

Title: Genomic Surveillance of SARS CoV2 in COVID-19 vaccinated healthcare workers in Lebanon

Habib Al Kalamouni^{1†}, Farouk F. Abou Hassan^{2†}, Mirna Bou Hamdan², Andrew J. Page³, Martin Lott³, Nada Ghosn⁴, Alissar Rady⁵, Rami Mahfouz⁶, George F. Araj⁶, Ghassan Dbaibo⁷, Hassan Zaraket¹, Nada M. Melhem^{2*}, Ghassan M. Matar^{1*}

¹Department of Experimental Pathology, Immunology, & Microbiology, Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

²Medical Laboratory Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon

³Quadram Institute Bioscience, Norwich Research Park, UK

⁴Epidemiological Surveillance Unit, Ministry of Public Health, Beirut, Lebanon

⁵World Health Organization, Beirut, Lebanon

⁶Department of Pathology & Laboratory Medicine, Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

⁷Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

***Corresponding authors:**

Email: gmatar@aub.edu.lb (GMM)

E-mail: melhemn@aub.edu.lb (NMM)

[†]These authors contributed equally to this work.

1 Abstract

2 The emergence of SARS-CoV-2 variants including the Delta and Omicron along with waning of
3 vaccine-induced immunity over time contributed to increased rates of breakthrough infection
4 specifically among healthcare workers (HCWs). SARS-CoV-2 genomic surveillance is an
5 important tool for timely detection and characterization of circulating variants as well as
6 monitoring the emergence of new strains. Our study is the first national SARS-CoV-2 genomic
7 surveillance among HCWs in Lebanon. We collected 250 samples from five hospitals across
8 Lebanon between December 2021 and January 2022. We extracted viral RNA and performed
9 whole genome sequencing using the Illumina NextSeq 500 platform. A total of 133 (57.1%)
10 samples belonging to the Omicron (BA.1.1) sub-lineage were identified, as well as 44 (18.9%)
11 samples belonging to the BA.1 sub-lineage, 28 (12%) belonging to the BA.2 sub-lineage, and only
12 15 (6.6%) samples belonging to the Delta variant sub-lineage B.1.617.2. These results show that
13 Lebanon followed the global trend in terms of circulating SARS-CoV-2 variants with Delta rapidly
14 replaced by the Omicron variant. This study underscores the importance of continuous genomic
15 surveillance programs in Lebanon for the timely detection and characterization of circulating
16 variants. The latter is critical to guide public health policy making and to timely implement public
17 health interventions.

18 **Keywords:** SARS-CoV-2, Variants of Concern, Genomic Surveillance, Healthcare Workers,
19 NextSeq 500, Lebanon

20

21

22 **Introduction**

23 Since its emergence in December 2019, severe acute respiratory syndrome coronavirus 2
24 (SARS-CoV-2) remains a global public health threat. As of May 16, 2022, more than 521,476,365
25 confirmed cases and 6,263,965 deaths have been reported worldwide [1]. In Lebanon, more than
26 1,098,030 confirmed cases and 10,408 deaths have been reported as of May 15, 2022 [2]. Vaccine
27 development against SARS-CoV-2 proceeded in an unprecedented pace with 11 vaccines granted
28 emergency use listing (EUL) by the World Health Organization (WHO) as of May 20, 2022 [3].
29 More than 11.4 billion vaccine doses have been administered worldwide since the start of COVID-
30 19 vaccine rollout in December 2020 [1]. Despite the availability of effective vaccines against
31 SARS-CoV-2, reports of breakthrough infections among vaccinated individuals are increasingly
32 reported globally [4-8].

33 Since the emergence of SARS-CoV-2, new variants have evolved from the original SARS-
34 CoV-2 strain (Wuhan 19 strain (WA1/2020)). These variants are classified into variants under
35 monitoring (VUM), variants of interest (VOI), and variants of concern (VOC) and [9, 10]. VUM
36 are variants with genetic changes that are suspected to affect virus characteristics and may pose
37 future risk but with yet no clear evidence of phenotypic or epidemiological impact. VOI are SARS-
38 CoV-2 variants possessing predicted or known genetic changes that affect the characteristics of
39 the virus (transmissibility, disease severity, immune escape, therapeutic escape) and known to
40 cause significant community transmission or multiple COVID-19 clusters in multiple countries.
41 VOC are SARS-CoV-2 variants that meet the definition of a VOI and are associated with increased
42 transmissibility detrimental change in COVID-19 epidemiology, increased virulence, changed
43 clinical disease presentation, and decreased effectiveness of public health and social measures,

44 vaccines, or therapeutics against the virus. To date, the World Health Organization (WHO) has
45 identified five VOCs worldwide: Alpha (B.1.1.7 lineage) first detected in the United Kingdom
46 (UK), Beta (B.1.351 lineage) first detected in South Africa, Gamma (P.1 lineage) first detected in
47 Brazil, Delta (B.1.617.2 lineage) first detected in India and Omicron (B.1.1.529 lineage) first
48 reported in South Africa [10]. Moreover, several VOI have been identified in several countries;
49 these include B.1.427 and B.1.429 from the USA (California, WHO alert since July 6, 2021),
50 B.1.525 from the United Kingdom and Nigeria, B.1.526 from the USA (New York), B.1.617.1 and
51 B.1.617.3 from India, P2 from Brazil, and C.37 from Peru [9]. The WHO is continuously
52 monitoring and assessing the evolution of SARS-CoV-2 and the emergence of new variants with
53 increased risk to the global public health.

54 The B.1.617.2 lineage along with its sublineages made up the Delta variant that was
55 responsible for the COVID-19 surge in India, eventually spreading and dominating globally [11].
56 Despite the high replicative efficiency, reduced sensitivity to host immune responses, and high
57 transmissibility of the Delta variant compared to previous VOCs, vaccine effectiveness was
58 sustained against both the Alpha and Delta variants [11]. In November 2021, the surge of cases in
59 South Africa marked the identification of a new VOC named Omicron (B.1.1.529). Omicron
60 replaced the Delta variant and was characterized by a higher number of amino acid substitutions,
61 higher transmissibility and partial resistance to vaccine induced immunity compared to previous
62 VOCs [12-14]. Studies showed that although Omicron had higher rates of reinfection, it was
63 clinically less severe compared to the Delta variant suggested to be driven by prior infections and
64 T cell immune responses [11]. While two doses of COVID-19 vaccines elicit high level of
65 protection against symptomatic disease, the former wanes 4-6 months following the second dose
66 of the BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna) or ChAdOx1 nCoV-19 (Oxford-

67 AstraZeneca vaccines) [15, 16]. Recent studies showed that vaccine effectiveness against the
68 Omicron variant (B.1.1.529) was lower than the Delta variant (B.1.617.2) after primary
69 immunization with 2 doses of the ChAdOx1 nCoV-19, BNT162b2 or mRNA-1273 vaccines with
70 significant reduction in vaccine effectiveness against the two variants ≥ 25 weeks following the
71 second dose [17]. Nevertheless, vaccine effectiveness against symptomatic disease was restored
72 following a booster shot, underscoring the importance of a third dose [15, 18].

73 Healthcare workers (HCWs) are at increased risk of SARS-CoV-2 infection compared to
74 the general population and have been prioritized in COVID-19 vaccine rollout worldwide [19]. In
75 Lebanon, HCWs were among the first priority groups to receive the BNT162b2 vaccine; the
76 administration of the latter started in mid-February 2021 and the second dose was administered 21
77 days following the first dose. The use of personal protective equipment (PPE) including mask
78 mandates for patients and visitors significantly reduced the occupational risk of acquiring COVID-
79 19 by HCWs [20]. However, waning immunity and the emergence of antigenically drifted VOCs
80 meant that HCWs are at risk of breakthrough infections [4, 5, 8, 21]. Among 22,729 HCWs in the
81 US who received at least one dose of an mRNA-based vaccine (BNT162b2 or mRNA-1273), 189
82 tested positive for SARS-CoV-2 [6]. While the majority (60%) of these infections occurred within
83 14 days following the first dose, 14% of the cases occurred > 14 days post second dose. Similarly,
84 39 out of 1,497 HCWs in Israel had breakthrough infections after receiving the second dose of
85 BNT162b2 vaccine with most of these infections being asymptomatic or mild [4]. Moreover, the
86 incidence of breakthrough infections following the second dose of the ChAdOx1 nCoV-19 vaccine
87 was estimated at 1.6% among 3000 HCWs in India [7]. Interestingly, the Omicron variant requires
88 20 to 40 times more neutralization antibodies than Delta, which might have contributed to higher
89 breakthrough infection among people with only two vaccine doses [22]. The resurgence of SARS-

90 CoV-2 is attributed to waning of immunity over time and emergence of SARS-CoV-2 variants
91 [23]. These breakthrough infections carry an infectious potential especially since these infections
92 are mostly asymptomatic and thus would increase the risk of viral spread to high-at-risk
93 populations [4].

94 Genomic surveillance of SARS-CoV-2 was first initiated in Lebanon back in 2020 with
95 direct support from the WHO [24]. Lebanon was the first in the Eastern Mediterranean Region
96 (EMR) to identify the Delta variant in a timely manner. However, the sampling was done randomly
97 and mainly on travelers. In collaboration with the Ministry of Public Health (MoPH) and direct
98 support from the WHO, this study allowed for the establishment of a structured mechanism by
99 which we can perform genomic surveillance of SARS-CoV-2 on HCW's to support the timely
100 implementation of public health measures to control the spread and emergence of new SARS-
101 CoV-2 variants and inform global surveillance. Here, we report the first genomic data from this
102 surveillance effort focusing primarily on breakthrough infections detected among HCWs, a group
103 with the highest vaccination coverage among the Lebanese population.

104 **Results**

105 **Demographic characteristics of study participants**

106 Our study included a total of 250 HCWs testing positive by RT-PCR between December 1, 2021
107 (n=27), and January 31, 2022 (n=223). Data on the occupation and COVID-19 vaccine status were
108 available for only 175 HCWs working at AUBMC. Among those, the majority were females (64%)
109 and received at least two doses of the BNT162b2 COVID-19 vaccine (95.4%). Nurses (39.4%),

110 medical doctors (14.8%) and technicians (10.3%) accounted for the majority of samples (Table 1).
111 None of the SARS-CoV-2 positive HCWs were hospitalized.

112 **Table 1. Demographic characteristics of HCWs recruited at AUBMC**

Variable	N	%
Gender		
Males	63	36
Females	112	64
Vaccination status		
≥2 doses	167	95.4
1 dose	4	2.3
Unvaccinated	1	0.6
Not documented	3	1.7
Occupation		
Nurses	69	39.4
Medical doctors	26	14.8
Technicians	18	10.3
Clerks, tellers and clinic assistants	16	9.1
Pharmacists	5	2.8
Physical therapists	2	1.1
Others ^a	40	22.8

113 ^aAdministrative staff, research assistants, janitors, and security guards

114 **SARS-CoV-2 phylogenetic analysis**

115 Lineage analysis was performed using the Pangolin COVID-19 lineage assigner. Overall, 10
116 lineages were identified among HCWs (Table 2). A total of 17 samples did not yield sufficient
117 sequencing data to provide a lineage. This was most likely due to sample storage and handling
118 errors as they passed through multiple labs in multiple countries. Consequently, we excluded them
119 from the analysis. As expected, the Omicron variant was the predominant VOC (90.6%) detected
120 in most of our analyzed samples followed by the Delta variant (6.4%). The predominant lineages
121 identified were BA.1.1 and BA.1 accounting for 57.1% and 18.9% of the samples, respectively
122 (Table 2 and Fig 1). Collection date was available for 225 of the specimens. Out of those, 27 were
123 collected in December 2021 and 198 were collected in January 2022. Our results revealed that
124 Omicron BA.1.1 variant was the predominant VOC circulating in December 2021 (37%) and
125 January 2022 (56%) followed by 22.2% and 19.2% BA.1, respectively (Fig 2).

126 **Table 2. SARS-CoV-2 lineages and variants detected in HCWs**

Lineage	Variant	N	%
BA.1.1	Omicron (BA.1-like)	133	57.1
BA.1	Omicron (BA.1-like)	44	18.9
BA.1	Probable Omicron (BA.1-like)	5	2.1
BA.2	Omicron (BA.2-like)	28	12
BA.2	Probable Omicron (BA.2-like)	1	0.4
AY.33	Delta (B.1.617.2-like)	5	2.1
AY.86	Delta (B.1.617.2-like)	2	0.9
AY.122	Delta (B.1.617.2-like)	5	2.1
AY.126	Delta (B.1.617.2-like)	2	0.9
B.1.617.2	Delta (B.1.617.2-like)	1	0.4

B.1.1.524	Not applicable	1	0.4
None	Omicron (unassigned)	2	0.9
None	Probable Omicron (unassigned)	4	1.7
Total		233	100

127

128 **Fig 1. Phylogenetic analysis.** Phylogenetic analysis of SARS-CoV-2 genome in 250 samples
129 collected from HCWs in Lebanon. Each lineage is specified with a unique color.

130 **Fig 2. Frequency of SARS-CoV-2 lineages among HCWs.** Data present the number of samples
131 with a specific SARS-CoV-2 lineage detected in December 2021 (n=27) and January 2022 (n=198)
132 out of 225 samples with available date of PCR testing.

133 Discussion

134 Whole genome sequencing is important to characterize circulating SARS-CoV-2 variants
135 and to detect emerging variants. In Lebanon, data on SARS-CoV-2 genome sequencing are lacking
136 specifically among HCWs who are at high risk of acquiring the infection. Genomic analysis of 11
137 specimens collected early during the pandemic in Lebanon (February– March 2020) showed that
138 the B.1 lineage was the most prominent, followed by the B.4 lineage and the B.1.1 lineage [33].
139 Between February 2020 and January 2021, the most frequently reported SARS-CoV-2 lineage
140 among 58 analyzed samples was B.1.398 followed by B.1.1.7 and B.1 [34]. Moreover, an analysis
141 of 905 samples showed the rapid emergence and dominance of the B.1.1.7 Alpha variant between
142 January and April 2021 followed by the replacement of Alpha with Delta variant between June
143 and July [24]. Our study reveals that Omicron BA.1.1 followed by BA.1 predominated during
144 January 2022.

145 HCWs were identified as a high-priority group for COVID-19 vaccination by the WHO
146 Strategic Advisory Group of Experts framework for the allocation and prioritization of COVID-
147 19 vaccination [35] and the Advisory Committee on Immunization Practices [36]. Consequently,
148 many countries including Lebanon designated HCWs as a priority group for vaccination [37].
149 Despite the rollout of effective COVID-19 vaccines, breakthrough infections have been
150 increasingly reported worldwide specifically among HCWs [4, 8, 21, 38]. The incidence of
151 breakthrough infections among vaccinated HCWs is low and it was recently estimated at 0.011 to
152 0.001 per 100 individuals [39]. Nevertheless, these infections pose a risk of transmission to
153 vulnerable populations as most of these breakthrough infections are mild or asymptomatic [4, 39].
154 In addition to waning of vaccine-induced immunity over time, genetic variants of SARS-CoV-2
155 also affect vaccine-induced immune responses [23]. Compared to Alpha and Delta variants, the
156 Omicron variant causes higher rates of breakthrough infection and lower hospitalization rates [23,
157 40]. Moreover, the transmissibility of Omicron is higher than its predecessors; this is mainly
158 attributed to the high number of mutations in the spike protein [12, 41]. The high number of
159 mutations contributed to 3-fold higher binding affinity of the RBD of Omicron to the ACE2
160 receptor compared to Wuhan HU-1 and Delta [42, 43]. Studies also showed that vaccine
161 effectiveness against Omicron variant was lower than that of Delta and that neutralizing antibody
162 activity against Omicron is significantly lower than Beta and Delta variants [17, 23, 44].

163 In the Middle East and North Africa (MENA) region, there are scarcity of data on vaccine
164 effectiveness against emerging SARS-CoV-2 variants. There are also limited data on breakthrough
165 infections among HCWs following vaccination. Multiple studies in Qatar reported on vaccine
166 effectiveness and breakthrough infections following vaccination [45-48]. The estimated
167 cumulative incidence of breakthrough infections in Qatar was at 0.59% after a median of 89 days

168 from receiving the second dose of the mRNA-1273 vaccine and 0.84% after receiving the
169 BNT162b2 vaccine [45]; waning of vaccine effectiveness against SARS-CoV-2 infection was also
170 reported at 4 months following the second dose of the BNT162b2 vaccine [47]. Moreover, mRNA-
171 1273 vaccine effectiveness against symptomatic infection caused by the B.1.1.7 or B.1.351
172 variants in Qatar was estimated at 98.6% \geq 14 days after receiving the second dose [48].

173 The Omicron variant (B1.1.529) was first detected in early November 2021 in multiple
174 countries and has been designated as a VOC by the WHO on November 26, 2021 [49]. Four
175 Omicron lineages were first identified: B1.1.529, BA.1, BA.2, and BA.3 [50]. Recently, four novel
176 Omicron subvariants designated as BA.4, BA.5, BA.2.12.2 and BA.2.13 have also emerged and
177 started spreading globally [51-54]. While BA.4 and BA.5 account for 50% of new sequenced
178 samples in South Africa, BA.2.12.1 and BA.2.13 account for nearly 30% and 5% of new cases in
179 the United Sates and Belgium, respectively [51]. Compared to BA.2, these novel omicron
180 subvariants exhibit additional mutations in the spike region namely L452Q for BA.2.12.1, L452M
181 for BA.2.13, and L452R+F486V for BA.4 and BA.5 [51]. These mutations have been shown to
182 provide potential immune escape characteristics and higher transmission than BA.2 [51, 53]. In
183 this study, we found that Omicron BA.1.1 and BA.1 lineages were the predominant circulating
184 lineages in our cohort of HCWs between December 2021 and January 2022. Delta variant was
185 detected in only 6% of our samples suggesting the replacement of the Delta variant with Omicron
186 as the predominant circulating VOC which is consistent with global trends observed during the
187 same period [55]. We did not detect BA.3 lineage or any recombinant lineages in our sequenced
188 samples. The former does not have specific mutations in the spike protein but rather a combination
189 of mutations from BA.1 and BA.2 [56]. The rate of spread of the three Omicron lineages (BA.1,
190 BA.2 and BA.3) differs with BA.1 and BA.2 being the predominant lineages. Between December

191 2021 and January 2022, BA.1 lineage accounted for 78% of sequenced samples submitted to the
192 GISAID database compared to 16% of BA.2 [57]. This is similar to our findings reflecting the
193 predominance of BA.1 over BA.2.

194 The subvariant BA.2 shares 32 mutations with BA.1 but has distinct 28 mutations, four
195 unique ones in the RBD region alone, which according to a deep learning algorithm, made it far
196 more likely than other lineages to be the next dominant subvariant [50]. Indeed, BA.2 had already
197 become the dominant variant in multiple countries such as Denmark and UK in February 2022
198 [58]. Moreover, as of May 16, 2022, 78% of sequenced samples submitted to GISAID database
199 were BA.2 compared to 5% BA.1. BA.2.12.1 and BA.4 accounted for 13% and 3% of submitted
200 sequences, respectively. As we continue our national genomic surveillance beyond January 2022,
201 we expect a shift in dominance in favor of the highly transmissible BA.2 subvariant and as well as
202 an expected detection of other Omicron subvariants.

203 Our study has several limitations. Our study did not include samples from all regions in
204 Lebanon and thus is not fully representative of the situation in Lebanon. However, given that
205 Beirut is the capital of this small country and sees a lot of population movement during the week,
206 and particularly on the weekends when its residents travel to their villages across Lebanon, we
207 believe that our data from Beirut are to some extent representative of the whole country. We were
208 also unable to gather clinical data of HCWs, which hampered our ability to assess risk factors
209 associated with Omicron breakthrough infections. Moreover, data on receiving the date of the
210 second and booster shots were unavailable and thus we were unable to estimate vaccine
211 effectiveness between the date of receiving the booster and the date of breakthrough infection.

212 **Conclusion**

213 Our findings underscore the importance of continuing genomic surveillance in Lebanon in
214 order to monitor virus evolution and the emergence of novel SARS-CoV-2 variants. This is
215 particularly important in HCWs as they are more likely to be exposed to emerging variants and
216 can act as an advanced warning proxy to the wider community. More recently, two Omicron
217 lineages (BA.4 and BA.5) have been identified in South Africa before being detected in several
218 countries worldwide including Botswana, Belgium, Denmark, the United Kingdom, France,
219 Germany, Portugal and China [54, 59, 60]. Therefore, continuing genomic surveillance will help
220 assessing the characteristics and the public health implications of these lineages and other variants
221 that might emerge and contribute to more informed public health intervention strategies.

222 Materials and Methods

223 Study design, population, and data collection

224 This study is part of a national surveillance program in collaboration with the
225 Epidemiological Surveillance Unit (ESU) at the Lebanese MoPH. Accordingly, a waiver of
226 informed consent was granted by the Institutional Review Board (IRB) at the American University
227 of Beirut (AUB). Between December 1, 2021, and January 31, 2022, nasopharyngeal swabs were
228 collected from a total of 250 COVID-19-positive HCWs from five Lebanese healthcare centers.
229 Samples with *Ct values* of less or equal to 25 were used. The majority of samples (n=205) were
230 collected from three hospitals in Beirut: AUB Medical Center (n=175), Rasoul Al Aazam Hospital
231 (n=25) and Belle Vue Hospital (n=5). The remaining were collected from Hammoud Hospital in
232 South Lebanon (n=26) and Mount Lebanon Hospital in Mount Lebanon (n=19). Aliquots of the
233 collected samples were stored at -80°C until processed. The date of positive PCR, vaccination
234 status, specific occupation, and hospitalization status of participants were collected.

235 **RNA extraction and whole genome sequencing (WGS)**

236 Aliquots of the nasopharyngeal swabs (140 µl) were used to extract total RNA following
237 manufacturer's instructions (QIAamp Viral RNA mini-Kit, QIAGEN, Hilden, Germany, Cat.
238 52906). Aliquots were eluted in 30 µL of Buffer AVE. Both the concentration and quality of RNA
239 samples were measured and checked with the Denovix Blue DS-11 Spectrophotometer. Viral RNA
240 extracts were sequenced at the Quadram Institute Bioscience, UK. Briefly, viral RNA was
241 converted to cDNA then amplified using the ARTIC protocol v3 (LoCost) [25] and using V4 of
242 the primer set, with sequencing libraries prepared using CoronaHiT as previously described [26].
243 Genome sequencing was performed using the Illumina NextSeq 500 platform (Illumina, CA, USA)
244 with one positive control and one negative control per 94 samples. The raw reads were
245 demultiplexed using bcl2fastq (v2.20). The reads were used to generate a consensus sequence
246 using the ARTIC bioinformatic pipeline [27]. Briefly, the reads had adapters trimmed with
247 TrimGalore [28] and were aligned to the WuhanHu-1 reference genome (accession MN908947.3)
248 using BWA-MEM (v0.7.17) [29]. The ARTIC amplicons were trimmed, and a consensus was built
249 using iVAR (v.1.3.1) [30]. PANGO lineages were assigned using Pangolin (v3.1.20) [31] and
250 PangoLEARN model dated 2022-02-02 [32]. In this manuscript, we used the Pango lineage
251 designation system.

252

253 **Acknowledgements**

254 We thank the Lebanese Ministry of Public Health and the World Health Organization for
255 supporting this work. We also thank the hospitals for their collaboration and facilitating samples
256 storage and collection.

257 **References**

258 1. JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE)
259 at Johns Hopkins University (JHU). Available from: <https://coronavirus.jhu.edu/map.html>.

260 2. MoPH. Monitoring of COVID-19 Infection In Lebanon 2022. Available from:
261 <https://www.moph.gov.lb/en/Media/view/60232/novel-coronavirus-2019->.

262 3. WHO. COVID-19 Vaccine Tracker 2022. Available from:
263 <https://covid19.trackvaccines.org/agency/who/>.

264 4. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, et al. Covid-19
265 Breakthrough Infections in Vaccinated Health Care Workers. New England Journal of Medicine.
266 2021;385(16):1474-84. doi: 10.1056/NEJMoa2109072. PubMed PMID: 34320281.

267 5. Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M, Conlon EG, et al. Vaccine
268 Breakthrough Infections with SARS-CoV-2 Variants. New England Journal of Medicine.
269 2021;384(23):2212-8. doi: 10.1056/NEJMoa2105000. PubMed PMID: 33882219.

270 6. Jacobson KB, Pinsky BA, Montez Rath ME, Wang H, Miller JA, Skhiri M, et al. Post-
271 Vaccination Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infections and
272 Incidence of the Presumptive B.1.427/B.1.429 Variant Among Healthcare Personnel at a Northern
273 California Academic Medical Center. Clin Infect Dis. 2022;74(5):821-8. doi: 10.1093/cid/ciab554.
274 PubMed PMID: 34137815.

275 7. Rana K, Mohindra R, Pinnaka L. Vaccine Breakthrough Infections with SARS-CoV-2
276 Variants. *The New England journal of medicine*. 2021;385(2):e7. Epub 2021/06/03. doi:
277 10.1056/NEJMc2107808. PubMed PMID: 34077641.

278 8. Yamamoto S, Maeda K, Matsuda K, Tanaka A, Horii K, Okudera K, et al. COVID-19
279 breakthrough infection and post-vaccination neutralizing antibody among healthcare workers in a
280 referral hospital in Tokyo: a case-control matching study. *Clin Infect Dis*. 2021:ciab1048. doi:
281 10.1093/cid/ciab1048. PubMed PMID: 34950947.

282 9. Hirabara SM, Serdan TDA, Gorjao R, Masi LN, Pithon-Curi TC, Covas DT, et al. SARS-
283 COV-2 Variants: Differences and Potential of Immune Evasion. *Frontiers in Cellular and Infection*
284 *Microbiology*. 2022;11. doi: 10.3389/fcimb.2021.781429.

285 10. WHO. Tracking SARS-CoV-2 variants 2022 [7 March 2022]. Available from:
286 <https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/>.

287 11. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing epidemiology of
288 SARS-CoV-2. *Science*. 2022;375(6585):1116-21. doi: doi:10.1126/science.abm4915.

289 12. Araf Y, Akter F, Tang Y-d, Fatemi R, Parvez MSA, Zheng C, et al. Omicron variant of
290 SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. *Journal*
291 *of Medical Virology*. n/a(n/a). doi: <https://doi.org/10.1002/jmv.27588>.

292 13. Mohapatra RK, Kuppili S, Kumar Suvvari T, Kandi V, Behera A, Verma S, et al. SARS-
293 CoV-2 and its variants of concern including Omicron: A never ending pandemic. *Chemical*
294 *Biology & Drug Design*. n/a(n/a). doi: <https://doi.org/10.1111/cbdd.14035>.

295 14. Ramy A, Rima A. Visualizing Omicron: COVID-19 Deaths vs. Cases Over Time. *Research*
296 *Square*. 2022. doi: 10.21203/rs.3.rs-1257935/v2.

297 15. Gupta RK, Topol EJ. COVID-19 vaccine breakthrough infections. *Science*.
298 2021;374(6575):1561-2. doi: doi:10.1126/science.abl8487.

299 16. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al.
300 Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health
301 system in the USA: a retrospective cohort study. *Lancet* (London, England).
302 2021;398(10309):1407-16. Epub 2021/10/08. doi: 10.1016/s0140-6736(21)02183-8. PubMed
303 PMID: 34619098; PubMed Central PMCID: PMCPMC8489881 hold stock and stock options in
304 Pfizer. TBF holds shares of Pfizer stock. SYT, JMS, HF, VH, BKA, ONR, TBF, and OAO received
305 research support from Pfizer during the conduct of this study that was paid directly to KPSC. For
306 work unrelated to this project, SYT received research funding from Gilead, GlaxoSmithKline, and
307 Genentech; BKA received research funding from GlaxoSmithKline, Novavax, Dynavax,
308 Genentech, Novartis, Seqirus, and Moderna; JMS received research funding from Novavax,
309 Dynavax, and ALK; and HF received research funding from Genentech. All other authors declare
310 no competing interests.

311 17. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19
312 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. *New England Journal of
313 Medicine*. 2022. doi: 10.1056/NEJMoa2119451.

314 18. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al.
315 Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. *The New England journal of
316 medicine*. 2021;385(15):1393-400. Epub 09/15. doi: 10.1056/NEJMoa2114255. PubMed PMID:
317 34525275.

318 19. Smallwood N, Harrex W, Rees M, Willis K, Bennett CM. COVID-19 infection and the
319 broader impacts of the pandemic on healthcare workers. *Respirology*. 2022;n/a(n/a). doi:
320 <https://doi.org/10.1111/resp.14208>.

321 20. Seidelman JL, Lewis SS, Advani SD, Akinboyo IC, Epling C, Case M, et al. Universal
322 masking is an effective strategy to flatten the severe acute respiratory coronavirus virus 2 (SARS-
323 CoV-2) healthcare worker epidemiologic curve. *Infect Control Hosp Epidemiol*.
324 2020;41(12):1466-7. Epub 06/25. doi: 10.1017/ice.2020.313. PubMed PMID: 32576336.

325 21. Keehner J, Horton LE, Binkin NJ, Laurent LC, Pride D, Longhurst CA, et al. Resurgence
326 of SARS-CoV-2 Infection in a Highly Vaccinated Health System Workforce. *New England
327 Journal of Medicine*. 2021;385(14):1330-2. doi: 10.1056/NEJMc2112981. PubMed PMID:
328 34469645.

329 22. Elliott P, Bodinier B, Eales O, Wang H, Haw D, Elliott J, et al. Rapid increase in Omicron
330 infections in England during December 2021: REACT-1 study. *Science*. 2022;375(6587):1406-
331 11. doi: doi:10.1126/science.abn8347.

332 23. Amanatidou E, Gkiouliava A, Pella E, Serafidi M, Tsilingiris D, Vallianou NG, et al.
333 Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges.
334 *Metabol Open*. 2022;14:100180-. doi: 10.1016/j.metop.2022.100180. PubMed PMID: 35313532.

335 24. Merhi G, Trotter AJ, de Oliveira Martins L, Koweyes J, Le-Viet T, Naja HA, et al.
336 Replacement of the Alpha variant of SARS-CoV-2 by the Delta variant in Lebanon between April
337 and June 2021. *medRxiv*. 2021:2021.08.10.21261847. doi: 10.1101/2021.08.10.21261847.

338 25. Quick J. nCoV-2019 sequencing protocol v3 (LoCost) V.3 2020. Available from:
339 <https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye>.

340 26. Baker DJ, Aydin A, Le-Viet T, Kay GL, Rudder S, de Oliveira Martins L, et al. CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes. *Genome Medicine*. 2021;13(1):21. doi: 10.1186/s13073-021-00839-5.

343 27. GitHub. connor-lab/ncov2019-artic-nf. Available from: <https://github.com/connor-lab/ncov2019-artic-nf>.

345 28. Zenodo. FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo 2021. Available from: <https://zenodo.org/record/5127899#.YicyaehByUk>.

347 29. Arxiv. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Available from: <https://arxiv.org/abs/1303.3997>.

349 30. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. *Genome Biology*. 2019;20(1):8. doi: 10.1186/s13059-018-1618-7.

352 31. O'Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. *Virus Evolution*. 2021;7(2). doi: 10.1093/ve/veab064.

355 32. Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nature Microbiology*. 2020;5(11):1403-7. doi: 10.1038/s41564-020-0770-5.

358 33. Feghali R, Merhi G, Kwasiborski A, Hourdel V, Ghosn N, Tokajian S. Genomic characterization and phylogenetic analysis of the first SARS-CoV-2 variants introduced in Lebanon. *PeerJ*. 2021;9:e11015-e. doi: 10.7717/peerj.11015. PubMed PMID: 34611501.

361 34. Fayad N, Abi Habib W, Kandeil A, El-Shesheny R, Kamel MN, Mourad Y, et al. SARS-
362 CoV-2 Variants in Lebanon: Evolution and Current Situation. *Biology (Basel)*. 2021;10(6):531.
363 doi: 10.3390/biology10060531. PubMed PMID: 34198622.

364 35. WHO. WHO SAGE values framework for the allocation and prioritization of COVID-19
365 vaccination 2020 [April 20, 2022]. Available from: https://www.nitag-resource.org/sites/default/files/2020-09/WHO-2019-nCoV-SAGE_Framework-Allocation_and_prioritization-2020.1-eng.pdf.

366 36. Dooling K, Marin M, Wallace M, McClung N, Chamberland M, Lee GM, et al. The
367 Advisory Committee on Immunization Practices' Updated Interim Recommendation for
368 Allocation of COVID-19 Vaccine - United States, December 2020. *MMWR Morbidity and
369 mortality weekly report*. 2021;69(5152):1657-60. Epub 2021/01/01. doi:
370 10.15585/mmwr.mm695152e2. PubMed PMID: 33382671.

371 37. Thorsteinsdottir B, Madsen BE. Prioritizing health care workers and first responders for
372 access to the COVID19 vaccine is not unethical, but both fair and effective - an ethical analysis.
373 *Scand J Trauma Resusc Emerg Med*. 2021;29(1):77-. doi: 10.1186/s13049-021-00886-2. PubMed
374 PMID: 34088336.

375 38. Yang SL, Ripen AM, Leong CT, Lee JV, Yen CH, Chand AK, et al. COVID-19
376 Breakthrough Infections and Humoral Immune Response among BNT162b2 Vaccinated
377 Healthcare Workers in Malaysia. *Emerging Microbes & Infections*. 2022;1-38. doi:
378 10.1080/22221751.2022.2065936.

379 39. Ledda C, Costantino C, Motta G, Cunsolo R, Stracquadanio P, Liberti G, et al. SARS-
380 CoV-2 mRNA Vaccine Breakthrough Infections in Fully Vaccinated Healthcare Personnel: A

383 Systematic Review. *Trop Med Infect Dis.* 2022;7(1):9. doi: 10.3390/tropicalmed7010009.

384 PubMed PMID: 35051125.

385 40. Christensen PA, Olsen RJ, Long SW, Snehal R, Davis JJ, Ojeda Saavedra M, et al. Signals
386 of Significantly Increased Vaccine Breakthrough, Decreased Hospitalization Rates, and Less
387 Severe Disease in Patients with Coronavirus Disease 2019 Caused by the Omicron Variant of
388 Severe Acute Respiratory Syndrome Coronavirus 2 in Houston, Texas. *Am J Pathol.*
389 2022;192(4):642-52. Epub 02/03. doi: 10.1016/j.ajpath.2022.01.007. PubMed PMID: 35123975.

390 41. Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, et al.
391 Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global
392 perspective. *Journal of Medical Virology.* 2022;94(4):1738-44. doi:
393 <https://doi.org/10.1002/jmv.27524>.

394 42. Bálint G, Vörös-Horváth B, Széchenyi A. Omicron: increased transmissibility and
395 decreased pathogenicity. *Signal Transduction and Targeted Therapy.* 2022;7(1):151. doi:
396 10.1038/s41392-022-01009-8.

397 43. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, et al. Altered
398 TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. *Nature.*
399 2022;603(7902):706-14. doi: 10.1038/s41586-022-04474-x.

400 44. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al.
401 Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. *Nature.*
402 2022;602(7898):671-5. doi: 10.1038/s41586-021-04389-z.

403 45. Abu-Raddad LJ, Chemaitelly H, Bertolini R. Effectiveness of mRNA-1273 and
404 BNT162b2 Vaccines in Qatar. *New England Journal of Medicine.* 2022;386(8):799-800. doi:
405 10.1056/NEJMc2117933.

406 46. Alishaq M, Nafady-Hego H, Jeremijenko A, Al Ajmi JA, Elgendi M, Vinoy S, et al. Risk
407 factors for breakthrough SARS-CoV-2 infection in vaccinated healthcare workers. PLoS One.
408 2021;16(10):e0258820-e. doi: 10.1371/journal.pone.0258820. PubMed PMID: 34653228.

409 47. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FM, et al.
410 Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. New England
411 Journal of Medicine. 2021;385(24):e83. doi: 10.1056/NEJMoa2114114.

412 48. Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al.
413 mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe
414 COVID-19 disease in Qatar. Nature Medicine. 2021;27(9):1614-21. doi: 10.1038/s41591-021-
415 01446-y.

416 49. WHO. Update on Omicron 2021 [April 20, 2022]. Available from:
417 <https://www.who.int/news/item/28-11-2021-update-on-omicron>.

418 50. Chen J, Wei G-W. Omicron BA.2 (B.1.1.529.2): high potential to becoming the next
419 dominating variant. ArXiv. 2022:arXiv:2202.05031v1. PubMed PMID: 35169598.

420 51. Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5
421 escape antibodies elicited by Omicron infection. bioRxiv. 2022:2022.04.30.489997. doi:
422 10.1101/2022.04.30.489997.

423 52. Phan T, Boes S, McCullough M, Gribshaw J, Marsh JW, Harrison LH, et al. First
424 detection of SARS-CoV-2 Omicron BA.4 variant in Western Pennsylvania, United States. Journal
425 of Medical Virology. n/a(n/a). doi: <https://doi.org/10.1002/jmv.27846>.

426 53. WHO. Weekly epidemiological update on COVID-19 - 4 May 2022 2022. Available from:
427 <https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---4-may-2022>.

429 54. ECDC. Epidemiological update: SARS-CoV-2 Omicron sub-lineages BA.4 and BA.5 2022
430 [May 18, 2022]. Available from: <https://www.ecdc.europa.eu/en/news-events/epidemiological->
431 update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5.

432 55. Koelle K, Martin MA, Antia R, Lopman B, Dean NE. The changing epidemiology of
433 SARS-CoV-2. *Science* (New York, NY). 2022;375(6585):1116-21. Epub 03/10. doi:
434 10.1126/science.abm4915. PubMed PMID: 35271324.

435 56. Desingu PA, Nagarajan K, Dhama K. Emergence of Omicron third lineage BA.3 and its
436 importance. *Journal of Medical Virology*. 2022;94(5):1808-10. doi:
437 <https://doi.org/10.1002/jmv.27601>.

438 57. GISAID. Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over
439 the past 6 months 2022 [April 20, 2022]. Available from:
440 <https://nextstrain.org/ncov/gisaid/global/6m>.

441 58. Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, et al. Virological
442 characteristics of SARS-CoV-2 BA.2 variant. *bioRxiv*. 2022:2022.02.14.480335. doi:
443 10.1101/2022.02.14.480335.

444 59. WHO. Weekly epidemiological update on COVID-19 - 12 April 2022 2022 [April 20,
445 2022]. Available from: <https://www.who.int/publications/m/item/weekly-epidemiological->
446 update-on-covid-19---12-april-2022.

447 60. Maxmen A. Are new Omicron subvariants a threat? Here's how scientists are keeping
448 watch. *Nature* 2022. doi: <https://doi.org/10.1038/d41586-022-01069-4>.

449

450

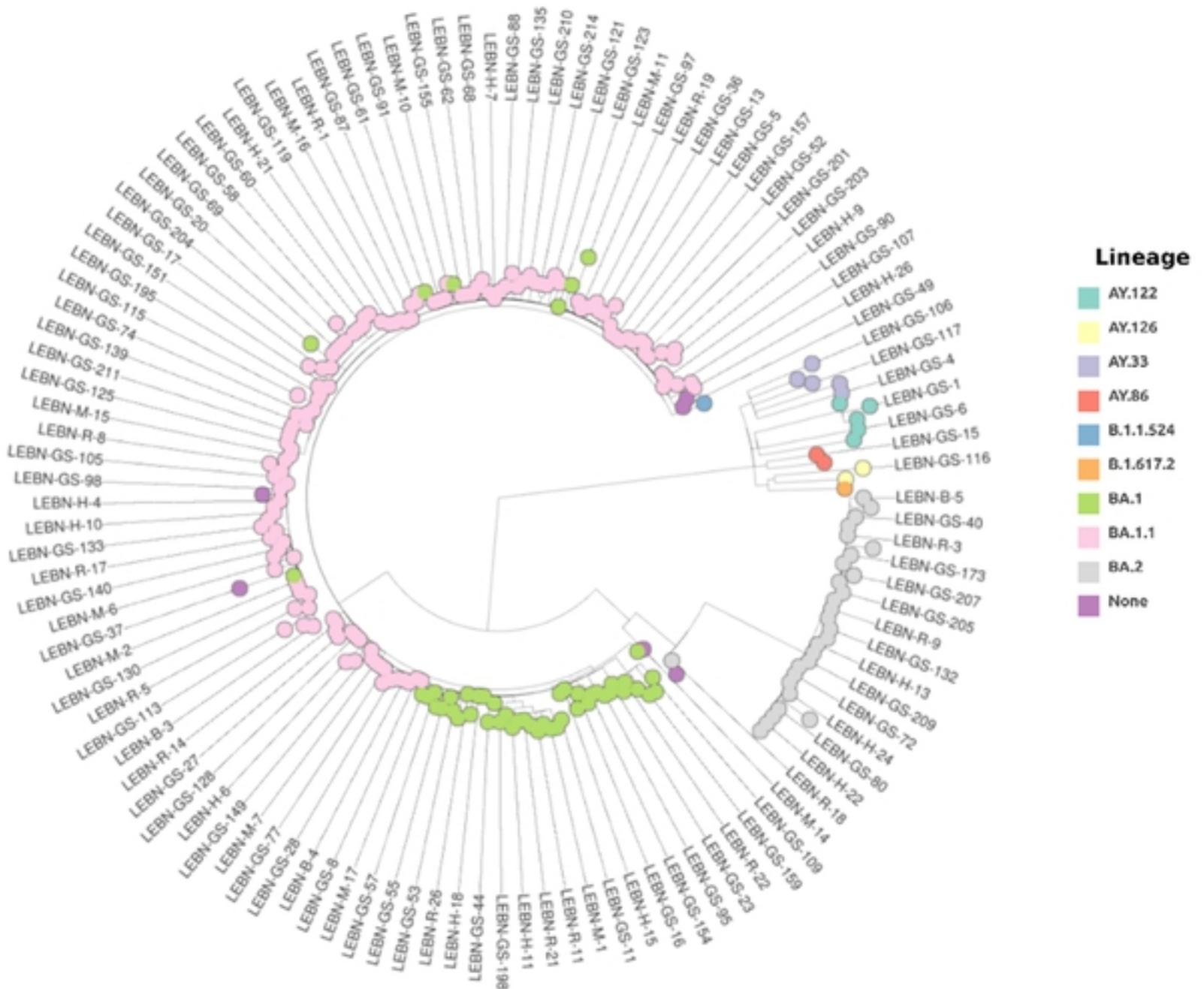


Figure 1

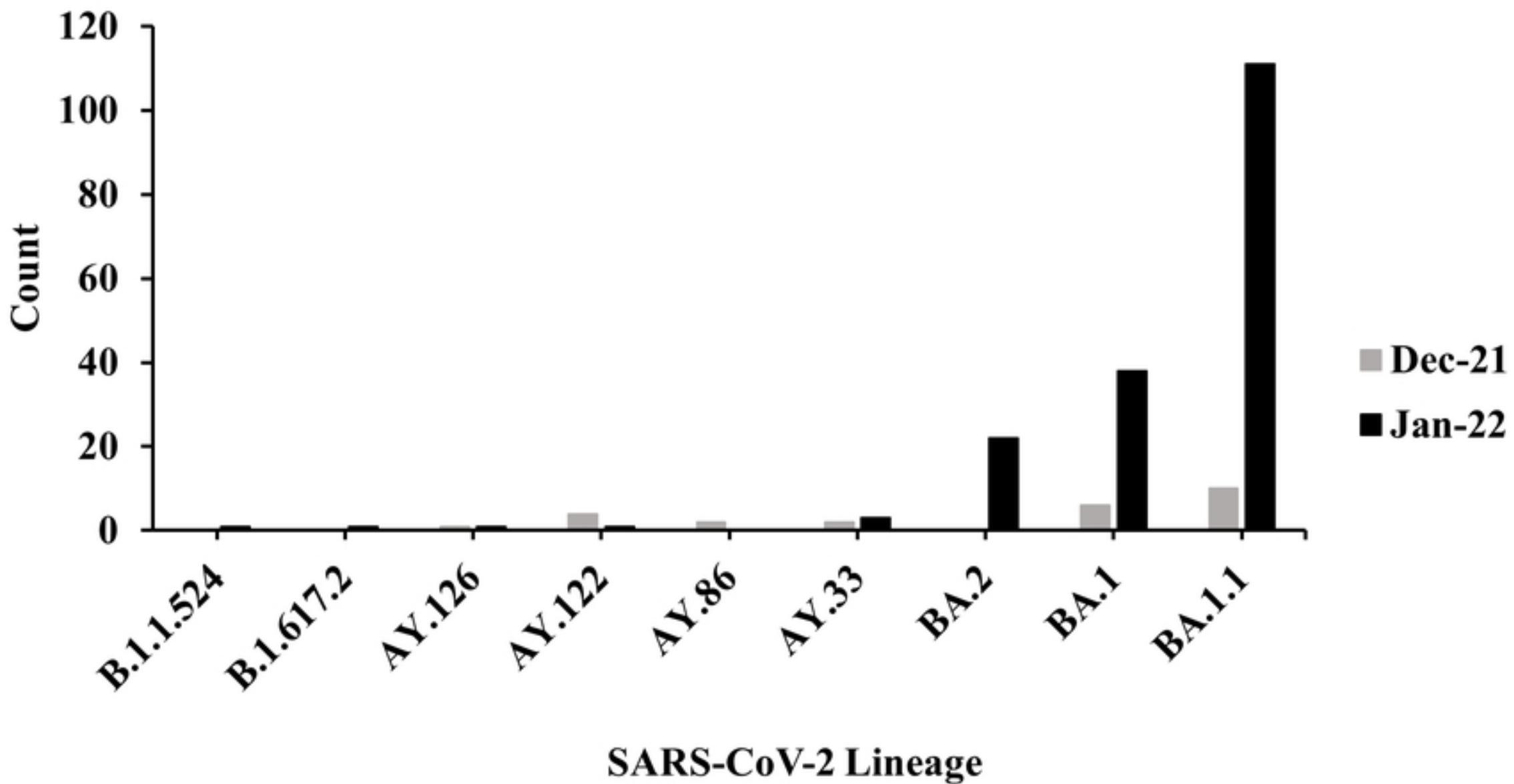


Figure 2