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ABSTRACT

The crop root system is pivotal for water and nutrient uptake and environmental stress
adaptations. Wheat, as the major calorie provision for the world’s population,
successfully increases its yield for world population expansion with modern breeding
selection. However, the root adaptation in modern wheat cultivars still remain
unknown. Here we present the root transcriptomes of 351 wheat accession, which
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28  showed a distinct transcriptomic profile between landraces (LA) and modern cultivars
29  (MC), suggesting a significant change of MC in environmental adaptation and root
30  development. The MC seedlings showed a significantly bigger root system, which is
31  mainly contributed by the well-known green revolution allele Rht-D1b. The
32 suppressed GA signaling by Rht-D1b inhibits the cell length in above-ground tissue
33  for a dwarf structure, but increases the cell width in the root meristem, resulting in
34 bigger root diameter and a bigger root volume. This distinct regulation between
35 above- and under-ground contribute a significantly larger root-shoot ratio to modern
36 wheat cultivars. Our data provide new insights for the successful adoption of Rht-D1b
37 and Rht-Blb in green revolution, and the application of Rht-D1b and Rht-Blb in

38  future wheat breeding and production.
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39 INTRODUCTION

40 Root system is fundamental for crop water and nutrient uptakes (Den Herder et
41  al., 2010; van der Bom et al., 2020), also critical for abiotic stress adaptation (Lynch,
42 1995; Khan et al., 2016; Hu et al., 2019; Calleja-Cabrera et al., 2020; de Vries et al.,
43 2020). The monocotyledonous wheat root system is composed of seminal roots and
44 adventitious roots. The seminal root system develops initially and consists of the
45 primary root and two pairs of seminal roots (Hou et al., 2019; Hendel et al., 2021).
46 Seminal roots penetrate the soil earlier and deeper than the adventitious roots and
47  wusually remain active throughout the plant life cycle, and play a crucial role in
48  absorbing water from deep soil layers (Watt et al., 2008). Although the root length
49  and more seminar roots are important for wheat survival under water limitation
50  (Golan et al., 2018; Bacher et al., 2021), there is a trade-off between longer roots or
51  more roots (van der Bom et al., 2020). Actually, the root structure has to match the
52 surrounding environments to maximise the nutrients and water intake from the soil. It

53  isdifficult to define an ideal root structure for a plant (van der Bom et al., 2020).

54 Modern bread wheat (Triticum aestivum L.) is hexaploidy comprising A, B and
55 D subgenomes (IWGSC, 2018; Zhou et al., 2020). Wheat root had experienced a suite
56  of complex genetic, morphological and physiological function modifications during
57  wheat evolution and domestication (Abbo et al., 2014; Golan et al., 2018), including
58  drought tolerance improvement (Golan et al., 2018; Bacher et al., 2021). Over the past
59  century, wheat grain yield has been remarkably improved with the breeding activities
60 targeting high-yield (Godfray et al., 2010; van de Wouw et al., 2010; Snowdon et al.,
61  2020). This breeding selection has largely reshaped the wheat genome and made the
62  modern cultivars (MC) different from the landrace (LA) (Hu et al., 2019; Hao et al.,
63  2020; Zhou et al.,, 2020). Significantly, the Green Revolution of the 1960s, by
64  introducing semi-dwarfing genes into rice and wheat, dramatically increased cereal
65  grain yields that were associated with improved lodging resistance and the resulting

66  ability to tolerate higher levels of inorganic nitrogen-based fertilizer (Pearce et al.,
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67  2011; Van De Velde et al., 2021). However, how the modern wheat cultivars adjust
68 root development to fit the current cultivation conditions and yield production

69  remains largely unknown.

70 In hexaploid wheat, dwarfing has been achieved mainly through the introduction
71  of the Rht (Reduced Height) alleles Rht-B1lb and Rht-D1b (previously named Rhtl
72 and Rht2), which introduce premature stop codons in the N-terminal coding region of
73  DELLA proteins and confer lower sensitivity to GA (Wu et al., 2011; Liu et al., 2021).
74 After six decades of practice, approximately 70% of cultivars in a worldwide wheat
75  panel released in the 21st century carry one of these two alleles (Wurschum et al.,
76 2017). They significantly altered plant structure related traits (Lanning et al., 2012;
77  Sherman et al., 2014), but the root changes with the dwarf alleles' introduction remain

78  largely unclear.

79 With the increase in sequencing accuracy, large-scale population transcriptome
80  sequencing is becoming an efficient tool for SNP identification (Fu et al., 2013;
81  Zhang et al., 2017). The transcriptome data also provide a link between the traits and
82  the SNP variations that cannot be readily captured at the sequence level (Azodi et al.,
83  2020), thus providing an important bridge from DNA to phenotypes and critical clues
84  for the investigation of underlying mechanisms of functional variations. However,
85  current population genetics is challenged by the interference from population structure
86  and membership kinship, which results in different outputs with the varied population
87  composition (Fauman, 2020). Therefore, many new approaches and concepts were
88  developed to support current population genetics, including the differentially
89  expressed genes in population and random population combination analysis
90  (Bulik-Sullivan et al., 2015; Chen et al., 2021; Li et al., 2022).

91 Here, we performed transcriptome sequencing and phenotyping on seedling root
92  for a natural bread wheat population, including 87 landraces and 264 historical
93  modern cultivars, revealing that the modern wheat breeding selection reshaped the

94  root transcriptomes and root development. Our results demonstrated that Rht-D1b is
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95  the major allele contributing a bigger root system to modern wheat cultivars. The
96  population transcriptome analysis showed that Rht-D1b regulates a broad of genes
97  involved in wheat root development, increases increased the root cell width and root
98  diameter, thereby significantly enhances the root-shoot ratio of modern wheat, which

99  provides new insights for Rht-D1b application in futural wheat breeding practice.
100 RESULTS
101  Root transcriptome sequencing of natural wheat population

102 A total of 385 worldwide bread wheat accessions (Table S1) were collected and
103 sequenced the transcriptome with the seedling roots, producing 15.08 billion
104  high-quality reads and identifying 1,225,246 SNPs with an average density of 8 SNPs
105  per gene or approximate one SNP per 944 bp (Fig. 1A), providing a more detailed
106  variation landscape for the wheat genome. About half of SNPs (48%) are located in
107 the CDS (coding sequence) regions (Fig. 1B), demonstrating a feature of the

108  transcriptome derived SNPs.

109 The expression evidence of 107,651 genes was identified in this population,
110 including 39,277 wheat low confidence (LC) genes, extending the number of reliable
111 wheat genes to the current wheat genome. The expression levels of genes in the
112 population ranged from 0.5 to 21144.5 TPM (transcript per million). The highly
113 expressed genes are enriched in the category of “response to water deprivation” and
114 “water transport” (Fig. 1C and Table S2), highlighting the root function as the water
115  uptake organ. Interestingly, the categories of “response to water deprivation” and
116 “water transport” are also enriched in the highly varied expression genes in this
117  natural population (Fig. 1D and Table S3), indicating water intake process is highly
118  varied among wheat accessions which present a great potential to improve based on

119  the current wheat germplasms.

120 Modern wheat breeding substantially reshaped the root transcriptome and root

121 development
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122 Based on the phylogenetic analysis with clear definition varieties, ancestry
123 coefficient estimation and the pedigree documentation, 264 modern cultivars (MC)
124  and 87 landraces (LA) were determined (Fig. 2A and 2B). An average of 7,185
125  differentially expressed genes (DEGs) between LA and MC groups could be
126  identified (FDR adjusted P-value < 0.01; Table S4) with Wilcoxon rank-sum test (Li
127 et al., 2022), followed by cross-validation based on 100 random permutations to
128  exclude the population structure interference (Fig. 2C). In contrast, there were only
129  0.2% of the whole population based 100,000 permutations in which DEG was
130 detected, and only 16 out of the 100,000 tests showed a similar DEG number (7,185)
131 with that between MC and LA (Fig. 2C) suggesting that MC had accumulated a vast

132 difference in root transcriptome during the modern breeding selection.

133 To improve the reliability, the DEGs that were detected more than ten times in
134 the 100 permutations (Fig. 2C) were used for enrichment analysis. GO analysis
135  reveals that modern wheat cultivars significantly changed in environmental stress
136 response, development, metabolic processes and signaling transductions (Fig. 2D and

137 Table S5).

138 There are 161 genes identified as the DEGs between MC and LA, which pass all
139 100 random permutations (Table S6). Of which, the homologs of 12 genes in other
140  plants were identified as the key genes involved in root development, including
141  AtACR4 (De Smet et al., 2008; Yue et al., 2016), AtRCD1 (Teotia and Lamb, 2011),
142 AtARRI1O (Yokoyama et al., 2007; Zubo et al., 2017), two AtGSTU17 (Chen et al.,
143 2012), AtACT7 (Gilliland et al., 2003), AtNRP2 (Wu et al., 2022), AtHB-15
144 (Ohashi-Ito and Fukuda, 2003), three AtKNAT3 (Truernit et al., 2006) and AtEXPB2
145 (Wuetal., 2001), indicating that the root development may be altered with modern

146  wheat breeding.

147 To clarify root developmental alterations of MC, the root phenotypes of 14 days

148  after germination (DAGs) seedlings were investigated (Fig. 2E). We found the root
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149  surface and volume were significantly increased in the MC group, albeit the primary
150  root and total root length showed no significant difference. The root number and root
151  diameter are also significantly increased in the MC group, which may be responsible

152 for the bigger root system of MC.

153 The Rht-D1b contributes the major effect in increasing seedling root volume of

154  modern wheat cultivars

155 GWAS analysis showed a QTL on 4D that was significantly associated with the
156  root surface and volume, which contained the well-known Rht-D1, contributing to
157 14-23% variation of these traits in the population (Fig. 3A, Supplemental Table S7).
158  The Transcriptome Wide Association Study (TWAS) showed that the Rht-D1 ranked
159  first in assigning as the casual gene, and its transcriptional level was positively
160  correlated with these two traits (Fig. 3B, Supplemental Table S8). In population
161  transcriptomic data, the Rht-D1 has a significantly higher transcriptional level in
162  Rht-D1b genotypes than that in Rht-D1a genotypes (Fig. 3C), consistent with the

163 larger root surface and volume in Rht-D1b genotypes.

164 Surprisingly, the root surface and volume in modern wheat showed no difference
165  from that of LA if we removed the cultivars containing Rht-D1b (Fig. 3D).
166  Meanwhile, the root surface and volume of the Rht-D1b genotypes were significantly
167  higher than that of the Rht-D1a genotypes, supporting that the Rht-D1b is the major
168  allele conferring the bigger root system to modern wheat. Besides, the total root
169  length and root diameter were also significantly increased in Rht-D1b genotypes (Fig.
170 3D), supporting Rht-D1b also played a crucial role in modifying modern wheat root

171  system in addition to dwarf the wheat structure.

172 To exclude the possibility that the bigger root system of the Rht-D1b was raised
173 from the earlier germination, the seedling root development was systematically and
174 continuously investigated (Fig. 3E). The results showed that the root length is

175  significantly shorter in the Rht-D1b genotypes at 4 DAGs; then, it catches up with the
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176 seedling development process. At seven DAGs, the Rht-D1b genotypes showed a
177  significant increase in root diameter and volume than other genotypes. The total root
178  length and root surface significantly increased until 14 DAGs (Fig. 3E). These
179  observations suggest that the bigger root of Rht-D1b is from the faster growth after

180  germination instead of the earlier germination.

181 The full CDS containing Rht-D1b allele driven by the Rht-D1 promoter was
182  introduced into wheat cv Fielder (Rht-Dla and Rht-Blb background), which
183  confirmed its role in increasing total root length, root diameter, and a bigger root
184  system (Fig. 3F), supporting that the Rht-D1b has a versatile role in regulating wheat

185  root development.
186  The bigger root system of the Rht-D1b depends on the GA signaling

187 The Rht genes encode DELLA, which acts as the key negative regulator of the
188  GA signaling, prompting us to investigate the role of GA in the regulation of Rht-D1b
189  on root development. Eighteen accessions were randomly selected from the Rht-D1b,
190 Rht-Blb and Rht-BlaRht-Dla (marked NO) groups, respectively, and treated by
191  exogenous GA in the hydroponics system. We found that the root length of the
192  Rht-D1b and the Rht-Blb were significantly longer than that in NO genotypes under
193  normal conditions, while the leaf length showed the opposite trend. After the
194  exogenous GA treatment, the above-ground growth was promoted, but the
195  underground root growth was significantly inhibited in NO genotypes (Fig. 4A),
196  highlighting the different effects of GA on above- and under-ground tissues. Both
197  cultivars containing Rht-B1b and Rht-D1b showed lower sensitivity to exogenous GA
198  treatment, although they displayed similar responsive trends with the NO in above-
199  and under-ground tissues, suggesting a suppressed GA signaling by the Rht-B1b and
200  Rht-D1b introduction. A parallel experiment in which wheat seedlings were cultivated
201  in soil and were treated by spraying exogenous GA on leaves, which showed the

202 increased leaf length under GA treatment, especially in the NO genotypes, but no
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203  difference for root related traits (Fig. 4B), further supporting that GA signaling
204  promoted the growth of above-ground tissue. Importantly, these observations
205  suggested GA confers an opposite effect on above- and under-ground tissue growth
206  and the bigger root system of the Rht-D1b is related to the GA signaling, as the
207  typical semidwarf plant height conferred by the suppressed GA signaling (Rizza and
208  Jones, 2019).

209 This analysis indicates that the Rht-B1b may also contribute to the modern wheat
210 root trait by suppressing the GA signaling. However, there is no significant
211  association between Rht-Blb and root related traits in our GWAS analysis, which
212 prompted us to further compare the effects of Rht-D1b and Rht-Blb on root
213 development using 92 Rht-D1b, 70 Rht-B1b and 188 NO genotypes in our population.
214 The results showed that the Rht-B1b indeed had the same function in enhancing the
215 root system as Rht-D1b (Fig. 4C). However, all its effects were weaker than Rht-D1b,
216 and more dependent on genetic background as demonstrated the smaller chance in the
217  permutations. We speculated that the missed Rht-B1b in the GWAS analysis might
218  result from the mask of the stronger Rht-D1b effect, then divided into two groups by
219  removing the cultivars containing Rht-B1lb or Rht-D1b, respectively. We found the
220 contribution of Rht-D1b significantly increased in the population without Rht-B1lb
221  genotypes, indicating that the Rht-B1b has an interfering effect on the Rht-D1b
222 association. However, the Rht-B1b still could not be detected when we removed the
223  Rht-D1b genotypes from the population (Fig. 4D, Table S9), further supporting the

224 stronger effect of Rht-D1b in regulating modern wheat root development.
225 The cell size alteration underlying the regulation mechanism of Rht-D1b

226 To clarify the underlying mechanism of Rht-D1b in regulating root development,
227  the DEGs derived from the introduction of Rht-D1b and Rht-Blb were identified by
228  comparing the gene expressions between Rht-D1b and Rht-B1l genotypes and NO

229  genotypes, respectively (Fig. 5A). The enriched analysis demonstrates that the
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230  introduction of Rht-D1b down-regulated the expression of genes related to “Protein
231  targeting to vacuole”, “Cell wall organization”, “Cell wall modification”, and
232 “Regulation of root meristem growth” (Fig. 5B, Table S10), indicating that the
233  morphology and development of root cells experienced a significant alteration with

234  Rht-D1b introduction.

235  The root meristem was investigated in Rht-D1b transgenic lines, and the results
236 showed that the meristem length and width of Rht-D1b were significantly increased
237  (Fig. 5C). The cell width in the meristem zone is increased (Fig. 5C), which would be
238  the reason for the larger meristem width. The cell number of longitudinal meristem is
239  significantly increased while the average cell length keeps similar to that of wildtype.
240  Considering that the half-length of cell width was used to define the meristem region,
241  the increased dividing cell number and meristem length may also be derived from the
242 increased cell width. Then, we investigated the cells in the mature root region and
243  showed that both the cell length and the cell width increased, suggesting that the

244  Rht-D1b has a key role in increasing the size of root cells.

245 Meanwhile, the cell size of above-ground tissues was also investigated. We
246  found that the cells decrease in length but not the width, consistent with their
247  well-known dwarf phenotype, further supporting the distinct regulation pattern of GA

248  signaling between above- and under-ground tissues.

249  Rht-D1b showed a broader regulatory gene spectrum that was related to root

250  development

251 To characterize the underlying mechanism of the stronger effect of Rht-D1b in
252 regulating wheat root phenotypes, the DEGs between Rht-D1b and NO genotypes and
253  Rht-Blb and NO genotypes were identified. The results showed that 3,407 and 464
254 DEGs were raised with the Rht-D1b and Rht-B1b introduction, respectively, and 195
255 DEGs were shared between these two comparisons (Fig. 6A), indicating that the

256  Rht-D1b had a broader influence on the root transcriptome. On the other hand, the

10
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257 Rht-D1b didn’t confer a stronger regulatory effect on the transcriptions of the
258  common DEGs (Fig. 6B), indicating the stronger phenotypes of Rht-D1b may not be

259  from its stronger inhibitory effect on GA signaling.

260  The co-expression analysis showed that the co-expressed genes (p < 107'°) with
261  Rht-D1 are more than that with Rht-B1 in NO genotypes. The co-expressed genes with
262  Rht-D1 almost cover all the co-expressed genes of Rht-Blb, supporting Rht-D1 has a
263  bigger gene co-expression network. Further analysis showed that the Rht-D1b have
264 523 co-expressed genes out of the whole gene network of all three Rhts (Rht-A1, B1,
265  and DI1), while only 1 gene is co-expressed with Rht-B1b under this circumstance,
266  further support that the Rht-D1b has a broader regulatory gene spectrum, compared to
267  that of Rht-Bl1b.

268 There are several DEGs whose homologs were reported to be involved in cell
269  proliferation and root development, including AtGIF3 (Lee et al., 2009) and AtP23-2
270  (D'Alessandro et al., 2015), were specifically regulated by the Rht-D1b but not the
271  Rht-Blb (Fig. 6D), further supporting the assumption that Rht-B1lb and Rht-D1b had
272 diverged functions in root development regulation. However, the specific mechanism

273  still needs further investigation.

274 Interestingly, the two major wheat regions in China, the Yellow and Huai wheat
275  production region (Y&H) and Yangtze River winter wheat production region (YR)
276  (Fig. 6E), showed a distinct preference for these two alleles, that modern wheat
277 cultivars in Y&H mainly selected the Rht-D1b while almost all of the YR cultivars

278  selected Rht-B1lb, which may be related the root traits of these two alleles.

279  The opposite GA responses between above- and under-ground contribute to a

280  higher root-shoot ratio

281 The reversed effects of GA on above- and under-ground traits (Fig. 4A, 4B, 5C)
282 suggested a role of Rht-Blb and Rht-D1b in regulating wheat root-shoot ratio. To

283 confirm this hypothesis, the fresh weight of shoot and root at seven DAGs were

11
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284  investigated. The results showed that the root-shoot ratio was significantly increased
285 in Rht-D1b and Rht-Blb genotypes (Fig. 7A). GWAS identified Rht-D1b as the
286  critical allele to increase the root-shoot ratio of modern wheat cultivars (Fig. 7B). The
287  Rht-Blb was also significantly associated with the higher root-shoot ratio when the
288  Rht-D1b genotypes were removed, suggesting a stronger effect of Rht-D1b, which
289  masked the effect of Rht-B1b. In turn, the contribution and reliability of the Rht-D1b
290  association in GWAS obviously increased when the Rht-B1b genotypes were removed,
291  indicating the interference from Rht-B1b. These results suggested that Rht-D1b and
292  Rht-Blb significantly increased the root-shoot ratio at the early developmental stage
293  and provided new insights for understanding the successful utilization of the green

294  revolution alleles.

295 Collectedly, our results showed that the introduction of Rht-D1b and Rht-B1b into
296  modern wheat suppressed the GA signaling, which conferred distinct GA responses
297  between above- and under-ground tissues, increased the cell width in root but
298  inhibited the cell length in above-ground tissues, conferred a bigger root system and a
299  higher root-shoot ratio (Figure 7C). The Rht-D1b confers a stronger effect in
300  enhancing wheat root system and root-shoot ratio, which significantly changed the

301  root related traits of current wheat cultivars.
302  DISCUSSION

303 In this study, the large-scale transcriptome sequencing provides a high-density
304  SNP marker for gene evaluation. Meanwhile, 39277 LC genes were identified in the
305  wheat root, providing transcriptional evidence for LC genes and extending the wheat
306  genome database. Based on the identified SNP and wheat root phenotyping, the
307  well-known green revolution allele Rht-D1b was identified as the major allele for

308  enhancing the root system in modern wheat cultivars.

309 Although the TWAS was applied in many plant population transcriptomes
310  (Kremling et al., 2019; Wainberg et al., 2019), the Rht-D1b identification with TWAS

12
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311 was still unexpectedly in this study. This significant association maybe just resulted
312 from the significantly changed expression of Rht-D1 with the Rht-D1b introduction
313 (Fig. 3D). The underlying correlation between the SNP and the higher expression of

314  Rht-D1b requires further elucidation.

315 It has been suggested that targeting roots for crop improvement may be the
316  solution to the second Green Revolution (Lynch, 2007; Den Herder et al., 2010).
317  Although the increased root length or root number could increase the root system, the
318  larger root diameter derived from the Rht-B1b and Rht-D1b introduction is the major
319  reason to contributes to a bigger root volume in our study. This result enlightens a
320  new direction for root improvement by enhancing root cell width and root diameter,
321  which would bypass the competition between the longer root and more root number

322 (van der Bom et al., 2020) to form a bigger root system.

323 The Rht-D1b contributed a larger seedling root to modern wheat and was
324  preferentially adopted in the Y&H wheat production region. The drought and cold
325  winter ecology conditions in Y&H may be the important reason for Rht-D1b adoption
326  here. It will be an interesting and important question to clarify the connections
327  between the bigger root system and its geographic adoption in China (Zhang et al.,
328  2006; Gao et al., 2015), USA (Guedira et al., 2010) and Europe (Wurschum et al.,

329  2015; Wurschum et al., 2018).

330 Although Gibberellins can enhance root cell elongation (Shani et al., 2013) and
331  root meristem proliferation (Qin et al., 2022), the increase of cell width by Rht-D1b is
332 actually responsible for the bigger root system. Similarly, the cell length reduction is
333  the major mechanism for the dwarf phenotypes, suggesting the critical role of GA in

334  controlling plant cell shape.

335 The diverged GA signaling responses between the above- and under-ground
336 tissue were due to their distinct GA sensitivity (Tanimoto, 2012). The reduced GA

337  production has little influence on root growth. In contrast, over-produced GA
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338  significantly inhibits root growth (Qin et al., 2022), consistent with that the root is
339  very sensitive to GA and reaches the saturated status with low concentration
340  maintenance (Tanimoto, 2012). In this study, both Rht-B1b and Rht-D1b genotypes
341  showed a decreased sensitivity for GA treatment, while still responding to the
342 exogenous GA (Fig. SA) to inhibit root growth, indicating that the suppressed GA
343  signaling in Rht-B1b and Rht-D1b is a benefit for the root development. However,
344  these data suggest the GA signaling seems contribute a negative effect on root growth
345  in NO genotype wheat, which is contradict to the previous conclusion that the low GA
346  concentration could promote root growth in most plant species (Tanimoto, 2012), thus,

347  the underlying mechanism remains largely unknown.

348 In plants, the GA synthesis and transportation (Topham et al., 2017; Binenbaum
349 et al., 2018) is a complex gene network. Moreover, the roles of GA in the plant are
350  spatial (Topham et al., 2017) and temporal dependent (Qin et al., 2022), which
351  challenges our understanding of the regulatory mechanisms of Rht-B1lb and Rht-D1b.
352 Here, the new finding that the distinct effect between above- and underground of GA,
353  the functions in increasing root diameter and root-shoot ratio of Rht-B1b and Rht-D1b,
354  and the diverged functions between Rht-B1b and Rht-D1b will benefit futural wheat
355  breeding and cultivation practices, shedding new light on the regulatory mechanisms

356  of GA in the plant.
357  Materials and Methods

358  Plant materials, root development trait measurement, and RNA sequencing

359 The seeds of 385 bread wheat accessions (Table S1) were sterilized with 2%
360  NaClO and then grown on water-soaked filter papers in germination boxes under the
361  conditions of 22 °C/16 °C day/night (50% relative air humidity) and 16h light (2000
362  Lux) / 8h dark. Six biological replicates were carried out to obtain robust results.
363  During growth, the sterilized water in germinating boxes was replaced regularly. For

364  each accession, at least three root samples per biological replicate were collected at 14
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365  DAG and immediately frozen in liquid N, for the subsequent isolation of total RNA.
366  The RNA samples of six biological replicates for each accession were equally mixed
367  and were subjected to 150 bp paired-end RNA sequencing with the Illumina HiSeq X
368  Ten platform. In addition, at the 4, 7, and 14 DAG, the six root samples per biological
369  replicate were collected to measure the total root length, root surface, root volume,
370 and root diameter using the Wseen LA-S image system (Hangzhou Wseen Testing
371 Technology Co. LTD). Meanwhile, the root number, primary root length, and

372 root/leaf fresh weight were manually measured.

373 RNA-Seq data mapping and SNP calling

374 Raw RNA-Seq reads were filtered to remove sequencing adapters and
375  low-quality bases using Trimmomatic (v0.33) (Bolger et al., 2014) with default
376  parameters. The filtered reads were firstly aligned to bread wheat reference genome
377  sequence (IWGSC RefSeq v1.0) using the STAR software (v2.4.2a)(Dobin et al.,
378  2013) with the 2-pass mapping mode. Then, the filtered reads were mapped to the
379  transcriptome sequence (IWGSC RefSeq v1.1 annotation) with BWA (v0.7.17) (Li
380  and Durbin, 2010). The unique mapping RNA-Seq reads with coincident mapping
381  locations between genome and transcriptome mapping procedures were collected to
382  reduce mapping error and used for the subsequential SNP calling.

383 A two-step procedure that carefully considered RNA-seq data characteristics was
384  employed to detect SNPs referring to reported method (Fu et al., 2013). Firstly, raw
385  SNPs were called with a population SNP-calling manner referring to the best practices
386  of GATK (v4.0.2.0) (McKenna et al., 2010) and were filtered with the following
387  parameters: (1) mapping quality > 40, SNP quality > 30, genotype quality for each
388  accession > 20, QD (SNP quality/reads depth) > 2; (2) each SNP was more than five
389  bp away from an InDel; (3) for homozygous genotypes, the supporting reads had to be
390  equal to or greater than five for each accession; (4) for heterozygous genotypes, the
391  supporting reads for both the reference and alternative alleles had to be equal to or

392  greater than three for each accession. The SNPs that failed to pass the above
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393  parameters were assigned as missing. Secondly, to further exclude possible false
394  polymorphic sites caused by intrinsic mapping errors, we simulated RNA-seq read
395  sequences based on the whole wheat transcriptome without mutation introduction,
396  aligned these sequences to the reference and identified SNPs using the same strategies
397  as in the first step to produce a mapping error SNP set. Any SNPs that matched the
398  mapping error SNP set were removed. The high-quality SNPs were annotated using

399  the SnpEff (v4.3) (Cingolani et al., 2012).
400  SNP imputation and accuracy evaluation

401 The beagle (v5.1) (Browning et al., 2018) was used to impute missing genotypes.
402  To get the optimal imputation accuracy and filling rate, we randomly masked 10750
403 sites with missing rates varied from 10 to 90% and found that the imputation accuracy
404  of masked sites was more than 99% when the missing rate was < 0.8 (Table S12).
405  Therefore, SNPs with the missing rate < 0.8 were imputed.

406 To evaluate the reproducibility of our pipeline and the accuracy of the final SNPs,
407  we firstly compared the identified genotypes of two biological replicates of three
408  accessions. It showed an average of 98.85% concordant rate between replicates of
409  each accession, indicating our SNP calling pipeline was high reproducibility (Table
410  S13). Secondly, only 387 alternative alleles (0.09%) were detected in the wheat cv.
411  Chinese Spring that was used to generate the reference genome sequence, suggesting
412 a low false-positive rate of our pipeline. Thirdly, four accessions were selected to
413 genotype with wheat 660 K SNP arrays, and the results showed the accuracy was
414 more than 99% and 94.32% before and after SNP imputation, respectively (Table
415  S14). Overall, despite the hexaploidy nature and more than 85% repetitive DNA of
416  bread wheat genome, the above data indicated that the reproducibility of our SNP
417  calling pipeline and the accuracy of the identified SNPs in the current study is high
418  enough. The code of our SNP calling pipeline could be downloaded from

419  https://github.com/biozhp/root rnaseq.
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420  Population genetic analysis

421 To classify the accessions, our SNP data were merged with the recently
422 published SNP data of hexaploidy accessions downloaded from the National
423  Genomics Data Center (https://bigd.big.ac.cn/gvm, GVMO000082) (Zhou et al., 2020).
424 The shared SNPs between our results and the Triticum population sequencing project
425  were used to construct a phylogenetic tree using RAXML (v8.2.12) (Stamatakis, 2014)
426  with the parameters: -f a -m GTRGAMMA -p 12346 -x 12346 -# 100. The
427  phylogenetic tree initially divided our wheat accessions into LA and CV groups,
428  referring to the determined classification in the Triticum sequencing project. Then, 34
429  accessions with conflict classifications between the phylogenetic tree and pedigree
430  documentation were removed, resulting in 87 LA and 264 MC for the subsequent
431  analysis. The phylogenetic tree was visualised by iTOL (v6) (Letunic and Bork,
432 2021).

433 The imputed SNPs with MAF > 0.05 were used to quantify the genome-wide
434  population structure and infer population structure with ADMIXTURE (v1.3.0)
435  (Alexander et al., 2009).

436  Gene expression quantification

437 The filtered reads were aligned to the high and low confidence transcripts
438  (IWGSC RefSeq v1.1 annotation) using the kallisto (v0.46.2) (Bray et al., 2016) and
439  summarized expression levels (Transcripts Per Million, TPM) from the transcript
440  level to the gene level using tximport (v1.14.0) (Soneson et al., 2015) with the option
441  ‘lengthScaledTPM’ referring to the reported method (Ramirez-Gonzalez et al., 2018).
442 To investigate the extent of gene expression variation among the population, the fold
443  change of the TPM at 95th percentiles to that of the 5th percentiles (TPM > 0.5) in the

444  whole population was calculated.

445  Identification of differentially expressed genes
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446 For each gene, the significance of expression difference between the two
447  compared groups was calculated with the Wilcoxon rank-sum test (Li et al., 2022).
448  Genes with FDR adjusted P-value < 0.01 were considered as candidate DEGs. Then,
449  to exclude the effects of population structure on DEG detection, the 100 random
450  permutations were performed by randomly sampling 60% accessions from each of the
451  two compared groups and further randomly removing accessions from the larger size
452 group to reach the same size as the smaller group. The observation number of each
453 DEG in the 100 random permutations was recorded. The DEGs with an observation
454  number of more than ten times were considered reliable DEGs and used for further
455  analysis. For investigating the expected observation numbers of DEGs, we performed
456 100,000 permutations by randomly sampling accessions from the whole population to
457  construct two same size groups as LA and CV, and found that only 0.2% of the tests
458  had DEGs, and the 95% confidence interval of the observation numbers of DEGs was
459  from 0 to 0.27. Therefore, we selected more than ten times as threshold in the DEG

460  detection, which was big enough to exclude the DEGs by chance.
461 GO enrichment analysis

462 GO annotation for high confidence genes was downloaded from the Ensembl
463  Plants Genes 49 database, and GO annotation for the low confidence genes were
464  obtained with eggNOG-mapper (v2) (Cantalapiedra et al., 2021). GO enrichment
465  analysis was performed using the R package clusterProfiler (v3.14.3) with the

466  “enricher” function (Yu et al., 2012).
467  Association analyses

468 The imputed SNPs with MAF > 0.05 were used for the GWAS analysis with the
469  mixed linear model implemented in GAPIT (Wang and Zhang, 2021). The cutoff for
470  determining significant associations was P-value <Ix10™®. The genes whose
471  expression values at the 5th percentile were more than 0.5 were filtered out, and their

472 expression levels were normalized using a normal quantile transformation with the
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473  “gqnorm” function in R. The function “cGWAS.emmax” of R package cpgen (v0.2)

474 was used for TWAS analysis (Tang et al., 2021).
475  Permutations of the phenotyping comparison

476 To avoid the inference from population structure and kinships between wheat
477  accessions in phenotyping comparisons, randomly sampling 60% accessions from
478  each of the two compared groups and further randomly removing accessions from the
479  larger size group to reach the same size as the smaller group. In the 1000 random
480  permutations, the observation numbers of significant difference with the Student's

481  t-test were recorded.
482  Identification of co-expressed genes with Rht-A1/B1/D1

483 To identify the co-expression genes with Rht-A1/B1/D1, we randomly selected
484  60% accessions from the Rht-BlaRht-Dla (marked NO) group to calculate the
485  Pearson correlation coefficients and P-value between the TPM of each candidate gene
486  and the TPM of Rht-A1/B1/D1 using the “cor.test” function in R. Accordingly, we
487  randomly selected 60% accessions from Rht-B1bRht-Dla (marked B1b) or
488  Rht-BlaRht-D1b (marked D1b) groups to identify the co-expression genes with
489  Rht-Bl or Rht-D1, respectively. The genes that were observed more than ten times
490  with P-value< 10" in Pearson's correlation test in the 100 random permutationswere

491  regarded as co-expressed genes.
492 Gibberellin treatment

493 The 18 randomly selected accessions from each of the Rht-BlaRht-D1la,
494  Rht-BlbRht-Dla and Rht-BlaRht-D1b genotypes, were treated by exogenous GA
495  (GA3) in a hydroponic system and soil cultivation system. The plants grown in the
496  hydroponic system were treated with 0.2 and 2 umol/L GAj for eight days after
497  germination, and those cultivated in soil were treated with 15 umol/L GAs for nine

498  days from three DAG. The roots and leaves were collected to measure the primary
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499  root length and leaf length.
500  Over-expression transgenic vector construction and plant transformation

501 To overexpress TaRht-D1b, the coding region of which was inserted into the
502 pMWBI11 vector under the control of its native promoter. The construct was then
503  introduced into the immature embryos of bread wheat cv. Fielder by Agrobacterium
504  tumefaciens mediated transformation, referring to the established protocols (Hayta et

505 al., 2019).
506  Cytological observation of root and shoot

507 FV1200 confocal microscope (Olympus, Tokyo, Japan) was used for the
508  cytological observation of roots and shoots. The sample was harvested and fixed in 4%
509  glutaraldehyde (in 12.5 mM cacodylate, pH 6.9), then vacuumed them three times for
510 30 minutes, after which they were in fixative overnight at room temperature. After
511  fixation, the tissue was dehydrated through a conventional ethanol series for 30 min
512 per step. Then, the tissue was cleared in 2:1 (v/v) benzyl benzoate: benzyl alcohol for
513 a minimum of 1 h. Samples were observed with a confocal microscope under a
514  488-nm argon laser. ImageJ V1.48 was used to measure the length and width of the

ol5  cell.

516
517
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Data availability

The raw RNA-Seq data were deposited in the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) under accession numbers PRIJNA&838764.
Genotypic, transcriptomic and phenotypic data used in this analysis are publicly

available from our website (https://iwheat.net/links/).
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Figure 1. Root transcriptome characteristic of the bread wheat population.

(A) Distribution of the identified SNPs in bread wheat genome. The colour key indicates the number
of markers within a window size of 1 Mb.

(B) Distribution of the identified SNPs in gene regions. “UP” and “DOWN” represent the up- and
down-stream 5 Kb regions of the annotated genes.

(C) GO analyses of the root highly and lowly expressed genes (the averages of the expression values
among the population are in the top and bottom 5%, respectively). The full list of enriched terms is
included in Supplemental Table S2.

(D) GO analyses of the highly varied expression genes (fold change from >8) and lowly varied
expression genes (fold change from <2) in the population. The fold change is the ratio of TPM at
the 95th percentile to that of the 5th percentile. The full list of enriched terms is included in

Supplemental Table S3.
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Figure 2. Modern cultivars reshaped the wheat root transcriptome and root development.
(A) Classification of the MC (modern cultivars) and LA (landraces). Phylogenetic trees were
constructed based on shared SNPs between our results and the Triticum sequencing project. The
outer dots represent the varieties which were included in the 7riticum sequencing project and were
coloured based on their classification in this project. These varieties were used as markers to classify
the accessions used in our analysis. The phylogenetic clads are coloured based on the pedigree
documentation. The accessions with conflict classifications between the Triticum sequencing project
and pedigree documentation were removed in the following analysis.

(B) The population structure analysis of all accessions with K = 2 and K = 3. Each bar represents
an accession, and the different colours correspond to the proportion of different groups.

(C) The distribution of DEGs and observation numbers in the permutations. The X-axis represents
the number of DEGs. The left Y-axis and bar plot indicate the numbers of tests in the 100,000
permutations by randomly sampling accessions from the whole population to construct two same
size groups as LA and MC. For example, the leftmost bar represents there are 99,792 tests in which
the detected DEG number is zero. The right Y-axis and red line represent the numbers of tests in

the 100 permutations by randomly sampling 60% accessions from each of the LA and MC groups.
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For example, the rightmost dot represents there are 17 tests in which the number of detected DEGs
more than 10,000.

(D) GO enrichment analyses of DEGs between LA and MC groups. The X-axis represents the
observation numbers of DEGs in the 100 permutations. The full list of enriched terms is included in
Supplemental Table S5.

(E) Comparisons of root number, primary root length, total root length, root surface, root volume,
and root diameter between LA and MC groups. The red numbers represent p-values with Student's
t-test using all samples from LA and MC groups, and the "NS" indicates P-value > 0.01. The black
numbers indicate the observed number of P-value < 0.01 in the 1,000 permutations by randomly
sampling 60% of the accessions from each of the LA and MC groups and further randomly removing

some accessions from MC to reach the same group size as LA.
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Figure 3. The Rht-D1b contributes to the bigger root volume and surface.

(A-B) Manhattan plots of GWAS and TWAS analysis of the root surface and root volume. The
number represents the phenotypic variance explained by the indicated SNP.

(C) Comparison of Rht-A1, Rht-BI and Rht-D1 expression levels between Rht-Dlia and Rht-D1b
genotypes.

(D) Comparison of root number, primary root length, total root length, root surface, root volume
and root diameter between LA, Rht-D1a contained MC, and Rht-D1b contained MC at 14 DAGs.

(E) Comparison of primary root length, total root length, root surface, root volume and root diameter
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between Rht-D1a and Rht-D1b genotypes at four, seven and 14 DAGSs. In (C-E), the red numbers
represent p-values with Student's t-test using all samples from the two compared groups, and the
"NS" indicates P-value > 0.01. The black numbers indicate the observed number of P-value < 0.01
in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two
compared groups and further randomly removing accessions from the larger size group to reach the
same group size as the smaller one.

(F) The phenotypes and statistical data of root related traits of WT and transgenic lines of pRht-
D1::Rht-D1R"D (D1/D2/D3) at 14 DAGS. Scale bar =2 cm. * indicates Student's t-test P-value <

0.05.
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Figure 4. The effects of Rht-D1b on root development depend on the GA signaling.

(A-B) The responses of "NO" (Rht-BlaRht-D1a genotypes), "B1b" (Rht-Bi1bRht-D1a genotypes)
and "D1b" (Rht-BlaRht-D1b genotypes) to GA treatment in hydroponics (A) and soil (B) cultivation
systems. Under the control condition, * and ** indicates Student's t-test P-value <0. 05 and 0.01,
respectively. For the GA treatment experiments, the Y-axis indicates the ratio of phenotyping
values under the GA treatment condition to that under the control condition. The asterisk in each
column indicates the significant difference compared with the respective control. The letters on
the top indicate the significant difference with Student's t-test analysis, P-value < 0. 05.

(C) Comparison of root number, primary root length, total root length, root surface, root volume
and root diameter between Rht-BlaRht-Dla (BlaDla), Rht-B1bRht-Dla (BlbDla) and Rht-
BlaRht-D1b (BlaD1b) genotypes. The red numbers represent p-values with Student's t-test using
all samples from the two compared groups, and the "NS" indicates P-value > 0.01. The black
numbers indicate the observed number of P-value < 0.01 in the 1,000 permutations by randomly

sampling 60% of the accessions from each of the two compared groups and further randomly
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removing accessions from the larger size group to reach the same group size as the smaller one.
(D) Manhattan plots of GWAS analysis of the root surface and root volume. "NO D1b" and "NO
D1b" indicates missed Rht-Bi1b and Rht-D1b population used to perform GWAS analysis. The

number represents the phenotypic variance explained by the indicated SNP.
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Figure 5. Rht-D1b significantly changed the cell size of roots.

(A) The numbers of DEGs in the comparisons between D/b and NO genotypes and B/b and NO
genotypes. The X-axis represents the observation numbers of DEGs in the 100 permutations. The
numbers in brackets indicate 60% of the accessions contained in the smaller compared group, and
these accessions were randomly sampled from each of the two compared groups in the permutation
test. NO: Rht-BlaRht-Dl1a; B1b: Rht-B1bRht-Dl1a; D1b: Rht-BlaRht-D1b.

(B) GO enrichment analyses of the DEGs in (A). The X-axis represents the observation numbers of

DEGs in the 100 permutations. NO: Rht-BlaRht-Dla; Blb: Rht-BI1bRht-Dla; D1b: Rht-BlaRht-
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D1b. The full list of enriched terms is included in Supplemental Table S10 and S11.

(C) Confocal laser microscope recorded the cell morphology and size of primary root (meristem
and maturation zone) and shoot (leaf and coleoptile) in WT and pRht-D1::Rht-D1R"P transgenic
lines (D1/D2). The red dotted line represents meristem length, and the yellow dotted line represents
the width of meristem and mature zones. The number, length and width of meristem cells were
measured from the cell layer indicated by the asterisk. The cell length and width were calculated

using ImagelJ software. Bar = 100 pm. * indicates Student's t-test P < 0. 05.
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Figure 6. Rht-D1b showed a broader regulatory gene spectrum.

(A) Venn diagram of DEGs in RAt-B1b vs NO genotypes and Rht-D1b vs NO genotypes. NO: Rht-
BlaRht-Dla.

(B) Fold change (Rht-D1b/Rht-B1b) of expression levels of the shared DEGs in (A).

(C) The first Venn diagram is the distribution of co-expression genes with Rht-Ala, Rht-Bla and
Rht-Dla genes in NO genotypes. The second Venn diagram is the distribution of co-expression
genes with RAt-B1 and Rht-D1 in Rht-B1b and Rht-D1b genotypes, respectively. The third and fourth
Venn diagrams are the distributions of co-expression genes with three Rhts in NO genotypes ("Total")
and the co-expression genes with RAz-B1 in the Rht-B1b genotypes (the third), and the co-expression
genes with the Rhz-D1 in the Rht-D1b genotypes (the fourth).

(D) Comparisons of expression levels of the wheat homologues of 4tP23-2 and AtGIF3 between

Rht-BlaRht-Dla (BlaD1a), Rht-B1bRht-Dla (B1bDla) and Rht-BlaRht-D1b (BlaD1b) genotypes.
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The red numbers represent p-values with Student's t-test using all samples in the two compared
groups, and "NS" indicates P-value > 0.01. The black numbers indicate the observed number of P-
value < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of
the two compared groups and further randomly removing accessions from the larger size group to
reach the same group size as the smaller one.

(E) Distribution of MC containing Rht-B1b and Rht-D1b alleles in Yangtze River (YR) and Yellow
and Huai (Y &H) winter wheat production regions. NO: Rht-BlaRht-Dla; Blb: Rht-B1bRht-Dla;

D1b: Rht-BlaRht-D1b.
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Figure 7. The Rht-D1b plays the primary role in increasing the root-shoot ratio in modern
wheat cultivars.

(A) Comparison of root fresh weight, leaf fresh weight and root-shoot ratio between Rht-BlaRht-
Dla (BlaDla), Rht-B1bRht-Dila (B1bDl1a) and Rht-BlaRht-D1b (BlaD1b) genotypes. The red
numbers represent p-values with Student's t-test using all samples from the two compared groups,
and the "NS" indicates P-value > 0.01. The black numbers indicate the observed number of P-value
< 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two

compared groups and further randomly removing accessions from the larger size group to reach the
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same group size as the smaller one.

(B) Manhattan plots of GWAS analysis of the root-shoot ratio. The upper left letters indicate the
genotypes used in the GWAS analysis. From top to bottom, the image shows the GWAS result of
total accession and missed accession containing the Rh#-D1b and Rht-B1b genotype. The number
represents the phenotypic variances explained by the arrow indicated SNPs.

(C) Model diagram of RAt-D1b and Rht-Blb regulating wheat seedling development. The
introduction of Rht-D1b and Rht-B1b suppressed the GA signaling, which conferred distinct GA
responses between above- and under-ground tissues that increased the cell width in root and
inhibited the cell length in above-ground tissue, resulting in a bigger root system and a higher root-

shoot ratio.
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