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Abstract 

Liquid biopsy enables identification of low allele frequency (AF) tumor variants and novel clinical 

applications such as minimum residual disease (MRD) monitoring. However, challenges remain, 

primarily due to limited sample volume and low read count of low-AF variants. Because of the low AFs, 

some clinically significant variants are difficult to distinguish from errors introduced by PCR amplification 

and sequencing. Unique Molecular Identifiers (UMIs) have been developed to further reduce base error 

rates and improve the variant calling accuracy, which enables better discrimination between 

background errors and real somatic variants. While multiple UMI-aware ctDNA analysis pipelines have 

been published and adopted, their accuracy and runtime efficiency could be improved. 

 

In this study, we present the Sentieon ctDNA pipeline, a fast and accurate solution for small somatic 

variant calling from ctDNA sequencing data. The pipeline consists of four core modules: alignment, 

consensus generation, variant calling, and variant filtering. We benchmarked the ctDNA pipeline using 

both simulated and real datasets, and found that the Sentieon ctDNA pipeline is more accurate than 

alternatives. 

 

 

Background 

It is well established that tumor cells release fragments of DNA, so-called circulating tumor DNA (ctDNA), 

into the circulatory system during apoptosis or necrosis1. ctDNA fragments retain somatic variants from 

the original tumor tissue. Its existence and fragmentation pattern in blood can be used to infer the 

presence of a tumor and its stage2,3. Accordingly, ctDNA detection and monitoring can serve as a 

biomarker target for a number of clinical oncology assays, including treatment selection, minimum 

residual disease (MRD) monitoring, and early cancer detection4,5. Evaluations of somatic variants from 

ctDNA and other liquid biopsies provide multiple advantages over direct biopsy of tumor tissue, as 

sample collection is significantly faster and less invasive6, and the identified variants are likely to have a 

better representation across heterogeneous tumors7. In addition, for MRD monitoring and early cancer 

detection, no tumor tissue is available and liquid biopsy may be the only choice.  

 

The rapidly decreasing price and increasing throughput of next-generation sequencing technologies has 

enabled the development of assays to directly sequence ctDNA. In particular, the high-throughput short-

read sequencing is ideal for high-depth multi-gene panels that aim to detect variants of low allele 

frequencies (AFs). As a result, the adoption of NGS ctDNA assays have soared in precision oncology 

applications8,9. However, challenges remain due to limited sample volume and the number of DNA 

material required for reliable detection of ultra-low AF variants. For example, a single tube of blood 

typically yields less than 4mL of plasma, from which less than 30ng of DNA or about 9000 haplotype 
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genome equivalents (hGEs) can be extracted. Due to material loss in the ensuing steps of target capture 

and library construction, number of hGEs available for sequencing is further down to less than 6000, 

which is considered as the maximum unique coverage, even at saturation sequencing depths. 

 

While overall base accuracy is high, the most widely used short-read sequencing platform has an error 

rate of around 1 in 1000 bases, approximating the AFs lower end of clinically significant somatic variants. 

As a solution, Unique Molecular Identifiers (UMIs) have been integrated into ctDNA assays to further 

reduce base error rate to more accurately discriminate between background errors and real somatic 

variants10. A UMI tag is usually a short sequence of nucleotide bases, added to one or both ends of a 

template DNA fragment. The uniquely-tagged DNA fragments are then PCR-amplified and sequenced 

multiple times. Due to the large number of nucleotide combinations, UMIs attached to DNA fragments 

on a local genomic region are very likely different from each other. Post-sequencing, a consensus 

sequence is derived by intelligently collapsing reads with the same UMI, thereby mitigating the errors 

resulting from PCR amplification and sequencing. 

 

A ctDNA NGS analysis pipeline consists of three key steps: alignment, consensus generation, and variant 

calling. While BWA-mem is adopted as mainstream aligner for short reads, agreement for best practice 

has not yet been reached for the other two steps. Several pipelines integrate consensus generation and 

variant calling within one module, such as <DeepSNVMiner=11, <MAGERI=12, <smCounter=13, and 

<smCounter2=14. Other pipelines adopt separate consensus generation and variant calling tools which 

may allow for more flexibility and faster adaptation to new data types. Popular consensus generation 

tools include <Fgbio=15 and <Gencore=16. Gencore is described as a consensus-based dedup tool that 

works with or without UMIs, while providing higher accuracy compared to alternatives. Popular somatic 

variant callers include <Mutect2=17, <VarDict=18, <Strelka2=19, and <VarScan2=20. Although none of these 

callers were originally designed for ctDNA assays, they have all demonstrated reasonable accuracy in 

recent benchmark studies14,21. 

The NIST-lead Genome in a Bottle (GIAB) consortium has made great advances in providing reliable 

reference materials and benchmark datasets for germline variant calling22, with the first of these 

datasets available in 2014. However, somatic variant benchmarking has lagged due to the lack of 

publicly available reference materials and datasets. This lack of somatic reference materials was recently 

addressed by the Sequencing Quality Control2 (SEQC2) project, which published in 2021 the first multi-

center comprehensive project that provided reference datasets and truth sets for both tissue23,24 and 

ctDNA samples21. In the SEQC2 ctDNA benchmark study, 360 datasets from two reference samples were 

generated, providing valuable resources for the whole community.  

In this study, we present the Sentieon ctDNA pipeline, a fast and accurate solution for small somatic 

variant calling from ctDNA sequencing data. The pipeline consists of four core modules: 1) Sentieon 

BWA, an accelerated version of BWA-mem for alignment25; 2) Sentieon Consensus, a consensus 

generation tool for grouping and generating consensus reads with and without UMI tags; 3) TNscope, a 

haplotype-based somatic variant caller with high sensitivity26; 4) TNscope-filter, a customizable filtering 

tool for removing false positive variants. We benchmarked the ctDNA pipeline using both simulated and 

real datasets, and found that the Sentieon ctDNA pipeline is more accurate and faster than alternatives. 

 

 

Results 

We used four datasets to benchmark accuracy of the pipeline, including a simulated dataset, two in-

vitro mixtures with known ground truth, and a real-world dataset of clinical MRD samples. 
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Simulated Dataset 

UMI-aware consensus generation is considered as a key analysis step for high-depth liquid biopsy 

sequencing, as downstream variant calling relies on the consensus reads to accurately model base 

quality in the presence of base errors. In the first benchmark, we generated reads with simulated errors 

to test the consensus module, comparing the results produced by the Sentieon Consensus tool to 

Fgbio9s CallMolecularConsensusReads. 

 

To fully simulate the library construction and sequencing process, we initially started with 5 million 

virtual DNA fragments randomly generated from the human reference genome, with lengths ranging 

from 100 to 500bp. We then conducted simulated UMI-tagging, PCR amplification and sequencing of 

these fragments. In total, 8 PCR cycles were simulated and SNP/Indel errors were introduced during the 

PCR process at assigned error rate, creating a total of 256 virtual sequences for each fragment. Three of 

the 256 sequences were randomly chosen for use in the simulated sequencing process. During the 

simulated sequencing, sequencing errors were injected by ART tool using HiSeq2500 error model. In 

total, 15 million reads with length from 30 to 250bp were generated.  

 

These reads were processed by both the Sentieon Consensus tool and Fgbio to generate consensus 

reads, which were compared with the ground truth sequence (the initial sequence prior to the 

introduction of library prep and sequencing error) to evaluate the consensus calling accuracy. The entire 

simulation, consensus generation, and evaluation process is illustrated in Fig 2. 

 

Three reads in each UMI group were provided to a consensus generation tool, so every consensus base 

was generated from 3 simulated bases. To better understand the effects of the input bases on 

consensus accuracy, we assigned each position into one of the categories depending on the input read 

sequence: three bases are the same (all same, e.g., AAA), two bases are the same (partially same, e.g., 

AAC), and three bases are all different (all different, e.g., ACG). Over 800 million bases are in the <all 

same= category, approximately 100 million bases are in the <partially same= category, and very few 

reads belong to <all different= category. In all three categories, error rate of Sentieon is at least 2 orders 

of magnitudes lower than Fgbio9s result (Fig 3A). 

 

The high error rate of Fgbio is likely due to its inaccurate estimation of the PCR amplification error rate, 

and its treatment of low-quality bases by simply marking them as <N=. This can be easily observed in the 

<All different= category group where Fgbio fails to return a single correct result, while the Sentieon 

Consensus tool processes the same input reads with an error rate of under 5%. It should also be noted 

that in cases where all input bases are the same (the <All same= category), Sentieon and Fgbio still rarely 

call an incorrect base, as measured comparing the consensus base to the ground truth. In this case, it is 

likely that all three input reads share an incorrect base, possibly due to an early PCR cycle error. 

  
In addition to correctly generating the consensus sequence, correctly quantifying the confidence in the 

base as the consensus base quality is also important for downstream variant calling. In theory, the base 

quality assigned to a consensus base should accurately reflect the true probability of a base being called 

wrongly. Using the base qualities in the earlier simulation study, we confirm that the Sentieon 

Consensus tool accurately models the consensus base error rate (Fig 3B). 

 

In-Vitro Mixture of DNA from Healthy Individuals 

Next, we utilized in-vitro mixtures to benchmark the entire ctDNA pipeline, coupling the Sentieon 

Consensus module with TNscope. Sentieon TNscope is a haplotype-based somatic variant caller that 
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follows the general mathematical models in the GATK Mutect2, with a variety of improvements. To 

evaluate the accuracy of the Sentieon ctDNA pipeline, we utilized two in-vitro mixture datasets with 

known variant calls for benchmarking, and compared the accuracy with an alternative consensus 

generation and variant calling pipeline. 

 

The first dataset was generated using a mixture of extracted DNAs from two healthy individuals (Fig 4).  

Truthset variants for each individual were determined by the GATK germline variant calling pipeline. One 

individual9s DNA (spike-in) was then mixed with another9s (background) at 0.2% and 0.3% titration rates. 

In total, three libraries were constructed from mixed DNA samples. A customized panel probe 

hybridization was conducted on all three libraries, covering 57 homozygous and 70 heterozygous truth 

SNPs in the panel region. The libraries were then sequenced using Illumina or MGI platforms and the 

datasets were subsampled to 30,000x before analysis. Detailed info for each dataset is listed in Table 1, 

and details of the sample collection and processing procedures are described in the method section.  

 

The three datasets are analogous to MRD detection, with an expected mutation frequency down to 

0.1%. DNA type and sequencing platforms are varied, to test analysis pipeline9s performance on 

different wet lab settings.  

 

The three datasets were processed by the Sentieon ctDNA pipeline, and an <Fgbio + Vardict= pipeline as 

the alternative. The resulting variant calls were compared against the truth set for accuracy calculation. 

 

Accuracy metrics for the two pipelines are reported in Fig 5. The Sentieon pipeline returned slightly 

superior overall F-Score and higher recalls.  

 

SEQC2 ctDNA Dataset 

In addition to the in-vitro mix samples described above, we also utilized the recent published SEQC2 

dataset21 to benchmark the performance of the Sentieon ctDNA pipeline. The SEQC2 study is a large 

multi-center project that aims to generate ctDNA reference samples, and to benchmark current 

available ctDNA assays. Accordingly, the SEQC2 project generated reference samples through in-vitro 

mixture of two cell line DNA samples with known somatic variants, at different titration rates. The <Lbx-

high= mixture contains variants with median frequency around 1%, and majority above 0.5%; while the 

<Lbx-low= mixture contains variants with median frequency around 0.2% and majority above 0.1%. Both 

reference DNAs were then sent to multiple ctDNA assay vendors for sequencing and bioinformatics 

analysis. BRP (Burning Rock Dx) assay provided the highest accuracy in the project, and we therefore 

chose the BRP datasets for our benchmark. Details of dataset prep methods can be found in the SEQC2 

study paper21. 

  
We chose to work with eight Lbx-low datasets, because their lower AFs could better highlight the 

advantage of UMI tagging and consensus analysis. The fastq files for these samples were processed by 

the Sentieon ctDNA pipeline, and variant calling accuracy was evaluated using the SEQC2 truth set. 

Performance was compared against the BRP analysis pipeline, which is based on a BRP-developed UMI 

consensus tool and VarScan221. The depth of each sample is reported in Table 2. The post-dedup depth 

reflects hGEs being sequenced, and does not have a strong correlation with pre-dedup depth. Average 

group size for each UMI consensus read is approximately 7 to 12. 

 

The Precision and Recall for the two pipelines are shown in Fig 7. On the same high-depth UMI dataset, 

the Sentieon pipeline outperformed the BRP analysis pipeline, in terms of both recall and specificity.  
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Clinical Minimum Residual Disease Validation 

The prior analyses demonstrate that the Sentieon ctDNA pipeline has good performance on both 

synthetic datasets as well as in-vitro mixtures. To further assess performance of the pipeline, we tested 

our methods on real-world clinical samples. The dataset includes 10 clinical samples from a tumor-

informed MRD assay. Each sample has a pre-determined set of oncogenic clonal mutations, which were 

identified through tumor biopsy sequencing for the same patient. The subsequent ctDNA test would 

only assess the pre-determined mutation set to call if a variant is positive or negative, serving as 

indicator of patient9s disease status. By tracking only the pre-determined set of clonal mutations, the 

tumor-informed MRD approach eliminates the potential interference from other non-tumor (i.e. clonal 

hematopoiesis) somatic variants. Thus, the limit of detection (LOD) of tumor-informed MDR approaches 

can reach to below 0.1%, which is much lower than tumor-naïve approaches. 

 

First, reads of these 10 samples were aligned using Sentieon BWA to generate pre-dedup BAM files. 

After alignment, three UMI consensus generation modules including Genecast MinerVa, Sentieon, and 

Fgbio were respectively applied. Given all reads aligned to a same genomic position, the MinerVa UMI 

module clusters them into different clusters under the rule that all UMIs within a cluster are within one 

edit distance of each other, and then derives the consensus read for each cluster using a statistical 

model that considers the base qualities of each read. MinerVa UMI also has the ability to run in a per-

variant mode for higher sensitivity and faster speed. 

 

After consensus read generation, pre-determined mutations were examined in the consensus reads for 

the number of supporting reads and total consensus read depth, and VAF (Variant Allele Frequency) was 

calculated at each variant site. The Genecast MinerVa MRD pipeline then produces a p-value for each 

identified variant based on a proprietary statistical model, which is trained on a population dataset 

constructed from approximately 1000 healthy individuals. For Sentieon and Fgbio, a variant is called 

positive when its p-value is less than 0.05; while for Genecast MinerVa, the criteria is p-value less than 

0.05, or a duplex count greater than 0.  

 

Based on the results (Fig 8), Genecast MinerVa has the highest positive rate (= the number of detected 

ctDNA variant / the size of the pre-determined variant set), while Sentieon and Fgbio have slightly lower 

positive rate. Note that the consensus base quality information generated by Sentieon or Fgbio was not 

used in the variant calling, which suggests room for improvement.  

 

While the true positive rate for clinical samples is hard to know, similar positive rates from different 

tools corroborate the usefulness of the UMI-consensus generation approach for real-world clinical 

assays. Furthermore, we assessed the specificity of each tool using a cross-patient scheme. In this 

scheme, for each patient, non-overlapping somatic mutations from other patients were considered as 

potential for false positive variant detection, and were combined to form the <negative= pre-determined 

variant set for tracking. A total of 1998 <negative= variants were assessed in this cross-patient analysis. 

From these potential false positives, 5 out of 1998 variants were called positive by Genecast MinerVa, 8 

by Fgbio, and 10 by Sentieon Consensus. Based on these data, we conclude that the specificity for all 

three methods is above 99.5%. 
 

Runtime Comparison 

We designed two runtime comparison datasets to benchmark the Sentieon Consensus tool and the 

whole Sentieon ctDNA pipeline. 
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The Sentieon Consensus is optimized for efficient processing of UMI-tagged reads while maintaining 

high accuracy for UMI consensus reads. Improvements in the underlying algorithms and a performance-

focused software implementation allow the Sentieon pipeline to process the data ~20X faster (4,317sec 

vs 82,679sec) relative to Fgbio (Fig 9A). This benchmark was conducted using a 0.5% AF dataset (N13532 

from benchmark study14) on a 32-logical-core Intel Xeon platform. 

 

The whole pipeline runtime comparison was conducted using two in-vitro mixture datasets at the 

original sequencing depth. Ten threads were allocated to each pipeline. For the <Fgbio + Vardict= 

pipeline (alternative pipeline), the dataset was split into 10 chunks and run in parallel to improve its 

speed. The alternative pipeline is about 10x slower than the Sentieon ctDNA pipeline, even with the 

additional parallelization (Fig 9B). 

 

 

Methods 

Healthy Individuals In-vitro Mix Dataset Generation 

Genomic DNAs were extracted from two healthy individuals9 blood samples using the TIANamp Genomic 

DNA kit (#DP304, TIANGEN BIOTECH). Cell free DNAs were extracted from the same individuals using the 

Serum/Plasma Circulating DNA Kit (#DP339, TIANGEN BIOTECH).  

 

Genomic DNA or cfDNA from one individual (spike-in) was mixed with another individual9s DNA 

(background) at 0.2% and 0.3% titration rate, respectively. Library 75 was constructed by NadPrep DNA 

Library Preparation Kit (for MGI) including Bi-Molecular Identifier (BMI) adapter (#1003821, 

Nanodigmbio) from 25ng gDNA fragmented by NEBNext dsDNA Fragmentase (#M0348, NEB). Library 

NL190929-2c was constructed by NadPrep DNA Library Preparation Kit (for Illumina) including UMI 

adapter (#1003431, Nanodigmbio) from 25ng cfDNA. Library NL190023-1c was constructed by NadPrep 

DNA Library Preparation Kit (for MGI) including Bi-Molecular Identifier (BMI) adapter (#1003821, 

Nanodigmbio) from 25ng cfDNA. Following end repair and A-tailing, dilution was performed. 40µL of 

NadPrep SP Beads were used for library clean up and ligated fragments were amplified with 6-9 cycles 

using 0.5M index primers mix. Library yields were controlled between 500-1000ng. 60µL of NadPrep SP 

Beads were used to recycle libraries. 

 

All three libraries were processed by single-tube capture hybridization. Following the Nanodigmbio 

Hybridization capture protocol (NadPrep Hybrid Capture Reagents, #1005101), each pool of DNA was 

combined with 5µL of 1mg Cot-1 DNA (Invitrogen) and 2µL 0.2nmol NadPrep NanoBlockers (#1006204 

for MGI, #1006101 for Illumina, Nanodigmbio) to prevent cross hybridization and minimize off-target 

capture. Library and blocker were dried and re-suspended in hybridization buffer and enhancer. Target 

capture with 38kb <SNP ID= Panel Probes (Nanodigmbio) was performed overnight. Streptavidin M270 

(Invitrogen) beads were used to isolate hybridized targets according to Nanodigmbio hybridization 

capture protocol. Captured DNA fragments were amplified with 13315 cycles of PCR.  

 

Libraries were then sequenced by either 100bp paired-end runs on MGI-2000 sequencer at 

Nanodigmbio R&D Center, or 150bp paired-end runs on Illumina  XTen sequencer at the Wuxi Genome 

Center. Germline variants of the two individuals were called by the GATK pipeline, and germline variants 

unique to a single individual were used as truth set for accuracy calculation.  

 

Sentieon ctDNA Pipeline - Alignment and Sort 

The Sentieon Genomics tool set is a suite of software tools for secondary analysis of next-generation 

sequence data. The Sentieon pipelines consist of optimized implementations of the mathematical 
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models of the most accurate variant calling pipelines. Improvements in performance are achieved 

through optimization of the algorithms and improved resource management.  

 

Prior to variant calling, sequence data are aligned to the human reference genome using Sentieon BWA. 

BWA-MEM is one of the most popular aligners for alignment of next-generation sequencing reads given 

its accuracy and ability to produce correct alignments at structural variant breakpoints. Sentieon 

provides an optimized implementation of BWA resulting in a 1.0 to 3.9x speedup25, while producing 

identical alignments. Read coordinate sorting was conducted by Sentieon utility module <sort=. 

 

Consensus Generation 

The Sentieon Consensus module performs sophisticated modeling of the base errors introduced by 

library construction and sequencing process to improve consensus read accuracy. Reads are grouped 

based on their positions and UMI tags if available, and then the grouped reads are modeled statistically 

to account for multiple sources of base error. Potential sources of error include, PCR errors occurring 

during library construction; single-strand errors introduced prior to UMI tagging; and sequencing errors. 

Parameters of the statistical model are learned and calibrated directly from the dataset without user 

input. Consensus reads are then called from the grouped reads using a Bayesian model informed by the 

learned parameters, and overlapping read pairs are then merged. It should be noted that during the 

consensus calling no reads are discarded, and all read information is counted in for model calibration. 

Consensus calling confidence is reflected in the assigned base quality of consensus bases, which helps 

downstream callers improve variant calling accuracy. 

 

TNscope and TNscope-filter 

TNscope is a haplotype-based variant caller that follows the general principles of the mathematical 

models first implemented in the GATK HaplotypeCaller and MuTect2. This includes active region 

detection, assembly of haplotypes from the reference and local read data using a de Bruijn-like graph, 

pair-HMM for calculation of read-haplotype likelihoods followed by genotype assignment. Like MuTect2, 

TNscope evaluates the tumor and normal haplotypes jointly if the matching normal sample is available, 

achieving significantly higher precision for somatic variant detection.  

Several improvements have been incorporated into the mathematical model of TNscope to increase its 

recall and precision. The highly-efficient implementation allows TNscope to choose a lower threshold for 

triggering active regions, facilitating a more comprehensive evaluation of potential variants. 

Furthermore, the detected active regions are typically of higher quality as TNscope uses a statistical 

model to trigger active regions rather than a fixed cutoff. Local assembly is improved, resulting in more 

frequent identification of the correct variant haplotype. Genotyping is improved as well due to the 

adoption of a novel quality score model and various nonparametric statistical tests to eliminate false-

positive variants. TNscope also outputs several novel variant annotations that can be used for improved 

variant filtration. Tumor-only mode is enhanced with a panel of non-matching normal samples. For high-

depth targeted sequencing data, downsampling is not required due to TNscope9s computational 

efficiency, which makes it an ideal haplotype-based variant caller for the detection of rare somatic 

events in ctDNA samples. 

TNscope-filter module is a VCF filtering tool, that could identify false positive variants from raw VCF files 

based on input parameters. Its functionality is similar to BCFtools27 but is more compatible with other 

Sentieon modules. 
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Conclusions 

In this study, we present the Sentieon ctDNA analysis pipeline and benchmark its accuracy using both 

simulated and real datasets. Superior recall and precision compared to alternative pipelines was 

observed in most testing datasets. The superior performance of the Sentieon pipeline is largely due to 

the sophisticated statistical model used in the consensus generation tool couple with highly accurate 

somatic variant calling from Senteion TNscope. Besides being more accurate, the Sentieon ctDNA 

pipeline is also much faster than alternative pipelines, enabling the timely processing of high-depth 

large-panel datasets.  

 

 

Code Availability 

Script of Sentieon UMI pipelines benchmarked in this study can be found on Github page: 

https://github.com/Sentieon/sentieon-

scripts/blob/master/example_pipelines/somatic/TNscope/Somatic_ctDNA_with_UMI.sh 
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Figure 1. Schematic diagram of duplex UMI error correction. Reads with the same start and end 

positions, and the same UMI tag are grouped and collapsed into a single consensus read. Relative to 

standard UMI library preparations, duplex UMI allows for discrimination of different strand of the input 

molecule, enabling detection and correction of strand-specific errors in the template molecule. 
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Figure 2. Simulation and benchmarking pipeline. 
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Figure 3. (A) Error rates of Sentieon UMI Consensus tool and the Fgbio. For completely discordant input 

reads, Fgbio fails to call a consensus base (instead producing an 8N9 base in the output). (B) The 

consensus base quality reported by the Sentieon Consensus tool is strongly correlated with the 

consensus base error rate relative to the ground truth. 
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Figure 4. In-Vitro mixture samples prepared by titration of DNAs from two healthy individuals. 
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Figure 5. Accuracy of the Sentieon ctDNA pipeline and alternative pipeline, on MRD datasets.  
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Figure 6. Schematic diagram of reference sample generation, assay process, variant calling, and accuracy 

benchmark21.  
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Figure 7. Precision vs. Recall of the 8 Lbx-low datasets. 
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Figure 8. Comparing the ctDNA variant detection from post-dedup BAMs generated by three tools. 

Upper panel: The height of a gray bar represents the size of the pre-determined variant set from the 

tumor tissue sequencing. Within each gray bar, a green/blue/orange bar represents the number of 

ctDNA variants detected in the same sample. Lower panel: The VAFs of all detected ctDNA variants are 

below 1%, with the majority below 0.25%. 
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Figure 9. A. Runtime comparison of the consensus generation step. The Sentieon UMI Consensus tool 

showed 20X speed-up over Fgbio. B. Runtime comparison of the whole ctDNA processing pipeline 

including alignment, consensus generation, variant calling and filtering. 
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Table 1. Wet lab settings of the MRD datasets. 

 

Dataset DNA Type Expected AF DNA Input Sequencer Pre-Dedup Depth 

LIB75 gDNA 0.1% and 0.2% 25ng MGI 30,000x 

NL190929-2C cfDNA 0.1% and 0.2% 25ng Illumina 30,000x 

NL191023-1C cfDNA 0.15% and 0.3% 25ng MGI 30,000x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.03.494742doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494742
http://creativecommons.org/licenses/by/4.0/


 
 
 
Table 2. Pre-dedup and post-dedup depth of the evaluated datasets. 

 

Datasets Site Library Pre-Dedup Depth Post-Dedup Depth 

SRR13200999 25 1 41,006x 5,693x 

SRR13200998 25 2 71,212x 5,760x 

SRR13200997 25 3 48,660x 5,181x 

SRR13200996 25 4 67,624x 5,707x 

SRR13200991 26 1 37,979x 5,352x 

SRR13200990 26 2 37,164x 5,361x 

SRR13200988 26 3 48,317x 5,667x 

SRR13200987 26 4 40,972x 5,433x 
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Table 3: The ten clinical samples contain 224 known somatic mutations in total. Their AFs from original 

tumor tissues, along with the pre and post consensus depths are shown. 

 

Sample Number of Tumor-

Informed Variants 

Average AF of 

Variants in Tissue 

Pre-Dedup Depth 

of Variants 

Post-Dedup Depth 

(Sentieon Consensus) 

SAMPLE 1 24 11.3% 37,211x 4,006x 

SAMPLE 2 22 10.2% 33,135x 3,327x 

SAMPLE 3 14 14.3% 45,536x 2,103x 

SAMPLE 4 36 10.3% 32,058x 2,778x 

SAMPLE 5 19 15.4% 47,324x 3,173x 

SAMPLE 6 15 38.6% 35,179x 2,168x 

SAMPLE 7 28 20.5% 49,281x 2,546x 

SAMPLE 8 12 21.3% 30,619x 2,326x 

SAMPLE 9 10 7.5% 56,296x 1,990x 

SAMPLE 10 44 8.5% 31,185x 2,652x 
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