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1 Abstract

2 The emergence of SARS-CoV-2 variants including the Delta and Omicron along with waning of 

3 vaccine-induced immunity over time contributed to increased rates of breakthrough infection 

4 specifically among healthcare workers (HCWs). SARS-CoV-2 genomic surveillance is an 

5 important tool for timely detection and characterization of circulating variants as well as 

6 monitoring the emergence of new strains. Our study is the first national SARS-CoV-2 genomic 

7 surveillance among HCWs in Lebanon. We collected 250 samples from five hospitals across 

8 Lebanon between December 2021 and January 2022. We extracted viral RNA and performed 

9 whole genome sequencing using the Illumina NextSeq 500 platform. A total of 133 (57.1%) 

10 samples belonging to the Omicron (BA.1.1) sub-lineage were identified, as well as 44 (18.9%) 

11 samples belonging to the BA.1 sub-lineage, 28 (12%) belonging to the BA.2 sub-lineage, and only 

12 15 (6.6%) samples belonging to the Delta variant sub-lineage B.1.617.2. These results show that 

13 Lebanon followed the global trend in terms of circulating SARS-CoV-2 variants with Delta rapidly 

14 replaced by the Omicron variant. This study underscores the importance of continuous genomic 

15 surveillance programs in Lebanon for the timely detection and characterization of circulating 

16 variants. The latter is critical to guide public health policy making and to timely implement public 

17 health interventions.

18 Keywords: SARS-CoV-2, Variants of Concern, Genomic Surveillance, Healthcare Workers, 

19 NextSeq 500, Lebanon
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22 Introduction

23  Since its emergence in December 2019, severe acute respiratory syndrome coronavirus 2 

24 (SARS-CoV-2) remains a global public health threat. As of May 16, 2022, more than 521,476,365 

25 confirmed cases and 6,263,965 deaths have been reported worldwide [1]. In Lebanon, more than 

26 1,098,030 confirmed cases and 10,408 deaths have been reported as of May 15, 2022 [2]. Vaccine 

27 development against SARS-CoV-2 proceeded in an unprecedented pace with 11 vaccines granted 

28 emergency use listing (EUL) by the World Health Organization (WHO) as of May 20, 2022 [3]. 

29 More than 11.4 billion vaccine doses have been administered worldwide since the start of COVID-

30 19 vaccine rollout in December 2020 [1]. Despite the availability of effective vaccines against 

31 SARS-CoV-2, reports of breakthrough infections among vaccinated individuals are increasingly 

32 reported globally [4-8].

33 Since the emergence of SARS-CoV-2, new variants have evolved from the original SARS-

34 CoV-2 strain (Wuhan 19 strain (WA1/2020)). These variants are classified into variants under 

35 monitoring (VUM), variants of interest (VOI), and variants of concern (VOC) and [9, 10]. VUM 

36 are variants with genetic changes that are suspected to affect virus characteristics and may pose 

37 future risk but with yet no clear evidence of phenotypic or epidemiological impact. VOI are SARS-

38 CoV-2 variants possessing predicted or known genetic changes that affect the characteristics of 

39 the virus (transmissibility, disease severity, immune escape, therapeutic escape) and known to 

40 cause significant community transmission or multiple COVID-19 clusters in multiple countries.  

41 VOC are SARS-CoV-2 variants that meet the definition of a VOI and are associated with increased 

42 transmissibility detrimental change in COVID-19 epidemiology, increased virulence, changed 

43 clinical disease presentation, and decreased effectiveness of public health and social measures, 
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44 vaccines, or therapeutics against the virus. To date, the World Health Organization (WHO) has 

45 identified five VOCs worldwide: Alpha (B.1.1.7 lineage) first detected in the United Kingdom 

46 (UK), Beta (B.1.351 lineage) first detected South Africa, Gamma (P.1 lineage) first detected in 

47 Brazil, Delta (B.1.617.2 lineage) first detected in India and Omicron (B.1.1.529 lineage) first 

48 reported in South Africa [10]. Moreover, several VOI have been identified in several countries; 

49 these include B.1.427 and B.1.429 from the USA (California, WHO alert since July 6, 2021), 

50 B.1.525 from the United Kingdom and Nigeria, B.1.526 from the USA (New York), B.1.617.1 and 

51 B.1.617.3 from India, P2 from Brazil, and C.37 from Peru [9]. The WHO is continuously 

52 monitoring and assessing the evolution of SARS-CoV-2 and the emergence of new variants with 

53 increased risk to the global public health. 

54 The B.1.617.2 lineage along with its sublineages made up the Delta variant that was 

55 responsible for the COVID-19 surge in India, eventually spreading and dominating globally [11].  

56 Despite the high replicative efficiency, reduced sensitivity to host immune responses, and high 

57 transmissibility of the Delta variant compared to previous VOCs, vaccine effectiveness was 

58 sustained against both the Alpha and Delta variants [11]. In November 2021, the surge of cases in 

59 South Africa marked the identification of a new VOC named Omicron (B.1.1529). Omicron 

60 replaced the Delta variant and was characterized by a higher number of amino acid substitutions, 

61 higher transmissibility and partial resistance to vaccine induced immunity compared to previous 

62 VOCs [12-14]. Studies showed that although Omicron had higher rates of reinfection, it was 

63 clinically less severe compared to the Delta variant suggested to be driven by prior infections and 

64 T cell immune responses [11]. While two doses of COVID-19 vaccines elicit high level of 

65 protection against symptomatic disease, the former wanes 4-6 months following the second dose 

66 of the BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna) or ChAdOx1 nCoV-19 (Oxford-
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67 AstraZeneca vaccines) [15, 16]. Recent studies showed that vaccine effectiveness against the 

68 Omicron variant (B.1.1.529) was lower than the Delta variant (B.1.617.2) after primary 

69 immunization with 2 doses of the ChAdOx1 nCoV-19, BNT162b2 or mRNA-1273 vaccines with 

70 significant reduction in vaccine effectiveness against the two variants ≥25 weeks following the 

71 second dose [17]. Nevertheless, vaccine effectiveness against symptomatic disease was restored 

72 following a booster shot, underscoring the importance of a third dose [15, 18]. 

73 Healthcare workers (HCWs) are at increased risk of SARS-CoV-2 infection compared to 

74 the general population and have been prioritized in COVID-19 vaccine rollout worldwide [19]. In 

75 Lebanon, HCWs were among the first priority groups to receive the BNT162b2 vaccine; the 

76 administration of the latter started in mid-February 2021 and the second dose was administered 21 

77 days following the first dose. The use of personal protective equipment (PPE) including mask 

78 mandates for patients and visitors significantly reduced the occupational risk of acquiring COVID-

79 19 by HCWs [20]. However, waning immunity and the emergence of antigenically drifted VOCs 

80 meant that HCWs are at risk of breakthrough infections [4, 5, 8, 21]. Among 22,729 HCWs in the 

81 US who received at least one dose of an mRNA-based vaccine (BNT162b2 or mRNA-1273), 189 

82 tested positive for SARS-CoV-2 [6]. While the majority (60%) of these infections occurred within 

83 14 days following the first dose, 14% of the cases occurred >14 days post second dose. Similarly, 

84 39 out of 1,497 HCWs in Israel had breakthrough infections after receiving the second dose of 

85 BNT162b2 vaccine with most of these infections being asymptomatic or mild [4]. Moreover, the 

86 incidence of breakthrough infections following the second dose of the ChAdOx1 nCoV-19 vaccine 

87 was estimated at 1.6% among 3000 HCWs in India [7]. Interestingly, the Omicron variant requires 

88 20 to 40 times more neutralization antibodies than Delta, which might have contributed to higher 

89 breakthrough infection among people with only two vaccine doses [22]. The resurgence of SARS-
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90 CoV-2 is attributed to waning of immunity over time and emergence of SARS-CoV-2 variants 

91 [23]. These breakthrough infections carry an infectious potential especially since these infections 

92 are mostly asymptomatic and thus would increase the risk of viral spread to high-at-risk 

93 populations [4]. 

94 Genomic surveillance of SARS-CoV-2 was first initiated in Lebanon back in 2020 with 

95 direct support from the WHO [24]. Lebanon was the first in the Eastern Mediterranean Region 

96 (EMR) to identify the Delta variant in a timely manner. However, the sampling was done randomly 

97 and mainly on travelers. In collaboration with the Ministry of Public Health (MoPH) and direct 

98 support from the WHO, this study allowed for the establishment of a structured mechanism by 

99 which we can perform genomic surveillance of SARS-CoV-2 on HCW’s to support the timely 

100 implementation of public health measures to control the spread and emergence of new SARS-

101 CoV-2 variants and inform global surveillance. Here, we report the first genomic data from this 

102 surveillance effort focusing primarily on breakthrough infections detected among HCWs, a group 

103 with the highest vaccination coverage among the Lebanese population. 

104 Results

105 Demographic characteristics of study participants

106 Our study included a total of 250 HCWs testing positive by RT-PCR between December 1, 2021 

107 (n=27), and January 31, 2022 (n=223). Data on the occupation and COVID-19 vaccine status were 

108 available for only 175 HCWs working at AUBMC. Among those, the majority were females (64%) 

109 and received at least two doses of the BNT162b2 COVID-19 vaccine (95.4%). Nurses (39.4%), 
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110 medical doctors (14.8%) and technicians (10.3%) accounted for the majority of samples (Table 1). 

111 None of the SARS-CoV-2 positive HCWs were hospitalized. 

112 Table 1. Demographic characteristics of HCWs recruited at AUBMC 

Variable N %

Gender

Males 63 36

Females 112 64

Vaccination status

≥2 doses 167 95.4

1 dose 4 2.3

Unvaccinated 1 0.6

Not documented 3 1.7

Occupation

Nurses 69 39.4

Medical doctors 26 14.8

Technicians 18 10.3

Clerks, tellers and clinic assistants 16 9.1

Pharmacists 5 2.8

Physical therapists 2 1.1

Othersa 40 22.8

113 aAdministrative staff, research assistants, janitors, and security guards

114 SARS-CoV-2 phylogenetic analysis

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.494965doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.06.494965
http://creativecommons.org/licenses/by/4.0/


9

115 Lineage analysis was performed using the Pangolin COVID-19 lineage assigner. Overall, 10 

116 lineages were identified among HCWs (Table 2). A total of 17 samples did not yield sufficient 

117 sequencing data to provide a lineage. This was most likely due to sample storage and handling 

118 errors as they passed through multiple labs in multiple countries. Consequently, we excluded them 

119 from the analysis. As expected, the Omicron variant was the predominant VOC (90.6%) detected 

120 in most of our analyzed samples followed by the Delta variant (6.4%). The predominant lineages 

121 identified were BA.1.1 and BA.1 accounting for 57.1% and 18.9% of the samples, respectively 

122 (Table 2 and Fig 1). Collection date was available for 225 of the specimens. Out of those, 27 were 

123 collected in December 2021 and 198 were collected in January 2022. Our results revealed that 

124 Omicron BA.1.1 variant was the predominant VOC circulating in December 2021 (37%) and 

125 January 2022 (56%) followed by 22.2% and 19.2% BA.1, respectively (Fig 2). 

126 Table 2. SARS-CoV-2 lineages and variants detected in HCWs 

Lineage Variant N %

BA.1.1 Omicron (BA.1-like) 133 57.1

BA.1 Omicron (BA.1-like) 44 18.9

BA.1 Probable Omicron (BA.1-like) 5 2.1

BA.2 Omicron (BA.2-like) 28 12

BA.2 Probable Omicron (BA.2-like) 1 0.4

AY.33 Delta (B.1.617.2-like) 5 2.1

AY.86 Delta (B.1.617.2-like) 2 0.9

AY.122 Delta (B.1.617.2-like) 5 2.1

AY.126 Delta (B.1.617.2-like) 2 0.9

B.1.617.2 Delta (B.1.617.2-like) 1 0.4
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B.1.1.524 Not applicable 1 0.4

None Omicron (unassigned) 2 0.9

None Probable Omicron (unassigned) 4 1.7

Total 233 100

127

128 Fig 1. Phylogenetic analysis. Phylogenetic analysis of SARS-CoV-2 genome in 250 samples 

129 collected from HCWs in Lebanon. Each lineage is specified with a unique color. 

130 Fig 2. Frequency of SARS-CoV-2 lineages among HCWs. Data present the number of samples 

131 with a specific SARS-CoV-2 lineage detected in December 2021 (n=27) and January 2022 (n=198) 

132 out of 225 samples with available date of PCR testing.

133 Discussion

134 Whole genome sequencing is important to characterize circulating SARS-CoV-2 variants 

135 and to detect emerging variants. In Lebanon, data on SARS-CoV-2 genome sequencing are lacking 

136 specifically among HCWs who are at high risk of acquiring the infection. Genomic analysis of 11 

137 specimens collected early during the pandemic in Lebanon (February– March 2020) showed that 

138 the B.1 lineage was the most prominent, followed by the B.4 lineage and the B.1.1 lineage [33]. 

139 Between February 2020 and January 2021, the most frequently reported SARS-CoV-2 lineage 

140 among 58 analyzed samples was B.1.398 followed by B.1.1.7 and B.1 [34]. Moreover, an analysis 

141 of 905 samples showed the rapid emergence and dominance of the B.1.1.7 Alpha variant between 

142 January and April 2021 followed by the replacement of Alpha with Delta variant between June 

143 and July [24].  Our study reveals that Omicron BA.1.1 followed by BA.1 predominated during 

144 January 2022.   
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145 HCWs were identified as a high-priority group for COVID-19 vaccination by the WHO 

146 Strategic Advisory Group of Experts framework for the allocation and prioritization of COVID-

147 19 vaccination [35] and the Advisory Committee on Immunization Practices [36]. Consequently, 

148 many countries including Lebanon designated HCWs as a priority group for vaccination [37]. 

149 Despite the rollout of effective COVID-19 vaccines, breakthrough infections have been 

150 increasingly reported worldwide specifically among HCWs [4, 8, 21, 38]. The incidence of 

151 breakthrough infections among vaccinated HCWs is low and it was recently estimated at 0.011 to 

152 0.001 per 100 individuals [39]. Nevertheless, these infections pose a risk of transmission to 

153 vulnerable populations as most of these breakthrough infections are mild or asymptomatic [4, 39]. 

154 In addition to waning of vaccine-induced immunity over time, genetic variants of SARS-CoV-2 

155 also affect vaccine-induced immune responses [23]. Compared to Alpha and Delta variants, the 

156 Omicron variant causes higher rates of breakthrough infection and lower hospitalization rates [23, 

157 40]. Moreover, the transmissibility of Omicron is higher than its predecessors; this is mainly 

158 attributed to the high number of mutations in the spike protein [12, 41]. The high number of 

159 mutations contributed to 3-fold higher binding affinity of the RBD of Omicron to the ACE2 

160 receptor compared to Wuhan HU-1 and Delta [42, 43]. Studies also showed that vaccine 

161 effectiveness against Omicron variant was lower than that of Delta and that neutralizing antibody 

162 activity against Omicron is significantly lower than Beta and Delta variants [17, 23, 44]. 

163 In the Middle East and North Africa (MENA) region, there are scarcity of data on vaccine 

164 effectiveness against emerging SARS-CoV-2 variants. There are also limited data on breakthrough 

165 infections among HCWs following vaccination. Multiple studies in Qatar reported on vaccine 

166 effectiveness and breakthrough infections following vaccination [45-48]. The estimated 

167 cumulative incidence of breakthrough infections in Qatar was at 0.59% after a median of 89 days 
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168 from receiving the second dose of the mRNA-1273 vaccine and 0.84% after receiving the 

169 BNT162b2 vaccine [45]; waning of vaccine effectiveness against SARS-CoV-2 infection was also 

170 reported at 4 months following the second dose of the BNT162b2 vaccine [47]. Moreover, mRNA-

171 1273 vaccine effectiveness against symptomatic infection caused by the B.1.1.7 or B.1.351 

172 variants in Qatar was estimated at 98.6% ≥14 days after receiving the second dose [48].

173 The Omicron variant (B1.1.529) was first detected in early November 2021 in multiple 

174 countries and has been designated as a VOC by the WHO on November 26, 2021 [49]. Four 

175 Omicron lineages were first identified: B1.1.529, BA.1, BA.2, and BA.3 [50]. Recently, four novel 

176 Omicron subvariants designated as BA.4, BA.5, BA.2.12.2 and BA.2.13 have also emerged and 

177 started spreading globally [51-54]. While BA.4 and BA.5 account for 50% of new sequenced 

178 samples in South Africa, BA.2.12.1 and BA.2.13 account for nearly 30% and 5% of new cases in 

179 the United Sates and Belgium, respectively [51]. Compared to BA.2, these novel omicron 

180 subvariants exhibit additional mutations in the spike region namely L452Q for BA.2.12.1, L452M 

181 for BA.2.13, and L452R+F486V for BA.4 and BA.5 [51]. These mutations have been shown to 

182 provide potential immune escape characteristics and higher transmission than BA.2 [51, 53]. In 

183 this study, we found that Omicron BA.1.1 and BA.1 lineages were the predominant circulating 

184 lineages in our cohort of HCWs between December 2021 and January 2022. Delta variant was 

185 detected in only 6% of our samples suggesting the replacement of the Delta variant with Omicron 

186 as the predominant circulating VOC which is consistent with global trends observed during the 

187 same period [55]. We did not detect BA.3 lineage or any recombinant lineages in our sequenced 

188 samples. The former does not have specific mutations in the spike protein but rather a combination 

189 of mutations from BA.1 and BA.2 [56]. The rate of spread of the three Omicron lineages (BA.1, 

190 BA.2 and BA.3) differs with BA.1 and BA.2 being the predominant lineages. Between December 
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191 2021 and January 2022, BA.1 lineage accounted for 78% of sequenced samples submitted to the 

192 GISAID database compared to 16% of BA.2 [57]. This is similar to our findings reflecting the 

193 predominance of BA.1 over BA.2. 

194 The subvariant BA.2 shares 32 mutations with BA.1 but has distinct 28 mutations, four 

195 unique ones in the RBD region alone, which according to a deep learning algorithm, made it far 

196 more likely than other lineages to be the next dominant subvariant [50]. Indeed, BA.2 had already 

197 become the dominant variant in multiple countries such as Denmark and UK in February 2022 

198 [58]. Moreover, as of May 16, 2022, 78% of sequenced samples submitted to GISAID database 

199 were BA.2 compared to 5% BA.1. BA.2.12.1 and BA.4 accounted for 13% and 3% of submitted 

200 sequences, respectively. As we continue our national genomic surveillance beyond January 2022, 

201 we expect a shift in dominance in favor of the highly transmissible BA.2 subvariant and as well as 

202 an expected detection of other Omicron subvariants. 

203 Our study has several limitations. Our study did not include samples from all regions in 

204 Lebanon and thus is not fully representative of the situation in Lebanon. However, given that 

205 Beirut is the capital of this small country and sees a lot of population movement during the week, 

206 and particularly on the weekends when its residents travel to their villages across Lebanon, we 

207 believe that our data from Beirut are to some extent representative of the whole country. We were 

208 also unable to gather clinical data of HCWs, which hampered our ability to assess risk factors 

209 associated with Omicron breakthrough infections. Moreover, data on receiving the date of the 

210 second and booster shots were unavailable and thus we were unable to estimate vaccine 

211 effectiveness between the date of receiving the booster and the date of breakthrough infection. 

212 Conclusion
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213 Our findings underscore the importance of continuing genomic surveillance in Lebanon in 

214 order to monitor virus evolution and the emergence of novel SARS-CoV-2 variants. This is 

215 particularly important in HCWs as they are more likely to be exposed to emerging variants and 

216 can act as an advanced warning proxy to the wider community. More recently, two Omicron 

217 lineages (BA.4 and BA.5) have been identified in South Africa before being detected in several 

218 countries worldwide including Botswana, Belgium, Denmark, the United Kingdom, France, 

219 Germany, Portugal and China [54, 59, 60]. Therefore, continuing genomic surveillance will help 

220 assessing the characteristics and the public health implications of these lineages and other variants 

221 that might emerge and contribute to more informed public health intervention strategies.  

222 Materials and Methods

223 Study design, population, and data collection 

224 This study is part of a national surveillance program in collaboration with the 

225 Epidemiological Surveillance Unit (ESU) at the Lebanese MoPH. Accordingly, a waiver of 

226 informed consent was granted by the Institutional Review Board (IRB) at the American University 

227 of Beirut (AUB). Between December 1, 2021, and January 31, 2022, nasopharyngeal swabs were 

228 collected from a total of 250 COVID-19-positive HCWs from five Lebanese healthcare centers. 

229 Samples with Ct values of less or equal to 25 were used. The majority of samples (n=205) were 

230 collected from three hospitals in Beirut: AUB Medical Center (n=175), Rasoul Al Aazam Hospital 

231 (n=25) and Belle Vue Hospital (n=5). The remaining were collected from Hammoud Hospital in 

232 South Lebanon (n=26) and Mount Lebanon Hospital in Mount Lebanon (n=19). Aliquots of the 

233 collected samples were stored at -80◦C until processed. The date of positive PCR, vaccination 

234 status, specific occupation, and hospitalization status of participants were collected. 
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235 RNA extraction and whole genome sequencing (WGS)

236 Aliquots of the nasopharyngeal swabs (140 µl) were used to extract total RNA following 

237 manufacturer’s instructions (QIAamp Viral RNA mini-Kit, QIAGEN, Hilden, Germany, Cat. 

238 52906). Aliquots were eluted in 30 µL of Buffer AVE. Both the concentration and quality of RNA 

239 samples were measured and checked with the Denovix Blue DS-11 Spectrophotometer. Viral RNA 

240 extracts were sequenced at the Quadram Institute Bioscience, UK. Briefly, viral RNA was 

241 converted to cDNA then amplified using the ARTIC protocol v3 (LoCost) [25] and using V4 of 

242 the primer set, with sequencing libraries prepared using CoronaHiT as previously described [26]. 

243 Genome sequencing was performed using the Illumina NextSeq 500 platform (Illumina, CA, USA) 

244 with one positive control and one negative control per 94 samples. The raw reads were 

245 demultiplexed using bcl2fastq (v2.20). The reads were used to generate a consensus sequence 

246 using the ARTIC bioinformatic pipeline [27]. Briefly, the reads had adapters trimmed with 

247 TrimGalore [28] and were aligned to the WuhanHu-1 reference genome (accession MN908947.3) 

248 using BWA-MEM (v0.7.17) [29]. The ARTIC amplicons were trimmed, and a consensus was built 

249 using iVAR (v.1.3.1) [30]. PANGO lineages were assigned using Pangolin (v3.1.20) [31] and 

250 PangoLEARN model dated 2022-02-02 [32]. In this manuscript, we used the Pango lineage 

251 designation system. 

252
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