

Population Sequencing Reveals *Rht-D1b* Contributing the Bigger Seedling Root to Modern Wheat Cultivars

3 Xiaoming Wang^{1,3}, Peng Zhao^{1,3}, Xiaolong Guo^{1,3}, Zihui Liu¹, Xiuyun Ma¹, Yuqian
4 Zhao¹, Xiangjun Lai¹, Liuying Huang¹, Wanying Wang¹, Dejun Han¹, Zhensheng
5 Kang^{2,*}, Shengbao Xu^{1,*}

¹State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy,
Northwest A&F University, Yangling, Shaanxi, 712100, China.

²State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.

¹⁰³These authors contributed equally: Xiaoming Wang, Peng Zhao and Xiaolong Guo.

11 * Correspondence: xushb@nwsuaf.edu.cn and kangzs@nwsuaf.edu.cn

12

13 Short Title: *Rht-D1b* shapes the modern wheat root

14

15 **One-sentence Summary:** The suppressed GA signaling by *Rht-D1b* promotes root
16 cell width, conferring a bigger root system and higher root-shoot ratio to modern
17 wheat cultivars.

18

19 The author responsible for the distribution of materials integral to the findings
20 presented in this article in accordance with the policy described in the Instructions for
21 Authors (www.plantcell.org) is: Shengbao Xu (xushb@nwsuaf.edu.cn).

22

ABSTRACT

23 The crop root system is pivotal for water and nutrient uptake and environmental stress
24 adaptations. Wheat, as the major calorie provision for the world's population,
25 successfully increases its yield for world population expansion with modern breeding
26 selection. However, the root adaptation in modern wheat cultivars still remain
27 unknown. Here we present the root transcriptomes of 351 wheat accession, which

28 showed a distinct transcriptomic profile between landraces (LA) and modern cultivars
29 (MC), suggesting a significant change of MC in environmental adaptation and root
30 development. The MC seedlings showed a significantly bigger root system, which is
31 mainly contributed by the well-known green revolution allele *Rht-D1b*. The
32 suppressed GA signaling by *Rht-D1b* inhibits the cell length in above-ground tissue
33 for a dwarf structure, but increases the cell width in the root meristem, resulting in
34 bigger root diameter and a bigger root volume. This distinct regulation between
35 above- and under-ground contribute a significantly larger root-shoot ratio to modern
36 wheat cultivars. Our data provide new insights for the successful adoption of *Rht-D1b*
37 and *Rht-B1b* in green revolution, and the application of *Rht-D1b* and *Rht-B1b* in
38 future wheat breeding and production.

39 **INTRODUCTION**

40 Root system is fundamental for crop water and nutrient uptakes (Den Herder et
41 al., 2010; van der Bom et al., 2020), also critical for abiotic stress adaptation (Lynch,
42 1995; Khan et al., 2016; Hu et al., 2019; Calleja-Cabrera et al., 2020; de Vries et al.,
43 2020). The monocotyledonous wheat root system is composed of seminal roots and
44 adventitious roots. The seminal root system develops initially and consists of the
45 primary root and two pairs of seminal roots (Hou et al., 2019; Hendel et al., 2021).
46 Seminal roots penetrate the soil earlier and deeper than the adventitious roots and
47 usually remain active throughout the plant life cycle, and play a crucial role in
48 absorbing water from deep soil layers (Watt et al., 2008). Although the root length
49 and more seminar roots are important for wheat survival under water limitation
50 (Golan et al., 2018; Bacher et al., 2021), there is a trade-off between longer roots or
51 more roots (van der Bom et al., 2020). Actually, the root structure has to match the
52 surrounding environments to maximise the nutrients and water intake from the soil. It
53 is difficult to define an ideal root structure for a plant (van der Bom et al., 2020).

54 Modern bread wheat (*Triticum aestivum* L.) is hexaploid comprising A, B and
55 D subgenomes (IWGSC, 2018; Zhou et al., 2020). Wheat root had experienced a suite
56 of complex genetic, morphological and physiological function modifications during
57 wheat evolution and domestication (Abbo et al., 2014; Golan et al., 2018), including
58 drought tolerance improvement (Golan et al., 2018; Bacher et al., 2021). Over the past
59 century, wheat grain yield has been remarkably improved with the breeding activities
60 targeting high-yield (Godfray et al., 2010; van de Wouw et al., 2010; Snowdon et al.,
61 2020). This breeding selection has largely reshaped the wheat genome and made the
62 modern cultivars (MC) different from the landrace (LA) (Hu et al., 2019; Hao et al.,
63 2020; Zhou et al., 2020). Significantly, the Green Revolution of the 1960s, by
64 introducing semi-dwarfing genes into rice and wheat, dramatically increased cereal
65 grain yields that were associated with improved lodging resistance and the resulting
66 ability to tolerate higher levels of inorganic nitrogen-based fertilizer (Pearce et al.,

67 2011; Van De Velde et al., 2021). However, how the modern wheat cultivars adjust
68 root development to fit the current cultivation conditions and yield production
69 remains largely unknown.

70 In hexaploid wheat, dwarfing has been achieved mainly through the introduction
71 of the *Rht* (Reduced Height) alleles *Rht-B1b* and *Rht-D1b* (previously named *Rht1*
72 and *Rht2*), which introduce premature stop codons in the N-terminal coding region of
73 DELLA proteins and confer lower sensitivity to GA (Wu et al., 2011; Liu et al., 2021).
74 After six decades of practice, approximately 70% of cultivars in a worldwide wheat
75 panel released in the 21st century carry one of these two alleles (Wurschum et al.,
76 2017). They significantly altered plant structure related traits (Lanning et al., 2012;
77 Sherman et al., 2014), but the root changes with the dwarf alleles' introduction remain
78 largely unclear.

79 With the increase in sequencing accuracy, large-scale population transcriptome
80 sequencing is becoming an efficient tool for SNP identification (Fu et al., 2013;
81 Zhang et al., 2017). The transcriptome data also provide a link between the traits and
82 the SNP variations that cannot be readily captured at the sequence level (Azodi et al.,
83 2020), thus providing an important bridge from DNA to phenotypes and critical clues
84 for the investigation of underlying mechanisms of functional variations. However,
85 current population genetics is challenged by the interference from population structure
86 and membership kinship, which results in different outputs with the varied population
87 composition (Fauman, 2020). Therefore, many new approaches and concepts were
88 developed to support current population genetics, including the differentially
89 expressed genes in population and random population combination analysis
90 (Bulik-Sullivan et al., 2015; Chen et al., 2021; Li et al., 2022).

91 Here, we performed transcriptome sequencing and phenotyping on seedling root
92 for a natural bread wheat population, including 87 landraces and 264 historical
93 modern cultivars, revealing that the modern wheat breeding selection reshaped the
94 root transcriptomes and root development. Our results demonstrated that *Rht-D1b* is

95 the major allele contributing a bigger root system to modern wheat cultivars. The
96 population transcriptome analysis showed that *Rht-D1b* regulates a broad of genes
97 involved in wheat root development, increases increased the root cell width and root
98 diameter, thereby significantly enhances the root-shoot ratio of modern wheat, which
99 provides new insights for *Rht-D1b* application in futural wheat breeding practice.

100 **RESULTS**

101 **Root transcriptome sequencing of natural wheat population**

102 A total of 385 worldwide bread wheat accessions (Table S1) were collected and
103 sequenced the transcriptome with the seedling roots, producing 15.08 billion
104 high-quality reads and identifying 1,225,246 SNPs with an average density of 8 SNPs
105 per gene or approximate one SNP per 944 bp (Fig. 1A), providing a more detailed
106 variation landscape for the wheat genome. About half of SNPs (48%) are located in
107 the CDS (coding sequence) regions (Fig. 1B), demonstrating a feature of the
108 transcriptome derived SNPs.

109 The expression evidence of 107,651 genes was identified in this population,
110 including 39,277 wheat low confidence (LC) genes, extending the number of reliable
111 wheat genes to the current wheat genome. The expression levels of genes in the
112 population ranged from 0.5 to 21144.5 TPM (transcript per million). The highly
113 expressed genes are enriched in the category of “response to water deprivation” and
114 “water transport” (Fig. 1C and Table S2), highlighting the root function as the water
115 uptake organ. Interestingly, the categories of “response to water deprivation” and
116 “water transport” are also enriched in the highly varied expression genes in this
117 natural population (Fig. 1D and Table S3), indicating water intake process is highly
118 varied among wheat accessions which present a great potential to improve based on
119 the current wheat germplasms.

120 **Modern wheat breeding substantially reshaped the root transcriptome and root
121 development**

122 Based on the phylogenetic analysis with clear definition varieties, ancestry
123 coefficient estimation and the pedigree documentation, 264 modern cultivars (MC)
124 and 87 landraces (LA) were determined (Fig. 2A and 2B). An average of 7,185
125 differentially expressed genes (DEGs) between LA and MC groups could be
126 identified (FDR adjusted P-value < 0.01; Table S4) with Wilcoxon rank-sum test (Li
127 et al., 2022), followed by cross-validation based on 100 random permutations to
128 exclude the population structure interference (Fig. 2C). In contrast, there were only
129 0.2% of the whole population based 100,000 permutations in which DEG was
130 detected, and only 16 out of the 100,000 tests showed a similar DEG number (7,185)
131 with that between MC and LA (Fig. 2C) suggesting that MC had accumulated a vast
132 difference in root transcriptome during the modern breeding selection.

133 To improve the reliability, the DEGs that were detected more than ten times in
134 the 100 permutations (Fig. 2C) were used for enrichment analysis. GO analysis
135 reveals that modern wheat cultivars significantly changed in environmental stress
136 response, development, metabolic processes and signaling transductions (Fig. 2D and
137 Table S5).

138 There are 161 genes identified as the DEGs between MC and LA, which pass all
139 100 random permutations (Table S6). Of which, the homologs of 12 genes in other
140 plants were identified as the key genes involved in root development, including
141 *AtACR4* (De Smet et al., 2008; Yue et al., 2016), *AtRCD1* (Teotia and Lamb, 2011),
142 *AtARR10* (Yokoyama et al., 2007; Zubo et al., 2017), two *AtGSTU17* (Chen et al.,
143 2012), *AtACT7* (Gilliland et al., 2003), *AtNRP2* (Wu et al., 2022), *AtHB-15*
144 (Ohashi-Ito and Fukuda, 2003), three *AtKNAT3* (Truernit et al., 2006) and *AtEXPB2*
145 (Wu et al., 2001), indicating that the root development may be altered with modern
146 wheat breeding.

147 To clarify root developmental alterations of MC, the root phenotypes of 14 days
148 after germination (DAGs) seedlings were investigated (Fig. 2E). We found the root

149 surface and volume were significantly increased in the MC group, albeit the primary
150 root and total root length showed no significant difference. The root number and root
151 diameter are also significantly increased in the MC group, which may be responsible
152 for the bigger root system of MC.

153 **The *Rht-D1b* contributes the major effect in increasing seedling root volume of**
154 **modern wheat cultivars**

155 GWAS analysis showed a QTL on 4D that was significantly associated with the
156 root surface and volume, which contained the well-known *Rht-D1*, contributing to
157 14-23% variation of these traits in the population (Fig. 3A, Supplemental Table S7).
158 The Transcriptome Wide Association Study (TWAS) showed that the *Rht-D1* ranked
159 first in assigning as the causal gene, and its transcriptional level was positively
160 correlated with these two traits (Fig. 3B, Supplemental Table S8). In population
161 transcriptomic data, the *Rht-D1* has a significantly higher transcriptional level in
162 *Rht-D1b* genotypes than that in *Rht-D1a* genotypes (Fig. 3C), consistent with the
163 larger root surface and volume in *Rht-D1b* genotypes.

164 Surprisingly, the root surface and volume in modern wheat showed no difference
165 from that of LA if we removed the cultivars containing *Rht-D1b* (Fig. 3D).
166 Meanwhile, the root surface and volume of the *Rht-D1b* genotypes were significantly
167 higher than that of the *Rht-D1a* genotypes, supporting that the *Rht-D1b* is the major
168 allele conferring the bigger root system to modern wheat. Besides, the total root
169 length and root diameter were also significantly increased in *Rht-D1b* genotypes (Fig.
170 3D), supporting *Rht-D1b* also played a crucial role in modifying modern wheat root
171 system in addition to dwarf the wheat structure.

172 To exclude the possibility that the bigger root system of the *Rht-D1b* was raised
173 from the earlier germination, the seedling root development was systematically and
174 continuously investigated (Fig. 3E). The results showed that the root length is
175 significantly shorter in the *Rht-D1b* genotypes at 4 DAGs; then, it catches up with the

176 seedling development process. At seven DAGs, the *Rht-D1b* genotypes showed a
177 significant increase in root diameter and volume than other genotypes. The total root
178 length and root surface significantly increased until 14 DAGs (Fig. 3E). These
179 observations suggest that the bigger root of *Rht-D1b* is from the faster growth after
180 germination instead of the earlier germination.

181 The full CDS containing *Rht-D1b* allele driven by the *Rht-D1* promoter was
182 introduced into wheat cv Fielder (*Rht-D1a* and *Rht-B1b* background), which
183 confirmed its role in increasing total root length, root diameter, and a bigger root
184 system (Fig. 3F), supporting that the *Rht-D1b* has a versatile role in regulating wheat
185 root development.

186 **The bigger root system of the *Rht-D1b* depends on the GA signaling**

187 The *Rht* genes encode DELLA, which acts as the key negative regulator of the
188 GA signaling, prompting us to investigate the role of GA in the regulation of *Rht-D1b*
189 on root development. Eighteen accessions were randomly selected from the *Rht-D1b*,
190 *Rht-B1b* and *Rht-B1aRht-D1a* (marked NO) groups, respectively, and treated by
191 exogenous GA in the hydroponics system. We found that the root length of the
192 *Rht-D1b* and the *Rht-B1b* were significantly longer than that in NO genotypes under
193 normal conditions, while the leaf length showed the opposite trend. After the
194 exogenous GA treatment, the above-ground growth was promoted, but the
195 underground root growth was significantly inhibited in NO genotypes (Fig. 4A),
196 highlighting the different effects of GA on above- and under-ground tissues. Both
197 cultivars containing *Rht-B1b* and *Rht-D1b* showed lower sensitivity to exogenous GA
198 treatment, although they displayed similar responsive trends with the NO in above-
199 and under-ground tissues, suggesting a suppressed GA signaling by the *Rht-B1b* and
200 *Rht-D1b* introduction. A parallel experiment in which wheat seedlings were cultivated
201 in soil and were treated by spraying exogenous GA on leaves, which showed the
202 increased leaf length under GA treatment, especially in the NO genotypes, but no

203 difference for root related traits (Fig. 4B), further supporting that GA signaling
204 promoted the growth of above-ground tissue. Importantly, these observations
205 suggested GA confers an opposite effect on above- and under-ground tissue growth
206 and the bigger root system of the *Rht-D1b* is related to the GA signaling, as the
207 typical semidwarf plant height conferred by the suppressed GA signaling (Rizza and
208 Jones, 2019).

209 This analysis indicates that the *Rht-B1b* may also contribute to the modern wheat
210 root trait by suppressing the GA signaling. However, there is no significant
211 association between *Rht-B1b* and root related traits in our GWAS analysis, which
212 prompted us to further compare the effects of *Rht-D1b* and *Rht-B1b* on root
213 development using 92 *Rht-D1b*, 70 *Rht-B1b* and 188 *NO* genotypes in our population.
214 The results showed that the *Rht-B1b* indeed had the same function in enhancing the
215 root system as *Rht-D1b* (Fig. 4C). However, all its effects were weaker than *Rht-D1b*,
216 and more dependent on genetic background as demonstrated the smaller chance in the
217 permutations. We speculated that the missed *Rht-B1b* in the GWAS analysis might
218 result from the mask of the stronger *Rht-D1b* effect, then divided into two groups by
219 removing the cultivars containing *Rht-B1b* or *Rht-D1b*, respectively. We found the
220 contribution of *Rht-D1b* significantly increased in the population without *Rht-B1b*
221 genotypes, indicating that the *Rht-B1b* has an interfering effect on the *Rht-D1b*
222 association. However, the *Rht-B1b* still could not be detected when we removed the
223 *Rht-D1b* genotypes from the population (Fig. 4D, Table S9), further supporting the
224 stronger effect of *Rht-D1b* in regulating modern wheat root development.

225 **The cell size alteration underlying the regulation mechanism of *Rht-D1b***

226 To clarify the underlying mechanism of *Rht-D1b* in regulating root development,
227 the DEGs derived from the introduction of *Rht-D1b* and *Rht-B1b* were identified by
228 comparing the gene expressions between *Rht-D1b* and *Rht-B1* genotypes and *NO*
229 genotypes, respectively (Fig. 5A). The enriched analysis demonstrates that the

230 introduction of *Rht-D1b* down-regulated the expression of genes related to “Protein
231 targeting to vacuole”, “Cell wall organization”, “Cell wall modification”, and
232 “Regulation of root meristem growth” (Fig. 5B, Table S10), indicating that the
233 morphology and development of root cells experienced a significant alteration with
234 *Rht-D1b* introduction.

235 The root meristem was investigated in *Rht-D1b* transgenic lines, and the results
236 showed that the meristem length and width of *Rht-D1b* were significantly increased
237 (Fig. 5C). The cell width in the meristem zone is increased (Fig. 5C), which would be
238 the reason for the larger meristem width. The cell number of longitudinal meristem is
239 significantly increased while the average cell length keeps similar to that of wildtype.
240 Considering that the half-length of cell width was used to define the meristem region,
241 the increased dividing cell number and meristem length may also be derived from the
242 increased cell width. Then, we investigated the cells in the mature root region and
243 showed that both the cell length and the cell width increased, suggesting that the
244 *Rht-D1b* has a key role in increasing the size of root cells.

245 Meanwhile, the cell size of above-ground tissues was also investigated. We
246 found that the cells decrease in length but not the width, consistent with their
247 well-known dwarf phenotype, further supporting the distinct regulation pattern of GA
248 signaling between above- and under-ground tissues.

249 ***Rht-D1b* showed a broader regulatory gene spectrum that was related to root
250 development**

251 To characterize the underlying mechanism of the stronger effect of *Rht-D1b* in
252 regulating wheat root phenotypes, the DEGs between *Rht-D1b* and *NO* genotypes and
253 *Rht-B1b* and *NO* genotypes were identified. The results showed that 3,407 and 464
254 DEGs were raised with the *Rht-D1b* and *Rht-B1b* introduction, respectively, and 195
255 DEGs were shared between these two comparisons (Fig. 6A), indicating that the
256 *Rht-D1b* had a broader influence on the root transcriptome. On the other hand, the

257 *Rht-D1b* didn't confer a stronger regulatory effect on the transcriptions of the
258 common DEGs (Fig. 6B), indicating the stronger phenotypes of *Rht-D1b* may not be
259 from its stronger inhibitory effect on GA signaling.

260 The co-expression analysis showed that the co-expressed genes ($p < 10^{-10}$) with
261 *Rht-D1* are more than that with *Rht-B1* in *NO* genotypes. The co-expressed genes with
262 *Rht-D1* almost cover all the co-expressed genes of *Rht-B1b*, supporting *Rht-D1* has a
263 bigger gene co-expression network. Further analysis showed that the *Rht-D1b* have
264 523 co-expressed genes out of the whole gene network of all three *Rhts* (Rht-A1, B1,
265 and D1), while only 1 gene is co-expressed with *Rht-B1b* under this circumstance,
266 further support that the *Rht-D1b* has a broader regulatory gene spectrum, compared to
267 that of *Rht-B1b*.

268 There are several DEGs whose homologs were reported to be involved in cell
269 proliferation and root development, including *AtGIF3* (Lee et al., 2009) and *AtP23-2*
270 (D'Alessandro et al., 2015), were specifically regulated by the *Rht-D1b* but not the
271 *Rht-B1b* (Fig. 6D), further supporting the assumption that *Rht-B1b* and *Rht-D1b* had
272 diverged functions in root development regulation. However, the specific mechanism
273 still needs further investigation.

274 Interestingly, the two major wheat regions in China, the Yellow and Huai wheat
275 production region (Y&H) and Yangtze River winter wheat production region (YR)
276 (Fig. 6E), showed a distinct preference for these two alleles, that modern wheat
277 cultivars in Y&H mainly selected the *Rht-D1b* while almost all of the YR cultivars
278 selected *Rht-B1b*, which may be related the root traits of these two alleles.

279 **280 The opposite GA responses between above- and under-ground contribute to a
higher root-shoot ratio**

281 The reversed effects of GA on above- and under-ground traits (Fig. 4A, 4B, 5C)
282 suggested a role of *Rht-B1b* and *Rht-D1b* in regulating wheat root-shoot ratio. To
283 confirm this hypothesis, the fresh weight of shoot and root at seven DAGs were

284 investigated. The results showed that the root-shoot ratio was significantly increased
285 in *Rht-D1b* and *Rht-B1b* genotypes (Fig. 7A). GWAS identified *Rht-D1b* as the
286 critical allele to increase the root-shoot ratio of modern wheat cultivars (Fig. 7B). The
287 *Rht-B1b* was also significantly associated with the higher root-shoot ratio when the
288 *Rht-D1b* genotypes were removed, suggesting a stronger effect of *Rht-D1b*, which
289 masked the effect of *Rht-B1b*. In turn, the contribution and reliability of the *Rht-D1b*
290 association in GWAS obviously increased when the *Rht-B1b* genotypes were removed,
291 indicating the interference from *Rht-B1b*. These results suggested that *Rht-D1b* and
292 *Rht-B1b* significantly increased the root-shoot ratio at the early developmental stage
293 and provided new insights for understanding the successful utilization of the green
294 revolution alleles.

295 Collectedly, our results showed that the introduction of *Rht-D1b* and *Rht-B1b* into
296 modern wheat suppressed the GA signaling, which conferred distinct GA responses
297 between above- and under-ground tissues, increased the cell width in root but
298 inhibited the cell length in above-ground tissues, conferred a bigger root system and a
299 higher root-shoot ratio (Figure 7C). The *Rht-D1b* confers a stronger effect in
300 enhancing wheat root system and root-shoot ratio, which significantly changed the
301 root related traits of current wheat cultivars.

302 **DISCUSSION**

303 In this study, the large-scale transcriptome sequencing provides a high-density
304 SNP marker for gene evaluation. Meanwhile, 39277 LC genes were identified in the
305 wheat root, providing transcriptional evidence for LC genes and extending the wheat
306 genome database. Based on the identified SNP and wheat root phenotyping, the
307 well-known green revolution allele *Rht-D1b* was identified as the major allele for
308 enhancing the root system in modern wheat cultivars.

309 Although the TWAS was applied in many plant population transcriptomes
310 (Kremling et al., 2019; Wainberg et al., 2019), the *Rht-D1b* identification with TWAS

311 was still unexpectedly in this study. This significant association maybe just resulted
312 from the significantly changed expression of *Rht-D1* with the *Rht-D1b* introduction
313 (Fig. 3D). The underlying correlation between the SNP and the higher expression of
314 *Rht-D1b* requires further elucidation.

315 It has been suggested that targeting roots for crop improvement may be the
316 solution to the second Green Revolution (Lynch, 2007; Den Herder et al., 2010).
317 Although the increased root length or root number could increase the root system, the
318 larger root diameter derived from the *Rht-B1b* and *Rht-D1b* introduction is the major
319 reason to contributes to a bigger root volume in our study. This result enlightens a
320 new direction for root improvement by enhancing root cell width and root diameter,
321 which would bypass the competition between the longer root and more root number
322 (van der Bom et al., 2020) to form a bigger root system.

323 The *Rht-D1b* contributed a larger seedling root to modern wheat and was
324 preferentially adopted in the Y&H wheat production region. The drought and cold
325 winter ecology conditions in Y&H may be the important reason for *Rht-D1b* adoption
326 here. It will be an interesting and important question to clarify the connections
327 between the bigger root system and its geographic adoption in China (Zhang et al.,
328 2006; Gao et al., 2015), USA (Guedira et al., 2010) and Europe (Wurschum et al.,
329 2015; Wurschum et al., 2018).

330 Although Gibberellins can enhance root cell elongation (Shani et al., 2013) and
331 root meristem proliferation (Qin et al., 2022), the increase of cell width by *Rht-D1b* is
332 actually responsible for the bigger root system. Similarly, the cell length reduction is
333 the major mechanism for the dwarf phenotypes, suggesting the critical role of GA in
334 controlling plant cell shape.

335 The diverged GA signaling responses between the above- and under-ground
336 tissue were due to their distinct GA sensitivity (Tanimoto, 2012). The reduced GA
337 production has little influence on root growth. In contrast, over-produced GA

338 significantly inhibits root growth (Qin et al., 2022), consistent with that the root is
339 very sensitive to GA and reaches the saturated status with low concentration
340 maintenance (Tanimoto, 2012). In this study, both *Rht-B1b* and *Rht-D1b* genotypes
341 showed a decreased sensitivity for GA treatment, while still responding to the
342 exogenous GA (Fig. 5A) to inhibit root growth, indicating that the suppressed GA
343 signaling in *Rht-B1b* and *Rht-D1b* is a benefit for the root development. However,
344 these data suggest the GA signaling seems contribute a negative effect on root growth
345 in *NO* genotype wheat, which is contradict to the previous conclusion that the low GA
346 concentration could promote root growth in most plant species (Tanimoto, 2012), thus,
347 the underlying mechanism remains largely unknown.

348 In plants, the GA synthesis and transportation (Topham et al., 2017; Binenbaum
349 et al., 2018) is a complex gene network. Moreover, the roles of GA in the plant are
350 spatial (Topham et al., 2017) and temporal dependent (Qin et al., 2022), which
351 challenges our understanding of the regulatory mechanisms of *Rht-B1b* and *Rht-D1b*.
352 Here, the new finding that the distinct effect between above- and underground of GA,
353 the functions in increasing root diameter and root-shoot ratio of *Rht-B1b* and *Rht-D1b*,
354 and the diverged functions between *Rht-B1b* and *Rht-D1b* will benefit futural wheat
355 breeding and cultivation practices, shedding new light on the regulatory mechanisms
356 of GA in the plant.

357 **Materials and Methods**

358 **Plant materials, root development trait measurement, and RNA sequencing**

359 The seeds of 385 bread wheat accessions (Table S1) were sterilized with 2%
360 NaClO and then grown on water-soaked filter papers in germination boxes under the
361 conditions of 22 °C/16 °C day/night (50% relative air humidity) and 16h light (2000
362 Lux) / 8h dark. Six biological replicates were carried out to obtain robust results.
363 During growth, the sterilized water in germinating boxes was replaced regularly. For
364 each accession, at least three root samples per biological replicate were collected at 14

365 DAG and immediately frozen in liquid N₂ for the subsequent isolation of total RNA.
366 The RNA samples of six biological replicates for each accession were equally mixed
367 and were subjected to 150 bp paired-end RNA sequencing with the Illumina HiSeq X
368 Ten platform. In addition, at the 4, 7, and 14 DAG, the six root samples per biological
369 replicate were collected to measure the total root length, root surface, root volume,
370 and root diameter using the Wseen LA-S image system (Hangzhou Wseen Testing
371 Technology Co. LTD). Meanwhile, the root number, primary root length, and
372 root/leaf fresh weight were manually measured.

373 **RNA-Seq data mapping and SNP calling**

374 Raw RNA-Seq reads were filtered to remove sequencing adapters and
375 low-quality bases using Trimmomatic (v0.33) (Bolger et al., 2014) with default
376 parameters. The filtered reads were firstly aligned to bread wheat reference genome
377 sequence (IWGSC RefSeq v1.0) using the STAR software (v2.4.2a)(Dobin et al.,
378 2013) with the 2-pass mapping mode. Then, the filtered reads were mapped to the
379 transcriptome sequence (IWGSC RefSeq v1.1 annotation) with BWA (v0.7.17) (Li
380 and Durbin, 2010). The unique mapping RNA-Seq reads with coincident mapping
381 locations between genome and transcriptome mapping procedures were collected to
382 reduce mapping error and used for the subsequent SNP calling.

383 A two-step procedure that carefully considered RNA-seq data characteristics was
384 employed to detect SNPs referring to reported method (Fu et al., 2013). Firstly, raw
385 SNPs were called with a population SNP-calling manner referring to the best practices
386 of GATK (v4.0.2.0) (McKenna et al., 2010) and were filtered with the following
387 parameters: (1) mapping quality ≥ 40 , SNP quality ≥ 30 , genotype quality for each
388 accession ≥ 20 , QD (SNP quality/reads depth) ≥ 2 ; (2) each SNP was more than five
389 bp away from an InDel; (3) for homozygous genotypes, the supporting reads had to be
390 equal to or greater than five for each accession; (4) for heterozygous genotypes, the
391 supporting reads for both the reference and alternative alleles had to be equal to or
392 greater than three for each accession. The SNPs that failed to pass the above

393 parameters were assigned as missing. Secondly, to further exclude possible false
394 polymorphic sites caused by intrinsic mapping errors, we simulated RNA-seq read
395 sequences based on the whole wheat transcriptome without mutation introduction,
396 aligned these sequences to the reference and identified SNPs using the same strategies
397 as in the first step to produce a mapping error SNP set. Any SNPs that matched the
398 mapping error SNP set were removed. The high-quality SNPs were annotated using
399 the SnpEff (v4.3) (Cingolani et al., 2012).

400 **SNP imputation and accuracy evaluation**

401 The beagle (v5.1) (Browning et al., 2018) was used to impute missing genotypes.
402 To get the optimal imputation accuracy and filling rate, we randomly masked 10750
403 sites with missing rates varied from 10 to 90% and found that the imputation accuracy
404 of masked sites was more than 99% when the missing rate was < 0.8 (Table S12).
405 Therefore, SNPs with the missing rate < 0.8 were imputed.

406 To evaluate the reproducibility of our pipeline and the accuracy of the final SNPs,
407 we firstly compared the identified genotypes of two biological replicates of three
408 accessions. It showed an average of 98.85% concordant rate between replicates of
409 each accession, indicating our SNP calling pipeline was high reproducibility (Table
410 S13). Secondly, only 387 alternative alleles (0.09%) were detected in the wheat cv.
411 Chinese Spring that was used to generate the reference genome sequence, suggesting
412 a low false-positive rate of our pipeline. Thirdly, four accessions were selected to
413 genotype with wheat 660 K SNP arrays, and the results showed the accuracy was
414 more than 99% and 94.32% before and after SNP imputation, respectively (Table
415 S14). Overall, despite the hexaploidy nature and more than 85% repetitive DNA of
416 bread wheat genome, the above data indicated that the reproducibility of our SNP
417 calling pipeline and the accuracy of the identified SNPs in the current study is high
418 enough. The code of our SNP calling pipeline could be downloaded from
419 https://github.com/biozhp/root_rnaseq.

420 **Population genetic analysis**

421 To classify the accessions, our SNP data were merged with the recently
422 published SNP data of hexaploid accessions downloaded from the National
423 Genomics Data Center (<https://bigd.big.ac.cn/gvm>, GVM000082) (Zhou et al., 2020).
424 The shared SNPs between our results and the *Triticum* population sequencing project
425 were used to construct a phylogenetic tree using RAxML (v8.2.12) (Stamatakis, 2014)
426 with the parameters: -f a -m GTRGAMMA -p 12346 -x 12346 -# 100. The
427 phylogenetic tree initially divided our wheat accessions into LA and CV groups,
428 referring to the determined classification in the *Triticum* sequencing project. Then, 34
429 accessions with conflict classifications between the phylogenetic tree and pedigree
430 documentation were removed, resulting in 87 LA and 264 MC for the subsequent
431 analysis. The phylogenetic tree was visualised by iTOL (v6) (Letunic and Bork,
432 2021).

433 The imputed SNPs with MAF > 0.05 were used to quantify the genome-wide
434 population structure and infer population structure with ADMIXTURE (v1.3.0)
435 (Alexander et al., 2009).

436 **Gene expression quantification**

437 The filtered reads were aligned to the high and low confidence transcripts
438 (IWGSC RefSeq v1.1 annotation) using the kallisto (v0.46.2) (Bray et al., 2016) and
439 summarized expression levels (Transcripts Per Million, TPM) from the transcript
440 level to the gene level using tximport (v1.14.0) (Soneson et al., 2015) with the option
441 'lengthScaledTPM' referring to the reported method (Ramirez-Gonzalez et al., 2018).
442 To investigate the extent of gene expression variation among the population, the fold
443 change of the TPM at 95th percentiles to that of the 5th percentiles (TPM > 0.5) in the
444 whole population was calculated.

445 **Identification of differentially expressed genes**

446 For each gene, the significance of expression difference between the two
447 compared groups was calculated with the Wilcoxon rank-sum test (Li et al., 2022).
448 Genes with FDR adjusted *P-value* < 0.01 were considered as candidate DEGs. Then,
449 to exclude the effects of population structure on DEG detection, the 100 random
450 permutations were performed by randomly sampling 60% accessions from each of the
451 two compared groups and further randomly removing accessions from the larger size
452 group to reach the same size as the smaller group. The observation number of each
453 DEG in the 100 random permutations was recorded. The DEGs with an observation
454 number of more than ten times were considered reliable DEGs and used for further
455 analysis. For investigating the expected observation numbers of DEGs, we performed
456 100,000 permutations by randomly sampling accessions from the whole population to
457 construct two same size groups as LA and CV, and found that only 0.2% of the tests
458 had DEGs, and the 95% confidence interval of the observation numbers of DEGs was
459 from 0 to 0.27. Therefore, we selected more than ten times as threshold in the DEG
460 detection, which was big enough to exclude the DEGs by chance.

461 **GO enrichment analysis**

462 GO annotation for high confidence genes was downloaded from the Ensembl
463 Plants Genes 49 database, and GO annotation for the low confidence genes were
464 obtained with eggNOG-mapper (v2) (Cantalapiedra et al., 2021). GO enrichment
465 analysis was performed using the R package clusterProfiler (v3.14.3) with the
466 “enricher” function (Yu et al., 2012).

467 **Association analyses**

468 The imputed SNPs with MAF > 0.05 were used for the GWAS analysis with the
469 mixed linear model implemented in GAPIT (Wang and Zhang, 2021). The cutoff for
470 determining significant associations was *P-value* < 1×10^{-4} . The genes whose
471 expression values at the 5th percentile were more than 0.5 were filtered out, and their
472 expression levels were normalized using a normal quantile transformation with the

473 “qqnorm” function in R. The function “cGWAS.emmax” of R package cpgen (v0.2)
474 was used for TWAS analysis (Tang et al., 2021).

475 **Permutations of the phenotyping comparison**

476 To avoid the inference from population structure and kinships between wheat
477 accessions in phenotyping comparisons, randomly sampling 60% accessions from
478 each of the two compared groups and further randomly removing accessions from the
479 larger size group to reach the same size as the smaller group. In the 1000 random
480 permutations, the observation numbers of significant difference with the Student's
481 t-test were recorded.

482 **Identification of co-expressed genes with *Rht-A1/B1/D1***

483 To identify the co-expression genes with *Rht-A1/B1/D1*, we randomly selected
484 60% accessions from the *Rht-B1aRht-D1a* (marked NO) group to calculate the
485 Pearson correlation coefficients and *P-value* between the TPM of each candidate gene
486 and the TPM of *Rht-A1/B1/D1* using the “cor.test” function in R. Accordingly, we
487 randomly selected 60% accessions from *Rht-B1bRht-D1a* (marked *B1b*) or
488 *Rht-B1aRht-D1b* (marked *D1b*) groups to identify the co-expression genes with
489 *Rht-B1* or *Rht-D1*, respectively. The genes that were observed more than ten times
490 with *P-value* < 10⁻¹⁰ in Pearson's correlation test in the 100 random permutations were
491 regarded as co-expressed genes.

492 **Gibberellin treatment**

493 The 18 randomly selected accessions from each of the *Rht-B1aRht-D1a*,
494 *Rht-B1bRht-D1a* and *Rht-B1aRht-D1b* genotypes, were treated by exogenous GA
495 (GA₃) in a hydroponic system and soil cultivation system. The plants grown in the
496 hydroponic system were treated with 0.2 and 2 μmol/L GA₃ for eight days after
497 germination, and those cultivated in soil were treated with 15 μmol/L GA₃ for nine
498 days from three DAG. The roots and leaves were collected to measure the primary

499 root length and leaf length.

500 **Over-expression transgenic vector construction and plant transformation**

501 To overexpress *TaRht-D1b*, the coding region of which was inserted into the
502 pMWB111 vector under the control of its native promoter. The construct was then
503 introduced into the immature embryos of bread wheat cv. Fielder by Agrobacterium
504 tumefaciens mediated transformation, referring to the established protocols (Hayta et
505 al., 2019).

506 **Cytological observation of root and shoot**

507 FV1200 confocal microscope (Olympus, Tokyo, Japan) was used for the
508 cytological observation of roots and shoots. The sample was harvested and fixed in 4%
509 glutaraldehyde (in 12.5 mM cacodylate, pH 6.9), then vacuumed them three times for
510 30 minutes, after which they were in fixative overnight at room temperature. After
511 fixation, the tissue was dehydrated through a conventional ethanol series for 30 min
512 per step. Then, the tissue was cleared in 2:1 (v/v) benzyl benzoate: benzyl alcohol for
513 a minimum of 1 h. Samples were observed with a confocal microscope under a
514 488-nm argon laser. ImageJ V1.48 was used to measure the length and width of the
515 cell.

516
517

518 **Data availability**

519 The raw RNA-Seq data were deposited in the Sequence Read Archive
520 (<https://www.ncbi.nlm.nih.gov/sra>) under accession numbers PRJNA838764.
521 Genotypic, transcriptomic and phenotypic data used in this analysis are publicly
522 available from our website (<https://iwheat.net/links/>).

523

524 **Supplemental Data**

525 **Supplementary Table 1.** Information of all accessions in this study.

526 **Supplementary Table 2.** Gene ontology enrichment analyses of the highly and lowly
527 expressed genes.

528 **Supplementary Table 3.** Gene ontology enrichment analyses of the highly and lowly
529 varied expression genes.

530 **Supplementary Table 4.** The identified DEGs between LA and MC groups.

531 **Supplementary Table 5.** Gene ontology enrichment analyses of the DEGs between
532 LA and MC.

533 **Supplementary Table 6.** Annotation of DEGs, which were observed in all 100
534 random permutations.

535 **Supplementary Table 7.** GWAS results of the root surface and volume at 14 DAGs
536 and the root-shoot ratio at seven DAGs.

537 **Supplementary Table 8.** TWAS results of the root surface and volume at 14 DAGs.

538 **Supplementary Table 9.** The GWAS results of root surface (14 DAG), volume (14
539 DAG) and root-shoot ratio (7 DAG) in the population masked Rht-B1b genotypes or
540 masked Rht-D1b genotypes.

541 **Supplementary Table 10.** Gene ontology enrichment analyses of the DEGs derived
542 from comparing *D1b* and *NO* genotypes.

543 **Supplementary Table 11.** Gene ontology enrichment analyses of the DEGs derived
544 from comparing *B1b* and *NO* genotypes.

545 **Supplementary Table 12.** Imputation accuracy of SNPs under different cutoffs of
546 missing rate.

547 **Supplementary Table 13.** The reproducibility of our SNP identification pipeline
548 among three biological replications.

549 **Supplementary Table 14.** The concordance rate of the identified SNPs with our
550 pipeline and the wheat 660K SNP arrays.

551

552 **ACKNOWLEDGEMENTS**

553 This work was supported by grants from the National Natural Science Foundation of
554 China (31571756 and 31870298) to SX, the fellowship of China Postdoctoral Science
555 Foundation (2021T140566) to XW. And we thank the crop biology innovation center
556 of college of agronomy (NWAFU) for providing equipment support, the
557 High-Performance Computing (HPC) of Northwest A&F University for providing
558 computing platform.

559 **AUTHOR CONTRIBUTIONS**

560 SX and ZK conceived the project and designed the research. ZK, SX and DH collected
561 wheat accession. XW, PZ, XG, ZL, XM, YZ, XL, LH and WW performed the sample
562 preparation, RNA sequencing and phenotypic data collection and process. SX, XW, PZ,
563 XG organized the data and wrote the manuscript. All authors discussed the results and
564 commented on the manuscript. All authors read and approved the final manuscript.

565 **REFERENCES**

566 **Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., Peleg, Z.** (2014). Plant
567 domestication versus crop evolution: a conceptual framework for cereals and grain legumes.
568 *Trends Plant Sci* **19**, 351-360.

569 **Alexander, D.H., Novembre, J., Lange, K.** (2009). Fast model-based estimation of ancestry in
570 unrelated individuals. *Genome Res* **19**, 1655-1664.

571 **Azodi, C.B., Pardo, J., VanBuren, R., de Los Campos, G., Shiu, S.H.** (2020). Transcriptome-Based
572 Prediction of Complex Traits in Maize. *Plant Cell* **32**, 139-151.

573 **Bacher, H., Zhu, F., Gao, T., Liu, K., Dhatt, B.K., Awada, T., Zhang, C., Distelfeld, A., Yu, H.,**
574 **Peleg, Z., Walia, H.** (2021). Wild emmer introgression alters root-to-shoot growth dynamics
575 in durum wheat in response to water stress. *Plant Physiol* **187**, 1149-1162.

576 **Binnebaum, J., Weinstain, R., Shani, E.** (2018). Gibberellin Localization and Transport in Plants.
577 *Trends Plant Sci* **23**, 410-421.

578 **Bolger, A.M., Lohse, M., Usadel, B.** (2014). Trimmomatic: a flexible trimmer for Illumina sequence
579 data. *Bioinformatics* **30**, 2114-2120.

580 **Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.** (2016). Near-optimal probabilistic RNA-seq
581 quantification. *Nat Biotechnol* **34**, 525-527.

582 **Browning, B.L., Zhou, Y., Browning, S.R.** (2018). A One-Penny Imputed Genome from
583 Next-Generation Reference Panels. *Am J Hum Genet* **103**, 338-348.

584 **Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., Duncan, L., Perry,**
585 **J.R., Patterson, N., Robinson, E.B., Daly, M.J., Price, A.L., Neale, B.M.** (2015). An atlas of
586 genetic correlations across human diseases and traits. *Nat Genet* **47**, 1236-1241.

587 **Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M.** (2020). Root Growth Adaptation to
588 Climate Change in Crops. *Front Plant Sci* **11**, 544.

589 **Cantalapiedra, C.P., Hernandez-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J.** (2021).
590 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction
591 at the Metagenomic Scale. *Mol Biol Evol* **38**, 5825-5829.

592 **Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., Lin, T.P.** (2012).
593 Drought and salt stress tolerance of an *Arabidopsis* glutathione S-transferase U17 knockout
594 mutant are attributed to the combined effect of glutathione and abscisic acid. *Plant Physiol*
595 **158**, 340-351.

596 **Chen, W., Wu, Y., Zheng, Z., Qi, T., Visscher, P.M., Zhu, Z., Yang, J.** (2021). Improved analyses of
597 GWAS summary statistics by reducing data heterogeneity and errors. *Nat Commun* **12**, 7117.

598 **Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden,**
599 **D.M.** (2012). A program for annotating and predicting the effects of single nucleotide
600 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2;
601 iso-3. *Fly (Austin)* **6**, 80-92.

602 **D'Alessandro, S., Golin, S., Hardtke, C.S., Lo Schiavo, F., Zottini, M.** (2015). The co-chaperone
603 p23 controls root development through the modulation of auxin distribution in the *Arabidopsis*
604 root meristem. *J Exp Bot* **66**, 5113-5122.

605 **De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., Van**
606 **Noorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., Wang, J.Y., Meuli, N.,**
607 **Vanneste, S., Friml, J., Hilson, P., Jürgens, G., Ingram, G.C., Inzé, D., Benfey, P.N.,**

608 **Beeckman, T.** (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the
609 Arabidopsis root. *Science* **322**, 594-597.

610 **de Vries, F.T., Griffiths, R.I., Knight, C.G., Nicolitch, O., Williams, A.** (2020). Harnessing
611 rhizosphere microbiomes for drought-resilient crop production. *Science* **368**, 270-274.

612 **Den Herder, G., Van Isterdael, G., Beeckman, T., De Smet, I.** (2010). The roots of a new green
613 revolution. *Trends Plant Sci* **15**, 600-607.

614 **Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,**

615 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

616 **Fauman, E.B.** (2020). Current Techniques for Complex Phenotypes: GWAS of the Electrocardiogram.
617 *Trends Genet* **36**, 897-899.

618 **Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z.,**

619 Wang, B., Zhai, L., Dai, C., Xu, J., Wang, W., Li, X., Zheng, J., Chen, L., Luo, L., Liu, J.,

620 Qian, X., Yan, J., Wang, J., Wang, G. (2013). RNA sequencing reveals the complex
621 regulatory network in the maize kernel. *Nat Commun* **4**, 2832.

622 **Gao, Z., Shi, Z., Zhang, A., Guo, J.** (2015). Distribution of genes associated with yield potential and
623 water-saving in Chinese Zone II wheat detected by developed functional markers. *Journal of*
624 *genetics* **94**, 35-42.

625 **Gilliland, L.U., Pawloski, L.C., Kandasamy, M.K., Meagher, R.B.** (2003). Arabidopsis actin gene
626 ACT7 plays an essential role in germination and root growth. *The Plant Journal* **33**, 319-328.

627 **Godfray, H.C., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J.,**

628 Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of feeding 9
629 billion people. *Science* **327**, 812-818.

630 **Golan, G., Hendel, E., Méndez Espitia, G.E., Schwartz, N., Peleg, Z.** (2018). Activation of seminal
631 root primordia during wheat domestication reveals underlying mechanisms of plant resilience.
632 *Plant Cell Environ* **41**, 755-766.

633 **Guedira, M., Brown-Guedira, G., Van Sanford, D., Sneller, C., Souza, E., Marshall, D.** (2010).
634 Distribution of Rht Genes in Modern and Historic Winter Wheat Cultivars from the Eastern
635 and Central USA. *Crop Sci* **50**, 1811-1822.

636 **Hao, C., Jiao, C., Hou, J., Li, T., Liu, H., Wang, Y., Zheng, J., Liu, H., Bi, Z., Xu, F., Zhao, J., Ma,**

637 L., Wang, Y., Majeed, U., Liu, X., Appels, R., Maccaferri, M., Tuberrosa, R., Lu, H.,

638 Zhang, X. (2020). Resequencing of 145 Landmark Cultivars Reveals Asymmetric
639 Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China.
640 *Mol Plant* **13**, 1733-1751.

641 **Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N., Harwood, W.A.**
642 (2019). An efficient and reproducible *Agrobacterium*-mediated transformation method for
643 hexaploid wheat (*Triticum aestivum* L.). *Plant Methods* **15**, 121.

644 **Hendel, E., Bacher, H., Oksenberg, A., Walia, H., Schwartz, N., Peleg, Z.** (2021). Deciphering the
645 genetic basis of wheat seminal root anatomy uncovers ancestral axial conductance alleles.
646 *Plant Cell Environ* **44**, 1921-1934.

647 **Hou, L., Zhang, A., Wang, R., Zhao, P., Zhang, D., Jiang, Y., Diddugodage, C.J., Wang, X., Ni, Z.,**

648 Xu, S. (2019). Brassinosteroid Regulates Root Development with Highly Redundant Genes in
649 Hexaploid Wheat. *Plant Cell Physiol* **60**, 1761-1777.

650 **Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., Ju, L., Deng, J., Zhao, T., Lian, J., Baruch,**
651 **K., Fang, D., Liu, X., Ruan, Y.L., Rahman, M.U., Han, J., Wang, K., Wang, Q., Wu, H.,**
652 **Mei, G., Zang, Y., Han, Z., Xu, C., Shen, W., Yang, D., Si, Z., Dai, F., Zou, L., Huang, F.,**
653 **Bai, Y., Zhang, Y., Brodt, A., Ben-Hamo, H., Zhu, X., Zhou, B., Guan, X., Zhu, S., Chen,**
654 **X., Zhang, T.** (2019). *Gossypium barbadense* and *Gossypium hirsutum* genomes provide
655 insights into the origin and evolution of allotetraploid cotton. *Nat Genet* **51**, 739-748.

656 **International Wheat Genome Sequencing Consortium (IWGSC)** (2018). Shifting the limits in
657 wheat research and breeding using a fully annotated reference genome. *Science* **361**, 6403.

658 **Khan, M.A., Gemenet, D.C., Villordon, A.** (2016). Root System Architecture and Abiotic Stress
659 Tolerance: Current Knowledge in Root and Tuber Crops. *Front Plant Sci* **7**, 1584.

660 **Kremling, K.A.G., Diepenbrock, C.H., Gore, M.A., Buckler, E.S., Bandillo, N.B.** (2019).
661 Transcriptome-Wide Association Supplements Genome-Wide Association in *Zea mays*. *G3*
662 (Bethesda) **9**, 3023-3033.

663 **Lanning, S.P., Martin, J.M., Stougaard, R.N., Guillen-Portal, F.R., Talbert, L.E.** (2012).
664 Evaluation of Near-Isogenic Lines for Three Height-Reducing Genes in Hard Red Spring
665 Wheat. *Crop Sci* **52**, 1145-1152.

666 **Lee, B.H., Ko, J.H., Lee, S., Lee, Y., Pak, J.H., Kim, J.H.** (2009). The *Arabidopsis*
667 GRF-INTERACTING FACTOR gene family performs an overlapping function in determining
668 organ size as well as multiple developmental properties. *Plant Physiol* **151**, 655-668.

669 **Letunic, I., Bork, P.** (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
670 display and annotation. *Nucleic Acids Res* **49**, W293-2296.

671 **Li, H., Durbin, R.** (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform.
672 *Bioinformatics* **26**, 589-595.

673 **Li, Y., Ge, X., Peng, F., Li, W., Li, J.J.** (2022). Exaggerated false positives by popular differential
674 expression methods when analyzing human population samples. *Genome Biol* **23**, 79.

675 **Liu, Q., Wu, K., Harberd, N.P., Fu, X.** (2021). Green Revolution DELLA: From translational
676 reinitiation to future sustainable agriculture. *Mol Plant* **14**, 547-549.

677 **Lynch, J.** (1995). Root Architecture and Plant Productivity. *Plant Physiol* **109**, 7-13.

678 **Lynch, J.P.** (2007). Roots of the Second Green Revolution. *Australian Journal of Botany* **55**, 493-512.

679 **McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,**
680 **Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.** (2010). The Genome Analysis Toolkit: a
681 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**,
682 1297-1303.

683 **Ohashi-Ito, K., Fukuda, H.** (2003). HD-zip III homeobox genes that include a novel member,
684 ZeHB-13 (*Zinnia*)/ATHB-15 (*Arabidopsis*), are involved in procambium and xylem cell
685 differentiation. *Plant Cell Physiol* **44**, 1350-1358.

686 **Pearce, S., Saville, R., Vaughan, S.P., Chandler, P.M., Wilhelm, E.P., Sparks, C.A., Al-Kaff, N.,**
687 **Korolev, A., Boulton, M.I., Phillips, A.L., Hedden, P., Nicholson, P., Thomas, S.G.** (2011).
688 Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. *Plant Physiol* **157**,
689 1820-1831.

690 **Qin, H., Pandey, B.K., Li, Y., Huang, G., Wang, J., Quan, R., Zhou, J., Zhou, Y., Miao, Y., Zhang,**
691 **D., Bennett, M.J., Huang, R.** (2022). Orchestration of ethylene and gibberellin signals

692 determines primary root elongation in rice. *Plant Cell* **34**, 1273-1288.

693 **Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., Ridout, C.J., Chalhoub, B., Mayer, K.F.X., Benhamed, M., Latrasse, D., Bendahmane, A., International Wheat Genome Sequencing, C., Wulff, B.B.H., Appels, R., Tiwari, V., Datla, R., Choulet, F., Pozniak, C.J., Provart, N.J., Sharpe, A.G., Paux, E., Spannagl, M., Brautigam, A., Uauy, C.** (2018). The transcriptional landscape of polyploid wheat. *Science* **361**, 6403.

694 **Rizza, A., Jones, A.M.** (2019). The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. *Curr Opin Plant Biol* **47**, 9-15.

695 **Shani, E., Weinstain, R., Zhang, Y., Castillejo, C., Kaiserli, E., Chory, J., Tsien, R.Y., Estelle, M.** (2013). Gibberellins accumulate in the elongating endodermal cells of *Arabidopsis* root. *Proc Natl Acad Sci U S A* **110**, 4834-4839.

696 **Sherman, J.D., Nash, D., Lanning, S.P., Martin, J.M., Blake, N.K., Morris, C.F., Talbert, L.E.** (2014). Genetics of End-Use Quality Differences between a Modern and Historical Spring Wheat. *Crop Sci* **54**, 1972-1980.

697 **Snowdon, R.J., Wittkop, B., Chen, T.W., Stahl, A.** (2020). Crop adaptation to climate change as a consequence of long-term breeding. *Theor Appl Genet* **134**, 1613-1623.

698 **Soneson, C., Love, M.I., Robinson, M.D.** (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Res* **4**, 1521.

699 **Stamatakis, A.** (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312-1313.

700 **Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., Yang, Q.Y., Zhou, Y., Wang, X., Ma, W., Xie, W., Guo, L.** (2021). Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in *Brassica napus*. *Mol Plant* **14**, 470-487.

701 **Tanimoto, E.** (2012). Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. *Ann Bot* **110**, 373-381.

702 **Teotia, S., Lamb, R.S.** (2011). RCD1 and SRO1 are necessary to maintain meristematic fate in *Arabidopsis thaliana*. *J Exp Bot* **62**, 1271-1284.

703 **Topham, A.T., Taylor, R.E., Yan, D., Nambara, E., Johnston, I.G., Bassel, G.W.** (2017). Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in *Arabidopsis* seeds. *Proc Natl Acad Sci U S A* **114**, 6629-6634.

704 **Truernit, E., Siemering, K.R., Hodge, S., Grbic, V., Haseloff, J.** (2006). A map of KNAT gene expression in the *Arabidopsis* root. *Plant Mol Biol* **60**, 1-20.

705 **Van De Velde, K., Thomas, S.G., Heyse, F., Kaspar, R., Van Der Straeten, D., Rohde, A.** (2021). N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. *Mol Plant* **14**, 679-687.

706 **van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R., Visser, B.** (2010). Genetic diversity trends in twentieth century crop cultivars: a meta analysis. *Theor Appl Genet* **120**, 1241-1252.

707 **van der Bom, F.J.T., Williams, A., Bell, M.J.** (2020). Root architecture for improved resource capture: trade-offs in complex environments. *J Exp Bot* **71**, 5752-5763.

734 **Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A.N., Knowles, D.A., Golan, D.,**
735 **Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., Björkegren, J.L.M., Im, H.K.,**
736 **Pasaniuc, B., Rivas, M.A., Kundaje, A.** (2019). Opportunities and challenges for
737 transcriptome-wide association studies. *Nat Genet* **51**, 592-599.

738 **Wang, J., Zhang, Z.** (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic
739 Association and Prediction. *Genomics Proteomics Bioinformatics* **19**, 629-640.

740 **Watt, M., Magee, L.J., McCully, M.E.** (2008). Types, structure and potential for axial water flow in
741 the deepest roots of field-grown cereals. *New Phytol* **178**, 135-146.

742 **Wu, J., Kong, X., Wan, J., Liu, X., Zhang, X., Guo, X., Zhou, R., Zhao, G., Jing, R., Fu, X., Jia, J.**
743 (2011). Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of
744 interaction between DELLA and GID1. *Plant Physiol* **157**, 2120-2130.

745 **Wu, Y., Chang, Y., Luo, L., Tian, W., Gong, Q., Liu, X.** (2022). Abscisic acid employs
746 NRP-dependent PIN2 vacuolar degradation to suppress auxin-mediated primary root
747 elongation in *Arabidopsis*. *New Phytol* **233**, 297-312.

748 **Wu, Y., Thorne, E.T., Sharp, R.E., Cosgrove, D.J.** (2001). Modification of expansin transcript levels
749 in the maize primary root at low water potentials. *Plant Physiol* **126**, 1471-1479.

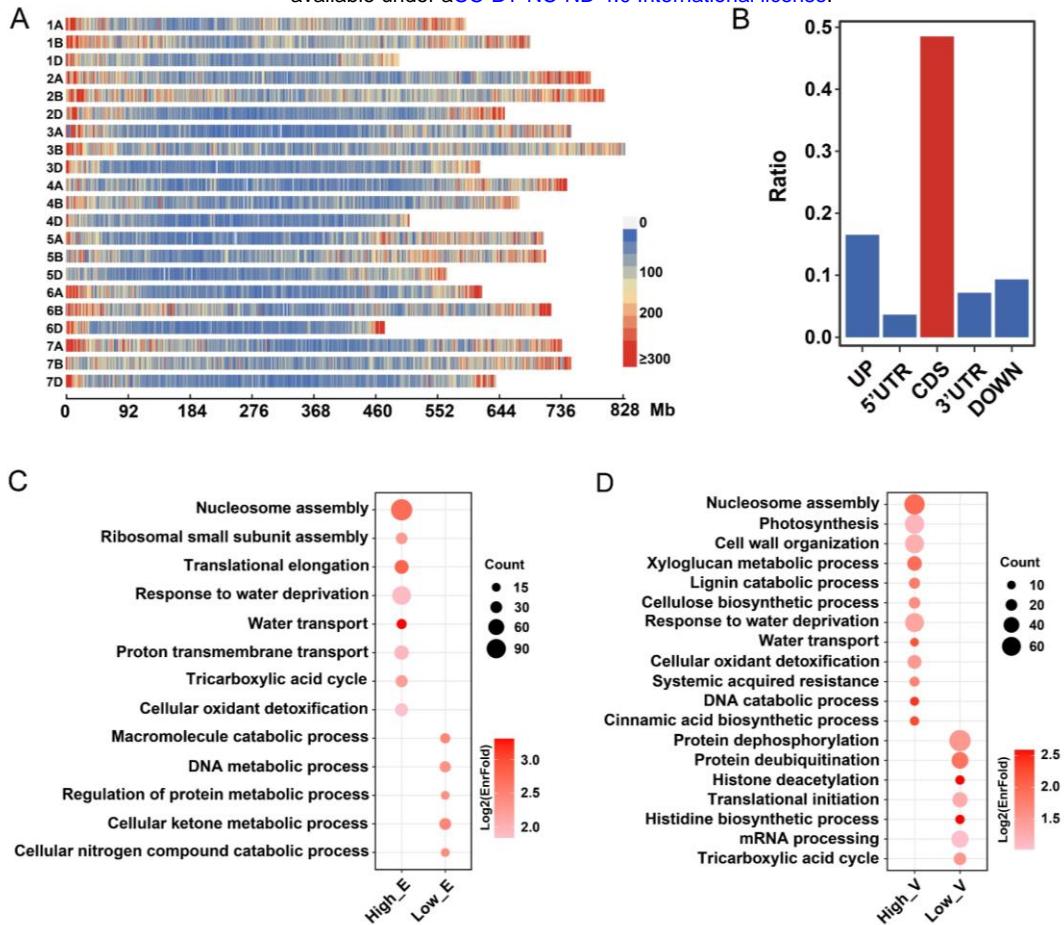
750 **Wurschum, T., Langer, S.M., Longin, C.F.** (2015). Genetic control of plant height in European winter
751 wheat cultivars. TAG. Theoretical and applied genetics. *Theor Appl Genet* **128**, 865-874.

752 **Wurschum, T., Langer, S.M., Longin, C.F.H., Tucker, M.R., and Leiser, W.L.** (2017). A modern
753 Green Revolution gene for reduced height in wheat. *Plant J* **92**, 892-903.

754 **Wurschum, T., Liu, G., Boeven, P.H.G., Longin, C.F.H., Mirdita, V., Kazman, E., Zhao, Y., Reif,
755 J.C.** (2018). Exploiting the Rht portfolio for hybrid wheat breeding. *Theor Appl Genet* **131**,
756 1433-1442.

757 **Yokoyama, A., Yamashino, T., Amano, Y., Tajima, Y., Imamura, A., Sakakibara, H., Mizuno, T.**
758 (2007). Type-B ARR transcription factors, ARR10 and ARR12, are implicated in
759 cytokinin-mediated regulation of protoxylem differentiation in roots of *Arabidopsis thaliana*.
760 *Plant Cell Physiol* **48**, 84-96.

761 **Yu, G., Wang, L.G., Han, Y., He, Q.Y.** (2012). clusterProfiler: an R package for comparing biological
762 themes among gene clusters. *OMICS* **16**, 284-287.

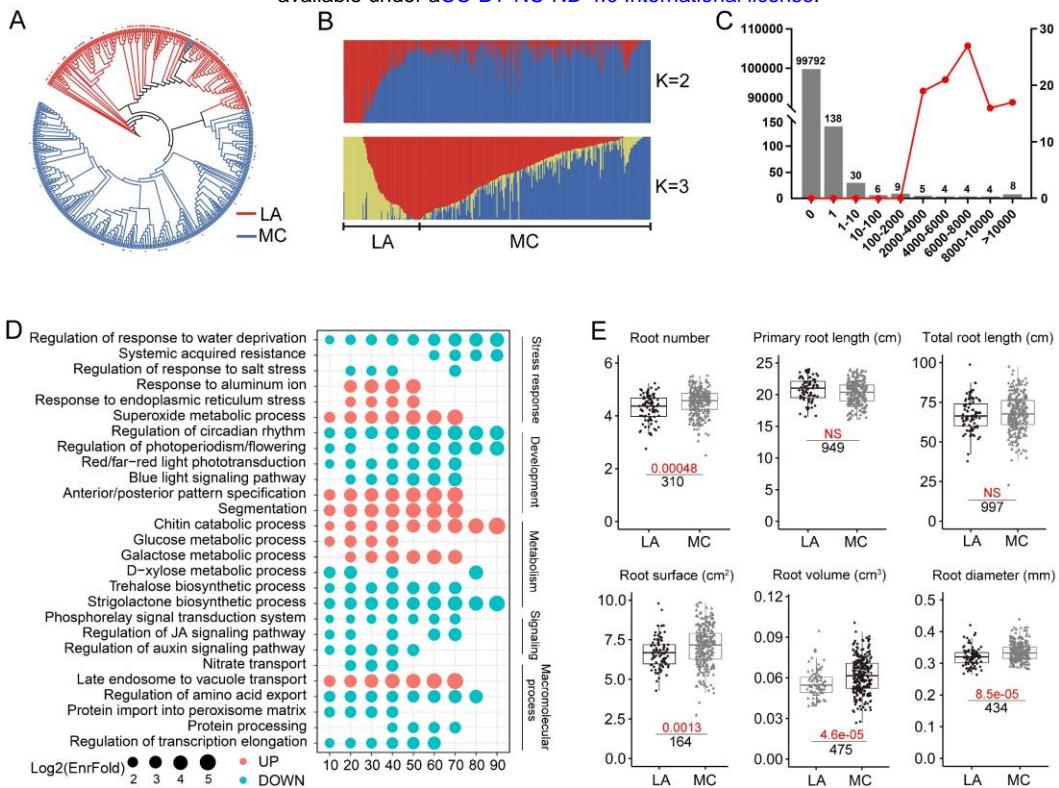

763 **Yue, K., Sandal, P., Williams, E.L., Murphy, E., Stes, E., Nikonorova, N., Ramakrishna, P.,**
764 **Czyzewicz, N., Montero-Morales, L., Kumpf, R., Lin, Z., van de Cotte, B., Iqbal, M., Van
765 Bel, M., Van De Slijke, E., Meyer, M.R., Gadeyne, A., Zipfel, C., De Jaeger, G., Van
766 Montagu, M., Van Damme, D., Gevaert, K., Rao, A.G., Beeckman, T., De Smet, I.** (2016).
767 PP2A-3 interacts with ACR4 and regulates formative cell division in the *Arabidopsis* root.
768 *Proc Natl Acad Sci U S A* **113**, 1447-1452.

769 **Zhang, L., Su, W., Tao, R., Zhang, W., Chen, J., Wu, P., Yan, C., Jia, Y., Larkin, R.M., Lavelle, D.,**
770 **Truco, M.J., Chin-Wo, S.R., Michelmore, R.W., Kuang, H.** (2017). RNA sequencing
771 provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. *Nat
772 Commun* **8**, 2264.

773 **Zhang, X., Yang, S., Zhou, Y., He, Z., Xia, X.** (2006). Distribution of the Rht-B1b, Rht-D1b and Rht8
774 reduced height genes in autumn-sown Chinese wheats detected by molecular markers.
775 *Euphytica* **152**, 109-116.

776 Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.G., Liu, S.,
777 Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y., Lu, F. (2020). Triticum population sequencing
778 provides insights into wheat adaptation. *Nat Genet* **52**, 1412-1422.

779 Zubo, Y.O., Blakley, I.C., Yamburenko, M.V., Worthen, J.M., Street, I.H., Franco-Zorrilla, J.M.,
780 Zhang, W., Hill, K., Raines, T., Solano, R., Kieber, J.J., Loraine, A.E., Schaller, G.E.
781 (2017). Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to
782 regulate growth and development in *Arabidopsis*. *Proc Natl Acad Sci U S A* **114**,
783 E5995-E6004.


Figure 1. Root transcriptome characteristic of the bread wheat population.

(A) Distribution of the identified SNPs in bread wheat genome. The colour key indicates the number of markers within a window size of 1 Mb.

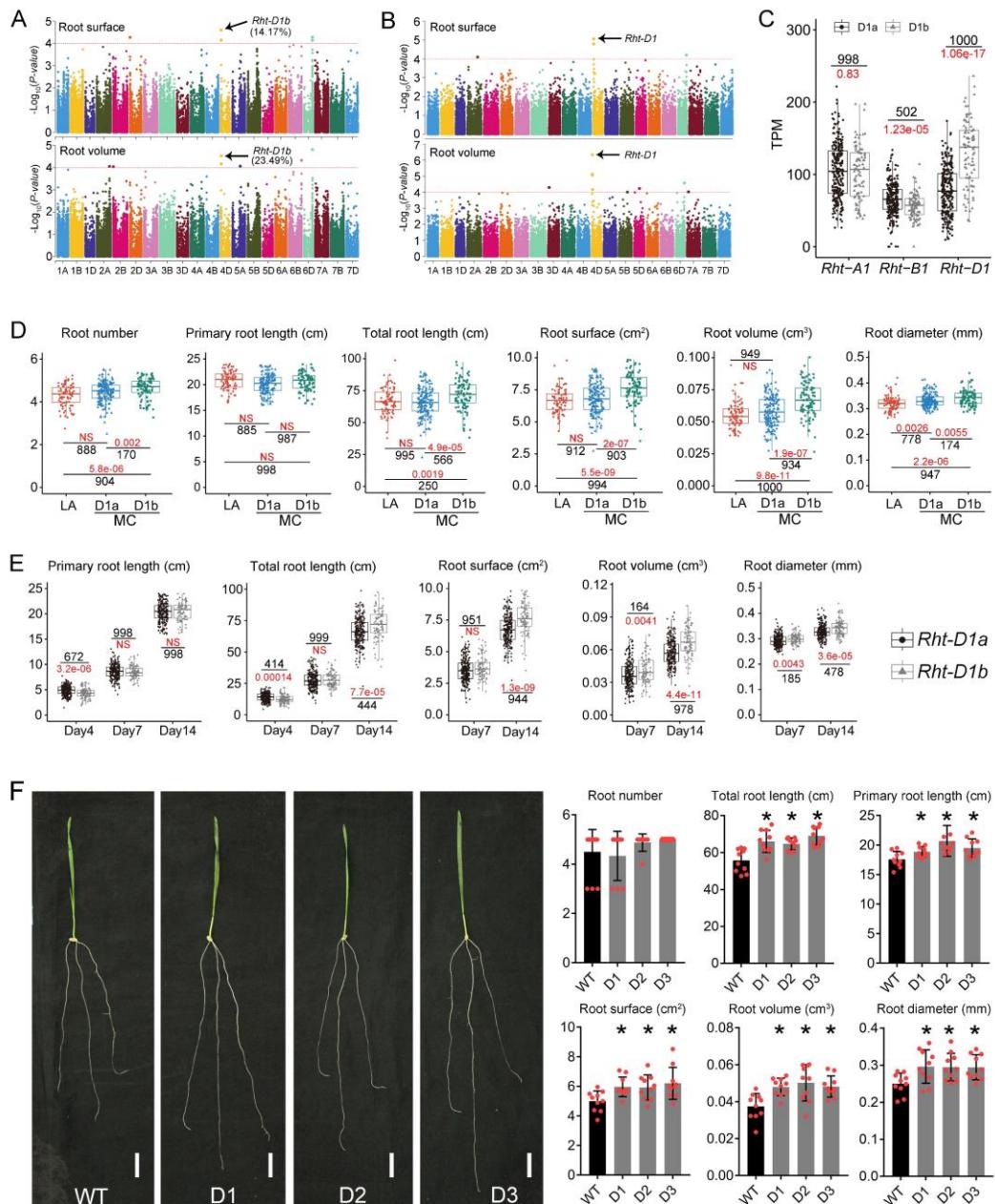
(B) Distribution of the identified SNPs in gene regions. “UP” and “DOWN” represent the up- and down-stream 5 Kb regions of the annotated genes.

(C) GO analyses of the root highly and lowly expressed genes (the averages of the expression values among the population are in the top and bottom 5%, respectively). The full list of enriched terms is included in Supplemental Table S2.

(D) GO analyses of the highly varied expression genes (fold change from >8) and lowly varied expression genes (fold change from <2) in the population. The fold change is the ratio of TPM at the 95th percentile to that of the 5th percentile. The full list of enriched terms is included in Supplemental Table S3.

Figure 2. Modern cultivars reshaped the wheat root transcriptome and root development.

(A) Classification of the MC (modern cultivars) and LA (landraces). Phylogenetic trees were constructed based on shared SNPs between our results and the *Triticum* sequencing project. The outer dots represent the varieties which were included in the *Triticum* sequencing project and were coloured based on their classification in this project. These varieties were used as markers to classify the accessions used in our analysis. The phylogenetic clads are coloured based on the pedigree documentation. The accessions with conflict classifications between the *Triticum* sequencing project and pedigree documentation were removed in the following analysis.


(B) The population structure analysis of all accessions with K = 2 and K = 3. Each bar represents an accession, and the different colours correspond to the proportion of different groups.

(C) The distribution of DEGs and observation numbers in the permutations. The X-axis represents the number of DEGs. The left Y-axis and bar plot indicate the numbers of tests in the 100,000 permutations by randomly sampling accessions from the whole population to construct two same size groups as LA and MC. For example, the leftmost bar represents there are 99,792 tests in which the detected DEG number is zero. The right Y-axis and red line represent the numbers of tests in the 100 permutations by randomly sampling 60% accessions from each of the LA and MC groups.

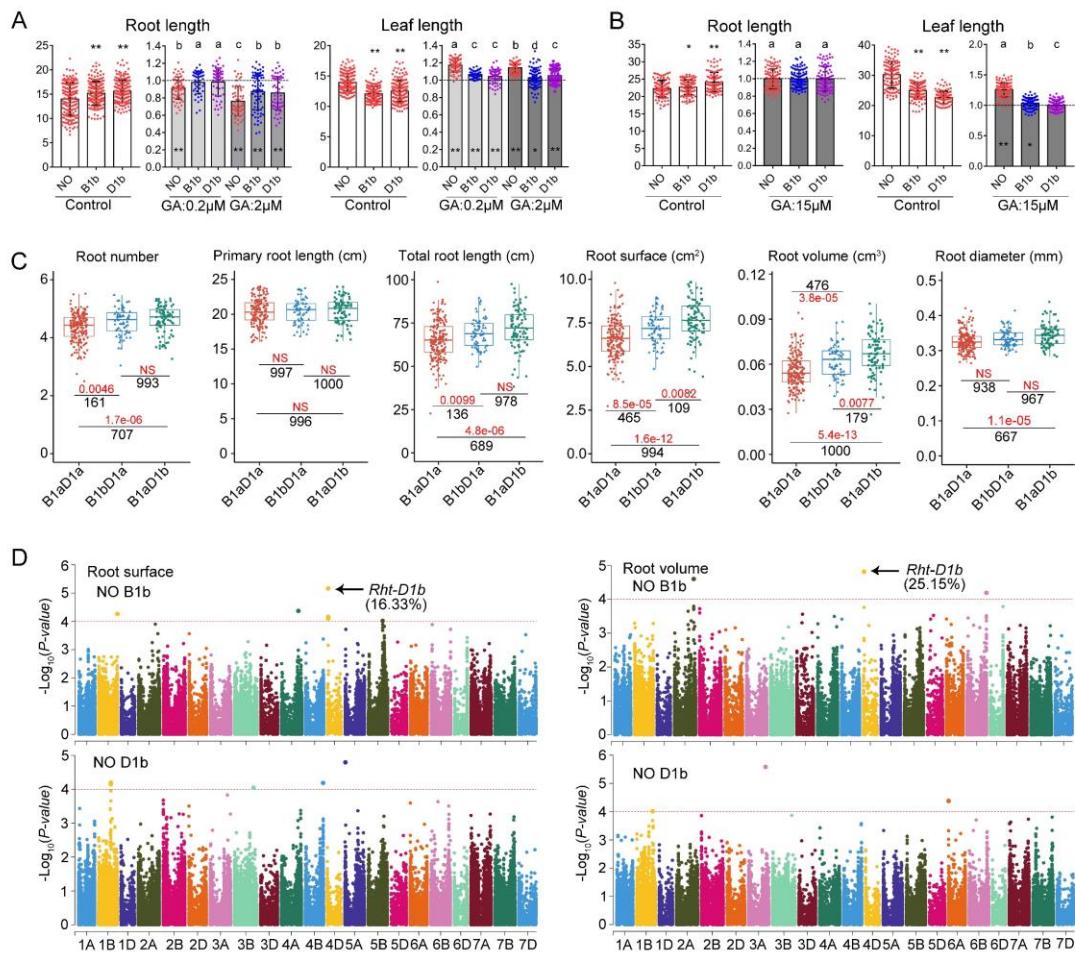
For example, the rightmost dot represents there are 17 tests in which the number of detected DEGs more than 10,000.

(D) GO enrichment analyses of DEGs between LA and MC groups. The X-axis represents the observation numbers of DEGs in the 100 permutations. The full list of enriched terms is included in Supplemental Table S5.

(E) Comparisons of root number, primary root length, total root length, root surface, root volume, and root diameter between LA and MC groups. The red numbers represent *p-values* with Student's t-test using all samples from LA and MC groups, and the "NS" indicates *P-value* > 0.01. The black numbers indicate the observed number of *P-value* < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the LA and MC groups and further randomly removing some accessions from MC to reach the same group size as LA.

Figure 3. The *Rht-D1b* contributes to the bigger root volume and surface.

(A-B) Manhattan plots of GWAS and TWAS analysis of the root surface and root volume. The number represents the phenotypic variance explained by the indicated SNP.


(C) Comparison of *Rht-A1*, *Rht-B1* and *Rht-D1* expression levels between *Rht-D1a* and *Rht-D1b* genotypes.

(D) Comparison of root number, primary root length, total root length, root surface, root volume and root diameter between LA, *Rht-D1a* contained MC, and *Rht-D1b* contained MC at 14 DAGs.

(E) Comparison of primary root length, total root length, root surface, root volume and root diameter

between *Rht-D1a* and *Rht-D1b* genotypes at four, seven and 14 DAGs. In (C-E), the red numbers represent *p-values* with Student's t-test using all samples from the two compared groups, and the "NS" indicates *P-value* > 0.01. The black numbers indicate the observed number of *P-value* < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two compared groups and further randomly removing accessions from the larger size group to reach the same group size as the smaller one.

(F) The phenotypes and statistical data of root related traits of WT and transgenic lines of *pRht-D1::Rht-D1^{Rht-D1b}* (D1/D2/D3) at 14 DAGs. Scale bar = 2 cm. * indicates Student's t-test *P-value* < 0.05.

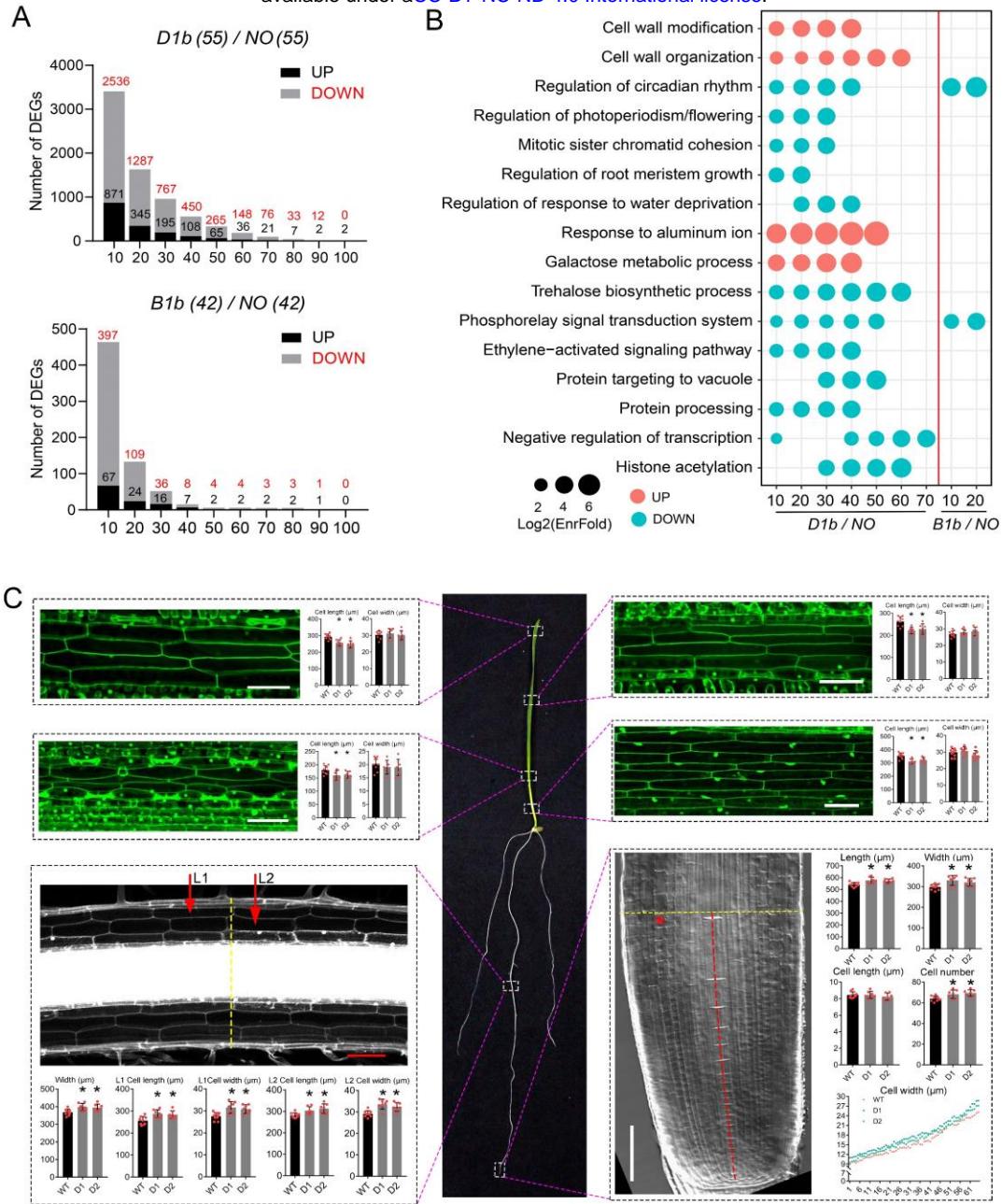
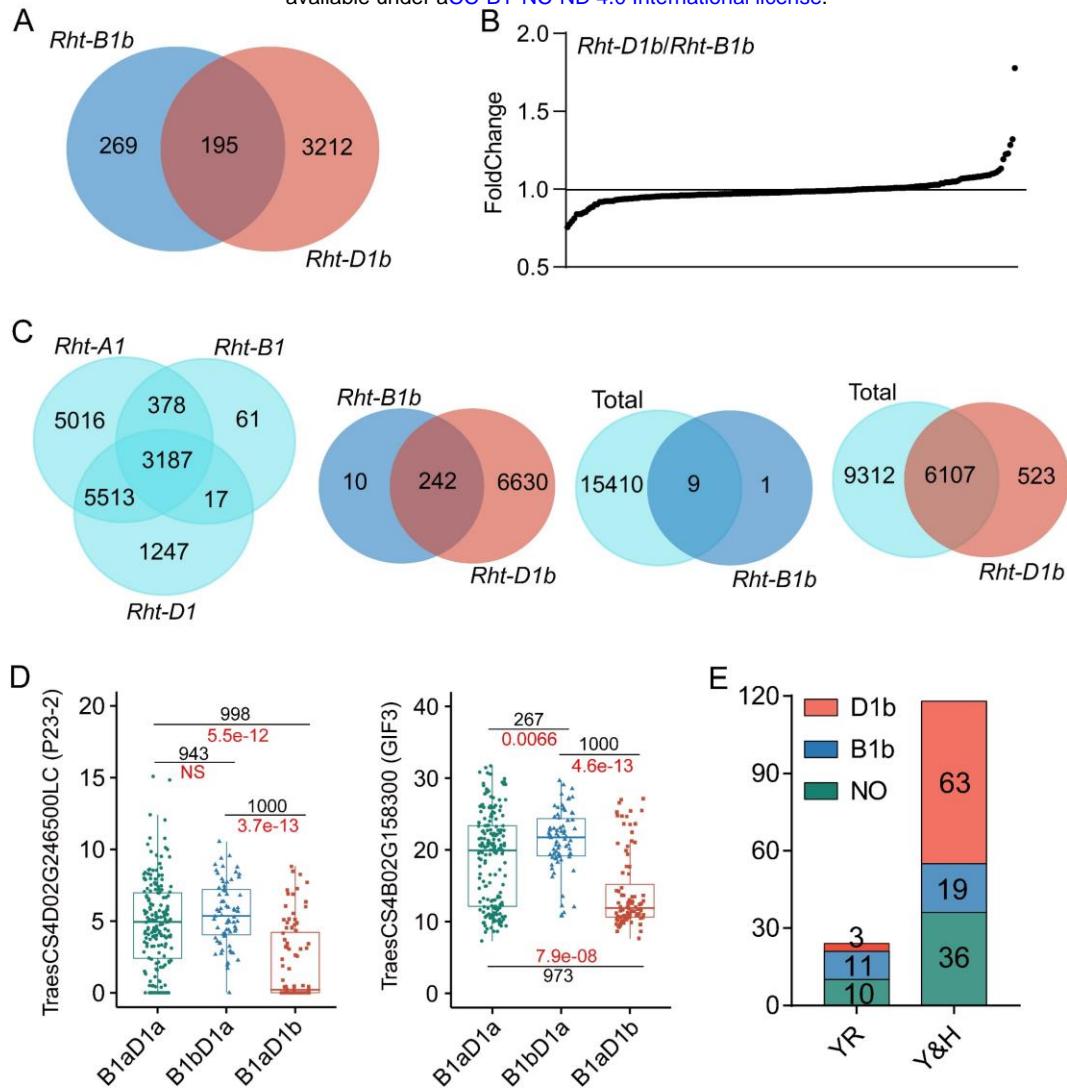


Figure 4. The effects of *Rht-D1b* on root development depend on the GA signaling.

(A-B) The responses of "NO" (*Rht-B1aRht-D1a* genotypes), "B1b" (*Rht-B1bRht-D1a* genotypes) and "D1b" (*Rht-B1aRht-D1b* genotypes) to GA treatment in hydroponics (A) and soil (B) cultivation systems. Under the control condition, * and ** indicates Student's t-test *P-value* < 0.05 and 0.01, respectively. For the GA treatment experiments, the Y-axis indicates the ratio of phenotyping values under the GA treatment condition to that under the control condition. The asterisk in each column indicates the significant difference compared with the respective control. The letters on the top indicate the significant difference with Student's t-test analysis, *P-value* < 0.05.

(C) Comparison of root number, primary root length, total root length, root surface, root volume and root diameter between *Rht-B1aRht-D1a* (*B1aD1a*), *Rht-B1bRht-D1a* (*B1bD1a*) and *Rht-B1aRht-D1b* (*B1aD1b*) genotypes. The red numbers represent *p-values* with Student's t-test using all samples from the two compared groups, and the "NS" indicates *P-value* > 0.01. The black numbers indicate the observed number of *P-value* < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two compared groups and further randomly

(D) Manhattan plots of GWAS analysis of the root surface and root volume. "NO D1b" and "NO D1b" indicates missed *Rht-B1b* and *Rht-D1b* population used to perform GWAS analysis. The number represents the phenotypic variance explained by the indicated SNP.


Figure 5. *Rht-D1b* significantly changed the cell size of roots.

(A) The numbers of DEGs in the comparisons between *D1b* and *NO* genotypes and *B1b* and *NO* genotypes. The X-axis represents the observation numbers of DEGs in the 100 permutations. The numbers in brackets indicate 60% of the accessions contained in the smaller compared group, and these accessions were randomly sampled from each of the two compared groups in the permutation test. *NO*: *Rht-B1aRht-D1a*; *B1b*: *Rht-B1bRht-D1a*; *D1b*: *Rht-B1aRht-D1b*.

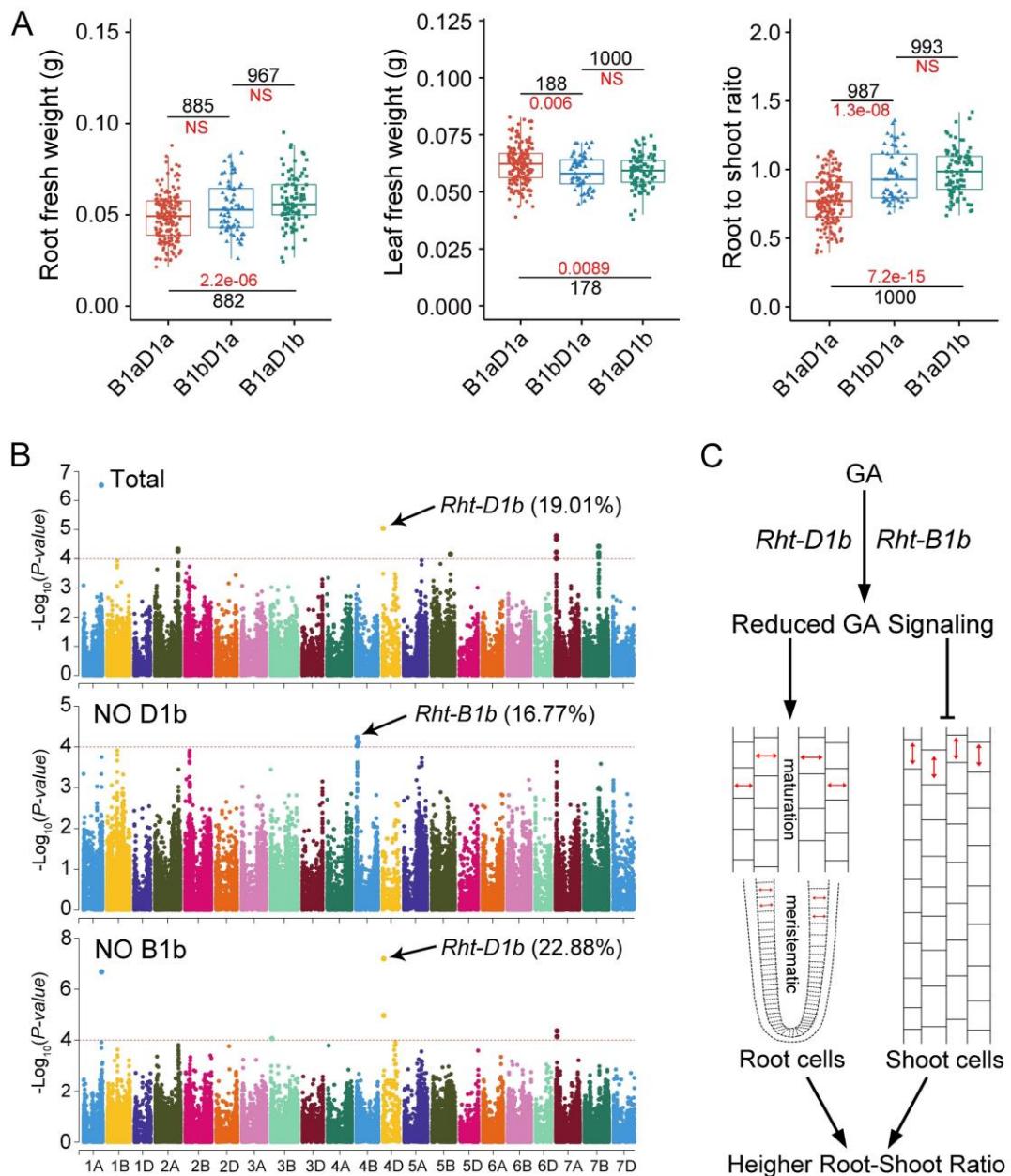
(B) GO enrichment analyses of the DEGs in (A). The X-axis represents the observation numbers of DEGs in the 100 permutations. *NO*: *Rht-B1aRht-D1a*; *B1b*: *Rht-B1bRht-D1a*; *D1b*: *Rht-B1aRht-D1b*.

D1b. The full list of enriched terms is included in Supplemental Table S10 and S11.

(C) Confocal laser microscope recorded the cell morphology and size of primary root (meristem and maturation zone) and shoot (leaf and coleoptile) in WT and *pRht-D1::Rht-D1^{Rht-D1b}* transgenic lines (D1/D2). The red dotted line represents meristem length, and the yellow dotted line represents the width of meristem and mature zones. The number, length and width of meristem cells were measured from the cell layer indicated by the asterisk. The cell length and width were calculated using ImageJ software. Bar = 100 μm . * indicates Student's t-test $P < 0.05$.

Figure 6. *Rht-D1b* showed a broader regulatory gene spectrum.

(A) Venn diagram of DEGs in *Rht-B1b* vs *NO* genotypes and *Rht-D1b* vs *NO* genotypes. *NO*: *Rht-B1aRht-D1a*.


(B) Fold change (*Rht-D1b/Rht-B1b*) of expression levels of the shared DEGs in (A).

(C) The first Venn diagram is the distribution of co-expression genes with *Rht-A1a*, *Rht-B1a* and *Rht-D1a* genes in *NO* genotypes. The second Venn diagram is the distribution of co-expression genes with *Rht-B1* and *Rht-D1* in *Rht-B1b* and *Rht-D1b* genotypes, respectively. The third and fourth Venn diagrams are the distributions of co-expression genes with three *Rhts* in *NO* genotypes ("Total") and the co-expression genes with *Rht-B1* in the *Rht-B1b* genotypes (the third), and the co-expression genes with the *Rht-D1* in the *Rht-D1b* genotypes (the fourth).

(D) Comparisons of expression levels of the wheat homologues of *AtP23-2* and *AtGIF3* between *Rht-B1aRht-D1a* (*B1aD1a*), *Rht-B1bRht-D1a* (*B1bD1a*) and *Rht-B1aRht-D1b* (*B1aD1b*) genotypes.

The red numbers represent *p*-values with Student's t-test using all samples in the two compared groups, and "NS" indicates *P-value* > 0.01. The black numbers indicate the observed number of *P-value* < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two compared groups and further randomly removing accessions from the larger size group to reach the same group size as the smaller one.

(E) Distribution of MC containing *Rht-B1b* and *Rht-D1b* alleles in Yangtze River (YR) and Yellow and Huai (Y&H) winter wheat production regions. *NO*: *Rht-B1aRht-D1a*; *B1b*: *Rht-B1bRht-D1a*; *D1b*: *Rht-B1aRht-D1b*.

Figure 7. The *Rht-D1b* plays the primary role in increasing the root-shoot ratio in modern wheat cultivars.

(A) Comparison of root fresh weight, leaf fresh weight and root-shoot ratio between *Rht-B1aRht-D1a* (*B1aD1a*), *Rht-B1bRht-D1a* (*B1bD1a*) and *Rht-B1aRht-D1b* (*B1aD1b*) genotypes. The red numbers represent *p*-values with Student's t-test using all samples from the two compared groups, and the "NS" indicates *P*-value > 0.01. The black numbers indicate the observed number of *P*-value < 0.01 in the 1,000 permutations by randomly sampling 60% of the accessions from each of the two compared groups and further randomly removing accessions from the larger size group to reach the

same group size as the smaller one.

(B) Manhattan plots of GWAS analysis of the root-shoot ratio. The upper left letters indicate the genotypes used in the GWAS analysis. From top to bottom, the image shows the GWAS result of total accession and missed accession containing the *Rht-D1b* and *Rht-B1b* genotype. The number represents the phenotypic variances explained by the arrow indicated SNPs.

(C) Model diagram of *Rht-D1b* and *Rht-B1b* regulating wheat seedling development. The introduction of *Rht-D1b* and *Rht-B1b* suppressed the GA signaling, which conferred distinct GA responses between above- and under-ground tissues that increased the cell width in root and inhibited the cell length in above-ground tissue, resulting in a bigger root system and a higher root-shoot ratio.

Parsed Citations

Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., Peleg, Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. *Trends Plant Sci* 19, 351-360.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alexander, D.H., Novembre, J., Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. *Genome Res* 19, 1655-1664.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Azodi, C.B., Pardo, J., VanBuren, R., de Los Campos, G., Shiu, S.H. (2020). Transcriptome-Based Prediction of Complex Traits in Maize. *Plant Cell* 32, 139-151.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bacher, H., Zhu, F., Gao, T., Liu, K., Dhatt, B.K., Awada, T., Zhang, C., Distelfeld, A., Yu, H., Peleg, Z., Walia, H. (2021). Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. *Plant Physiol* 187, 1149-1162.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Binenbaum, J., Weinstein, R., Shani, E. (2018). Gibberellin Localization and Transport in Plants. *Trends Plant Sci* 23, 410-421.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bolger, A.M., Lohse, M., Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114-2120.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. *Nat Biotechnol* 34, 525-527.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Browning, B.L., Zhou, Y., Browning, S.R. (2018). A One-Penny Imputed Genome from Next-Generation Reference Panels. *Am J Hum Genet* 103, 338-348.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., Duncan, L., Perry, J.R., Patterson, N., Robinson, E.B., Daly, M.J., Price, A.L., Neale, B.M. (2015). An atlas of genetic correlations across human diseases and traits. *Nat Genet* 47, 1236-1241.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., Pernas, M. (2020). Root Growth Adaptation to Climate Change in Crops. *Front Plant Sci* 11, 544.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cantalapiedra, C.P., Hernandez-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. *Mol Biol Evol* 38, 5825-5829.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., Lin, T.P. (2012). Drought and salt stress tolerance of an *Arabidopsis* glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. *Plant Physiol* 158, 340-351.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen, W., Wu, Y., Zheng, Z., Qi, T., Visscher, P.M., Zhu, Z., Yang, J. (2021). Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. *Nat Commun* 12, 7117.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* 6, 80-92.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Alessandro, S., Golin, S., Hardtke, C.S., Lo Schiavo, F., Zottini, M. (2015). The co-chaperone p23 controls root development through the modulation of auxin distribution in the *Arabidopsis* root meristem. *J Exp Bot* 66, 5113-5122.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., Van Noorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., Wang, J.Y., Meuli, N., Vanneste, S., Friml, J., Hilson, P., Jürgens, G., Ingram, G.C., Inzé, D., Benfey, P.N., Beeckman, T. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the *Arabidopsis* root. *Science* 322, 594-597.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

de Vries, F.T., Griffiths, R.I., Knight, C.G., Nicolitch, O., Williams, A. (2020). Harnessing rhizosphere microbiomes for drought-resilient crop production. *Science* 368, 270-274.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Den Herder, G., Van Isterdael, G., Beeckman, T., De Smet, I. (2010). The roots of a new green revolution. *Trends Plant Sci* 15, 600-607.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fauman, E.B. (2020). Current Techniques for Complex Phenotypes: GWAS of the Electrocardiogram. *Trends Genet* 36, 897-899.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z., Wang, B., Zhai, L., Dai, C., Xu, J., Wang, W., Li, X., Zheng, J., Chen, L., Luo, L., Liu, J., Qian, X., Yan, J., Wang, J., Wang, G. (2013). RNA sequencing reveals the complex regulatory network in the maize kernel. *Nat Commun* 4, 2832.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao, Z., Shi, Z., Zhang, A., Guo, J. (2015). Distribution of genes associated with yield potential and water-saving in Chinese Zone II wheat detected by developed functional markers. *Journal of genetics* 94, 35-42.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gilliland, L.U., Pawloski, L.C., Kandasamy, M.K., Meagher, R.B. (2003). Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. *The Plant Journal* 33, 319-328.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Godfray, H.C., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. *Science* 327, 812-818.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Golan, G., Hendel, E., Méndez Espitia, G.E., Schwartz, N., Peleg, Z. (2018). Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. *Plant Cell Environ* 41, 755-766.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guedira, M., Brown-Guedira, G., Van Sanford, D., Sneller, C., Souza, E., Marshall, D. (2010). Distribution of Rht Genes in Modern and Historic Winter Wheat Cultivars from the Eastern and Central USA. *Crop Sci* 50, 1811-1822.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hao, C., Jiao, C., Hou, J., Li, T., Liu, H., Wang, Y., Zheng, J., Liu, H., Bi, Z., Xu, F., Zhao, J., Ma, L., Wang, Y., Majeed, U., Liu, X., Appels, R., Maccaferri, M., Tuberrosa, R., Lu, H., Zhang, X. (2020). Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China. *Mol Plant* 13, 1733-1751.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N., Harwood, W.A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (*Triticum aestivum* L.). *Plant Methods* 15, 121.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hendel, E., Bacher, H., Oksenberg, A., Walia, H., Schwartz, N., Peleg, Z. (2021). Deciphering the genetic basis of wheat seminal root anatomy uncovers ancestral axial conductance alleles. *Plant Cell Environ* 44, 1921-1934.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hou, L., Zhang, A., Wang, R., Zhao, P., Zhang, D., Jiang, Y., Diddugodage, C.J., Wang, X., Ni, Z., Xu, S. (2019). Brassinosteroid Regulates Root Development with Highly Redundant Genes in Hexaploid Wheat. *Plant Cell Physiol* 60, 1761-1777.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., Ju, L., Deng, J., Zhao, T., Lian, J., Baruch, K., Fang, D., Liu, X., Ruan, Y.L., Rahman, M.U., Han, J., Wang, K., Wang, Q., Wu, H., Mei, G., Zang, Y., Han, Z., Xu, C., Shen, W., Yang, D., Si, Z., Dai, F., Zou, L., Huang, F., Bai, Y., Zhang, Y., Brodt, A., Ben-Hamo, H., Zhu, X., Zhou, B., Guan, X., Zhu, S., Chen, X., Zhang, T. (2019). *Gossypium barbadense* and *Gossypium hirsutum* genomes provide insights into the origin and evolution of allotetraploid cotton. *Nat Genet* 51, 739-748.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

International Wheat Genome Sequencing Consortium (IWGSC) (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* 361, 6403.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khan, M.A., Gemenet, D.C., Villordon, A. (2016). Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. *Front Plant Sci* 7, 1584.

Google Scholar: [Author Only Title Only Author and Title](#)

Kremling, K.A.G., Diepenbrock, C.H., Gore, M.A., Buckler, E.S., Bandillo, N.B. (2019). Transcriptome-Wide Association Supplements Genome-Wide Association in Zea mays. G3 (Bethesda) 9, 3023-3033.

Google Scholar: [Author Only Title Only Author and Title](#)

Lanning, S.P., Martin, J.M., Stougaard, R.N., Guillen-Portal, F.R., Talbert, L.E. (2012). Evaluation of Near-Isogenic Lines for Three Height-Reducing Genes in Hard Red Spring Wheat. Crop Sci 52, 1145-1152.

Google Scholar: [Author Only Title Only Author and Title](#)

Lee, B.H., Ko, J.H., Lee, S., Lee, Y., Pak, J.H., Kim, J.H. (2009). The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol 151, 655-668.

Google Scholar: [Author Only Title Only Author and Title](#)

Letunic, I., Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293-2296.

Google Scholar: [Author Only Title Only Author and Title](#)

Li, H., Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.

Google Scholar: [Author Only Title Only Author and Title](#)

Li, Y., Ge, X., Peng, F., Li, W., Li, J.J. (2022). Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biol 23, 79.

Google Scholar: [Author Only Title Only Author and Title](#)

Liu, Q., Wu, K., Harberd, N.P., Fu, X. (2021). Green Revolution DELLA_s: From translational reinitiation to future sustainable agriculture. Mol Plant 14, 547-549.

Google Scholar: [Author Only Title Only Author and Title](#)

Lynch, J. (1995). Root Architecture and Plant Productivity. Plant Physiol 109, 7-13.

Google Scholar: [Author Only Title Only Author and Title](#)

Lynch, J.P. (2007). Roots of the Second Green Revolution. Australian Journal of Botany 55, 493-512.

Google Scholar: [Author Only Title Only Author and Title](#)

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303.

Google Scholar: [Author Only Title Only Author and Title](#)

Ohashi-Ito, K., Fukuda, H. (2003). HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44, 1350-1358.

Google Scholar: [Author Only Title Only Author and Title](#)

Pearce, S., Saville, R., Vaughan, S.P., Chandler, P.M., Wilhelm, E.P., Sparks, C.A., Al-Kaff, N., Korolev, A., Boulton, M.I., Phillips, A.L., Hedden, P., Nicholson, P., Thomas, S.G. (2011). Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157, 1820-1831.

Google Scholar: [Author Only Title Only Author and Title](#)

Qin, H., Pandey, B.K., Li, Y., Huang, G., Wang, J., Quan, R., Zhou, J., Zhou, Y., Miao, Y., Zhang, D., Bennett, M.J., Huang, R. (2022). Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. Plant Cell 34, 1273-1288.

Google Scholar: [Author Only Title Only Author and Title](#)

Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., Ridout, C.J., Chalhoub, B., Mayer, K.F.X., Benhamed, M., Latrasse, D., Bendahmane, A., International Wheat Genome Sequencing, C., Wulff, B.B.H., Appels, R., Tiwari, V., Datla, R., Choulet, F., Pozniak, C.J., Provart, N.J., Sharpe, A.G., Paux, E., Spannagl, M., Brautigam, A., Uauy, C. (2018). The transcriptional landscape of polyploid wheat. Science 361, 6403.

Google Scholar: [Author Only Title Only Author and Title](#)

Rizza, A., Jones, A.M. (2019). The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. Curr Opin Plant Biol 47, 9-15.

Google Scholar: [Author Only Title Only Author and Title](#)

Shani, E., Weinstain, R., Zhang, Y., Castillejo, C., Kaiserli, E., Chory, J., Tsien, R.Y., Estelle, M. (2013). Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci U S A 110, 4834-4839.

Google Scholar: [Author Only Title Only Author and Title](#)

Sherman, J.D., Nash, D., Lanning, S.P., Martin, J.M., Blake, N.K., Morris, C.F., Talbert, L.E. (2014). Genetics of End-Use Quality Differences between a Modern and Historical Spring Wheat. Crop Sci 54, 1972-1980.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Snowdon, R.J., Wittkop, B., Chen, T.W., Stahl, A. (2020). Crop adaptation to climate change as a consequence of long-term breeding. *Theor Appl Genet* 134, 1613-1623.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Soneson, C., Love, M.I., Robinson, M.D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Res* 4, 1521.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30, 1312-1313.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., Yang, Q.Y., Zhou, Y., Wang, X., Ma, W., Xie, W., Guo, L. (2021). Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in *Brassica napus*. *Mol Plant* 14, 470-487.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tanimoto, E. (2012). Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. *Ann Bot* 110, 373-381.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Teotia, S., Lamb, R.S. (2011). RCD1 and SRO1 are necessary to maintain meristematic fate in *Arabidopsis thaliana*. *J Exp Bot* 62, 1271-1284.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Topham, A.T., Taylor, R.E., Yan, D., Nambara, E., Johnston, I.G., Bassel, G.W. (2017). Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in *Arabidopsis* seeds. *Proc Natl Acad Sci U S A* 114, 6629-6634.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Truernit, E., Siemering, K.R., Hodge, S., Grbic, V., Haseloff, J. (2006). A map of KNAT gene expression in the *Arabidopsis* root. *Plant Mol Biol* 60, 1-20.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Van De Velde, K., Thomas, S.G., Heyse, F., Kaspar, R., Van Der Straeten, D., Rohde, A. (2021). N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. *Mol Plant* 14, 679-687.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R., Visser, B. (2010). Genetic diversity trends in twentieth century crop cultivars: a meta analysis. *Theor Appl Genet* 120, 1241-1252.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

van der Bom, F.J.T., Williams, A., Bell, M.J. (2020). Root architecture for improved resource capture: trade-offs in complex environments. *J Exp Bot* 71, 5752-5763.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A.N., Knowles, D.A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., Björkegren, J.L.M., Im, H.K., Pasaniuc, B., Rivas, M.A., Kundaje, A. (2019). Opportunities and challenges for transcriptome-wide association studies. *Nat Genet* 51, 592-599.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, J., Zhang, Z (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. *Genomics Proteomics Bioinformatics* 19, 629-640.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Watt, M., Magee, L.J., McCully, M.E. (2008). Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. *New Phytol* 178, 135-146.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, J., Kong, X., Wan, J., Liu, X., Zhang, X., Guo, X., Zhou, R., Zhao, G., Jing, R., Fu, X., Jia, J. (2011). Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. *Plant Physiol* 157, 2120-2130.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, Y., Chang, Y., Luo, L., Tian, W., Gong, Q., Liu, X. (2022). Abscisic acid employs NRP-dependent PIN2 vacuolar degradation to suppress auxin-mediated primary root elongation in *Arabidopsis*. *New Phytol* 233, 297-312.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, Y., Thorne, E.T., Sharp, R.E., Cosgrove, D.J. (2001). Modification of expansin transcript levels in the maize primary root at low water potentials. *Plant Physiol* 126, 1471-1479.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wurschum, T., Langer, S.M., Longin, C.F. (2015). Genetic control of plant height in European winter wheat cultivars. TAG. Theoretical and applied genetics. Theor Appl Genet 128, 865-874.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wurschum, T., Langer, S.M., Longin, C.F.H., Tucker, M.R., and Leiser, W.L. (2017). A modern Green Revolution gene for reduced height in wheat. Plant J 92, 892-903.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wurschum, T., Liu, G., Boeven, P.H.G., Longin, C.F.H., Mirdita, V., Kazman, E., Zhao, Y., Reif, J.C. (2018). Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet 131, 1433-1442.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yokoyama, A., Yamashino, T., Amano, Y., Tajima, Y., Imamura, A., Sakakibara, H., Mizuno, T. (2007). Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of *Arabidopsis thaliana*. Plant Cell Physiol 48, 84-96.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu, G., Wang, L.G., Han, Y., He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yue, K., Sandal, P., Williams, E.L., Murphy, E., Stes, E., Nikonorova, N., Ramakrishna, P., Czyzewicz, N., Montero-Morales, L., Kumpf, R., Lin, Z., van de Cotte, B., Iqbal, M., Van Bel, M., Van De Slijke, E., Meyer, M.R., Gadeyne, A., Zipfel, C., De Jaeger, G., Van Montagu, M., Van Damme, D., Gevaert, K., Rao, A.G., Beeckman, T., De Smet, I. (2016). PP2A-3 interacts with ACR4 and regulates formative cell division in the *Arabidopsis* root. Proc Natl Acad Sci U S A 113, 1447-1452.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, L., Su, W., Tao, R., Zhang, W., Chen, J., Wu, P., Yan, C., Jia, Y., Larkin, R.M., Lavelle, D., Truco, M.J., Chin-Wo, S.R., Michelmore, R.W., Kuang, H. (2017). RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat Commun 8, 2264.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, X., Yang, S., Zhou, Y., He, Z., Xia, X. (2006). Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152, 109-116.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.G., Liu, S., Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y., Lu, F. (2020). Triticum population sequencing provides insights into wheat adaptation. Nat Genet 52, 1412-1422.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zubo, Y.O., Blakley, I.C., Yamburenko, M.V., Worthen, J.M., Street, I.H., Franco-Zorrilla, J.M., Zhang, W., Hill, K., Raines, T., Solano, R., Kieber, J.J., Loraine, A.E., Schaller, G.E. (2017). Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in *Arabidopsis*. Proc Natl Acad Sci U S A 114, E5995-E6004.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)