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Abstract 27 

Memory is a complex cognitive process comprised by several subsystems, namely short- and 28 

long-term memory and working memory (WM). Previous research has shown that adequate 29 

interaction between subsystems is crucial for successful memory processes such as encoding, 30 

storage and manipulation of information. However, few studies have investigated the 31 

relationship between different subsystems at the behavioral and neural levels. Thus, here we 32 

assessed the relationship between individual WM abilities and brain activity underlying the 33 

recognition of previously memorized auditory sequences. 34 

First, recognition of previously memorized versus novel auditory sequences was 35 

associated with a widespread network of brain areas comprising the cingulate gyrus, 36 

hippocampus, insula, inferior temporal cortex, frontal operculum, and orbitofrontal cortex.  37 

Second, we observed positive correlations between brain activity underlying auditory 38 

sequence recognition and WM. We showed a sustained positive correlation in the medial 39 

cingulate gyrus, a brain area which was widely involved in the auditory sequence recognition. 40 

Remarkably, we also observed positive correlations in the inferior temporal, temporal-41 

fusiform, and postcentral gyri, brain areas which were not strongly associated to auditory 42 

sequence recognition. 43 

In conclusion, we discovered positive correlations between WM abilities and brain 44 

activity underlying long-term recognition of auditory sequences, providing new evidence on 45 

the relationship between memory subsystems. Furthermore, we showed that high WM 46 

performers recruited a larger brain network including areas associated to visual processing 47 

(i.e., inferior temporal, temporal-fusiform and postcentral gyri) for successful auditory 48 

memory recognition. 49 

 50 
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Significance statement 55 

Memory is a complex cognitive process dependent on the successful interaction between its 56 

multiple subsystems. Here, we assessed the relationship between individual WM abilities and 57 

brain activity underlying the recognition of previously memorized auditory sequences. 58 

We observed positive correlations between brain activity underlying auditory sequence 59 

recognition and WM, especially in the medial cingulate gyrus, inferior temporal, temporal-60 

fusiform and postcentral gyri. In this study, we provided new evidence on the relationship 61 

between two memory subsystems: WM and long-term auditory recognition. Moreover, we 62 

showed that, to successfully complete memory recognition tasks, high WM performers 63 

recruited a larger brain network which comprised brain areas mainly associated to visual 64 

processing, such as inferior temporal, temporal-fusiform and postcentral gyri.  65 
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Introduction 66 

Memory is a fundamental cognitive process that is widely regarded as a multisystem function 67 
1 relying on a widespread network of brain areas such as the medial temporal lobe 2, 3, 68 

prefrontal cortex 4, and basal ganglia 5. Broadly, the memory subsystems encode, store, and 69 

retrieve past memories (long-term memory), temporarily store sensory information (short-70 

term memory), and maintain and manipulate data (working memory) 1, 6, 7. These subsystems 71 

operate simultaneously and in parallel 8, giving rise to efficient memory functioning that is 72 

essential for many daily activities.  73 

Working memory (WM) capacity allows to briefly store and manipulate information and 74 

is involved in decision-making and executive processes 9-11. Among the several theories of 75 

WM, Baddeley and Hitch’s 12 multicomponent model has become highly influential. 76 

According to this theory and its subsequent revisions, WM is comprised by four components: 77 

(1) the phonological loop, which is involved in verbal WM, (2) the visuospatial sketchpad, 78 

for visuospatial WM, (3) the central executive, or the attentional control system, and (4) the 79 

episodic buffer, for storing information 10, 12-14. Frequently, WM paradigms request 80 

individuals to retain sensory information and perform some operation or manipulation on it, 81 

as in the case of the N-back 15 and digit span 16 tasks.  82 

Neuroimaging studies have highlighted the role of cortical brain areas, such as the 83 

prefrontal, parietal and cingulate cortices, and subcortical areas including the midbrain and 84 

cerebellum in WM processes, as reported in a review by Chai et al. 17. Evidence comes 85 

mainly from studies using visual stimuli, providing a valuable but incomplete picture of the 86 

neuroanatomy of WM. However, recent studies on auditory WM processing have uncovered 87 

the role of the primary auditory cortex and high-order structures such as the hippocampus for 88 

this cognitive function. For example, Kumar and colleagues 18 demonstrated that the activity 89 

and connectivity of the primary auditory cortex, hippocampus and inferior frontal gyrus are 90 

associated with the maintenance of single sounds’ series. Additionally, theta oscillations and 91 

phase locking in the dorsal stream predicts performance in a maintenance and manipulation 92 

auditory task 19. Related to the present study, Bonetti et al. 20 showed a positive correlation 93 

between WM capacity and brain activity underlying an auditory mismatch-negativity (MMN) 94 

task. The authors found that participants with higher WM scores showed enhanced MMN 95 

responses in frontal regions, but not in temporal areas. Notably, this investigation evidenced 96 

the relationship between auditory short-term and working memory. 97 
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Long-term memory refers to the ability to recall information that has been encoded and 98 

stored in the past 7, 21. Research on this cognitive function has emphasized the distinct 99 

features of several types of long-term memory, namely episodic, semantic, and procedural 100 

memory 22, 23. These are classified according to the kind of information they hold (e.g., 101 

personal experiences in the case of episodic memory, factual knowledge for semantic 102 

memory) 24, 25 and how this information is encoded (e.g., skill acquisition in procedural 103 

memory) 26. 104 

The neural underpinnings of long-term memory rest primarily upon medial temporal 105 

lobe structures (hippocampus, entorhinal, perihinal and parahippocampal cortices) 2, 21 and 106 

interact with the prefrontal cortex for successful memory retrieval 27. Moreover, 107 

consolidation, the process of transforming temporary information into long-lasting memories 108 

and a central aspect of long-term memory, is achieved through the interactions between the 109 

hippocampus and neocortex  28, 29. Converging evidence suggests that, in the case of auditory 110 

long-term memory, the primary auditory cortex also supports the storage of information 30. 111 

Although previous investigations have mainly examined the neuroanatomical bases of 112 

the memory subsystems in isolation, a few studies have looked into the associations between 113 

them. For instance, Henson and Gagnepain 31 highlighted the interaction between different 114 

memory subsystems, both in terms of behavior and neural substrate. They focused especially 115 

on episodic, semantic, and modality-specific perceptual subsystems, claiming that their 116 

successful interaction is crucial for performing memory tasks. Similarly, Poldrack and 117 

colleagues 32 demonstrated the interaction and competition between memory subsystems 118 

during classification learning in humans. Specifically, they observed that the basal ganglia 119 

and medial temporal lobe were differently engaged depending on the emphasis on declarative 120 

or non-declarative memory and showed that the interaction between these structures was 121 

necessary to perform the task. In a review focusing on pharmacological and neurochemical 122 

studies, Gold 33 proposed that the release of acetylcholine in different memory subsystems 123 

showed extensive interactions between them, which could be cooperative or competitive. He 124 

concluded that different memory and neural systems tended to interact extensively, even 125 

when described as relatively independent. Finally, White and McDonald 34 described a theory 126 

of multiple parallel memory subsystems in the rat brain localized in the hippocampus, 127 

caudate-putamen, and amygdala. The authors claimed that all subsystems had access to the 128 

same information during learning, but that each subsystem represented a different 129 

relationship between the information features. In their view, these memory subsystems 130 

interacted by simultaneous parallel influence on behavioral output and by directly affecting 131 
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each other in a cooperative or competitive manner. Overall, these investigations have yielded 132 

considerable insights into the relationships between memory subsystems, but we still lack 133 

information on the brain correlates underlying these interactions. 134 

Thus, in our study we aimed to investigate the relationship between two of the most 135 

important memory subsystems, WM and long-term memory, emphasizing their 136 

interdependence. To this end, we correlated the scores from a widely used WM measure with 137 

the neural activity underlying tone-by-tone recognition of previously memorized sequences 138 

from three different musical pieces. We hypothesized to observe stronger brain activity 139 

underlying auditory sequence recognition in individuals with greater WM abilities, especially 140 

in brain structures that have been previously associated to memory processes, such as the 141 

prefrontal cortex and hippocampus. Additionally, we expected WM capacity to be positively 142 

correlated with behavioral responses in the auditory recognition task. 143 

  144 
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Results 145 

Experimental design 146 

Participants performed an old/new auditory recognition task 35-37. During the encoding phase, 147 

participants listened to three musical pieces and were instructed to memorize them as much 148 

as possible. In the recognition phase, short musical sequences selected from the pieces (i.e., 149 

memorized musical sequences) and novel musical sequences were presented. For each of the 150 

sequences, participants stated whether they memorized or novel. Their brain activity was 151 

recorded using magnetoencephalography (MEG) during the recognition task. Structural 152 

magnetic resonance imaging (MRI) images were collected for each participant and combined 153 

with the MEG data to reconstruct the sources using a beamforming approach, which 154 

generated the signal that recorded over the MEG channels. Finally, participants’ WM abilities 155 

were measured using the Digit Span and Arithmetic subtests from the Wechsler Adult 156 

Intelligence Scale (WAIS-IV) 38. Figure 1 shows a graphical depiction of the experimental 157 

design and analysis pipeline. 158 

 159 

 160 

 161 
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 162 

Figure 1. Experimental stimuli and design, and data analyses overview 163 

a – The data acquisition comprised two parts: a working memory (WM) task completed outside the scanner and 164 

an old/new auditory recognition task that was carried out during MEG recording. b – Illustration of the old/new 165 

auditory recognition task performed in the MEG scanner. After listening to three full musical pieces, 166 

participants were presented with melodic excerpts that were extracted from the pieces they previously learned or 167 

with new melodies, and were asked to state whether each melody was memorized or novel using a joystick. c –168 

The broadband continuous neural data was preprocessed, bandpass filtered (0.1-1Hz), and epoched. d – Source 169 

reconstruction analyses were performed to isolate the contribution of each brain source to the neural activity 170 

recorded by the MEG sensors. Preprocessed MEG and MRI data were co-registered. After that, a forward model 171 

was computed, and the inverse solution was estimated using a beamforming approach. e – Contrasts between 172 

memorized and novel auditory sequences were calculated for each musical tone (top row). Pearsons’ 173 

correlations between WM scores and brain activity underlying recognition of memorized versus novel auditory 174 

sequences were computed (bottom row). 175 

 176 
 177 
Brain activity underlying recognition of previously memorized versus novel musical 178 

sequences 179 

Before evaluating the relationship between WM abilities and brain activity underlying 180 

musical sequence recognition, which was the main aim of the current work, we wished to 181 

replicate the established finding 35-37 that recognition of previously memorized versus novel 182 

auditory sequences is associated to a stronger activation in a widespread network of brain 183 

areas. 184 

First, we sub-averaged the brain data in five time-windows, corresponding to the 185 

duration of the five tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms, 186 

751 – 1000 ms, 1001 – 1250 ms). Second, independently for the five time-windows, we 187 

computed one t-test for each brain source, contrasting the brain activity underlying 188 

recognition of previously memorized versus novel musical sequences. Third, we corrected for 189 

multiple comparisons by using cluster-based Monte-Carlo simulations (MCS). 190 

Significant clusters of activity (p < .001) were located across a number of brain voxels 191 

(k) for each tone of the musical sequences. As expected, the main clusters were observed for 192 

the third (k = 284), fourth (k = 390), and fifth tones (k = 125). The strongest differences 193 

between the two conditions were localized in the middle cingulate gyrus, precuneus, insula, 194 

hippocampal regions, orbitofrontal cortex, and frontal operculum. 195 

Detailed statistics and information for each voxel forming the significant clusters are 196 

reported in Table ST1, while a graphical depiction of the results is illustrated in Figure 2a. 197 
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 198 

 199 

 200 

Figure 2. Brain activity underlying the recognition of auditory sequences and correlation with WM 201 

scores 202 

a – Significant brain activity underlying recognition of the musical sequences. The activity is depicted in brain 203 

templates in five subsequent time windows corresponding to the duration of each musical tone forming the 204 

sequences (as illustrated by the sketched musical tones above the time windows). The colorbar shows the t-205 

values resulting from the contrast between memorized and novel auditory sequences. b – Significant Pearson’s 206 

correlations between the brain activity underlying recognition of the sequences and WM scores. The correlations 207 

are depicted in brain templates in five subsequent time windows corresponding to the duration of each musical 208 

tone forming the sequences (as illustrated by the sketched musical tones above the time windows). The colorbar 209 

shows the Pearson’s correlation coefficient obtained by correlating the brain activity underlying recognition of 210 

the previously memorized versus novel auditory sequences with the WM scores. 211 

 212 

 213 

WM abilities and brain activity underlying musical sequence recognition 214 

The main aim of the study was to establish whether there was a significant relationship 215 

between WM abilities and brain activity underlying tone-by-tone recognition of musical 216 

sequences. 217 

Before computing neural data analyses, we calculated a Pearson’s correlation between 218 

the number of correctly recognized auditory sequences in the MEG task and the individual 219 

WM scores. The analysis returned a non-significant result (rho = .16, p = .18). 220 
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To address our experimental question, we computed Pearson’s correlations between 221 

participants’ WM scores and each of the reconstructed brain sources. We corrected for 222 

multiple comparison using cluster-based Monte-Carlo simulations (MCS). This procedure 223 

was computed independently for five time-windows, corresponding to the duration of the five 224 

tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms, 751 – 1000 ms, 225 

1001 – 1250 ms; see Methods for details). 226 

Significant clusters of activity (p < .05) were located in different brain regions and 227 

depicted an overall positive correlation between WM abilities and brain activity underlying 228 

recognition of memorized musical sequences. This difference returned consistent clusters in 229 

the middle cingulate gyrus, inferior temporal cortex, fusiform-temporal cortex, para-230 

hippocampal gyrus, and temporal-occipital fusiform cortex, especially for the third (k = 83) 231 

and fourth (k = 83) tones of the musical sequences. 232 

Detailed statistics and information for each voxel forming the significant clusters are 233 

reported in Table ST2, while a graphical depiction of the results is illustrated in Figure 2b. 234 
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Discussion 235 

In this study, we assessed the relationship between individual WM abilities and brain activity 236 

underlying long-term recognition of auditory sequences. 237 

First, we identified the brain activity associated to recognition of previously memorized 238 

versus novel auditory sequences. This analysis revealed a widespread network of brain areas 239 

involved in the recognition process including the cingulate gyrus, hippocampus, insula, 240 

inferior temporal cortex, frontal operculum, and orbitofrontal cortex. Remarkably, the 241 

cingulate gyrus (especially the posterior part) was significantly more active for memorized 242 

than for novel sequences by the second tone of the sequence. Moreover, this region was 243 

strongly active during processing of the rest of the sequence, although its activity decreased 244 

in the last tone. Conversely, the insula, inferior temporal cortex and hippocampal areas were 245 

mainly active during the third, fourth and fifth tones of the auditory sequence. 246 

Second, we correlated the brain activity underlying recognition of memorized versus 247 

novel sequences with the participants’ WM scores. In general, we observed positive 248 

correlations between brain activity and WM capacity. The analyses returned a sustained 249 

positive correlation in the medial cingulate gyrus, a brain region strongly involved in the 250 

auditory sequence recognition. Notably, we also observed positive correlations in the inferior 251 

temporal, temporal-fusiform and postcentral gyri. These brain areas were not strongly 252 

associated to auditory sequence recognition and suggest that high WM performers may 253 

recruit a larger brain network to successfully complete memory recognition tasks. 254 

Our results on the whole-brain mechanisms for auditory recognition are coherent with 255 

previous studies that employed the same paradigm. For instance, using part of the current 256 

dataset, Bonetti et al. 35, 36 and Fernández Rubio et al. 37 highlighted the crucial role of the 257 

cingulate gyrus, hippocampus, insula, inferior temporal cortex, and frontal operculum for the 258 

recognition of auditory sequences. The replication of previous findings encouraged us to 259 

further investigate the relationship between brain activity underlying auditory sequence 260 

recognition and individual WM skills. 261 

Overall, this study showed a series of positive correlations between brain activity and 262 

WM abilities, suggesting that memory subsystems are coherently connected to each other. 263 

This is particularly interesting since the recognition task employed in the study used musical 264 

stimuli, while the WM measure was based on numbers. This link between different 265 

subsystems of memory is in line with previous research. As previously mentioned, the nature 266 

of the interactions between subsystems may be cooperative or competitive 32, 33  and is 267 
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essential to perform memory tasks efficiently 31. Furthermore, different brain areas are 268 

involved depending on the memory process that is emphasized (declarative versus non-269 

declarative) 32. Finally, White and McDonald’s 34 study localized multiple parallel memory 270 

subsystems in the rat’s hippocampus, caudate-putamen and amygdala, and proposed that 271 

these subsystems share information during learning, but represent its features differently. 272 

Of particular interest in this study are the brain areas that were connected to WM. The 273 

activity recorded in the medial cingulate gyrus presented a sustained positive correlation with 274 

WM scores. This is coherent with previous studies linking cingulate gyrus’ activity to 275 

memory and musical tasks. As mentioned earlier, in the auditory domain, the cingulate 276 

played a crucial role in auditory sequence encoding 39 and recognition 35-37. Moreover, a 277 

recent meta-analysis revealed that the cingulate gyrus is central for general music processing 278 

and particularly for sound imagination 40. Beyond the auditory system, the cingulate gyrus 279 

has been reported in memory studies employing visual or abstract information. For instance, 280 

it has been suggested that diverse parts of the cingulate gyrus are differently involved in 281 

memory processes. According to this view, the anterior part of the cingulate is primarily 282 

connected to the orbitofrontal cortex and handles abstract, reward outcomes, while the 283 

posterior cingulate is integrated within the hippocampal and occipital systems and therefore 284 

highly relevant for memory processing of visual stimuli 41, 42. Similarly, in a recent fMRI 285 

study, Di and colleagues 43 showed that the anterior cingulate gyrus was functionally 286 

connected to the middle frontal gyrus and superior parietal lobule during a demanding, WM 287 

task. Conversely, this connectivity was reduced in resting state, suggesting the relevance of 288 

the cingulate gyrus during memory tasks. 289 

Other brain structures correlated with WM abilities were the inferior temporal and 290 

temporal-fusiform gyri and the postcentral gyrus. This result is of great interest because these 291 

brain structures did not play a major role in the recognition of auditory sequences. Indeed, 292 

while the cingulate gyrus was largely active, we previously observed a relatively small 293 

contribution of inferior temporal and postcentral gyri to auditory sequence recognition 35-37. 294 

Moreover, the temporal-fusiform gyrus has not been previously associated to auditory 295 

recognition processes. This suggests that individuals with higher WM abilities recruited a 296 

larger brain network during recognition of auditory sequences, which may provide an 297 

advantage for auditory recognition. However, since there were no significant differences in 298 

the behavioral performance of the recognition task, future studies are called to better 299 

understand whether and how this recruitment of additional brain areas is beneficial for 300 

individuals with high WM capacity.  301 
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Previous literature has shown the involvement of inferior temporal and temporal-302 

fusiform gyri and postcentral gyrus in visual memory tasks. In the past decades, the inferior 303 

temporal cortex has been widely connected to visual perception and memory in both humans 304 

and monkeys 44. Specifically, several studies demonstrated the involvement of the inferior 305 

temporal cortex in representational memory and recognition of complex visual patterns 44, 45. 306 

More recently, Costers and colleagues 46 reported the involvement of left and right inferior 307 

temporal and parahippocampal gyri in a multi-item WM task. Activity in the inferior 308 

temporal gyrus has been repeatedly observed in visual memory tasks, while its involvement 309 

in the auditory domain is less established. Importantly, here we revealed that the inferior 310 

temporal cortex plays a significant role in auditory recognition, at least in individuals with 311 

superior WM skills.  312 

The fusiform gyrus has been historically connected to recognition in the visual domain, 313 

especially in relation to faces 47-50. However, recent studies demonstrated its involvement in 314 

the recognition and processing of more general visual stimuli, such as letters 51, and when 315 

performing elaborated associative learning tasks 52. 316 

The postcentral gyrus is a brain area mainly associated to motor control 53, 54, yet 317 

evidence points to its contribution to memory processes. For instance, in a visual encoding 318 

task, a vast network of brain areas was active, including the postcentral gyrus 55. Similarly, in 319 

a recognition task of short sentences, supramarginal and postcentral gyrus activity was 320 

reported 56. Another study demonstrated the involvement of the postcentral gyrus in a WM 321 

and especially in a visual attention task 57. Notably, similar to the inferior temporal gyrus, 322 

previous literature reported activation of the postcentral gyrus mainly in relation to visual 323 

memory, while this study showed its involvement during recognition of auditory temporal 324 

sequences. 325 

In conclusion, we discovered a positive correlation between individual WM abilities and 326 

brain activity underlying recognition of memorized auditory sequences, increasing our 327 

knowledge on the relationships between different memory subsystems. Future studies are 328 

encouraged to replicate our results and expand them by investigating the relationship between 329 

the brain mechanisms underlying recognition of temporal sequences and the brain processes 330 

associated to WM tasks.  331 
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Materials and methods 332 

 333 

Data and code availability 334 

The codes are available on GitHub (https://github.com/leonardob92/LBPD-1.0.git). The 335 

anonymized neuroimaging data from the experiment will be made available upon reasonable 336 

request. 337 

 338 

Participants 339 

We recruited 71 participants (38 males and 33 females) who took part in the experiment on a 340 

voluntary basis. They were aged 18 to 42 years old (mean age: 25 ± 4.10 years). All 341 

participants were healthy and had normal hearing. Participants came from Western countries 342 

and had homogenous educational and socioeconomic backgrounds. Before starting the 343 

experimental procedures, participants gave their informed consent. 344 

This study was a part of a larger project focused on brain dynamics underlying encoding 345 

and recognition of musical patterns. This project produced several studies 35-37, 39. In the 346 

current work, we used the brain activity data underlying recognition of musical patterns that 347 

was previously reported in Bonetti et al. 35, 36 and Fernández Rubio et al. 37 The project was 348 

approved by the Ethics Committee of the Central Denmark Region (De Videnskabsetiske 349 

Komitéer for Region Midtjylland, Ref 1-10-72-411-17). Moreover, the experimental 350 

procedures complied with the Declaration of Helsinki – Ethical Principles for Medical 351 

Research.  352 

 353 

Experimental stimuli and design 354 

The study aimed at investigating the relationship between brain activity during a memory 355 

recognition task and working memory (WM) abilities (Figure 1). 356 

The brain activity was measured using magnetoencephalography (MEG) while 357 

participants performed an old/new auditory recognition task. The task consisted of an 358 

encoding phase during which participants memorized a musical piece, and a recognition 359 

phase in which they recognized excerpts from the piece. In the encoding phase, participants 360 

were exposed to four repetitions of a full musical piece and were asked to memorize it as 361 

much as they could. The musical piece lasted for approximately 2.5 minutes. The total 362 

duration of the learning phase was approximately 10 minutes. For the recognition phase, 40 363 

short excerpts (5-tone musical sequences, 1250 ms of duration in total) were extracted from 364 
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the musical piece and 40 novel musical sequences were created. The resulting 80 sequences 365 

were presented in a randomized order. For each of them, participants were instructed to state 366 

whether the sequence was extracted from the musical piece they previously learned 367 

(memorized sequence) or whether it was a new sequence (novel sequence). To prevent from 368 

potential confounds, memorized and novel sequences were matched among several variables, 369 

including rhythm, timbre, volume, meter, tempo, number and duration of musical tones, 370 

tonality, information content (IC) and entropy (H). 371 

This task was conducted independently for three musical pieces composed in different 372 

musical tonalities, with the aim of collecting a copious amount of data and increase the 373 

reliability of our findings. The three musical pieces were the right-hand part of J. S. Bach’s 374 

Prelude No. 1 in C minor BWV 847 (hereafter referred to as the “minor prelude”), the right-375 

hand part of J. S. Bach’s Prelude No. 1 in C major BWV 846 (hereafter referred to as the 376 

“major prelude”), and an atonal version of the “major prelude” (hereafter referred to as the 377 

“atonal prelude”). All the pieces had the same duration. The atonal piece was composed by 378 

LB following a systematic change of pitch of the tones of the major prelude. Additional 379 

details on this procedure can be found in Fernández Rubio et al. 37 380 

MIDI versions of the three pieces used in the encoding phase and the musical sequences 381 

used in the recognition phase were created using using Finale (MakeMusic, Boulder, CO) and 382 

presented to the participants through Presentation software (Neurobehavioural Systems, 383 

Berkeley, CA). 384 

The WM abilities were assessed with the Wechsler Adult Intelligence Scale IV (WAIS-385 

IV) 38, one of the most widely used tests to assess cognitive abilities. WAIS-IV comprises 386 

four main indices: Working Memory, Verbal Comprehension, Perceptual Reasoning, and 387 

Processing Speed. In this study, we used the two primary subtests of the Working Memory 388 

index: Digit Span and Arithmetic. In the Digit Span subtest, participants are required to 389 

repeat sequences of numbers either in the same order, backwards, or in ascending order, 390 

immediately after hearing them. In the Arithmetic subtest, participants have to solve 391 

mathematical problems without using any external aids (e.g., calculator, pen, etc.). These 392 

tests were performed outside the scanner. 393 

 394 

Data acquisition 395 

The MEG data was recorded in a magnetically shielded room located at the Aarhus 396 

University Hospital (Denmark) with an Elekta Neuromag TRIUX MEG scanner equipped 397 

with 306 channels (Elekta Neuromag, Helsinki, Finland). The data was collected at a 398 
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sampling rate of 1000 Hz with an analogue filtering of 0.1 – 330 Hz. Before starting the 399 

experiment, we recorded the participants’ headshape and position of four Head Position 400 

Indicator (HPI) coils with respect to three anatomical landmarks (nasion and left and right 401 

preauricular points) using a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). We used 402 

this information in a later stage of the analysis pipeline to co-register the MEG data with the 403 

MRI anatomical images. During the MEG experiment, the HPI coils recorded the continuous 404 

head localization, which was subsequently used to compensate for participants’ movement 405 

inside the MEG scanner. Moreover, two sets of bipolar electrodes were employed to record 406 

cardiac rhythm and eye movements. These were later used to remove electrooculography 407 

(EOG) and electrocardiography (ECG) artifacts. 408 

The MRI scans were acquired on a CE-approved 3T Siemens MR-scanner at Aarhus 409 

University Hospital (Denmark). We recorded a structural T1 with a spatial resolution of 1.0 x 410 

1.0 x 1.0 mm and the following sequence parameters: echo time (TE) = 2.96 ms, repetition 411 

time (TR) = 5000 ms, bandwidth = 240 Hz/Px, reconstructed matrix size = 256 x 256. 412 

The MEG and MRI recordings were acquired in two separate sessions. 413 

 414 

Data preprocessing 415 

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was 416 

preprocessed by MaxFilter 58 in order to suppress external artifacts interfering with the 417 

magnetic field produced by the brain activity. Using MaxFilter, the data was also corrected 418 

for head motion and downsampled to 250 Hz. We then converted the data into Statistical 419 

Parametric Mapping (SPM) 59 format and further analyzed it in MATLAB (MathWorks, 420 

Natick, MA, USA) using the Oxford Centre for Human Brain Activity (OHBA) Software 421 

Library (OSL, https://ohba-analysis.github.io/osl-docs/), a freely available software that 422 

builds upon Fieldtrip 60, FSL 61, and SPM toolboxes, and in-house-built functions. We 423 

applied a notch filter to the data (48 – 52 Hz) to correct for inferences of the electric current. 424 

The signal was further downsampled to 150 Hz and the continuous MEG data was visually 425 

inspected to control for artifacts. To remove EOG and ECG components, we computed 426 

independent component analysis (ICA), isolated and discarded the components that picked up 427 

the EOG and ECG activity and reconstructed the signal with the remaining components. We 428 

then bandpass-filtered the data in the 0.1 – 1 Hz band, since we had previously shown 35-37 429 

that activity in this slow frequency is mainly associated with the recognition of musical 430 

sequences. The data was subsequently epoched into 80 trials (40 memorized and 40 novel 431 

musical sequences), independently for the recognition of the three musical preludes. Then, 432 
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we merged the three datasets, obtaining 240 trials (120 memorized and 120 novel musical 433 

sequences) without differentiating between the three musical preludes. Here, each trial lasted 434 

3500 ms (3400 ms plus 100 ms of baseline time) and further analyses were performed on 435 

correctly identified trials only. 436 

 437 

Source reconstruction 438 

After computing the preprocessing of the data, we estimated the brain sources which 439 

generated the signal recorded by the MEG. This procedure was carried out by designing a 440 

forward model and computing the inverse solution using beamforming algorithms) Figure 1 441 

shows an illustration of the source reconstruction pipeline. 442 

Fist, using the information collected with the 3D digitizer, the MEG data and the 443 

individual T1-weighted images were co-registered, independently for each participant. We 444 

used the MNI152-T1 standard template with 8-mm spatial resolution in the case of four 445 

participants whose individual anatomical scans were not available. 446 

Second, we computed a single shell forward model using an 8-mm grid. This theoretical 447 

head model considers each brain source as an active dipole and calculates how a unitary 448 

strength of such dipoles would be reflected over the MEG sensors 62. Then, we used a 449 

beamforming algorithm as inverse model. This is one of the most used algorithms for 450 

reconstructing the brain sources from MEG channels’ data. It consists of employing a 451 

different set of weights based on the forward model and the covariance between the MEG 452 

channels. Afterwards, these weights are sequentially applied to the source locations (dipoles) 453 

for computing the contribution of each source to the activity recorded by the MEG channels, 454 

independently for each time point 63-65. 455 

 456 

Brain activity underlying recognition of previously memorized versus novel musical 457 

sequences 458 

Before evaluating the relationship between WM abilities and brain activity underlying 459 

musical sequence recognition, which was the main aim of the current work, we wished to 460 

replicate the established finding 35-37 that recognition of previously memorized versus novel 461 

auditory sequences is associated to a stronger activation of a widespread network of brain 462 

areas. 463 

Thus, we first sub-averaged the brain data in five time-windows corresponding to the 464 

duration of the five tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms, 465 

751 – 1000 ms, 1001 – 1250 ms). Second, independently for the five time-windows, we 466 
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computed one t-test for each brain source, contrasting the brain activity underlying 467 

recognition of previously memorized versus novel musical sequences. Third, we corrected for 468 

multiple comparisons using cluster-based Monte-Carlo simulations (MCS). 469 

Cluster-based MCS returned the spatial clusters of brain sources that exhibited a 470 

significantly different activity between our two experimental conditions (α = .001). Then, the 471 

significant brain voxels emerged from the previous t-tests were shuffled in space and the 472 

maximum cluster size was measured. Repeating this procedure for each of the 1000 473 

permutations used in the MCS analysis, we built a reference distribution of the maximum 474 

cluster sizes computed in the permuted data. Then, the original cluster sizes were compared 475 

to the reference distribution and were considered significant only if their size was bigger than 476 

the 95% of the maximum cluster sizes of the permuted data. 477 

 478 

WM abilities and brain activity underlying recognition of musical sequences 479 

Before computing neural data analyses, we inspected whether there was a relationship 480 

between recognition accuracy and WM skills. To this aim, we computed a Pearson’s 481 

correlation between the individual WM scores (from WAIS-IV) and the number of correctly 482 

recognized auditory sequences in the MEG task. 483 

To determine the relationship between WM abilities and brain activity underlying 484 

recognition of musical sequences, we computed Pearson’s correlations between participants’ 485 

WM scores and each of the reconstructed brain sources. We corrected for multiple 486 

comparisons using cluster-based MCS analogous to the ones described in the previous 487 

subsection. This procedure was computed independently for five-time windows that 488 

corresponded to the duration of the five tones of the musical sequences (0 – 250 ms, 251 – 489 

500 ms, 501 – 750 ms, 751 – 1000 ms, 1001 – 1250 ms). Cluster-based MCS returned the 490 

spatial clusters of active brain sources during recognition of musical sequences that 491 

significantly correlated (α = .05) with the participants’ WM abilities. For each of the five 492 

MCS, the data was sub-averaged in the correspondent time window (as reported above) and 493 

the brain activity underlying recognition of novel sequences was subtracted from the brain 494 

activity underlying recognition of memorized sequences. In this way, we correlated the WM 495 

scores with the brain activity that was associated to the recognition of the sole memorized 496 

sequences. Then, the significant brain voxels emerged from the previous correlations were 497 

shuffled in space and the maximum cluster size was measured. Repeating this procedure for 498 

each of the 1000 permutations used in the MCS analysis, we built a reference distribution of 499 

the maximum cluster sizes computed in the permuted data. Then, the original cluster sizes 500 
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were compared to the reference distribution and were considered significant only if their size 501 

was bigger than the 95% of the maximum cluster sizes of the permuted data.  502 
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SUPPLEMENTARY MATERIALS 710 

 711 

Supplementary materials related to this study are organized as supplementary figures and 712 

tables. Due to their large size, supplementary tables have been reported in Excel files that can 713 

be found at the following link: 714 

https://drive.google.com/drive/folders/1z3S7BTV7t5jfko6XDYprbdi84oJwgE9s?usp=sharing 715 
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SUPPLEMENTARY TABLES 716 

 717 

Table ST1. Significant clusters of activity for MEG source data (memorized versus novel 718 

sequences). 719 

Significant clusters of activity estimated from the contrasts between the brain activity (in 720 

0.1 – 1 Hz) underlying memorized and novel musical sequences. The table depicts the 721 

contrast for each of the tones comprising the musical sequences, along with the brain 722 

regions, hemispheres, and t-values for each voxel. 723 

 724 

Table ST2. Significant clusters emerged from the correlation between WM abilities and 725 

MEG brain data underlying recognition of previously memorized musical sequences. 726 

Significant clusters of activity estimated from the correlations between WM abilities and 727 

the brain activity (in 0.1 – 1 Hz) underlying previously memorized musical sequences. The 728 

table depicts the correlation for each of the tones comprising the musical sequences, along 729 

with the brain regions, hemispheres, and r-values for each voxel. 730 

 731 
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