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27 Abstract

28 Memory is acomplex cognitive process comprised by several subsystems, namely short- and
29 long-term memory and working memory (WM). Previous research has shown that adequate
30 interaction between subsystemsis crucial for successful memory processes such as encoding,
31 storage and manipulation of information. However, few studies have investigated the
32  relationship between different subsystems at the behavioral and neural levels. Thus, here we
33  assessed the relationship between individual WM abilities and brain activity underlying the
34  recognition of previously memorized auditory sequences.

35 First, recognition of previously memorized versus novel auditory sequences was
36 associated with a widespread network of brain areas comprising the cingulate gyrus,
37  hippocampus, insula, inferior temporal cortex, frontal operculum, and orbitofrontal cortex.

38 Second, we observed positive correlations between brain activity underlying auditory
39  sequence recognition and WM. We showed a sustained positive correlation in the medial
40 cingulate gyrus, a brain area which was widely involved in the auditory sequence recognition.
41 Remarkably, we also observed positive correlations in the inferior temporal, temporal-
42  fusiform, and postcentral gyri, brain areas which were not strongly associated to auditory
43  sequence recognition.

44 In conclusion, we discovered positive correlations between WM abilities and brain
45  activity underlying long-term recognition of auditory sequences, providing new evidence on
46  the relationship between memory subsystems. Furthermore, we showed that high WM
47  performers recruited a larger brain network including areas associated to visual processing
48 (i.e, inferior temporal, tempora-fusiform and postcentral gyri) for successful auditory
49  memory recognition.

50

51 Keywords

52  Recognition memory, Working memory, Brain activity, Predictive coding of music (PCM),
53  Magnetoencephalography (MEG)
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55 Significance statement

56 Memory is a complex cognitive process dependent on the successful interaction between its
57  multiple subsystems. Here, we assessed the relationship between individual WM abilities and
58  brain activity underlying the recognition of previously memorized auditory sequences.

59 We observed positive correlations between brain activity underlying auditory sequence
60 recognition and WM, especially in the media cingulate gyrus, inferior temporal, temporal-
61 fusiform and postcentral gyri. In this study, we provided new evidence on the relationship
62  between two memory subsystems: WM and long-term auditory recognition. Moreover, we
63 showed that, to successfully complete memory recognition tasks, high WM performers
64 recruited a larger brain network which comprised brain areas mainly associated to visual

65  processing, such asinferior temporal, temporal-fusiform and postcentral gyri.
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66 Introduction

67 Memory isafundamental cognitive process that is widely regarded as a multisystem function
68 ! relying on a widespread network of brain areas such as the media tempora lobe 2 3,
69 prefronta cortex ¢, and basal ganglia . Broadly, the memory subsystems encode, store, and
70 retrieve past memories (long-term memory), temporarily store sensory information (short-
71 term memory), and maintain and manipulate data (working memory) *® 7. These subsystems
72  operate simultaneously and in parallel &, giving rise to efficient memory functioning that is
73  essential for many daily activities.

74 Working memory (WM) capacity allows to briefly store and manipulate information and
75 isinvolved in decision-making and executive processes ***. Among the several theories of
76 WM, Baddeley and Hitch's * multicomponent model has become highly influential.
77  According to this theory and its subsequent revisions, WM is comprised by four components:
78 (1) the phonological loop, which is involved in verbal WM, (2) the visuospatial sketchpad,
79  for visuospatiad WM, (3) the central executive, or the attentional control system, and (4) the

80 episodic buffer, for storing information ' #*4

. Frequently, WM paradigms request
81 individuals to retain sensory information and perform some operation or manipulation on it,
82  asin the case of the N-back *° and digit span *° tasks.

83 Neuroimaging studies have highlighted the role of cortical brain areas, such as the
84  prefrontal, parietal and cingulate cortices, and subcortical areas including the midbrain and
85 cerebellum in WM processes, as reported in a review by Chai et a. *’. Evidence comes
86 mainly from studies using visual stimuli, providing a valuable but incomplete picture of the
87  neuroanatomy of WM. However, recent studies on auditory WM processing have uncovered
88 therole of the primary auditory cortex and high-order structures such as the hippocampus for
89 this cognitive function. For example, Kumar and colleagues *® demonstrated that the activity
90 and connectivity of the primary auditory cortex, hippocampus and inferior frontal gyrus are
91 associated with the maintenance of single sounds’ series. Additionally, theta oscillations and
92  phase locking in the dorsal stream predicts performance in a maintenance and manipulation
93 auditory task °. Related to the present study, Bonetti et al. *° showed a positive correlation
94  between WM capacity and brain activity underlying an auditory mismatch-negativity (MMN)
95 task. The authors found that participants with higher WM scores showed enhanced MMN
96 responsesin frontal regions, but not in temporal areas. Notably, this investigation evidenced

97  therelationship between auditory short-term and working memory.
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98 Long-term memory refers to the ability to recall information that has been encoded and
99 stored in the past " *. Research on this cognitive function has emphasized the distinct
100 features of severa types of long-term memory, namely episodic, semantic, and procedural
101  memory % %, These are classified according to the kind of information they hold (e.g.,

102 personal experiences in the case of episodic memory, factua knowledge for semantic

103  memory) ** ® and how this information is encoded (e.g., skill acquisition in procedural
104  memory) %.

105 The neural underpinnings of long-term memory rest primarily upon medial temporal
106  lobe structures (hippocampus, entorhinal, perihinal and parahippocampal cortices) * % and
107 interact with the prefrontal cortex for successful memory retrieval *’. Moreover,

108  consolidation, the process of transforming temporary information into long-lasting memories
109 and a central aspect of long-term memory, is achieved through the interactions between the
110  hippocampus and neocortex *® %, Converging evidence suggests that, in the case of auditory
111  long-term memory, the primary auditory cortex also supports the storage of information .

112 Although previous investigations have mainly examined the neuroanatomical bases of
113  the memory subsystems in isolation, a few studies have looked into the associations between
114  them. For instance, Henson and Gagnepain ** highlighted the interaction between different
115 memory subsystems, both in terms of behavior and neural substrate. They focused especially
116 on episodic, semantic, and modality-specific perceptual subsystems, claiming that their
117  successful interaction is crucia for performing memory tasks. Similarly, Poldrack and
118  colleagues * demonstrated the interaction and competition between memory subsystems
119 during classification learning in humans. Specifically, they observed that the basal ganglia
120 and medial temporal lobe were differently engaged depending on the emphasis on declarative
121  or non-declarative memory and showed that the interaction between these structures was
122  necessary to perform the task. In a review focusing on pharmacological and neurochemical
123 studies, Gold * proposed that the release of acetylcholine in different memory subsystems
124  showed extensive interactions between them, which could be cooperative or competitive. He
125 concluded that different memory and neural systems tended to interact extensively, even
126 when described as relatively independent. Finally, White and McDonald * described a theory
127  of multiple parallel memory subsystems in the rat brain localized in the hippocampus,
128  caudate-putamen, and amygdala. The authors claimed that all subsystems had access to the
129 same information during learning, but that each subsystem represented a different
130 relationship between the information features. In their view, these memory subsystems

131 interacted by simultaneous parallel influence on behavioral output and by directly affecting
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132  each other in a cooperative or competitive manner. Overall, these investigations have yielded
133  considerable insights into the relationships between memory subsystems, but we still lack
134  information on the brain correlates underlying these interactions.

135 Thus, in our study we aimed to investigate the relationship between two of the most
136 important memory subsystems, WM and long-term memory, emphasizing their
137 interdependence. To this end, we correlated the scores from a widely used WM measure with
138 the neural activity underlying tone-by-tone recognition of previously memorized sequences
139 from three different musical pieces. We hypothesized to observe stronger brain activity
140 underlying auditory sequence recognition in individuals with greater WM abilities, especially
141 in brain structures that have been previously associated to memory processes, such as the
142  prefrontal cortex and hippocampus. Additionally, we expected WM capacity to be positively
143  correlated with behavioral responses in the auditory recognition task.

144


https://doi.org/10.1101/2022.05.19.492607
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.19.492607; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

145 Results

146  Experimental design

147  Participants performed an old/new auditory recognition task ***'. During the encoding phase,
148  participants listened to three musical pieces and were instructed to memorize them as much
149 as possible. In the recognition phase, short musical sequences selected from the pieces (i.e.,
150 memorized musical sequences) and novel musical sequences were presented. For each of the
151  sequences, participants stated whether they memorized or novel. Their brain activity was
152 recorded using magnetoencephalography (MEG) during the recognition task. Structura
153  magnetic resonance imaging (MRI) images were collected for each participant and combined
154 with the MEG data to reconstruct the sources using a beamforming approach, which
155 generated the signal that recorded over the MEG channels. Finally, participants WM abilities
156 were measured using the Digit Span and Arithmetic subtests from the Wechsler Adult
157  Intelligence Scale (WAIS-1V) . Figure 1 shows a graphical depiction of the experimental
158 design and analysis pipeline.
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162

163  Figure 1. Experimental stimuli and design, and data analyses overview

164  a-— The dataacquisition comprised two parts: a working memory (WM) task completed outside the scanner and
165  an old/new auditory recognition task that was carried out during MEG recording. b — Illustration of the old/new
166  auditory recognition task performed in the MEG scanner. After listening to three full musical pieces,
167  participants were presented with melodic excerpts that were extracted from the pieces they previously learned or
168  with new melodies, and were asked to state whether each melody was memorized or novel using ajoystick. ¢ —
169  The broadband continuous neural data was preprocessed, bandpass filtered (0.1-1Hz), and epoched. d — Source
170  recongruction analyses were performed to isolate the contribution of each brain source to the neural activity
171  recorded by the MEG sensors. Preprocessed MEG and MRI data were co-registered. After that, a forward model
172  was computed, and the inverse solution was estimated using a beamforming approach. e — Contrasts between
173  memorized and novel auditory sequences were calculated for each musical tone (top row). Pearsons
174  correlations between WM scores and brain activity underlying recognition of memorized versus novel auditory

175  sequenceswere computed (bottom row).

176

177
178 Brain activity underlying recognition of previously memorized versus novel musical

179  sequences

180 Before evaluating the relationship between WM abilities and brain activity underlying
181 musical sequence recognition, which was the main aim of the current work, we wished to
182  replicate the established finding **' that recognition of previously memorized versus novel
183  auditory sequences is associated to a stronger activation in a widespread network of brain
184  aress.

185 First, we sub-averaged the brain data in five time-windows, corresponding to the
186  duration of the five tones of the musical sequences (0 — 250 ms, 251 — 500 ms, 501 — 750 ms,
187 751 — 1000 ms, 1001 — 1250 ms). Second, independently for the five time-windows, we
188 computed one t-test for each brain source, contrasting the brain activity underlying
189  recognition of previously memorized versus novel musical sequences. Third, we corrected for
190 multiple comparisons by using cluster-based Monte-Carlo simulations (MCS).

191 Significant clusters of activity (p < .001) were located across a number of brain voxels
192 (k) for each tone of the musical sequences. As expected, the main clusters were observed for
193  the third (k = 284), fourth (k = 390), and fifth tones (k = 125). The strongest differences
194  between the two conditions were localized in the middle cingulate gyrus, precuneus, insula,
195  hippocampal regions, orbitofrontal cortex, and frontal operculum.

196 Detailed statistics and information for each voxel forming the significant clusters are

197  reported in Table ST 1, while agraphical depiction of theresultsisillustrated in Figur e 2a.
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201  Figure 2. Brain activity underlying the recognition of auditory sequences and correlation with WM
202  scores

203  a- Significant brain activity underlying recognition of the musical sequences. The activity is depicted in brain
204  templates in five subsequent time windows corresponding to the duration of each musical tone forming the
205  sequences (as illustrated by the sketched musical tones above the time windows). The colorbar shows the t-
206  values resulting from the contrast between memorized and novel auditory sequences. b — Significant Pearson’s
207  correlations between the brain activity underlying recognition of the sequences and WM scores. The correlations
208  are depicted in brain templates in five subsequent time windows corresponding to the duration of each musical
209  tone forming the sequences (as illustrated by the sketched musical tones above the time windows). The colorbar
210  shows the Pearson’s correlation coefficient obtained by correlating the brain activity underlying recognition of
211  the previously memorized versus novel auditory sequences with the WM scores.

212

213

214 WM abilitiesand brain activity underlying musical sequencerecognition

215 The main am of the study was to establish whether there was a significant relationship
216  between WM ahilities and brain activity underlying tone-by-tone recognition of musical
217  sequences.

218 Before computing neural data analyses, we calculated a Pearson’s correlation between
219  the number of correctly recognized auditory sequences in the MEG task and the individual
220 WM scores. The analysis returned a non-significant result (rho = .16, p = .18).
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221 To address our experimental question, we computed Pearson’s correlations between
222  participants WM scores and each of the reconstructed brain sources. We corrected for
223  multiple comparison using cluster-based Monte-Carlo simulations (MCYS). This procedure
224 was computed independently for five time-windows, corresponding to the duration of the five
225  tones of the musical sequences (0 — 250 ms, 251 — 500 ms, 501 — 750 ms, 751 — 1000 ms,
226 1001 — 1250 ms; see Methods for details).

227 Significant clusters of activity (p < .05) were located in different brain regions and
228  depicted an overal positive correlation between WM abilities and brain activity underlying
229  recognition of memorized musical sequences. This difference returned consistent clusters in
230 the middle cingulate gyrus, inferior tempora cortex, fusiform-temporal cortex, para
231  hippocampal gyrus, and temporal-occipital fusiform cortex, especially for the third (k = 83)
232 and fourth (k = 83) tones of the musical sequences.

233 Detailed statistics and information for each voxel forming the significant clusters are

234  reported in Table ST 2, while a graphical depiction of the resultsisillustrated in Figure 2b.

10
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235 Discussion

236  Inthis study, we assessed the relationship between individual WM abilities and brain activity
237  underlying long-term recognition of auditory sequences.

238 First, we identified the brain activity associated to recognition of previously memorized
239  versus novel auditory sequences. This analysis revealed a widespread network of brain areas
240 involved in the recognition process including the cingulate gyrus, hippocampus, insula,
241  inferior temporal cortex, frontal operculum, and orbitofrontal cortex. Remarkably, the
242  cingulate gyrus (especialy the posterior part) was significantly more active for memorized
243  than for novel sequences by the second tone of the sequence. Moreover, this region was
244 strongly active during processing of the rest of the sequence, although its activity decreased
245 in the last tone. Conversely, the insula, inferior temporal cortex and hippocampal areas were
246  mainly active during the third, fourth and fifth tones of the auditory sequence.

247 Second, we correlated the brain activity underlying recognition of memorized versus
248 novel sequences with the participants WM scores. In general, we observed positive
249  correlations between brain activity and WM capacity. The analyses returned a sustained
250 positive correlation in the medial cingulate gyrus, a brain region strongly involved in the
251  auditory sequence recognition. Notably, we also observed paositive correlations in the inferior
252  tempora, temporal-fusiform and postcentral gyri. These brain areas were not strongly
253 associated to auditory sequence recognition and suggest that high WM performers may
254  recruit alarger brain network to successfully complete memory recognition tasks.

255 Our results on the whole-brain mechanisms for auditory recognition are coherent with
256  previous studies that employed the same paradigm. For instance, using part of the current
257  dataset, Bonetti et al. * * and Fernandez Rubio et al. ¥ highlighted the crucia role of the
258 cingulate gyrus, hippocampus, insula, inferior temporal cortex, and frontal operculum for the
259  recognition of auditory sequences. The replication of previous findings encouraged us to
260 further investigate the relationship between brain activity underlying auditory sequence
261  recognition and individual WM skills.

262 Overall, this study showed a series of positive correlations between brain activity and
263 WM abilities, suggesting that memory subsystems are coherently connected to each other.
264  Thisis particularly interesting since the recognition task employed in the study used musical
265 simuli, while the WM measure was based on numbers. This link between different
266  subsystems of memory isin line with previous research. As previously mentioned, the nature

32, 33

267  of the interactions between subsystems may be cooperative or competitive and is

11
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268 essential to perform memory tasks efficiently 3% Furthermore, different brain areas are
269 involved depending on the memory process that is emphasized (declarative versus non-
270  declarative) . Finally, White and McDonald's ** study localized multiple parallel memory
271  subsystems in the rat’s hippocampus, caudate-putamen and amygdala, and proposed that
272  these subsystems share information during learning, but represent its features differently.

273 Of particular interest in this study are the brain areas that were connected to WM. The
274 activity recorded in the medial cingulate gyrus presented a sustained positive correlation with
275 WM scores. This is coherent with previous studies linking cingulate gyrus activity to
276  memory and musical tasks. As mentioned earlier, in the auditory domain, the cingulate
277 played a crucial role in auditory sequence encoding * and recognition **'. Moreover, a
278  recent meta-analysis revealed that the cingulate gyrus is central for general music processing
279  and particularly for sound imagination *°. Beyond the auditory system, the cingulate gyrus
280  has been reported in memory studies employing visual or abstract information. For instance,
281 it has been suggested that diverse parts of the cingulate gyrus are differently involved in
282 memory processes. According to this view, the anterior part of the cingulate is primarily
283  connected to the orbitofrontal cortex and handles abstract, reward outcomes, while the
284  posterior cingulate is integrated within the hippocampal and occipital systems and therefore
285  highly relevant for memory processing of visual stimuli ** %2 Similarly, in a recent fMRI
286  study, Di and colleagues * showed that the anterior cingulate gyrus was functionally
287  connected to the middle frontal gyrus and superior parietal lobule during a demanding, WM
288  task. Conversely, this connectivity was reduced in resting state, suggesting the relevance of
289 the cingulate gyrus during memory tasks.

290 Other brain structures correlated with WM abilities were the inferior temporal and
291 temporal-fusiform gyri and the postcentral gyrus. This result is of great interest because these
292  brain structures did not play a major role in the recognition of auditory sequences. Indeed,
293 while the cingulate gyrus was largely active, we previously observed a relatively small
294  contribution of inferior temporal and postcentral gyri to auditory sequence recognition %
295 Moreover, the temporal-fusiform gyrus has not been previously associated to auditory
296  recognition processes. This suggests that individuals with higher WM abilities recruited a
297 larger brain network during recognition of auditory sequences, which may provide an
298 advantage for auditory recognition. However, since there were no significant differences in
299 the behaviora performance of the recognition task, future studies are called to better
300 understand whether and how this recruitment of additional brain areas is beneficial for
301 individualswith high WM capacity.

12
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302 Previous literature has shown the involvement of inferior temporal and temporal-
303 fusiform gyri and postcentral gyrus in visual memory tasks. In the past decades, the inferior
304 tempora cortex has been widely connected to visual perception and memory in both humans
305 and monkeys . Specifically, several studies demonstrated the involvement of the inferior
306 temporal cortex in representational memory and recognition of complex visual patterns ** .
307 More recently, Costers and colleagues * reported the involvement of left and right inferior
308 temporal and parahippocampal gyri in a multi-item WM task. Activity in the inferior
309 tempora gyrus has been repeatedly observed in visual memory tasks, while its involvement
310 in the auditory domain is less established. Importantly, here we revealed that the inferior
311 temporal cortex plays a significant role in auditory recognition, at least in individuals with
312  superior WM skills.

313 The fusiform gyrus has been historically connected to recognition in the visual domain,
314  especialy in relation to faces *"*°. However, recent studies demonstrated its involvement in
315 the recognition and processing of more general visual stimuli, such as letters >, and when
316  performing elaborated associative learning tasks *.

317 The postcentral gyrus is a brain area mainly associated to motor control > > yet
318 evidence points to its contribution to memory processes. For instance, in a visual encoding
319 task, avast network of brain areas was active, including the postcentral gyrus *°. Similarly, in
320 a recognition task of short sentences, supramarginal and postcentral gyrus activity was
321  reported *°. Another study demonstrated the involvement of the postcentral gyrus in a WM
322 and especidly in a visua attention task *’. Notably, similar to the inferior temporal gyrus,
323  previous literature reported activation of the postcentral gyrus mainly in relation to visual
324  memory, while this study showed its involvement during recognition of auditory temporal
325  seguences.

326 In conclusion, we discovered a positive correlation between individual WM abilities and
327 brain activity underlying recognition of memorized auditory sequences, increasing our
328 knowledge on the relationships between different memory subsystems. Future studies are
329  encouraged to replicate our results and expand them by investigating the relationship between
330 the brain mechanisms underlying recognition of temporal sequences and the brain processes
331 associated to WM tasks.

13
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332 Materialsand methods

333

334 Dataand code availability

335 The codes are available on GitHub (https://github.com/Ieonardob92/L BPD-1.0.qit). The
336  anonymized neuroimaging data from the experiment will be made available upon reasonable
337  request.

338

339 Participants

340 Werecruited 71 participants (38 males and 33 females) who took part in the experiment on a
341 voluntary basis. They were aged 18 to 42 years old (mean age: 25 + 4.10 years). All
342  participants were healthy and had normal hearing. Participants came from Western countries
343 and had homogenous educational and socioeconomic backgrounds. Before starting the
344  experimental procedures, participants gave their informed consent.

345 This study was a part of alarger project focused on brain dynamics underlying encoding
346  and recognition of musical paterns. This project produced severa studies *3%" . |n the
347  current work, we used the brain activity data underlying recognition of musical patterns that

a. ® *® and Fernandez Rubio et al. *" The project was

348  was previously reported in Bonetti et
349  approved by the Ethics Committee of the Central Denmark Region (De Videnskabsetiske
350 Komitéer for Region Midtjylland, Ref 1-10-72-411-17). Moreover, the experimental
351 procedures complied with the Declaration of Helsinki — Ethical Principles for Medical
352  Research.

353

354  Experimental stimuli and design

355 The study aimed at investigating the relationship between brain activity during a memory
356  recognition task and working memory (WM) abilities (Figure 1).

357 The brain activity was measured using magnetoencephalography (MEG) while
358 participants performed an old/new auditory recognition task. The task consisted of an
359 encoding phase during which participants memorized a musical piece, and a recognition
360 phase in which they recognized excerpts from the piece. In the encoding phase, participants
361 were exposed to four repetitions of a full musical piece and were asked to memorize it as
362 much as they could. The musical piece lasted for approximately 2.5 minutes. The tota
363  duration of the learning phase was approximately 10 minutes. For the recognition phase, 40

364  short excerpts (5-tone musical sequences, 1250 ms of duration in total) were extracted from
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365 the musical piece and 40 novel musical sequences were created. The resulting 80 sequences
366  were presented in arandomized order. For each of them, participants were instructed to state
367 whether the sequence was extracted from the musical piece they previously learned
368 (memorized sequence) or whether it was a new sequence (novel sequence). To prevent from
369 potential confounds, memorized and novel sequences were matched among several variables,
370 including rhythm, timbre, volume, meter, tempo, number and duration of musical tones,
371  tondlity, information content (IC) and entropy (H).

372 This task was conducted independently for three musical pieces composed in different
373 musical tonalities, with the aim of collecting a copious amount of data and increase the
374  reliability of our findings. The three musical pieces were the right-hand part of J. S. Bach’'s
375 Prelude No. 1 in C minor BWV 847 (hereafter referred to as the “minor prelude”), the right-
376  hand part of J. S. Bach’'s Prelude No. 1 in C mgor BWV 846 (hereafter referred to as the
377  “major prelude’), and an atonal version of the “major prelude” (hereafter referred to as the
378 “atonal prelude’). All the pieces had the same duration. The atonal piece was composed by
379 LB following a systematic change of pitch of the tones of the maor prelude. Additional
380  details on this procedure can be found in Fernandez Rubio et al.

381 MIDI versions of the three pieces used in the encoding phase and the musical sequences
382  used in the recognition phase were created using using Finale (MakeMusic, Boulder, CO) and
383 presented to the participants through Presentation software (Neurobehavioural Systems,
384 Berkeley, CA).

385 The WM abilities were assessed with the Wechsler Adult Intelligence Scale IV (WAIS-
386 1V) *, one of the most widely used tests to assess cognitive abilities. WAIS-IV comprises
387 four main indices. Working Memory, Verba Comprehension, Perceptual Reasoning, and
388  Processing Speed. In this study, we used the two primary subtests of the Working Memory
389 index: Digit Span and Arithmetic. In the Digit Span subtest, participants are required to
390 repeat sequences of numbers ether in the same order, backwards, or in ascending order,
391 immediately after hearing them. In the Arithmetic subtest, participants have to solve
392 mathematical problems without using any external aids (e.g., calculator, pen, etc.). These
393 tests were performed outside the scanner.

394

395 Dataacquisition

396 The MEG data was recorded in a magnetically shielded room located at the Aarhus
397  University Hospital (Denmark) with an Elekta Neuromag TRIUX MEG scanner equipped
398 with 306 channels (Elekta Neuromag, Helsinki, Finland). The data was collected at a
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399 sampling rate of 1000 Hz with an analogue filtering of 0.1 — 330 Hz. Before starting the
400 experiment, we recorded the participants’ headshape and position of four Head Position
401 Indicator (HPI) coils with respect to three anatomical landmarks (nasion and left and right
402  preauricular points) using a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). We used
403 thisinformation in alater stage of the analysis pipeline to co-register the MEG data with the
404 MRI anatomical images. During the MEG experiment, the HPI coils recorded the continuous
405 head localization, which was subsequently used to compensate for participants movement
406 insde the MEG scanner. Moreover, two sets of bipolar electrodes were employed to record
407 cardiac rhythm and eye movements. These were later used to remove electrooculography
408 (EOG) and electrocardiography (ECG) artifacts.

409 The MRI scans were acquired on a CE-approved 3T Siemens MR-scanner at Aarhus
410  University Hospital (Denmark). We recorded a structural T1 with a spatial resolution of 1.0 x
411 1.0 x 1.0 mm and the following sequence parameters: echo time (TE) = 2.96 ms, repetition
412  time (TR) = 5000 ms, bandwidth = 240 Hz/Px, reconstructed matrix size = 256 x 256.

413 The MEG and MRI recordings were acquired in two separate sessions.

414

415 Data preprocessing

416 The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was
417  preprocessed by MaxFilter *® in order to suppress external artifacts interfering with the
418 magnetic field produced by the brain activity. Using MaxFilter, the data was also corrected
419 for head motion and downsampled to 250 Hz. We then converted the data into Statistical
420  Parametric Mapping (SPM) > format and further analyzed it in MATLAB (MathWorks,
421  Natick, MA, USA) using the Oxford Centre for Human Brain Activity (OHBA) Software
422  Library (OSL, https://ohba-analysis.qithub.io/osl-docs/), a freely available software that
423 builds upon Fieldtrip ®, FSL ®, and SPM toolboxes, and in-house-built functions. We
424  applied a notch filter to the data (48 — 52 Hz) to correct for inferences of the electric current.

425 The signal was further downsampled to 150 Hz and the continuous MEG data was visually
426 inspected to control for artifacts. To remove EOG and ECG components, we computed
427  independent component analysis (ICA), isolated and discarded the components that picked up
428 the EOG and ECG activity and reconstructed the signal with the remaining components. We
429  then bandpass-filtered the data in the 0.1 — 1 Hz band, since we had previously shown %’
430 that activity in this slow frequency is mainly associated with the recognition of musical
431  sequences. The data was subsequently epoched into 80 trials (40 memorized and 40 novel

432 musical sequences), independently for the recognition of the three musical preludes. Then,
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433 we merged the three datasets, obtaining 240 trials (120 memorized and 120 novel musical
434  sequences) without differentiating between the three musical preludes. Here, each trial lasted
435 3500 ms (3400 ms plus 100 ms of baseline time) and further analyses were performed on
436  correctly identified trials only.

437

438  Sourcereconstruction

439  After computing the preprocessing of the data, we estimated the brain sources which
440 generated the signal recorded by the MEG. This procedure was carried out by designing a
441  forward model and computing the inverse solution using beamforming algorithms) Figure 1
442  shows an illustration of the source reconstruction pipeline.

443 Fist, using the information collected with the 3D digitizer, the MEG data and the
444 individual T1-weighted images were co-registered, independently for each participant. We
445  used the MNI152-T1 standard template with 8-mm spatial resolution in the case of four
446  participants whose individual anatomical scans were not available.

447 Second, we computed a single shell forward model using an 8-mm grid. This theoretical
448 head model considers each brain source as an active dipole and calculates how a unitary
449  strength of such dipoles would be reflected over the MEG sensors ®. Then, we used a
450 beamforming algorithm as inverse model. This is one of the most used algorithms for
451  reconstructing the brain sources from MEG channels’ data. It consists of employing a
452  different set of weights based on the forward model and the covariance between the MEG
453 channels. Afterwards, these weights are sequentially applied to the source locations (dipoles)
454  for computing the contribution of each source to the activity recorded by the MEG channels,
455  independently for each time point .

456

457 Brain activity underlying recognition of previousy memorized versus novel musical
458  sequences

459 Before evaluating the relationship between WM abilities and brain activity underlying
460 musical sequence recognition, which was the main aim of the current work, we wished to
461  replicate the established finding **’ that recognition of previously memorized versus novel
462  auditory sequences is associated to a stronger activation of a widespread network of brain
463  aress.

464 Thus, we first sub-averaged the brain data in five time-windows corresponding to the
465  duration of the five tones of the musical sequences (0 — 250 ms, 251 — 500 ms, 501 — 750 ms,
466 751 — 1000 ms, 1001 — 1250 ms). Second, independently for the five time-windows, we

17


https://doi.org/10.1101/2022.05.19.492607
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.19.492607; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

467 computed one t-test for each brain source, contrasting the brain activity underlying
468  recognition of previously memorized versus novel musical sequences. Third, we corrected for
469  multiple comparisons using cluster-based Monte-Carlo simulations (MCS).

470 Cluster-based MCS returned the spatial clusters of brain sources that exhibited a
471  dgnificantly different activity between our two experimental conditions (o = .001). Then, the
472  dgnificant brain voxels emerged from the previous t-tests were shuffled in space and the
473 maximum cluster size was measured. Repeating this procedure for each of the 1000
474  permutations used in the MCS analysis, we built a reference distribution of the maximum
475  cluster sizes computed in the permuted data. Then, the original cluster sizes were compared
476  to the reference distribution and were considered significant only if their size was bigger than
477  the 95% of the maximum cluster sizes of the permuted data.

478

479 WM abilitiesand brain activity underlying recognition of musical sequences

480 Before computing neural data analyses, we inspected whether there was a relationship
481 between recognition accuracy and WM skills. To this aim, we computed a Pearson’s
482  correlation between the individual WM scores (from WAIS-1V) and the number of correctly
483  recognized auditory sequencesin the MEG task.

484 To determine the relationship between WM abilities and brain activity underlying
485  recognition of musical sequences, we computed Pearson’s correlations between participants’
486 WM scores and each of the reconstructed brain sources. We corrected for multiple
487 comparisons using cluster-based MCS analogous to the ones described in the previous
488  subsection. This procedure was computed independently for five-time windows that
489  corresponded to the duration of the five tones of the musical sequences (0 — 250 ms, 251 —
490 500 ms, 501 — 750 ms, 751 — 1000 ms, 1001 — 1250 ms). Cluster-based MCS returned the
491 gpatial clusters of active brain sources during recognition of musical sequences that
492  dgnificantly correlated (o = .05) with the participants WM abilities. For each of the five
493 MCS, the data was sub-averaged in the correspondent time window (as reported above) and
494  the brain activity underlying recognition of novel sequences was subtracted from the brain
495  activity underlying recognition of memorized sequences. In this way, we correlated the WM
496  scores with the brain activity that was associated to the recognition of the sole memorized
497  sequences. Then, the significant brain voxels emerged from the previous correlations were
498 shuffled in space and the maximum cluster size was measured. Repeating this procedure for
499  each of the 1000 permutations used in the MCS analysis, we built a reference distribution of

500 the maximum cluster sizes computed in the permuted data. Then, the original cluster sizes
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501 were compared to the reference distribution and were considered significant only if their size

502  was bigger than the 95% of the maximum cluster sizes of the permuted data.
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SUPPLEMENTARY MATERIALS

Supplementary materials related to this study are organized as supplementary figures and
tables. Due to their large size, supplementary tables have been reported in Excel files that can

be found at the following link:
https://drive.google.com/drive/folders/1z3S7BTV7t5ifko6X DY prbdi84o0JwgE9s?usp=sharing
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716 SUPPLEMENTARY TABLES

717

718 Table ST1. Significant clusters of activity for MEG source data (memorized versus novel
719  sequences).

720 Significant clusters of activity estimated from the contrasts between the brain activity (in
721 0.1 — 1 Hz) underlying memorized and novel musical sequences. The table depicts the
722  contrast for each of the tones comprising the musical sequences, along with the brain
723  regions, hemispheres, and t-values for each voxel.

724

725 Table ST2. Significant clusters emerged from the correlation between WM abilities and
726 MEG brain data underlying recognition of previously memorized musical sequences.
727  Significant clusters of activity estimated from the correlations between WM abilities and
728 thebrain activity (in 0.1 — 1 Hz) underlying previously memorized musical sequences. The
729 table depicts the correlation for each of the tones comprising the musical sequences, along
730  with the brain regions, hemispheres, and r-values for each voxel.

731
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