

1    **Associations between abstract working memory abilities and brain activity**  
2        **underlying long-term recognition of auditory sequences**  
3

4    Fernández Rubio, G.<sup>1+</sup>, Carlomagno, F.<sup>1,4+</sup>, Vuust, P.<sup>1</sup>, Kringelbach, M. L.<sup>1,2,3</sup>, Bonetti, L.<sup>1,2,3\*</sup>  
5

6    <sup>1</sup>*Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of*  
7    *Music Aarhus/Aalborg, Denmark*

8    <sup>2</sup>*Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom*

9    <sup>3</sup>*Department of Psychiatry, University of Oxford, Oxford, United Kingdom*

10    <sup>4</sup>*Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy*

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25    \*Corresponding author: [leonardo.bonetti@psych.ox.ac.uk](mailto:leonardo.bonetti@psych.ox.ac.uk)

26    +: *equally contributing authors*

27 **Abstract**

28 Memory is a complex cognitive process comprised by several subsystems, namely short- and  
29 long-term memory and working memory (WM). Previous research has shown that adequate  
30 interaction between subsystems is crucial for successful memory processes such as encoding,  
31 storage and manipulation of information. However, few studies have investigated the  
32 relationship between different subsystems at the behavioral and neural levels. Thus, here we  
33 assessed the relationship between individual WM abilities and brain activity underlying the  
34 recognition of previously memorized auditory sequences.

35 First, recognition of previously memorized versus novel auditory sequences was  
36 associated with a widespread network of brain areas comprising the cingulate gyrus,  
37 hippocampus, insula, inferior temporal cortex, frontal operculum, and orbitofrontal cortex.

38 Second, we observed positive correlations between brain activity underlying auditory  
39 sequence recognition and WM. We showed a sustained positive correlation in the medial  
40 cingulate gyrus, a brain area which was widely involved in the auditory sequence recognition.  
41 Remarkably, we also observed positive correlations in the inferior temporal, temporal-  
42 fusiform, and postcentral gyri, brain areas which were not strongly associated to auditory  
43 sequence recognition.

44 In conclusion, we discovered positive correlations between WM abilities and brain  
45 activity underlying long-term recognition of auditory sequences, providing new evidence on  
46 the relationship between memory subsystems. Furthermore, we showed that high WM  
47 performers recruited a larger brain network including areas associated to visual processing  
48 (i.e., inferior temporal, temporal-fusiform and postcentral gyri) for successful auditory  
49 memory recognition.

50

51 **Keywords**

52 Recognition memory, Working memory, Brain activity, Predictive coding of music (PCM),  
53 Magnetoencephalography (MEG)

54

55 ***Significance statement***

56 Memory is a complex cognitive process dependent on the successful interaction between its  
57 multiple subsystems. Here, we assessed the relationship between individual WM abilities and  
58 brain activity underlying the recognition of previously memorized auditory sequences.

59 We observed positive correlations between brain activity underlying auditory sequence  
60 recognition and WM, especially in the medial cingulate gyrus, inferior temporal, temporal-  
61 fusiform and postcentral gyri. In this study, we provided new evidence on the relationship  
62 between two memory subsystems: WM and long-term auditory recognition. Moreover, we  
63 showed that, to successfully complete memory recognition tasks, high WM performers  
64 recruited a larger brain network which comprised brain areas mainly associated to visual  
65 processing, such as inferior temporal, temporal-fusiform and postcentral gyri.

66 **Introduction**

67 Memory is a fundamental cognitive process that is widely regarded as a multisystem function  
68 <sup>1</sup> relying on a widespread network of brain areas such as the medial temporal lobe <sup>2, 3</sup>,  
69 prefrontal cortex <sup>4</sup>, and basal ganglia <sup>5</sup>. Broadly, the memory subsystems encode, store, and  
70 retrieve past memories (long-term memory), temporarily store sensory information (short-  
71 term memory), and maintain and manipulate data (working memory) <sup>1, 6, 7</sup>. These subsystems  
72 operate simultaneously and in parallel <sup>8</sup>, giving rise to efficient memory functioning that is  
73 essential for many daily activities.

74 Working memory (WM) capacity allows to briefly store and manipulate information and  
75 is involved in decision-making and executive processes <sup>9-11</sup>. Among the several theories of  
76 WM, Baddeley and Hitch's <sup>12</sup> multicomponent model has become highly influential.  
77 According to this theory and its subsequent revisions, WM is comprised by four components:  
78 (1) the phonological loop, which is involved in verbal WM, (2) the visuospatial sketchpad,  
79 for visuospatial WM, (3) the central executive, or the attentional control system, and (4) the  
80 episodic buffer, for storing information <sup>10, 12-14</sup>. Frequently, WM paradigms request  
81 individuals to retain sensory information and perform some operation or manipulation on it,  
82 as in the case of the *N*-back <sup>15</sup> and digit span <sup>16</sup> tasks.

83 Neuroimaging studies have highlighted the role of cortical brain areas, such as the  
84 prefrontal, parietal and cingulate cortices, and subcortical areas including the midbrain and  
85 cerebellum in WM processes, as reported in a review by Chai et al. <sup>17</sup>. Evidence comes  
86 mainly from studies using visual stimuli, providing a valuable but incomplete picture of the  
87 neuroanatomy of WM. However, recent studies on auditory WM processing have uncovered  
88 the role of the primary auditory cortex and high-order structures such as the hippocampus for  
89 this cognitive function. For example, Kumar and colleagues <sup>18</sup> demonstrated that the activity  
90 and connectivity of the primary auditory cortex, hippocampus and inferior frontal gyrus are  
91 associated with the maintenance of single sounds' series. Additionally, theta oscillations and  
92 phase locking in the dorsal stream predicts performance in a maintenance and manipulation  
93 auditory task <sup>19</sup>. Related to the present study, Bonetti et al. <sup>20</sup> showed a positive correlation  
94 between WM capacity and brain activity underlying an auditory mismatch-negativity (MMN)  
95 task. The authors found that participants with higher WM scores showed enhanced MMN  
96 responses in frontal regions, but not in temporal areas. Notably, this investigation evidenced  
97 the relationship between auditory short-term and working memory.

98 Long-term memory refers to the ability to recall information that has been encoded and  
99 stored in the past <sup>7, 21</sup>. Research on this cognitive function has emphasized the distinct  
100 features of several types of long-term memory, namely episodic, semantic, and procedural  
101 memory <sup>22, 23</sup>. These are classified according to the kind of information they hold (e.g.,  
102 personal experiences in the case of episodic memory, factual knowledge for semantic  
103 memory) <sup>24, 25</sup> and how this information is encoded (e.g., skill acquisition in procedural  
104 memory) <sup>26</sup>.

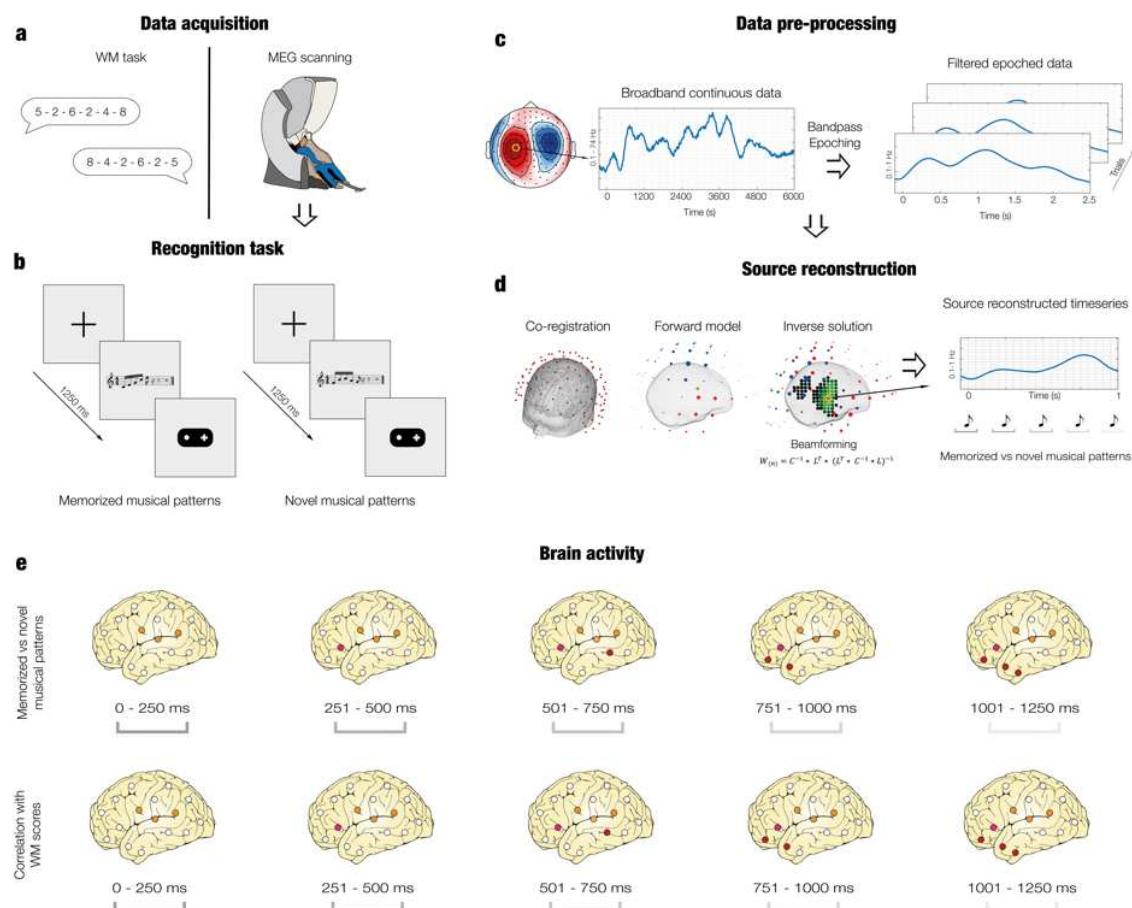
105 The neural underpinnings of long-term memory rest primarily upon medial temporal  
106 lobe structures (hippocampus, entorhinal, perihinal and parahippocampal cortices) <sup>2, 21</sup> and  
107 interact with the prefrontal cortex for successful memory retrieval <sup>27</sup>. Moreover,  
108 consolidation, the process of transforming temporary information into long-lasting memories  
109 and a central aspect of long-term memory, is achieved through the interactions between the  
110 hippocampus and neocortex <sup>28, 29</sup>. Converging evidence suggests that, in the case of auditory  
111 long-term memory, the primary auditory cortex also supports the storage of information <sup>30</sup>.

112 Although previous investigations have mainly examined the neuroanatomical bases of  
113 the memory subsystems in isolation, a few studies have looked into the associations between  
114 them. For instance, Henson and Gagnepain <sup>31</sup> highlighted the interaction between different  
115 memory subsystems, both in terms of behavior and neural substrate. They focused especially  
116 on episodic, semantic, and modality-specific perceptual subsystems, claiming that their  
117 successful interaction is crucial for performing memory tasks. Similarly, Poldrack and  
118 colleagues <sup>32</sup> demonstrated the interaction and competition between memory subsystems  
119 during classification learning in humans. Specifically, they observed that the basal ganglia  
120 and medial temporal lobe were differently engaged depending on the emphasis on declarative  
121 or non-declarative memory and showed that the interaction between these structures was  
122 necessary to perform the task. In a review focusing on pharmacological and neurochemical  
123 studies, Gold <sup>33</sup> proposed that the release of acetylcholine in different memory subsystems  
124 showed extensive interactions between them, which could be cooperative or competitive. He  
125 concluded that different memory and neural systems tended to interact extensively, even  
126 when described as relatively independent. Finally, White and McDonald <sup>34</sup> described a theory  
127 of multiple parallel memory subsystems in the rat brain localized in the hippocampus,  
128 caudate-putamen, and amygdala. The authors claimed that all subsystems had access to the  
129 same information during learning, but that each subsystem represented a different  
130 relationship between the information features. In their view, these memory subsystems  
131 interacted by simultaneous parallel influence on behavioral output and by directly affecting

132 each other in a cooperative or competitive manner. Overall, these investigations have yielded  
133 considerable insights into the relationships between memory subsystems, but we still lack  
134 information on the brain correlates underlying these interactions.

135 Thus, in our study we aimed to investigate the relationship between two of the most  
136 important memory subsystems, WM and long-term memory, emphasizing their  
137 interdependence. To this end, we correlated the scores from a widely used WM measure with  
138 the neural activity underlying tone-by-tone recognition of previously memorized sequences  
139 from three different musical pieces. We hypothesized to observe stronger brain activity  
140 underlying auditory sequence recognition in individuals with greater WM abilities, especially  
141 in brain structures that have been previously associated to memory processes, such as the  
142 prefrontal cortex and hippocampus. Additionally, we expected WM capacity to be positively  
143 correlated with behavioral responses in the auditory recognition task.

144


145 **Results**

146 **Experimental design**

147 Participants performed an old/new auditory recognition task<sup>35-37</sup>. During the encoding phase,  
148 participants listened to three musical pieces and were instructed to memorize them as much  
149 as possible. In the recognition phase, short musical sequences selected from the pieces (i.e.,  
150 memorized musical sequences) and novel musical sequences were presented. For each of the  
151 sequences, participants stated whether they memorized or novel. Their brain activity was  
152 recorded using magnetoencephalography (MEG) during the recognition task. Structural  
153 magnetic resonance imaging (MRI) images were collected for each participant and combined  
154 with the MEG data to reconstruct the sources using a beamforming approach, which  
155 generated the signal that recorded over the MEG channels. Finally, participants' WM abilities  
156 were measured using the Digit Span and Arithmetic subtests from the Wechsler Adult  
157 Intelligence Scale (WAIS-IV)<sup>38</sup>. **Figure 1** shows a graphical depiction of the experimental  
158 design and analysis pipeline.

159

160



161

162

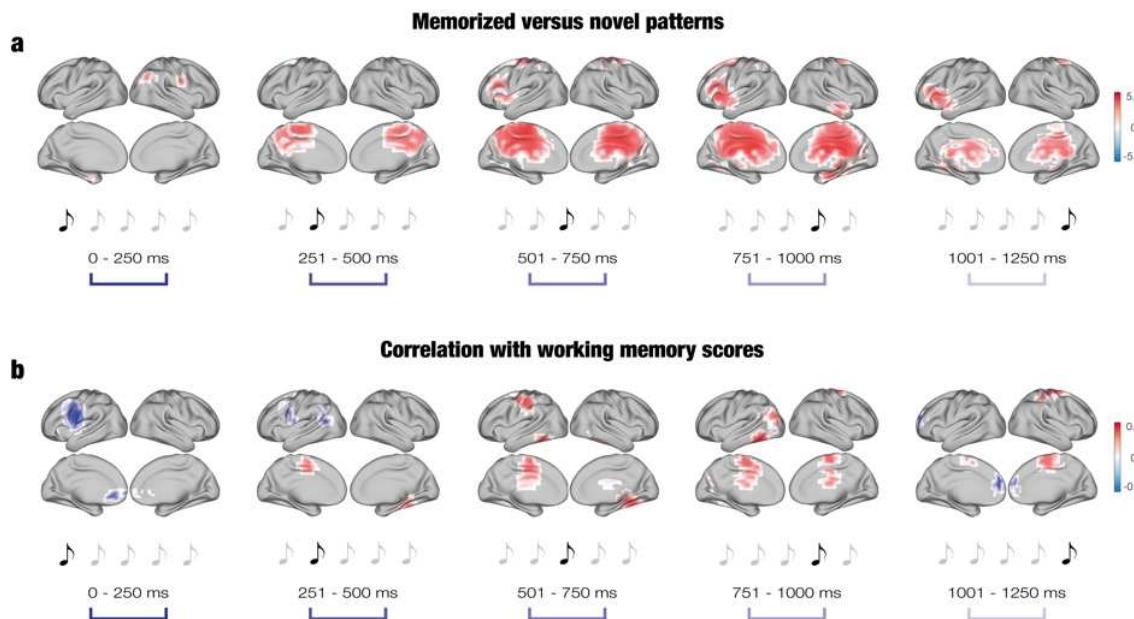
163 **Figure 1. Experimental stimuli and design, and data analyses overview**

164 **a** – The data acquisition comprised two parts: a working memory (WM) task completed outside the scanner and  
165 an old/new auditory recognition task that was carried out during MEG recording. **b** – Illustration of the old/new  
166 auditory recognition task performed in the MEG scanner. After listening to three full musical pieces,  
167 participants were presented with melodic excerpts that were extracted from the pieces they previously learned or  
168 with new melodies, and were asked to state whether each melody was memorized or novel using a joystick. **c** –  
169 The broadband continuous neural data was preprocessed, bandpass filtered (0.1-1Hz), and epoched. **d** – Source  
170 reconstruction analyses were performed to isolate the contribution of each brain source to the neural activity  
171 recorded by the MEG sensors. Preprocessed MEG and MRI data were co-registered. After that, a forward model  
172 was computed, and the inverse solution was estimated using a beamforming approach. **e** – Contrasts between  
173 memorized and novel auditory sequences were calculated for each musical tone (top row). Pearsons'  
174 correlations between WM scores and brain activity underlying recognition of memorized versus novel auditory  
175 sequences were computed (bottom row).

176

177

178 **Brain activity underlying recognition of previously memorized versus novel musical  
179 sequences**


180 Before evaluating the relationship between WM abilities and brain activity underlying  
181 musical sequence recognition, which was the main aim of the current work, we wished to  
182 replicate the established finding<sup>35-37</sup> that recognition of previously memorized versus novel  
183 auditory sequences is associated to a stronger activation in a widespread network of brain  
184 areas.

185 First, we sub-averaged the brain data in five time-windows, corresponding to the  
186 duration of the five tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms,  
187 751 – 1000 ms, 1001 – 1250 ms). Second, independently for the five time-windows, we  
188 computed one t-test for each brain source, contrasting the brain activity underlying  
189 recognition of previously memorized versus novel musical sequences. Third, we corrected for  
190 multiple comparisons by using cluster-based Monte-Carlo simulations (MCS).

191 Significant clusters of activity ( $p < .001$ ) were located across a number of brain voxels  
192 ( $k$ ) for each tone of the musical sequences. As expected, the main clusters were observed for  
193 the third ( $k = 284$ ), fourth ( $k = 390$ ), and fifth tones ( $k = 125$ ). The strongest differences  
194 between the two conditions were localized in the middle cingulate gyrus, precuneus, insula,  
195 hippocampal regions, orbitofrontal cortex, and frontal operculum.

196 Detailed statistics and information for each voxel forming the significant clusters are  
197 reported in **Table ST1**, while a graphical depiction of the results is illustrated in **Figure 2a**.

198



199

200

201 **Figure 2. Brain activity underlying the recognition of auditory sequences and correlation with WM**  
202 **scores**

203 **a** – Significant brain activity underlying recognition of the musical sequences. The activity is depicted in brain  
204 templates in five subsequent time windows corresponding to the duration of each musical tone forming the  
205 sequences (as illustrated by the sketched musical tones above the time windows). The colorbar shows the t-  
206 values resulting from the contrast between memorized and novel auditory sequences. **b** – Significant Pearson's  
207 correlations between the brain activity underlying recognition of the sequences and WM scores. The correlations  
208 are depicted in brain templates in five subsequent time windows corresponding to the duration of each musical  
209 tone forming the sequences (as illustrated by the sketched musical tones above the time windows). The colorbar  
210 shows the Pearson's correlation coefficient obtained by correlating the brain activity underlying recognition of  
211 the previously memorized versus novel auditory sequences with the WM scores.

212

213

214 **WM abilities and brain activity underlying musical sequence recognition**

215 The main aim of the study was to establish whether there was a significant relationship  
216 between WM abilities and brain activity underlying tone-by-tone recognition of musical  
217 sequences.

218 Before computing neural data analyses, we calculated a Pearson's correlation between  
219 the number of correctly recognized auditory sequences in the MEG task and the individual  
220 WM scores. The analysis returned a non-significant result ( $\rho = .16$ ,  $p = .18$ ).

221 To address our experimental question, we computed Pearson's correlations between  
222 participants' WM scores and each of the reconstructed brain sources. We corrected for  
223 multiple comparison using cluster-based Monte-Carlo simulations (MCS). This procedure  
224 was computed independently for five time-windows, corresponding to the duration of the five  
225 tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms, 751 – 1000 ms,  
226 1001 – 1250 ms; see Methods for details).

227 Significant clusters of activity ( $p < .05$ ) were located in different brain regions and  
228 depicted an overall positive correlation between WM abilities and brain activity underlying  
229 recognition of memorized musical sequences. This difference returned consistent clusters in  
230 the middle cingulate gyrus, inferior temporal cortex, fusiform-temporal cortex, para-  
231 hippocampal gyrus, and temporal-occipital fusiform cortex, especially for the third ( $k = 83$ )  
232 and fourth ( $k = 83$ ) tones of the musical sequences.

233 Detailed statistics and information for each voxel forming the significant clusters are  
234 reported in **Table ST2**, while a graphical depiction of the results is illustrated in **Figure 2b**.

235 **Discussion**

236 In this study, we assessed the relationship between individual WM abilities and brain activity  
237 underlying long-term recognition of auditory sequences.

238 First, we identified the brain activity associated to recognition of previously memorized  
239 versus novel auditory sequences. This analysis revealed a widespread network of brain areas  
240 involved in the recognition process including the cingulate gyrus, hippocampus, insula,  
241 inferior temporal cortex, frontal operculum, and orbitofrontal cortex. Remarkably, the  
242 cingulate gyrus (especially the posterior part) was significantly more active for memorized  
243 than for novel sequences by the second tone of the sequence. Moreover, this region was  
244 strongly active during processing of the rest of the sequence, although its activity decreased  
245 in the last tone. Conversely, the insula, inferior temporal cortex and hippocampal areas were  
246 mainly active during the third, fourth and fifth tones of the auditory sequence.

247 Second, we correlated the brain activity underlying recognition of memorized versus  
248 novel sequences with the participants' WM scores. In general, we observed positive  
249 correlations between brain activity and WM capacity. The analyses returned a sustained  
250 positive correlation in the medial cingulate gyrus, a brain region strongly involved in the  
251 auditory sequence recognition. Notably, we also observed positive correlations in the inferior  
252 temporal, temporal-fusiform and postcentral gyri. These brain areas were not strongly  
253 associated to auditory sequence recognition and suggest that high WM performers may  
254 recruit a larger brain network to successfully complete memory recognition tasks.

255 Our results on the whole-brain mechanisms for auditory recognition are coherent with  
256 previous studies that employed the same paradigm. For instance, using part of the current  
257 dataset, Bonetti et al.<sup>35, 36</sup> and Fernández Rubio et al.<sup>37</sup> highlighted the crucial role of the  
258 cingulate gyrus, hippocampus, insula, inferior temporal cortex, and frontal operculum for the  
259 recognition of auditory sequences. The replication of previous findings encouraged us to  
260 further investigate the relationship between brain activity underlying auditory sequence  
261 recognition and individual WM skills.

262 Overall, this study showed a series of positive correlations between brain activity and  
263 WM abilities, suggesting that memory subsystems are coherently connected to each other.  
264 This is particularly interesting since the recognition task employed in the study used musical  
265 stimuli, while the WM measure was based on numbers. This link between different  
266 subsystems of memory is in line with previous research. As previously mentioned, the nature  
267 of the interactions between subsystems may be cooperative or competitive<sup>32, 33</sup> and is

268 essential to perform memory tasks efficiently <sup>31</sup>. Furthermore, different brain areas are  
269 involved depending on the memory process that is emphasized (declarative versus non-  
270 declarative) <sup>32</sup>. Finally, White and McDonald's <sup>34</sup> study localized multiple parallel memory  
271 subsystems in the rat's hippocampus, caudate-putamen and amygdala, and proposed that  
272 these subsystems share information during learning, but represent its features differently.

273 Of particular interest in this study are the brain areas that were connected to WM. The  
274 activity recorded in the medial cingulate gyrus presented a sustained positive correlation with  
275 WM scores. This is coherent with previous studies linking cingulate gyrus' activity to  
276 memory and musical tasks. As mentioned earlier, in the auditory domain, the cingulate  
277 played a crucial role in auditory sequence encoding <sup>39</sup> and recognition <sup>35-37</sup>. Moreover, a  
278 recent meta-analysis revealed that the cingulate gyrus is central for general music processing  
279 and particularly for sound imagination <sup>40</sup>. Beyond the auditory system, the cingulate gyrus  
280 has been reported in memory studies employing visual or abstract information. For instance,  
281 it has been suggested that diverse parts of the cingulate gyrus are differently involved in  
282 memory processes. According to this view, the anterior part of the cingulate is primarily  
283 connected to the orbitofrontal cortex and handles abstract, reward outcomes, while the  
284 posterior cingulate is integrated within the hippocampal and occipital systems and therefore  
285 highly relevant for memory processing of visual stimuli <sup>41, 42</sup>. Similarly, in a recent fMRI  
286 study, Di and colleagues <sup>43</sup> showed that the anterior cingulate gyrus was functionally  
287 connected to the middle frontal gyrus and superior parietal lobule during a demanding, WM  
288 task. Conversely, this connectivity was reduced in resting state, suggesting the relevance of  
289 the cingulate gyrus during memory tasks.

290 Other brain structures correlated with WM abilities were the inferior temporal and  
291 temporal-fusiform gyri and the postcentral gyrus. This result is of great interest because these  
292 brain structures did not play a major role in the recognition of auditory sequences. Indeed,  
293 while the cingulate gyrus was largely active, we previously observed a relatively small  
294 contribution of inferior temporal and postcentral gyri to auditory sequence recognition <sup>35-37</sup>.  
295 Moreover, the temporal-fusiform gyrus has not been previously associated to auditory  
296 recognition processes. This suggests that individuals with higher WM abilities recruited a  
297 larger brain network during recognition of auditory sequences, which may provide an  
298 advantage for auditory recognition. However, since there were no significant differences in  
299 the behavioral performance of the recognition task, future studies are called to better  
300 understand whether and how this recruitment of additional brain areas is beneficial for  
301 individuals with high WM capacity.

302 Previous literature has shown the involvement of inferior temporal and temporal-  
303 fusiform gyri and postcentral gyrus in visual memory tasks. In the past decades, the inferior  
304 temporal cortex has been widely connected to visual perception and memory in both humans  
305 and monkeys <sup>44</sup>. Specifically, several studies demonstrated the involvement of the inferior  
306 temporal cortex in representational memory and recognition of complex visual patterns <sup>44, 45</sup>.  
307 More recently, Costers and colleagues <sup>46</sup> reported the involvement of left and right inferior  
308 temporal and parahippocampal gyri in a multi-item WM task. Activity in the inferior  
309 temporal gyrus has been repeatedly observed in visual memory tasks, while its involvement  
310 in the auditory domain is less established. Importantly, here we revealed that the inferior  
311 temporal cortex plays a significant role in auditory recognition, at least in individuals with  
312 superior WM skills.

313 The fusiform gyrus has been historically connected to recognition in the visual domain,  
314 especially in relation to faces <sup>47-50</sup>. However, recent studies demonstrated its involvement in  
315 the recognition and processing of more general visual stimuli, such as letters <sup>51</sup>, and when  
316 performing elaborated associative learning tasks <sup>52</sup>.

317 The postcentral gyrus is a brain area mainly associated to motor control <sup>53, 54</sup>, yet  
318 evidence points to its contribution to memory processes. For instance, in a visual encoding  
319 task, a vast network of brain areas was active, including the postcentral gyrus <sup>55</sup>. Similarly, in  
320 a recognition task of short sentences, supramarginal and postcentral gyrus activity was  
321 reported <sup>56</sup>. Another study demonstrated the involvement of the postcentral gyrus in a WM  
322 and especially in a visual attention task <sup>57</sup>. Notably, similar to the inferior temporal gyrus,  
323 previous literature reported activation of the postcentral gyrus mainly in relation to visual  
324 memory, while this study showed its involvement during recognition of auditory temporal  
325 sequences.

326 In conclusion, we discovered a positive correlation between individual WM abilities and  
327 brain activity underlying recognition of memorized auditory sequences, increasing our  
328 knowledge on the relationships between different memory subsystems. Future studies are  
329 encouraged to replicate our results and expand them by investigating the relationship between  
330 the brain mechanisms underlying recognition of temporal sequences and the brain processes  
331 associated to WM tasks.

332 **Materials and methods**

333

334 **Data and code availability**

335 The codes are available on GitHub (<https://github.com/leonardob92/LBPD-1.0.git>). The  
336 anonymized neuroimaging data from the experiment will be made available upon reasonable  
337 request.

338

339 **Participants**

340 We recruited 71 participants (38 males and 33 females) who took part in the experiment on a  
341 voluntary basis. They were aged 18 to 42 years old (mean age:  $25 \pm 4.10$  years). All  
342 participants were healthy and had normal hearing. Participants came from Western countries  
343 and had homogenous educational and socioeconomic backgrounds. Before starting the  
344 experimental procedures, participants gave their informed consent.

345 This study was a part of a larger project focused on brain dynamics underlying encoding  
346 and recognition of musical patterns. This project produced several studies <sup>35-37, 39</sup>. In the  
347 current work, we used the brain activity data underlying recognition of musical patterns that  
348 was previously reported in Bonetti et al. <sup>35, 36</sup> and Fernández Rubio et al. <sup>37</sup> The project was  
349 approved by the Ethics Committee of the Central Denmark Region (De Videnskabsetiske  
350 Komitéer for Region Midtjylland, Ref 1-10-72-411-17). Moreover, the experimental  
351 procedures complied with the Declaration of Helsinki – Ethical Principles for Medical  
352 Research.

353

354 **Experimental stimuli and design**

355 The study aimed at investigating the relationship between brain activity during a memory  
356 recognition task and working memory (WM) abilities (**Figure 1**).

357 The brain activity was measured using magnetoencephalography (MEG) while  
358 participants performed an old/new auditory recognition task. The task consisted of an  
359 encoding phase during which participants memorized a musical piece, and a recognition  
360 phase in which they recognized excerpts from the piece. In the encoding phase, participants  
361 were exposed to four repetitions of a full musical piece and were asked to memorize it as  
362 much as they could. The musical piece lasted for approximately 2.5 minutes. The total  
363 duration of the learning phase was approximately 10 minutes. For the recognition phase, 40  
364 short excerpts (5-tone musical sequences, 1250 ms of duration in total) were extracted from

365 the musical piece and 40 novel musical sequences were created. The resulting 80 sequences  
366 were presented in a randomized order. For each of them, participants were instructed to state  
367 whether the sequence was extracted from the musical piece they previously learned  
368 (memorized sequence) or whether it was a new sequence (novel sequence). To prevent from  
369 potential confounds, memorized and novel sequences were matched among several variables,  
370 including rhythm, timbre, volume, meter, tempo, number and duration of musical tones,  
371 tonality, information content (*IC*) and entropy (*H*).

372 This task was conducted independently for three musical pieces composed in different  
373 musical tonalities, with the aim of collecting a copious amount of data and increase the  
374 reliability of our findings. The three musical pieces were the right-hand part of J. S. Bach's  
375 Prelude No. 1 in C minor BWV 847 (hereafter referred to as the "minor prelude"), the right-  
376 hand part of J. S. Bach's Prelude No. 1 in C major BWV 846 (hereafter referred to as the  
377 "major prelude"), and an atonal version of the "major prelude" (hereafter referred to as the  
378 "atonal prelude"). All the pieces had the same duration. The atonal piece was composed by  
379 LB following a systematic change of pitch of the tones of the major prelude. Additional  
380 details on this procedure can be found in Fernández Rubio et al.<sup>37</sup>

381 MIDI versions of the three pieces used in the encoding phase and the musical sequences  
382 used in the recognition phase were created using Finale (MakeMusic, Boulder, CO) and  
383 presented to the participants through Presentation software (Neurobehavioural Systems,  
384 Berkeley, CA).

385 The WM abilities were assessed with the Wechsler Adult Intelligence Scale IV (WAIS-  
386 IV)<sup>38</sup>, one of the most widely used tests to assess cognitive abilities. WAIS-IV comprises  
387 four main indices: Working Memory, Verbal Comprehension, Perceptual Reasoning, and  
388 Processing Speed. In this study, we used the two primary subtests of the Working Memory  
389 index: Digit Span and Arithmetic. In the Digit Span subtest, participants are required to  
390 repeat sequences of numbers either in the same order, backwards, or in ascending order,  
391 immediately after hearing them. In the Arithmetic subtest, participants have to solve  
392 mathematical problems without using any external aids (e.g., calculator, pen, etc.). These  
393 tests were performed outside the scanner.

394

### 395 **Data acquisition**

396 The MEG data was recorded in a magnetically shielded room located at the Aarhus  
397 University Hospital (Denmark) with an Elekta Neuromag TRIUX MEG scanner equipped  
398 with 306 channels (Elekta Neuromag, Helsinki, Finland). The data was collected at a

399 sampling rate of 1000 Hz with an analogue filtering of 0.1 – 330 Hz. Before starting the  
400 experiment, we recorded the participants' headshape and position of four Head Position  
401 Indicator (HPI) coils with respect to three anatomical landmarks (nasion and left and right  
402 preauricular points) using a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). We used  
403 this information in a later stage of the analysis pipeline to co-register the MEG data with the  
404 MRI anatomical images. During the MEG experiment, the HPI coils recorded the continuous  
405 head localization, which was subsequently used to compensate for participants' movement  
406 inside the MEG scanner. Moreover, two sets of bipolar electrodes were employed to record  
407 cardiac rhythm and eye movements. These were later used to remove electrooculography  
408 (EOG) and electrocardiography (ECG) artifacts.

409 The MRI scans were acquired on a CE-approved 3T Siemens MR-scanner at Aarhus  
410 University Hospital (Denmark). We recorded a structural T1 with a spatial resolution of 1.0 x  
411 1.0 x 1.0 mm and the following sequence parameters: echo time (TE) = 2.96 ms, repetition  
412 time (TR) = 5000 ms, bandwidth = 240 Hz/Px, reconstructed matrix size = 256 x 256.

413 The MEG and MRI recordings were acquired in two separate sessions.

414

#### 415 **Data preprocessing**

416 The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was  
417 preprocessed by MaxFilter<sup>58</sup> in order to suppress external artifacts interfering with the  
418 magnetic field produced by the brain activity. Using MaxFilter, the data was also corrected  
419 for head motion and downsampled to 250 Hz. We then converted the data into Statistical  
420 Parametric Mapping (SPM)<sup>59</sup> format and further analyzed it in MATLAB (MathWorks,  
421 Natick, MA, USA) using the Oxford Centre for Human Brain Activity (OHBA) Software  
422 Library (OSL, <https://ohba-analysis.github.io/osl-docs/>), a freely available software that  
423 builds upon Fieldtrip<sup>60</sup>, FSL<sup>61</sup>, and SPM toolboxes, and in-house-built functions. We  
424 applied a notch filter to the data (48 – 52 Hz) to correct for inferences of the electric current.  
425 The signal was further downsampled to 150 Hz and the continuous MEG data was visually  
426 inspected to control for artifacts. To remove EOG and ECG components, we computed  
427 independent component analysis (ICA), isolated and discarded the components that picked up  
428 the EOG and ECG activity and reconstructed the signal with the remaining components. We  
429 then bandpass-filtered the data in the 0.1 – 1 Hz band, since we had previously shown<sup>35-37</sup>  
430 that activity in this slow frequency is mainly associated with the recognition of musical  
431 sequences. The data was subsequently epoched into 80 trials (40 memorized and 40 novel  
432 musical sequences), independently for the recognition of the three musical preludes. Then,

433 we merged the three datasets, obtaining 240 trials (120 memorized and 120 novel musical  
434 sequences) without differentiating between the three musical preludes. Here, each trial lasted  
435 3500 ms (3400 ms plus 100 ms of baseline time) and further analyses were performed on  
436 correctly identified trials only.

437

#### 438 **Source reconstruction**

439 After computing the preprocessing of the data, we estimated the brain sources which  
440 generated the signal recorded by the MEG. This procedure was carried out by designing a  
441 forward model and computing the inverse solution using beamforming algorithms) **Figure 1**  
442 shows an illustration of the source reconstruction pipeline.

443 First, using the information collected with the 3D digitizer, the MEG data and the  
444 individual T1-weighted images were co-registered, independently for each participant. We  
445 used the MNI152-T1 standard template with 8-mm spatial resolution in the case of four  
446 participants whose individual anatomical scans were not available.

447 Second, we computed a single shell forward model using an 8-mm grid. This theoretical  
448 head model considers each brain source as an active dipole and calculates how a unitary  
449 strength of such dipoles would be reflected over the MEG sensors <sup>62</sup>. Then, we used a  
450 beamforming algorithm as inverse model. This is one of the most used algorithms for  
451 reconstructing the brain sources from MEG channels' data. It consists of employing a  
452 different set of weights based on the forward model and the covariance between the MEG  
453 channels. Afterwards, these weights are sequentially applied to the source locations (dipoles)  
454 for computing the contribution of each source to the activity recorded by the MEG channels,  
455 independently for each time point <sup>63-65</sup>.

456

#### 457 **Brain activity underlying recognition of previously memorized versus novel musical 458 sequences**

459 Before evaluating the relationship between WM abilities and brain activity underlying  
460 musical sequence recognition, which was the main aim of the current work, we wished to  
461 replicate the established finding <sup>35-37</sup> that recognition of previously memorized versus novel  
462 auditory sequences is associated to a stronger activation of a widespread network of brain  
463 areas.

464 Thus, we first sub-averaged the brain data in five time-windows corresponding to the  
465 duration of the five tones of the musical sequences (0 – 250 ms, 251 – 500 ms, 501 – 750 ms,  
466 751 – 1000 ms, 1001 – 1250 ms). Second, independently for the five time-windows, we

467 computed one t-test for each brain source, contrasting the brain activity underlying  
468 recognition of previously memorized versus novel musical sequences. Third, we corrected for  
469 multiple comparisons using cluster-based Monte-Carlo simulations (MCS).

470 Cluster-based MCS returned the spatial clusters of brain sources that exhibited a  
471 significantly different activity between our two experimental conditions ( $\alpha = .001$ ). Then, the  
472 significant brain voxels emerged from the previous t-tests were shuffled in space and the  
473 maximum cluster size was measured. Repeating this procedure for each of the 1000  
474 permutations used in the MCS analysis, we built a reference distribution of the maximum  
475 cluster sizes computed in the permuted data. Then, the original cluster sizes were compared  
476 to the reference distribution and were considered significant only if their size was bigger than  
477 the 95% of the maximum cluster sizes of the permuted data.

478

#### 479 **WM abilities and brain activity underlying recognition of musical sequences**

480 Before computing neural data analyses, we inspected whether there was a relationship  
481 between recognition accuracy and WM skills. To this aim, we computed a Pearson's  
482 correlation between the individual WM scores (from WAIS-IV) and the number of correctly  
483 recognized auditory sequences in the MEG task.

484 To determine the relationship between WM abilities and brain activity underlying  
485 recognition of musical sequences, we computed Pearson's correlations between participants'  
486 WM scores and each of the reconstructed brain sources. We corrected for multiple  
487 comparisons using cluster-based MCS analogous to the ones described in the previous  
488 subsection. This procedure was computed independently for five-time windows that  
489 corresponded to the duration of the five tones of the musical sequences (0 – 250 ms, 251 –  
490 500 ms, 501 – 750 ms, 751 – 1000 ms, 1001 – 1250 ms). Cluster-based MCS returned the  
491 spatial clusters of active brain sources during recognition of musical sequences that  
492 significantly correlated ( $\alpha = .05$ ) with the participants' WM abilities. For each of the five  
493 MCS, the data was sub-averaged in the correspondent time window (as reported above) and  
494 the brain activity underlying recognition of novel sequences was subtracted from the brain  
495 activity underlying recognition of memorized sequences. In this way, we correlated the WM  
496 scores with the brain activity that was associated to the recognition of the sole memorized  
497 sequences. Then, the significant brain voxels emerged from the previous correlations were  
498 shuffled in space and the maximum cluster size was measured. Repeating this procedure for  
499 each of the 1000 permutations used in the MCS analysis, we built a reference distribution of  
500 the maximum cluster sizes computed in the permuted data. Then, the original cluster sizes

501 were compared to the reference distribution and were considered significant only if their size  
502 was bigger than the 95% of the maximum cluster sizes of the permuted data.

503 **Acknowledgements**

504 The Center for Music in the Brain (MIB) is funded by the Danish National Research  
505 Foundation (project number DNRF117).

506 LB is supported by Carlsberg Foundation (CF20-0239), Center for Music in the Brain,  
507 Linacre College of the University of Oxford, and Society for Education and Music  
508 Psychology (SEMPRE's 50th Anniversary Awards Scheme).

509 MLK is supported by Center for Music in the Brain and Centre for Eudaimonia and  
510 Human Flourishing funded by the Pettit and Carlsberg Foundations.

511 We thank Giulia Donati, Riccardo Proietti, Giulio Carraturo, Mick Holt, and Holger  
512 Friis for their assistance in the neuroscientific experiment. We also thank psychologist  
513 Tina Birgitte Wisbech Carstensen for her help with the administration of psychological  
514 tests and questionnaires.

515 Finally, we thank the Fundación Mutua Madrileña for the economic support provided  
516 to the author Gemma Fernández Rubio and the University of Bologna for the economic  
517 support provided to student assistants Giulia Donati, Riccardo Proietti, and Giulio  
518 Carraturo.

519 **Data availability**

520

521 The codes are available on GitHub (<https://github.com/leonardob92/LBPD-1.0.git>). The  
522 anonymized neuroimaging data from the experiment can be made available upon reasonable  
523 request.

524 **Author contributions**

525

526 LB, GFR, MLK, FC, and PV conceived the hypotheses and designed the study. LB,  
527 GFR, and FC performed pre-processing and statistical analysis. LB, MLK, and PV  
528 provided essential help to interpret and frame the results within the neuroscientific  
529 literature. LB, GFR, and FC wrote the first draft of the manuscript and prepared the  
530 figures. All the authors contributed to and approved the final version of the manuscript.

531

532

533 **References**

- 534 1. Squire, L.R. Memory systems of the brain: a brief history and current perspective.  
535 *Neurobiol Learn Mem* **82**, 171-7; 10.1016/j.nlm.2004.06.005 (2004).
- 536 2. Squire, L.R., Stark, C.E., & Clark, R.E. The medial temporal lobe. *Annual Review of*  
537 *Neuroscience* **27**, 279-306; (2004).
- 538 3. Eichenbaum, H., Yonelinas, A.P., & Ranganath, C. The medial temporal lobe and  
539 recognition memory. *Annual Review of Neuroscience* **30**, 123-52;  
540 10.1146/annurev.neuro.30.051606.094328 (2007).
- 541 4. Narayanan, N.S., Prabhakaran, V., Bunge, S.A., Christoff, K., Fine, E.M., & Gabrieli,  
542 J.D. The role of the prefrontal cortex in the maintenance of verbal working memory: an  
543 event-related FMRI analysis. *Neuropsychology* **19**, 223-32; 10.1037/0894-  
544 4105.19.2.223 (2005).
- 545 5. Foerde, K., & Shohamy, D. The role of the basal ganglia in learning and memory: insight  
546 from Parkinson's disease. *Neurobiol Learn Mem* **96**, 624-36; 10.1016/j.nlm.2011.08.006  
547 (2011).
- 548 6. Izquierdo, I., Barros, D.M., Mello e Souza, T., de Souza, M.M., Izquierdo, L.A., &  
549 Medina, J.H. Mechanisms for memory types differ. *Nature* **393**, 635-6; 10.1038/31371  
550 (1998).
- 551 7. Cowan, N. What are the differences between long-term, short-term, and working  
552 memory? *Progress in Brain Research* **169**, 323-338; (2008).
- 553 8. Poldrack, R.A., & Packard, M.G. Competition among multiple memory systems:  
554 converging evidence from animal and human brain studies. *Neuropsychologia* **41**, 245-  
555 251; (2003).
- 556 9. Wilhelm, O., Hildebrandt, A.H., & Oberauer, K. What is working memory capacity, and  
557 how can we measure it? *Frontiers in Psychology* **4**, 433; (2013).
- 558 10. Baddeley, A. Working memory. *Current Biology* **20**, R136-R140; (2010).
- 559 11. Cowan, N. An embedded-processes model of working memory. (1999).
- 560 12. Baddeley, A.D., & Hitch, G., *Working memory*, in *Psychology of learning and*  
561 *motivation*. 1974, Elsevier. p. 47-89.
- 562 13. Baddeley, A.D., & Logie, R.H. Working memory: The multiple-component model.  
563 (1999).
- 564 14. Baddeley, A. The episodic buffer: a new component of working memory? *Trends in*  
565 *Cognitive Sciences* **4**, 417-423; (2000).

566 15. Jaeggi, S.M., Buschkuhl, M., Perrig, W.J., & Meier, B. The concurrent validity of the  
567 N-back task as a working memory measure. *Memory* **18**, 394-412; (2010).

568 16. Dobbs, A.R., & Rule, B.G. Adult age differences in working memory. *Psychology and*  
569 *Aging* **4**, 500-3; 10.1037/0882-7974.4.4.500 (1989).

570 17. Chai, W.J., Abd Hamid, A.I., & Abdullah, J.M. Working Memory From the  
571 Psychological and Neurosciences Perspectives: A Review. *Frontiers in Psychology* **9**,  
572 401; 10.3389/fpsyg.2018.00401 (2018).

573 18. Kumar, S., Joseph, S., Gander, P.E., Barascud, N., Halpern, A.R., & Griffiths, T.D. A  
574 Brain System for Auditory Working Memory. *Journal of Neuroscience* **36**, 4492-505;  
575 10.1523/JNEUROSCI.4341-14.2016 (2016).

576 19. Albouy, P., Weiss, A., Baillet, S., & Zatorre, R.J. Selective Entrainment of Theta  
577 Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory  
578 Performance. *Neuron* **94**, 193-206 e5; 10.1016/j.neuron.2017.03.015 (2017).

579 20. Bonetti, L., Haumann, N.T., Brattico, E., Kliuchko, M., Vuust, P., Sarkamo, T., &  
580 Naatanen, R. Auditory sensory memory and working memory skills: Association  
581 between frontal MMN and performance scores. *Brain Research* **1700**, 86-98;  
582 10.1016/j.brainres.2018.06.034 (2018).

583 21. Jeneson, A., & Squire, L.R. Working memory, long-term memory, and medial temporal  
584 lobe function. *Learning and Memory* **19**, 15-25; 10.1101/lm.024018.111 (2012).

585 22. Humphreys, M.S., Bain, J.D., & Pike, R. Different ways to cue a coherent memory  
586 system: A theory for episodic, semantic, and procedural tasks. *Psychological Review* **96**,  
587 208; (1989).

588 23. Tulving, E. How many memory systems are there? *American Psychologist* **40**, 385;  
589 (1985).

590 24. Tulving, E. Episodic memory: from mind to brain. *Annual Review of Psychology* **53**, 1-  
591 25; 10.1146/annurev.psych.53.100901.135114 (2002).

592 25. Binder, J.R., & Desai, R.H. The neurobiology of semantic memory. *Trends in Cognitive*  
593 *Sciences* **15**, 527-536; (2011).

594 26. Cohen, M.D., & Bacdayan, P. Organizational routines are stored as procedural memory:  
595 Evidence from a laboratory study. *Organization science* **5**, 554-568; (1994).

596 27. Simons, J.S., & Spiers, H.J. Prefrontal and medial temporal lobe interactions in long-  
597 term memory. *Nature reviews neuroscience* **4**, 637-648; (2003).

598 28. Squire, L.R., Genzel, L., Wixted, J.T., & Morris, R.G. Memory consolidation. *Cold*  
599 *Spring Harbor Perspectives in Biology* **7**, a021766; 10.1101/cshperspect.a021766  
600 (2015).

601 29. Wiltgen, B.J., Brown, R.A., Talton, L.E., & Silva, A.J. New circuits for old memories:  
602 the role of the neocortex in consolidation. *Neuron* **44**, 101-8;  
603 10.1016/j.neuron.2004.09.015 (2004).

604 30. Weinberger, N.M. Specific long-term memory traces in primary auditory cortex. *Nature*  
605 *Reviews Neuroscience* **5**, 279-290; (2004).

606 31. Henson, R.N., & Gagnepain, P. Predictive, interactive multiple memory systems.  
607 *Hippocampus* **20**, 1315-26; 10.1002/hipo.20857 (2010).

608 32. Poldrack, R.A., Clark, J., Pare-Blagoev, E.J., Shohamy, D., Crespo Moyano, J., Myers, C.,  
609 & Gluck, M.A. Interactive memory systems in the human brain. *Nature* **414**, 546-50;  
610 10.1038/35107080 (2001).

611 33. Gold, P.E. Coordination of multiple memory systems. *Neurobiol Learn Mem* **82**, 230-  
612 42; 10.1016/j.nlm.2004.07.003 (2004).

613 34. White, N.M., & McDonald, R.J. Multiple parallel memory systems in the brain of the rat.  
614 *Neurobiol Learn Mem* **77**, 125-84; 10.1006/nlme.2001.4008 (2002).

615 35. Bonetti, L., Brattico, E., Carlomagno, F., Cabral, J., Stevner, A., Deco, G., Whybrow,  
616 P.C., Pearce, M., Pantazis, D., & Vuust, P. Spatiotemporal brain dynamics during  
617 recognition of the music of Johann Sebastian Bach. *bioRxiv*, (2020).

618 36. Bonetti, L., Brattico, E., Bruzzone, S.E.P., Donati, G., Deco, G., Pantazis, D., Vuust, P.,  
619 & Kringelbach, M.L. Temporal pattern recognition in the human brain: a dual  
620 simultaneous processing. *bioRxiv*, (2021).

621 37. Fernández Rubio, G., Brattico, E., Kotz, S.A., Kringelbach, M.L., Vuust, P., & Bonetti,  
622 L. The spatiotemporal dynamics of recognition memory for complex versus simple  
623 auditory sequences. *bioRxiv*, 2022.05.15.492038; 10.1101/2022.05.15.492038 (2022).

624 38. Wechsler, D. Subtest Administration and Scoring. WAIS-IV: Administration and  
625 Scoring Manual. *San Antonio, TX: The Psychological Corporation*, 87-93; (2009).

626 39. Bonetti, L., Brattico, E., Carlomagno, F., Donati, G., Cabral, J., Haumann, N.T., Deco,  
627 G., Vuust, P., & Kringelbach, M.L. Rapid encoding of musical tones discovered in  
628 whole-brain connectivity. *NeuroImage* **245**, 118735;  
629 10.1016/j.neuroimage.2021.118735 (2021).

630 40. Pando-Naude, V., Patyczek, A., Bonetti, L., & Vuust, P. An ALE meta-analytic review  
631 of top-down and bottom-up processing of music in the brain. *Scientific Reports* **11**, 1-15;  
632 (2021).

633 41. Rolls, E.T. The cingulate cortex and limbic systems for emotion, action, and memory.  
634 *Brain Structure and Function* **224**, 3001-3018; (2019).

635 42. Rolls, E.T., Deco, G., Huang, C.-C., & Feng, J. The human orbitofrontal cortex, vmPFC,  
636 and anterior cingulate cortex effective connectome: emotion, memory, and action.  
637 *Cerebral Cortex*, (2022).

638 43. Di, X., Zhang, H., & Biswal, B.B. Anterior cingulate cortex differently modulates  
639 frontoparietal functional connectivity between resting-state and working memory tasks.  
640 *Human Brain Mapping* **41**, 1797-1805; (2020).

641 44. Miyashita, Y. Inferior temporal cortex: where visual perception meets memory. *Annual  
642 Review of Neuroscience* **16**, 245-263; (1993).

643 45. Milner, B. Visual recognition and recall after right temporal-lobe excision in man.  
644 *Epilepsy & Behavior* **4**, 799-812; (2003).

645 46. Costers, L., Van Schependom, J., Laton, J., Baijot, J., Sjøgård, M., Wens, V., De Tiège,  
646 X., Goldman, S., D'Haeseleer, M., & D'hooghe, M.B. Spatiotemporal and spectral  
647 dynamics of multi-item working memory as revealed by the n-back task using MEG.  
648 *Human Brain Mapping* **41**, 2431-2446; (2020).

649 47. Klopp, J., Halgren, E., Marinkovic, K., & Nenov, V. Face-selective spectral changes in  
650 the human fusiform gyrus. *Clinical Neurophysiology* **110**, 676-682; (1999).

651 48. Murty, N.A.R., Teng, S., Beeler, D., Mynick, A., Oliva, A., & Kanwisher, N. Visual  
652 experience is not necessary for the development of face-selectivity in the lateral fusiform  
653 gyrus. *Proceedings of the National Academy of Sciences* **117**, 23011-23020;  
654 doi:10.1073/pnas.2004607117 (2020).

655 49. Cichy, R.M., Pantazis, D., & Oliva, A. Resolving human object recognition in space and  
656 time. *Nature Neuroscience* **17**, 455-462; 10.1038/nn.3635 (2014).

657 50. Furl, N., Garrido, L., Dolan, R.J., Driver, J., & Duchaine, B. Fusiform Gyrus Face  
658 Selectivity Relates to Individual Differences in Facial Recognition Ability. *Journal of  
659 Cognitive Neuroscience* **23**, 1723-1740; 10.1162/jocn.2010.21545 (2011).

660 51. Pernet, C., Celsis, P., & Démonet, J.-F. Selective response to letter categorization within  
661 the left fusiform gyrus. *NeuroImage* **28**, 738-744; (2005).

662 52. Rosen, M.L., Sheridan, M.A., Sambrook, K.A., Peverill, M.R., Meltzoff, A.N., &  
663 McLaughlin, K.A. The Role of Visual Association Cortex in Associative Memory

664 Formation across Development. *Journal of Cognitive Neuroscience* **30**, 365-380;  
665 10.1162/jocn\_a\_01202 (2018).

666 53. Porro, C.A., Francescato, M.P., Cettolo, V., Diamond, M.E., Baraldi, P., Zuiani, C.,  
667 Bazzocchi, M., & Di Prampero, P.E. Primary motor and sensory cortex activation during  
668 motor performance and motor imagery: a functional magnetic resonance imaging study.  
669 *Journal of Neuroscience* **16**, 7688-7698; (1996).

670 54. Kato, H., & Izumiya, M. Impaired motor control due to proprioceptive sensory loss in  
671 a patient with cerebral infarction localized to the postcentral gyrus. *Journal of*  
672 *Rehabilitation Medicine* **47**, 187-190; 10.2340/16501977-1900 (2015).

673 55. Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Lachaux, J.P. Neural  
674 correlates of consolidation in working memory. *Human Brain Mapping* **28**, 183-193;  
675 (2007).

676 56. Russ, M.O., Mack, W., Grama, C.-R., Lanfermann, H., & Knopf, M. Enactment effect in  
677 memory: evidence concerning the function of the supramarginal gyrus. *Experimental*  
678 *Brain Research* **149**, 497-504; 10.1007/s00221-003-1398-4 (2003).

679 57. Tomasi, D., Chang, L., Caparelli, E.C., & Ernst, T. Different activation patterns for  
680 working memory load and visual attention load. *Brain Research* **1132**, 158-65;  
681 10.1016/j.brainres.2006.11.030 (2007).

682 58. Taulu, S., & Simola, J. Spatiotemporal signal space separation method for rejecting  
683 nearby interference in MEG measurements. *Physics in Medicine and Biology* **51**, 1759-  
684 68; 10.1088/0031-9155/51/7/008 (2006).

685 59. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., & Nichols, T.E., *Statistical*  
686 *parametric mapping: the analysis of functional brain images*. 2011: Elsevier.

687 60. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.M. FieldTrip: Open source software  
688 for advanced analysis of MEG, EEG, and invasive electrophysiological data.  
689 *Computational Intelligence and Neuroscience* **2011**, 156869; 10.1155/2011/156869  
690 (2011).

691 61. Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T.,  
692 Beckmann, C., Jenkinson, M., & Smith, S.M. Bayesian analysis of neuroimaging data in  
693 FSL. *NeuroImage* **45**, S173-86; 10.1016/j.neuroimage.2008.10.055 (2009).

694 62. Huang, M.X., Mosher, J.C., & Leahy, R.M. A sensor-weighted overlapping-sphere head  
695 model and exhaustive head model comparison for MEG. *Physics in Medicine and*  
696 *Biology* **44**, 423-40; 10.1088/0031-9155/44/2/010 (1999).

697 63. Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K.,  
698 Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., van Wassenhove, V.,  
699 Wibral, M., & Schoffelen, J.M. Good practice for conducting and reporting MEG  
700 research. *NeuroImage* **65**, 349-63; 10.1016/j.neuroimage.2012.10.001 (2013).

701 64. Brookes, M.J., Stevenson, C.M., Barnes, G.R., Hillebrand, A., Simpson, M.I., Francis,  
702 S.T., & Morris, P.G. Beamformer reconstruction of correlated sources using a modified  
703 source model. *NeuroImage* **34**, 1454-65; 10.1016/j.neuroimage.2006.11.012 (2007).

704 65. Hillebrand, A., & Barnes, G.R. Beamformer analysis of MEG data. *International Review  
705 of Neurobiology* **68**, 149-71; 10.1016/S0074-7742(05)68006-3 (2005).

706

707 **Competing interests' statement**

708

709 The authors declare no competing interests.

710 ***SUPPLEMENTARY MATERIALS***

711

712 Supplementary materials related to this study are organized as supplementary figures and  
713 tables. Due to their large size, supplementary tables have been reported in Excel files that can  
714 be found at the following link:

715 <https://drive.google.com/drive/folders/1z3S7BTv7t5jfko6XDYprbdi84oJwgE9s?usp=sharing>

716 ***SUPPLEMENTARY TABLES***

717

718 ***Table ST1. Significant clusters of activity for MEG source data (memorized versus novel***  
***sequences).***

720 Significant clusters of activity estimated from the contrasts between the brain activity (in  
721 0.1 – 1 Hz) underlying memorized and novel musical sequences. The table depicts the  
722 contrast for each of the tones comprising the musical sequences, along with the brain  
723 regions, hemispheres, and *t*-values for each voxel.

724

725 ***Table ST2. Significant clusters emerged from the correlation between WM abilities and***  
***MEG brain data underlying recognition of previously memorized musical sequences.***

727 Significant clusters of activity estimated from the correlations between WM abilities and  
728 the brain activity (in 0.1 – 1 Hz) underlying previously memorized musical sequences. The  
729 table depicts the correlation for each of the tones comprising the musical sequences, along  
730 with the brain regions, hemispheres, and *r*-values for each voxel.

731