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ABSTRACT

The ability to efficiently isolate antigen-specific B cells in high throughput will greatly accelerate
the discovery of therapeutic monoclonal antibodies (mAbs) and catalyze rational vaccine
development. Traditional mAb discovery is a costly and labor-intensive process, although recent
advances in single-cell genomics using emulsion microfluidics allow simultaneous processing of
thousands of individual cells. Here we present a streamlined method for isolation and analysis
of large numbers of antigen-specific B cells, including next generation antigen barcoding and an
integrated computational framework for B cell multi-omics. We demonstrate the power of this
approach by recovering thousands of antigen-specific mAbs, including the efficient isolation of
extremely rare precursors of VRCO1-class and IOMA-class broadly neutralizing HIV mAbs.

INTRODUCTION

The antibody repertoire is exceptionally diverse, allowing the humoral immune system to
recognize and respond to a broad range of invading pathogens. The pre-immune antibody
repertoire is generated by somatic recombination of variable (V), diversity (D) and joining (J)
immunoglobulin gene segments, which occurs independently in each developing B cell [1]. In
humans, it is estimated that the recombination process is capable of generating as many as 10
unique antibody molecules [2]. Following antigen recognition, antibodies are affinity matured
through an iterative process of clonal expansion, somatic hypermutation, and antigen-driven
selection [3,4]. Following pathogen clearance, a subset of B cells encoding affinity matured
antibodies are retained as an immune “memory” of the pathogen encounter. Humoral immune
memory, which can persist for decades [5], rapidly reactivates in response to subsequent
exposure to the same pathogen and is the primary mechanism of protection for most available
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vaccines [6,7]. Monoclonal antibodies (mAbs) are invaluable tools for the treatment and
prevention of human disease. Antigen-specific mAbs are useful as templates for rational vaccine
development, in which immunization strategies are designed to preferentially elicit antibodies
encoding a defined set of genetic or structural properties [8—11]. Additionally, passively delivered
therapeutic mAbs have a variety of clinical applications, including cancer, autoimmunity and
infectious disease [12,13].

Exceptionally potent neutralizing antibodies (nAbs) are often quite rare and may be found only
in a subset of seropositive individuals, meaning their discovery typically requires deep
interrogation of the pathogen-specific B cell repertoire [14]. Traditional techniques for isolating
antigen-specific human mAbs are expensive and immensely labor intensive; despite these
obstacles, mAb-based therapies against emerging infectious diseases have a distinct advantage
in that their discovery and clinical advancement may proceed more quickly than traditional small
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Figure 1. Optimization of next-generation AgBCs. (a) Schematic overview of the antigen barcoding approach. (b) Pre-optimization
recovery of features (light gray), paired VDJ sequences (dark gray) or both features and VDJ (blue) when sorting cells after pre-sort
hold times of varying duration. (c) Pre-optimization recovery of features (light gray), paired VDJ sequences (dark gray) or both features
and VDJ (blue) when processing sorted cells after post-sort hold times of varying duration. (d) Optimized recovery of features (light
gray), paired VDJ sequences (dark gray) or both features and VDJ (green) when processing sorted cells after post-sort hold times of
varying duration. (e) Correlation between recovery AgBC UMI counts of two differently barcoded aliquots of eOD-GT8.1. Plot was
generated in scab using scab.pl.feature_scatter(). (f) Kernel density estimate plot of the log2-normalized UMI counts of eOD-GT8.1
AgBC and eOD-GT8.1 KO AgBC is shown in gray. Cells classified as positive for an HSA AgBC are highlighted in pink. Plot was
generated in scab using scab.pl.feature_kde().
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molecule drugs. This was highlighted during the COVID-19 pandemic, in which clinical trials of
novel mAb-based therapeutics were initiated just months after the first known cases of SARS-
CoV-2 infection [15-17]. Additionally, broadly neutralizing antibodies (bnAbs) with the ability to
recognize a wide range of viral variants or even entire families of related viruses [18-29] are also
useful as templates to guide rational vaccine development strategies by revealing conserved
sites of viral vulnerability [30,31].

Recovery of natively paired mAb sequences is most commonly performed by sequestering
individual B cells prior to amplifying and sequencing the heavy and light chains from each cell.
There are various methods of sequestration, including limiting dilution of immortalized or
transiently activated primary B cells [23,32-34], deposition of single B cells into discrete wells
[35-37], or in-cell amplification techniques in which the cell itself serves as the encapsulation
vessel [38,39]. These processes are immensely costly and labor intensive, meaning even large-
scale studies are often only able to isolate dozens or hundreds of mAbs with the desired
specificity. Recent advances in emulsion microfluidics have dramatically increased the scale at
which cellular sequestration can be performed, removing a significant bottleneck in the mAb
discovery process and enabling routine recovery of up to thousands of natively paired mAbs in
a single experiment. Indeed, the largest single collection of natively paired mAb sequences,
containing sequences from 1.6x10° single B cells, was recently obtained using the emulsion
microfluidics-based 10x Genomics Chromium X platform [40].

In 2017, CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by sequencing) pioneered
the use of DNA-barcoded antibodies to simultaneously quantify transcription and protein
expression using single cell droplet microfluidics [41]. Briefly, antibodies against a defined panel
of cell surface markers were tagged with a unique DNA barcode and used to label cells. The
barcoding oligonucleotides contain an antibody-specific barcode, a unique molecular identifier
(UMI) and sequencing platform-specific primer annealing sites. During single cell library
preparation, barcodes and cellular mRNAs are recovered and sequenced, and the UMI-
normalized sequencing read counts can be used to quantify both transcription and protein
abundance. The available number of distinct CITE-seq barcodes is effectively unlimited, allowing
the use of much larger antibody panels than would be feasible with even the most sophisticated
flow cytometers currently available [42]. Building on the technical and conceptual foundation
established by CITE-seq, approaches for linking adaptive immune receptor sequences with
antigen specificity were developed, first for T cell receptors (TCRs) and subsequently for B cell
receptors (BCRs) [43,44]. LIBRA-seq (LInking B cell Receptor and Antigen through sequencing)
enables simultaneous assessment of BCR sequence and specificity using DNA-barcoded
antigens [44]. By modifying the CITE-seq and TCR antigen specificity approaches that preceded
it, LIBRA-seq entails labeling antigen-specific B cells with one or more DNA-barcoded antigens
prior to single cell library generation using the 10x Genomics platform, thus linking BCR
sequence and specificity (Figure 1a). Like CITE-seq, the available number of unique antigen
barcode sequences is not a limiting factor, however, the number of antigen baits which compete
for BCR binding will be somewhat constrained by the finite number of BCR molecules on the cell
surface and the need to ensure the signal of each antigen bait is distinguishable from
background.

Here we present an optimized version of the original LIBRA-seq technique, including the
development of next-generation antigen barcodes (AgBCs), as a streamlined method for
isolating antigen-specific B cells. We also report the development of a computational framework
for large-scale analysis of B cell-derived single cell omics data, which provides tools for multi-
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omics data integration, accurate assignment of BCR specificity using AgBCs, clonal lineage
assignment, and visualization. Finally, we demonstrate the power of this improved approach by
simultaneously isolating multiple classes of extremely rare HIV broadly neutralizing antibody
(bnAb) precursors from HIV-uninfected donors using a panel of germline targeting immunogens.

RESULTS

Optimizing experimental conditions to maximize recovery of FACS-enriched live B cells.

Discovering rare antibodies often requires antigen-driven enrichment using samples containing
many millions of B cells, which translates into prolonged fluorescence activated cell sorting
(FACS) experiments lasting several hours. A critical factor affecting sequence recovery from the
10x Genomics platform is cell viability. In the original LIBRA-seq study, paired BCR sequences
and antigen barcodes were recovered from 6-22% of input cells (see Methods and Methods for
details about the LIBRA-seq recovery efficiency calculations). We hypothesized that the
incubations required during extended FACS experiments, either pre-sort (queued cells waiting
to be sorted) or post-sort (cells already sorted but awaiting completion of the experiment)
contributed to the low yield and high variability in recovery between samples. To test this,
splenocytes from four C57BL/6 mice and four VRCO1 gH mice, which express a germline-
reverted heavy chain from the HIV bnAb VRCO01 [8,45], were individually labeled with unique cell
hashes and pooled. Aliquots of the hashed splenocyte pool were either (1) held on ice for varying
intervals (0, 1, 2 or 4 hours) prior to sorting and library generation using a 10x Genomics
Chromium Controller, or (2) immediately sorted and held on ice for varying intervals post-sort (0,
1, 2, or 4 hours) before proceeding to library generation. For each aliquot, 1x10° random CD19+

Data Ingestion

read_10x_mtx() accepts CellRanger output files
directly, without any intermediate processing

adata = scab.read_10x_mtx(mtx_path '/path/to/filtered_bc_matrix', FASTA-formatted input files are automatically
bcr_file '/path/to/filtered_contig.fasta',
bcr_annot '/path/to/filtered_summary.csv')

annotated using abstar (AIRR-format)

Sample Demultiplexing

raw = scab.read_10x_mtx(mtx_path = '/path/to/raw_bc_matrix') demultiplex() uses cell hashes to demultiplex
multiple samples in a single Chromium reaction
by default, cell hash names are auto-detected,

although a list of cell hash names or a regular
adata = scab.tl.demultiplex(adata) expression can also be provided

Specificity Classification

classify_specificity() assigns antigen

adata = scab.tl.classify_specificity(adata, specificity Using AgBCS

raw,

agbcs ['H1', 'H5'] a list ofAgBCs to be classified can be provided via
RGP o agbcs, or a dictionary of specificity groups can be
groups = {'flu’: ['H1', 'H5']}) provided via groups
Clonal Lineage Assignment
adata = scab.vdj.clonify(adata) ~ assigns BCR sequences to clonal
lineages using the clonify algorithm
Save to Disk

write() saves the fully annotated AnnData
object to disk in h5ad format

Pair objects are serialized prior to writing to disk
and are deserialized when loading previously
saved data using scab.read()

scab.write(adata, '/path/to/my_data.h5ad") \ |

Figure 2. Workflow of single cell multi-omics data processing using scab. Example commands are shown for several common
data processing and analysis tasks. Briefly, starting with the unmodified output files from CellRanger, this sample workflow (1) reads
CellRanger output data and annotates BCR sequences using abstar [52]; (2) demultiplexes samples using cell hashes; (3) classifies
BCR specificity using two AgBCs (“H1” and “H2”) and a single specificity group (“flu”), which includes both AgBCs; (4) assigns BCR
sequences to clonal lineages using clonify [55]; (5) writes the integrated AnnData object to file in h5ad format.
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cells were sorted and used to prepare BCR and feature barcode sequencing libraries. We
observed no difference in recovery for samples subjected to a pre-sort hold, but noted a
substantial decline in recovery efficiency for samples held on ice after sorting (Figure 1b-c).
Notably, recovery using the unoptimized protocol closely matched the range of efficiencies in
the original LIBRA-seq protocol. We evaluated a variety of experimental conditions to identify
optimal parameters that maximize recovery of B cells held for several hours following FACS
enrichment. These included cell fixation using paraformaldehyde or methanol, sorting into tubes
and plates of varying sizes and types, and systematically assessing catch buffer volume and
composition (data not shown). In the end, we found that the optimal conditions involved bulk
sorting unfixed cells into a 96-well PCR plate well containing a low volume catch buffer of 20uL
of 100% fetal bovine serum (FBS). Using these conditions, we consistently obtained high
recovery efficiency (>25%) regardless of the post-sort hold duration (Figure 1d).

Streamlined production of next-generation DNA barcoded antigens.

We sought to improve the LIBRA-seq method by enhancing the antigen barcode complexes
(AgBCs) used to link BCR sequence and specificity. Previously, AgBCs were generated in a
multi-step process consisting of (1) site-specific biotinylation of protein antigens, (2) direct
conjugation of barcode oligonucleotides to the biotinylated antigen, and (3) addition of a
streptavidin-linked fluorophore to the barcoded and biotinylated protein antigen. This approach
has a significant drawback in that the oligonucleotide conjugation is not performed in a site-
specific manner. As a result, critical B cell epitopes are likely to be occluded or disrupted by the
barcode oligonucleotide. The original LIBRA-seq publication also cautions that the direct
oligonucleotide conjugation approach may result in substantial heterogeneity in the number of
barcode oligonucleotides attached to each antigen molecule, particularly across different
antigens and between different conjugation batches of the same antigen, which may confound
downstream analyses [44]. We have simplified the construction of next-generation AgBCs
through the use of a barcoding reagent generated by incubating a fluorophore-linked streptavidin
(or plain streptavidin, if a fluorophore is not desired) with a 5’-biotinylated barcode
oligonucleotide. Importantly, the biotinylated oligonucleotide is added at a sub-saturating
concentration (2.5:1 molar ratio of oligonucleotide:streptavidin), which ensures that the majority
of the resulting barcoding reagent molecules will have unoccupied biotin binding sites as well as
a similar number of barcode oligonucleotides. The barcoding reagent is then incubated with a
site-specifically biotinylated protein antigen. Each antigen molecule is thus linked to the
barcoding reagent in a site-specific manner that minimizes alterations to the native structure of
the antigen.

Selective enrichment of antigen-specific B cells using AgBCs.

Dual antigen labeling strategies, in which aliquots of the same antigen are conjugated to different
fluorophores and used to select B cells positive for both fluorescent markers, are commonly
used to reduce background when performing antigen-driven enrichment of B cells [46,47]. By
constructing two AgBCs for each antigen, each with a different fluorophore and barcode, we can
reduce background and improve enrichment selectivity both during sorting using dual
fluorophores and post-sort data analysis using dual barcodes. To evaluate the reproducibility of
our AgBCs, we stained B cells from transgenic mice expressing the human IGHV1-2*02 variable
gene (huVH1-2 Kl mice, [48]) with differently barcoded aliquots of the engineered HIV
immunogen eOD-GT8.1 [49], which is designed to target germline precursors of VRCO1-class
HIV bnAbs. UMI-normalized read counts of the differently barcoded eOD-GT8.1 AgBCs were
well correlated (r*=0.95), indicating a high level of reproducibility (Figure 1e). In each of our mAb
discovery experiments, we also include a dark (lacking a fluorophore) human serum albumin
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(HSA) AgBC. This negative control AgBC, which is not detectable during sorting, allows us to
identify and remove cells during downstream data analysis to which AgBCs are binding in a
nonspecific manner. This is particularly important when assessing BCR breadth against a panel
of AgBCs, as nonspecific binding to “sticky” cells can mimic the expected binding patterns of
broadly reactive BCRs. Demonstrating the importance of including a negative control AgBC, a
representative sample of B cells from VRC01 gH mice sorted using two competing AgBCs (eOD-
GT8.1 and eOD-GT8.1 KO, an epitope knockout variant that disrupts binding of antibodies that
recognize the CD4 binding site), a substantial fraction of cells that appeared to specifically bind
both eOD-GT8.1 and eOD-GT8.1 KO were also positive for HSA (Figure 1f). HSA+ and HSA- B
cells were not distinguishable based solely on binding to eOD-GT8 and eOD-GT8 KO,
emphasizing the importance of control AgBCs to assigning specificity profiles with high
confidence.

Computational analysis and integration of single B cell multi-omics data.

To process and integrate the various datasets obtained by single cell sequencing using AgBCs
and the 10x Genomics platform, which can include gene expression (GEX), paired BCR and TCR
sequences, AgBCs, cell hashes and other feature barcodes such as CITE-seq antibodies, we
have developed scab, a Python package for Single Cell Analysis of B cells. We developed scab
primarily as a means to perform interactive analyses in combination with notebook-like
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Figure 3. Classification of cell hashes and AgBCs. (a) Representative KDE plot of logz-transformed cell hash UMI counts. The
classification cutoff is highlighted, and clearly separates the positive and negative cell hash populations. KDE plots are optionally
generated when running scab.tl.demultiplex(). (b) UMAP plot of cells clustered using logz-transformed cell hash UMI counts. Cells
are colored by cell hash assignment. Of note, cell hashes 1-4 each comprise 20-25% of all input cells, while cell hashes 5-8 each
comprise 2-5% of all input cells. (c) Ridgeplot showing the distribution of logz-transformed UMI counts of cell hash 1 for all cell hash
assignment groups. Plot was generated with scab by calling scab.pl.cellhash_ridge(). (d) Fraction of cells classified as positive for
increasing numbers of differently barcoded aliquots of eOD-GT8.1 AgBC when performing classification on each AgBC separately.
A total of 9 different AgBCs were used, meaning approximately 40% of all recovered cells were classified as positive for all AgBCs.
(e) Fraction of cells classified as positive for each of 9 differently barcoded eOD-GT8.1 AgBCs when classification was performed
separately for each AgBC (colored points). The dashed line shows the number of cells classified as eOD-GT8.1 positive when using
a specificity group containing all 9 eOD-GT8.1 AgBCs.
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programming environments such as Jupyter [50,51]. To integrate these datasets, scab utilizes
the Sequence and Pair objects introduced in our ab[x] toolkit for antibody sequence analysis [52]
to link annotated BCR/TCR sequence information with GEX, antigen specificity, and feature
barcode (FBC) data for each cell in an integrated AnnData object [53]. Scab includes utilities to
read and integrate data produced by CellRanger [54] and write integrated AnnData objects as
.h5ad-formatted hdf5 files. During data ingestion, scab will automatically annotate BCR and TCR
contigs using abstar [52]. Scab also includes a variety of tools for interactive single cell data
analysis and exploration, including sample demultiplexing using cell hashes, BCR specificity
classification using AgBCs, and clonal lineage assignment using the clonify algorithm [55], as
well as sophisticated visualization tools for exploratory data analyses and generating
publication-quality figures. An illustrated code example is shown in Figure 2, which performs a
common sequence of operations: data ingestion and automatic BCR sequence annotation,
demultiplexing, specificity classification, clonal lineage assignment and saving the fully
annotated AnnData object to disk as an h5ad-formatted file.

Tools for cell hash-based sample demultiplexing have previously been reported [56,57],
however, our experience with existing methods based on Gaussian mixture models (GMMs) or
k-means clustering have shown reduced accuracy when the distribution of hashes is highly
unequal (that is, when some hashes are found much more or much less frequently than others).
Specifically, we noted degraded performance of GMM-based cell hash classification for
individual samples comprising less than 5% of the overall sample pool. Because the frequency
of antigen-specific B cells can vary substantially between individuals, we often multiplex samples
that differ greatly in cell number. Thus, we sought to develop an alternative approach designed
to accurately demultiplex highly heterogeneous cell hash pools. For each cell hash, we compute
a kernel density estimate (KDE) of the log.-transformed, UMI-normalized read counts. We then
identify the local minimum that optimally separates the KDE into two populations: positive and
negative (Figure 3a). This inflection point is used as the cell hash classification threshold. This
approach accurately demultiplexes samples even when the frequency of individual cell hashes
differs by nearly an order of magnitude (Figure 3b). Cells that exceed the threshold for multiple
hashes are considered doublets, and cells that do not exceed any threshold are considered
unassigned (Figure 3c).

Classification of BCR specificity using AgBCs is made more complex by the potentially wide
range of binding affinities displayed by antigen-specific BCRs and a variable number of
membrane-bound BCR molecules on the cell surface of each B cell. These factors combine to
produce a gradient of UMI-normalized count values for each AgBC rather than the clearly defined
positive and negative populations typical of CITE-seq or cell hash data (Figure 3a). Separately
for each AgBC, we first inspect “empty” droplets in which CellRanger did not identify a cell. We
then compute a negative binomial distribution of UMI-normalized AgBC counts and establish the
background threshold at the 99.7th percentile (30). Any cell-containing droplets with UMI-
normalized AgBC counts above this threshold are considered antigen positive. When working
with large AgBC panels containing antigens that may compete for BCR binding (for example,
epitope mapping panels or panels containing multiple antigen variants to identify cross-reactive
BCRs), it is possible that competition for the finite number of BCR molecules on the B cell surface
may reduce the number of bound AgBCs for one or more of the competing antigens, resulting
in incorrect specificity classification. To combat this, we introduced the concept of specificity
groups, which represent a group of AgBCs that are expected to compete for BCR binding. When
performing specificity classification, the classification threshold is set by considering the sum of
all grouped AgBC UMI counts in empty droplets, and any cell-containing droplets whose
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summed AgBC UMI counts exceeding the threshold are considered positive. To demonstrate
the utility of this approach, we separately barcoded nine aliquots of eOD-GT8.1 and sorted
antigen-positive B cells using the pool of eOD-GT8.1 AgBCs. While approximately 40% of all
sorted cells were classified as positive for all nine AgBCs individually (Figure 3d), the use of a
specificity group containing all nine AgBCs correctly classified a significantly higher number of
cells than did any of the competing AgBC individually (Figure 3e).

Isolation of ultra-rare HIV broadly neutralizing antibody precursors

The design of vaccine immunogens that reliably activate unmutated bnAb precursors and guide
their development toward mature bnAbs is the foundation of germline-targeting and epitope-
focusing vaccine development strategies [58]. For HIV in particular, bnAbs tend to require
uncommon genetic features and their precursors are expected to be found at very low
frequencies in the circulating naive B cell repertoire [59-61]. VRCO01-class HIV bnAbs, which all
encode a conserved set of required genetic features including the IGHV1-2 heavy chain variable
gene and a short (5 amino acid [AA]) light chain complementarity determining region 3 (LCDR3),
target the CD4 binding site (CD4bs) on HIV Env and are among the most broad and potent
classes of HIV bnAbs [62]. Although inferred germline variants of VRCO1-class bnAbs typically
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Figure 4. Characterization of VRC01-class and IOMA-class HIV bnAb precursors. (a) Density plot of logz-normalized AgBC UMI
counts for eOD-GT8.1 (x-axis) and eOD-GT8.1 KO (y-axis). Cells positive for eOD-GT8.1 and negative for eOD-GT8.1 KO (indicating
binding to the CD4bs epitope) are indicated in red, all others are in gray. VRCO1-class (X) and IOMA-class (O) are highlighted. Plot
was generated with scab by calling scab.pl.feature_kde(). (b) LCDR3 logo plots for all recovered VRCO1-class precursors (top) and
all other 5AA LCDRS3s, which were not paired to a heavy chain encoding IGHV1-2 (bottom). Residues found in mature VRCO1-class
bnAbs are colored dark gray, all other residues are light gray. (c) Light chain V-gene use in isolated VRC01-class precursors. Light
chain V-genes used by mature VRCO1-class bnAbs are colored dark gray, all others are colored light gray. (d) Heavy chain and light
chain CDR3 sequences for isolated IOMA-class precursors. LCDR3s that have been previously reported in IOMA-class precursors
[65] are highlighted in red. () UMAP plots using single cell RNA-seq data for all recovered cells from D931. On the left, cells are
colored by subset, with naive B cells in blue and memory B cells in green. The same UMAP embedding is plotted on the right in gray
with cells encoding VRCO01-class (X) or IOMA-class (O) precursors highlighted. (ff UMAP plots using single cell RNA-seq data for all
recovered cells from D326651. On the left, cells are colored by subset, with naive B cells in blue, memory B cells in green, and
atypical B cells in pink. The same UMAP embedding is plotted on the right in gray with cells encoding VRCO1-class (X) or IOMA-
class (O) precursors highlighted. Plots in (e) and (f) were generated with scab by calling scab.pl.umap().
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do not detectably bind HIV, germline targeting immunogens have been designed which
selectively target naive B cell precursors which encode the genetic features required of VRCO1-
class bnAbs [8,10,49,63,64]. Interrogating the B cell repertoires of HIV-uninfected individuals
with these immunogens revealed the frequency of VRCO1-class bnAb precursors to be roughly
1 in 3x10°-2.4x10° circulating naive B cells [49,65]. IOMA-class HIV bnAbs are similar to VRCO01-
class bnAbs in that they also target the CD4bs and use IGHV1-2, but IOMA-class light chains
using IGLV2-23 and encode an 8 AA LCDRS3 [66]. Although less broad and potent than VRCO01-
class bnAbs, it has been hypothesized that IOMA-class bnAbs will be easier to elicit by
vaccination due to its lower level of somatic mutation and the use of a much more common
LCDRS3 length.

We constructed two separately barcoded AgBCs for eOD-GT8.1 and eOD-GT8.1 KO. Combined
with a dark HSA AgBC and a dually barcoded positive control antigen (BG505 SOSIP), the
complete AgBC panel was used to isolate antigen-specific B cells from a total of 7.04x10°
peripheral blood B cells from two healthy adult donors (D931 and D326651). We processed a
total of 24,792 sorted cells across two Chromium 5’ Single Cell v2 reactions and recovered 9,216
paired antibody sequences for an overall paired sequence recovery efficiency of 37.2%. After
AgBC processing and removal of “sticky” cells that displayed substantial HSA AgBC binding,
we recovered a total of 2,618 eOD-GT8.1-specific B cells. Of these, 162 B cells were classified
as positive for eOD-GT8.1 and negative for eOD-GT8.1-KO, indicating epitope specific binding
to the HIV CD4bs. From the eOD-GT8.1 positive population, we identified 18 VRCO01-class B
cells (encoding IGHV1-2 and a 5AA LCDR3) and four IOMA-class B cells (encoding IGHV1-2,
IGLV2-23, and an 8AA LCDRS3). Notably, all of the VRCO1-class and IOMA-class B cells
displayed AgBC binding patterns consistent with CD4bs specificity (Figure 4a). Our VRCO1-class
recovery equates to an overall frequency of 1 in ~3.9x10° B cells (unadjusted for expected losses
during sorting and library preparation), which is consistent with other unadjusted precursor
frequency estimates [49,65,67]. Our recovery of IOMA-like precursors mirrors previous work
using eOD-GT8.1 tetramers and 60-mers [65].

The genetics of the isolated bnAb precursors (VRCO1-class and IOMA-class) closely matched
our expectations, based on the sequences of their respective bnAbs and prior studies which
isolated CD4bs-targeting bnAb precursors with more traditional techniques. The LCDR3s of
isolated VRCO1-class precursors showed enrichment of residues found in mature VRCO1-class
bnAbs (Figure 4b) and 16 of 18 precursors encode light chain V genes used by mature VRCO1-
class bnAbs (Figure 4c). The two remaining light chain V genes, IGKV1-9 and IGKV3-11, have
been observed in previously reported VRCO1-class precursors isolated with eOD-GT8.1 [67]. As
in previous studies, IOMA-class precursors encode diverse HCDR3s of varying lengths, but the
critical LCDRS3 region is well conserved (Figure 4d). Indeed, two of the LCDR3 sequences we
recovered were identical to previously isolated IOMA-class bnAb precursors [65].

A significant advantage of our next-generation antigen barcoding approach compared to
traditional techniques based on single cell sorting and PCR is the ability to simultaneously
recover single cell transcriptional profiles together with full-length BCR sequences and AgBC
data. This enables a more holistic analysis of the B cell repertoire, linking phenotypic properties
like cellular activation and differentiation states with BCR genetics and antigen specificity. All of
the VRCO1-class and IOMA-class precursor sequences we isolated were completely unmutated
in both heavy and light chains and were of the IgM isotype, suggesting they were recovered from
naive B cells. Analysis of single cell transcriptomics data, however, shows that two of the B cells
encoding VRCO01-class precursors from donor D931 belong to the memory B cell subset (Figure
4e). Additionally, three VRCO1-class precursors and one IOMA-class precursor from donor
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D326651 are encoded by atypical B cells (Figure 4f), a B cell subset that was recently shown to
be more frequent in healthy individuals than previously thought [68].

DISCUSSION

Efficient isolation of large numbers of pathogen-specific mAbs is critically important for
fundamental immunological analyses of host/pathogen interactions, discovery of biological
therapeutics for a variety of human diseases, and the development of efficacious vaccines. Here,
we present an optimized protocol for mAb isolation using next-generation antigen barcoding as
well as an integrated computational framework for analysis and visualization of B cell multi-omics
data. We demonstrated the utility of our improved protocol by isolating thousands of natively
paired mAb sequences specific for eOD-GT8.1, an HIV germline targeting immunogen, including
several extremely rare VRCO1-class and IOMA-class bnAb precursors. This streamlined
approach removes a significant obstacle to the large-scale study of humoral immune responses
to vaccination and infection.

As is common, however, removal of one experimental hurdle reveals the existence of yet another
bottleneck further downstream in the process. In this case, streamlining the isolation of natively
paired sequences for large numbers of antigen-specific mAbs results in sequence datasets that
far exceed our capacity for biophysical characterization, including structural analyses, fine
epitope mapping, and evaluation of additional functional properties beyond binding specificity
(neutralization, effector function, protection, etc). In the future, it is possible that paradigm-
shifting advances such as those seen recently with AlphaFold [69] will produce computational
models capable of accurately inferring many or all of these functional properties directly from
mAb sequences. Such models will be crucially important moving forward, even if they do not
completely eliminate the need for recombinant expression and evaluation. One can easily
envision a scenario in which large numbers of mAbs with desirable binding properties (isolated
using techniques similar to those described here) can be screened in silico using models adept
at predicting structure [70,71], fine epitope specificity [72-75], and other functional properties
[76]. The results of in silico screening can be used to make informed down-selection decisions
to focus limited biophysical characterization efforts toward the most interesting mAbs. As an
example, structure and epitope predictions can be used to group similar antibodies and identify
a relatively small number of representative mAbs that epitomize the functional properties of each
group. Moving forward, we envision a virtuous cycle in which large mAb/specificity datasets are
used to train better models and algorithms, which will in turn allow accurate analysis of larger or
more complex mAb/specificity datasets. Increasingly rich datasets that accurately link natively
paired antibody sequences with specificity information will be invaluable tools for training
predictive models that may one day reduce or eliminate entirely the need for recombinant
expression and characterization of large numbers of mAbs and unlock far more comprehensive
studies of humoral immunology than are currently possible.

MATERIALS AND METHODS

Mouse samples

Three mouse models were used in this study: (1) VRC01-gH mice, which contain a transgene
encoding the recombined, germline-reverted heavy chain of the human anti-HIV antibody VRCO1
[8]; @) huVH1-2 Kl mice, which contain a transgene encoding the human variable gene IGHV1-
2*02, which is a necessary genetic feature of the human anti-HIV antibody VRCO01 [48]; and (3)
C57BL/6J mice (Jackson Laboratories). Mouse studies were approved and carried out in
accordance with the Institutional Animal Care and Use Committee at Scripps Research (La Jolla,
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CA). The mice were housed, immunized, and euthanized at Scripps in compliance with the Guide
for the Care and Use of Laboratory Animals (National Research Council, 1996).

Human samples

Human leukapheresis samples were obtained from healthy donors of the San Diego Blood Bank
or procured commercially (HemaCare). Peripheral blood mononuclear cells (PBMCs) were
isolated by gradient centrifugation (Lymphoprep, StemCell Technologies) and cryopreserved in
FBS with 10% DMSO pending further processing.

Synthesis of barcoding oligonucleotides
Barcoding oligonucleotides all use the following format:

CGGAGATGTGTATAAGAGACAGNNNNNNNNNNXOOOXXXXXXXXXXNNNNNNNNNCCCATATAAGA*A*A

Where X represents the barcode sequence, and A* represents a phosphorothioated bond to
inhibit nuclease degradation. Barcode sequences are shown in Table S1. Barcode sequence
sets were designed with a minimum edit distance of 7 nucleotides from all other barcodes in the
set. CellRanger allows a single barcode mismatch, meaning at least 6 sequencing and/or PCR
errors would be required for one barcode to be miscounted as another.

Preparation of next-generation DNA-barcoded antigen baits

Protein antigens encoding a C-terminal Avi-tag [77] were expressed and purified as described
previously [49,63,65], and site-specifically biotinylated (BirA500 biotin-protein ligase kit, Avidity
LLC) according to the manufacturer’s protocol. Barcoding complexes containing streptavidin
(SAV), a barcode oligonucleotide and, optionally, a fluorophore were either procured
commercially (TotalSeq-C, Biolegend) or created in-house. To create custom antigen barcoding
reagents, 5’-biotinylated barcode oligonucleotides (Integrated DNA Technologies) were
incubated with streptavidin (ThermoFisher Scientific) or a streptavidin-conjugated fluorophore
(AF647 or AF488, ThermoFisher Scientific; BV421, BD Horizon) at a 2.5:1 molar ratio at room
temperature for 30 minutes. AQBCs were generated by incubating biotinylated protein antigens
with custom or commercially procured barcoding reagents at a molar ratio of either 2:1 or 4:1,
depending on the molecular weight of the protein antigen (Table S2). The conjugation reaction
was incubated at room temperature and protected from light for a minimum of 30 minutes. Lastly,
200 nM of free unlabeled biotin was added to the AgBCs and left to incubate at room
temperature for 15 min to saturate any unoccupied binding sites on streptavidin.

Cell labeling
Aliquots of cryopreserved PBMCs were thawed by gentle agitation in a 37°C water bath and,

when completely thawed, transferred to a 15 mL conical tube containing 10 mL of sterile, pre-
warmed post-thaw medium consisting of RPMI 1640 with 50% FBS. Cells were centrifuged at
400g for 5 min, supernatant was discarded, and cell pellets were gently resuspended in 5 mL
cold sterile FACS Buffer (1X DPBS with 1% FBS, 1 mM EDTA and 25 mM HEPES). An aliquot of
20 pL of each PBMC sample was set aside for cell counting and verification of viability. The
FACS antibody master mix (Table S3) was freshly prepared on ice while protected from light.
Aliquots of 10-20 million PBMCs were resuspended on ice with 100 yL master mix along with
200 nM of a “dark” (no fluorophore) HSA (Acro Biosciences) AgBC and 1.25 pg of a unique cell
hashing antibody for each sample (TotalSeq-C anti-human or anti-mouse Hashtag, BioLegend).
Cells were incubated for 15 min on ice. For experiments involving epitope knockout AgBCs,
200nM of each KO AgBC was added and cells were incubated for an additional 15 min on ice in
the dark. Next, 200 nM of the remaining AgBCs were added and cells were incubated for 30 min
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on ice in the dark. Finally, 1 mL of 1:300 diluted dead cell staining reagent (LIVE/DEAD Fixable
Aqua, ThermoFisher Scientific) was added and cells were incubated on ice in the dark for 15
mins. Cells were washed twice with 10 mL of cold FACS buffer, resuspended at the desired
concentration using FACS buffer and filtered twice through a 35 pm nylon mesh filter (Falcon) to
remove cell aggregates. The second filtration was done immediately prior to sorting.

Cell sorting and post-sort processing

Prior to sorting, an appropriate number of capture wells in a 96-well PCR plate were prepared
by filling with sterile 100% FBS to completely coat the well surface. FBS was then removed from
each capture well and 20 pL of fresh FBS was added. Plates were sealed with sterile foil seals
(AlumaFoil, Qiagen) and kept at 4°C until the start of the sorting process. When ready to sort,
the seal was removed, and the plate was placed onto the pre-chilled plate sample collection
platform of a FACSMelody (BD Biosciences). Cells were bulk sorted into the 96-well collection
plate using the Purity sort mode and at a flow rate not higher than 1500-2000 events per second
to ensure sorting efficiency of 85-95%. Up to 15,000 cells were sorted into a single well. Once
sorting was completed, the 96-well capture plate was removed and 80 pL of cold, sterile PBS
was added to each capture well to dilute the FBS concentration to 10% v/v or less. The capture
plate was again sealed with a sterile foil seal and centrifuged at 2500 rpm for 2 minutes. The seal
was removed and 38.6 L of buffer was added to an adjacent empty well to serve as a reference
point for buffer removal. Excess 10% FBS was carefully removed from each sort well until the
remaining volume matched the Trypan Blue reference well.

Single cell library generation

Single cell sequencing libraries were prepared using the Chromium Controller (10x Genomics)
by following the provided protocol (Chromium Single Cell 5' Reagent Kits User Guide (v2
Chemistry Dual Index) with Feature Barcoding technology for Cell Surface Protein and Immune
Receptor Mapping; CG000330, Rev C) with a few critical modifications:

e Step 1.2b-c: Master Mix was added to the pelleted cells (rather than suspended cells
being added to the Master Mix). Cells + Master Mix were mixed by very gently pipetting
5-7 times while being careful not to introduce bubbles. Cells + Master Mix were then
carefully added to the appropriate well of the Next GEM Chip. This is the MOST
CRITICAL step of the process and should be performed as gently as possible, as any
additional cell stress can significantly affect downstream recovery.

e Step 1.4e: After completing the Chromium reaction, the resulting emulsions were
aspirated very slowly (aspiration should take 20 seconds) and very slowly transferred into
a chilled PCR tube (dispensing should take 20 seconds).

e Step 3.0e: If fewer than 1,000 cells were sorted, the total number of amplification cycles
was increased to 10.

e Step 3.3d: If fewer than 1,000 cells were sorted, the total number of amplification cycles
was increased to 10.

e Step 3.5a: If the BioAnalyzer trace showed an extra “shoulder” peak adjacent to the
expected V(D)J library peak, an additional SPRI cleanup (Step 3.4) was performed.

Sequencing
The resulting libraries were quantified (Qubit) and pooled at a 5:1 mass ratio between V(D)J and

feature barcode libraries, and sequenced with a target depth of at least 10,000 reads per cell
(5,000 VDJ reads and 5000 feature barcode reads per cell). Gene expression libraries were
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sequenced with a target depth of 30,000 reads per cell. Libraries were loaded at 750 pM with
2% PhiX on a NextSeq 2000 using 100-cycle P3 reagent kits or on a NovaSeq 6000 using 100-
cycle SP reagent kits with the following run parameters:

e Read 1: 26 cycles
e 7 index: 10 cycles
e i5index: 10 cycles
e Read 2: 90 cycles

Data processing

Raw sequencing data was processed using CellRanger (version 6.0.2 or 6.1.2) to generate
assembled VDJ contigs and counts matrix files. Briefly, cellranger mkfastq was used to create
FASTQ files from sequencing base call (BCL) files. We then used cellranger multi to process GEX,
VDJ and feature barcode data for each Chromium reaction. Output from CellRanger was read
and annotated using scab, as described above. The source code for scab is freely available
under the permissive MIT license via GitHub (github.com/briney/scab) and can be installed using
the Python Package Index (pypi.org).

Gene expression data were processed using scab and scanpy [53]. Cells were removed if they
contained fewer than 200 genes, more than 3,500 genes, or more than 10% mitochondrial gene
counts. Genes found in fewer than 0.1% of cells were also removed. Counts were normalized
using scanpy’s “cell_ranger” normalization flavor prior to being log plus one transformed.
Dimensionality of the gene counts matrix was reduced by performing a principal component
analysis, the neighborhood graph was computed, cells were clustered using the Leiden algorithm
[78] and the neighborhood graph was embedded using UMAP [79,80]. To minimize the influence
of individual immunoglobulin (Ig) germline gene segments, which are not directly related to B cell
phenotype, Ig germline gene segments are not considered when performing dimensionality
reduction, clustering or embedding. Ig genes were removed from consideration if they matched
the following regular expression:

“|G[HKL][VDJ][1-9].+|TRIABDG][VDJ][1-9]"

Leiden clusters were assigned to the appropriate B cell developmental subset using genes
known to differentiate naive B cells ({(GHD and TCL1A), memory B cells (CD27, IGHG1-4, IGHAT-
2 and IGHE), and atypical B cells (FGR, GDI2, FCRL5, and ITGAX) (Figure S1).

Calculation of LIBRA-seq recovery efficiency

Recovery efficiency was not reported in the original LIBRA-seq publication, however, the authors
did report the number of cells for which paired Ab sequences and antigen specificity data were
recovered, as well as the “Targeted Cell Recovery” of each 10x Genomics Chromium reaction.
Targeted Cell Recovery is a calculation performed as part of the 10x Genomics Chromium
protocol which determines the total number of cells that should be loaded to ensure that the
targeted number of emulsion droplets contain both a cell and a barcoded GEM bead (Chromium
NextGEM Single Cell V(D)J Reagent Kits v1.1 User Guide with Feature Barcoding technology for
Cell Surface Protein; CG000208, Rev G). We can thus use the Targeted Cell Recovery to back-
calculate the total number of input cells and compute overall recovery efficiency for each
reaction. In the 10x Genomics protocol, the Targeted Cell Recovery dilution calculation is
rounded to the nearest 0.1uL, so the number of input cells may vary slightly based on the starting
concentration of input cells. For each Targeted Cell Recovery value, we computed the number
of input cells for every starting concentration listed in the 10x Genomics protocol and used the
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minimum for the following recovery efficiency calculations. For the Ramos B cell lines, 2,321
cells were obtained using a Targeted Cell Recovery of 10,000 cells, indicating a minimum input
of 16,740 cells (range: 16,460-16,600) and an overall recovery efficiency of 13.9%. For donor
NIAID45, 889 cells were obtained using a Targeted Cell Recovery of 9,000 cells, indicating a
minimum input of 14,790 cells (range: 14,790-14940) and an overall efficiency of 6.1%. For donor
N90, 1,465 cell were recovered from a Targeted Cell Recovery of 4,000 cells, indicating a
minimum input of 6,560 cells (range: 6,560-6,660) and an overall efficiency of 2.3%.
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SUPPLEMENTARY INFORMATION

Table S1. Barcoded oligonucleotides for AgBC construction.

name barcode

AgBC1 TAGGCGTCGATGCCG
AgBC2 ACCGATACTCGACAT
AgBC3 TGTCGACATCGCCCC
AgBC4 TCCCCGGCAGTAGAA
AgBC5 CGGTAGGATCCACGC
AgBC6 GTCACAAGTGACATC
AgBC7 GATGCGCACGAACCG
AgBC8 CTAAAGGTTTATATC

AgBC9 GCTAGTTCGGCTTAT
AgBC10  TTACCCTAGACAAGC
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Table S2. Preparation of baits based on molecular weight.

BG505 SOSIP eOD-GT8.1

bait concentration 200 nM 200 nM
molar ratio of bait:SAV 2:1 4:1
bait molecular weight 225 kD 22 kD
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Table S3. Cell staining master mix (by species).

specificity mouse human
CD3e - APC-Cy7
CD4 APC-Cy7 APC-Cy7
CD8a APC-Cy7 APC-Cy7
Ly6C APC-Cy7 -
CD11c APC-Cy7 -
CD14 - APC-Cy7
F4/80 APC-Cy7 -
CD19 PE PerCP-Cy5.5
IgD PerCP-Cy5.5 -

IgM BV786 PE
lgG - BV786
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Figure S1. Genes distinguishing naive, memory and atypical B cell subsets. Plot was
created in scanpy using scanpy.pl.dotplof().
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