 VDJ reads and 5000 feature barcode reads per cell). Gene expression libraries were 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.495029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.495029
http://creativecommons.org/licenses/by/4.0/


 

sequenced with a target depth of 30,000 reads per cell. Libraries were loaded at 750 pM with 
2% PhiX on a NextSeq 2000 using 100-cycle P3 reagent kits or on a NovaSeq 6000 using 100-
cycle SP reagent kits with the following run parameters:  

ï Read 1: 26 cycles 

ï i7 index: 10 cycles 

ï i5 index: 10 cycles 

ï Read 2: 90 cycles 

Data processing    
Raw sequencing data was processed using CellRanger (version 6.0.2 or 6.1.2) to generate 
assembled VDJ contigs and counts matrix files. Briefly, cellranger mkfastq was used to create 
FASTQ files from sequencing base call (BCL) files. We then used cellranger multi to process GEX, 
VDJ and feature barcode data for each Chromium reaction. Output from CellRanger was read 
and annotated using scab, as described above. The source code for scab is freely available 
under the permissive MIT license via GitHub (github.com/briney/scab) and can be installed using 
the Python Package Index (pypi.org). 

Gene expression data were processed using scab and scanpy [53]. Cells were removed if they 
contained fewer than 200 genes, more than 3,500 genes, or more than 10% mitochondrial gene 
counts. Genes found in fewer than 0.1% of cells were also removed. Counts were normalized 
using scanpy’s “cell_ranger” normalization flavor prior to being log plus one transformed. 
Dimensionality of the gene counts matrix was reduced by performing a principal component 
analysis, the neighborhood graph was computed, cells were clustered using the Leiden algorithm 
[78] and the neighborhood graph was embedded using UMAP [79,80]. To minimize the influence 
of individual immunoglobulin (Ig) germline gene segments, which are not directly related to B cell 
phenotype, Ig germline gene segments are not considered when performing dimensionality 
reduction, clustering or embedding. Ig genes were removed from consideration if they matched 
the following regular expression:  

<IG[HKL][VDJ][1-9].+|TR[ABDG][VDJ][1-9]=  

Leiden clusters were assigned to the appropriate B cell developmental subset using genes 
known to differentiate naive B cells (IGHD and TCL1A), memory B cells (CD27, IGHG1-4, IGHA1-

2 and IGHE), and atypical B cells (FGR, GDI2, FCRL5, and ITGAX) (Figure S1). 

Calculation of LIBRA-seq recovery efficiency     
Recovery efficiency was not reported in the original LIBRA-seq publication, however, the authors 
did report the number of cells for which paired Ab sequences and antigen specificity data were 
recovered, as well as the “Targeted Cell Recovery” of each 10x Genomics Chromium reaction. 
Targeted Cell Recovery is a calculation performed as part of the 10x Genomics Chromium 
protocol which determines the total number of cells that should be loaded to ensure that the 
targeted number of emulsion droplets contain both a cell and a barcoded GEM bead (Chromium 

NextGEM Single Cell V(D)J Reagent Kits v1.1 User Guide with Feature Barcoding technology for 

Cell Surface Protein; CG000208, Rev G). We can thus use the Targeted Cell Recovery to back-
calculate the total number of input cells and compute overall recovery efficiency for each 
reaction. In the 10x Genomics protocol, the Targeted Cell Recovery dilution calculation is 
rounded to the nearest 0.1uL, so the number of input cells may vary slightly based on the starting 
concentration of input cells. For each Targeted Cell Recovery value, we computed the number 
of input cells for every starting concentration listed in the 10x Genomics protocol and used the 
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minimum for the following recovery efficiency calculations. For the Ramos B cell lines, 2,321 
cells were obtained using a Targeted Cell Recovery of 10,000 cells, indicating a minimum input 
of 16,740 cells (range: 16,460-16,600) and an overall recovery efficiency of 13.9%. For donor 
NIAID45, 889 cells were obtained using a Targeted Cell Recovery of 9,000 cells, indicating a 
minimum input of 14,790 cells (range: 14,790-14940) and an overall efficiency of 6.1%. For donor 
N90, 1,465 cell were recovered from a Targeted Cell Recovery of 4,000 cells, indicating a 
minimum input of 6,560 cells (range: 6,560-6,660) and an overall efficiency of 2.3%. 
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SUPPLEMENTARY INFORMATION 

 

Table S1. Barcoded oligonucleotides for AgBC construction. 

 

name barcode 

AgBC1 TAGGCGTCGATGCCG 

AgBC2 ACCGATACTCGACAT 

AgBC3 TGTCGACATCGCCCC 

AgBC4 TCCCCGGCAGTAGAA 

AgBC5 CGGTAGGATCCACGC 

AgBC6 GTCACAAGTGACATC 

AgBC7 GATGCGCACGAACCG 

AgBC8 CTAAAGGTTTATATC 

AgBC9 GCTAGTTCGGCTTAT 

AgBC10 TTACCCTAGACAAGC 
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Table S2. Preparation of baits based on molecular weight.  

 

 BG505 SOSIP eOD-GT8.1 

bait concentration 200 nM 200 nM 

molar ratio of bait:SAV 2:1 4:1 

bait molecular weight 225 kD 22 kD 
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Table S3. Cell staining master mix (by species). 

  

specificity mouse human 

CD3e - APC-Cy7 

CD4 APC-Cy7 APC-Cy7 

CD8a APC-Cy7 APC-Cy7 

Ly6C APC-Cy7 - 

CD11c APC-Cy7 - 

CD14 - APC-Cy7 

F4/80 APC-Cy7 - 

CD19 PE PerCP-Cy5.5 

IgD PerCP-Cy5.5 - 

IgM BV786 PE 

IgG - BV786 
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Figure S1. Genes distinguishing naïve, memory and atypical B cell subsets. Plot was 
created in scanpy using scanpy.pl.dotplot(). 
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