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ABSTRACT

Background: While genome evolutionary processes of seed plants are intensively investigated, very
little is known about seed-free plants in this respect. Here, we use one of the largest groups of seed-
free plants, the mosses, and newly generated chromosome-scale genome assemblies to investigate
three poorly known aspects of genome dynamics and their underlying processes in seed-free plants:

(i) genome size variation, (ii) genomic collinearity/synteny, and (iii) gene set differentiation.

Results: Comparative genomic analyses on the model moss Physcomitrium (Physcomitrella) patens
and two genomes of Funaria hygrometrica reveal that, like in seed plants, genome size change
(approx. 140 Mbp) is primarily due to transposable element expansion/contraction. Despite 60
million years of divergence, the genomes of P. patens and F. hygrometrica show remarkable
chromosomal stability with the majority of homologous genes located in conserved collinear blocks.
In addition, both genomes contain a relatively large set of lineage-specific genes with no detectible
homologs in the other species’ genome, suggesting a highly dynamic gene space fueled by the

process of de novo gene birth and loss rather than by gene family diversification/duplication.

Conclusions: These, combined with previous observations suggest that genome dynamics in mosses
involves the coexistence of a collinear homologous and a highly dynamic species-specific gene sets.
Besides its significance for understanding genome evolution, the presented chromosome-scale
genome assemblies will provide a foundation for comparative genomic and functional studies in the
Funariaceae, a family holding historical and contemporary model taxa in the evolutionary biology of

maosses.

Key words: seed-free plants, bryophytes, Funariaceae, genome size change, TE-content, gene

birth/death, synteny, collinearity
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BACKGROUND

The number of pseudomolecule-scale genome assemblies of seed plants has rapidly increased in the
last 20 years revealing their conserved and divergent architectural features (1-5). In addition,
comparative analyses of deep and shallowly divergent seed plant genomes provided detailed insights
into genome evolution and dynamics both at longer and shorter timescales (6,7,16—20,8—15). By
contrast, structure and dynamics of seed-free plant genomes are little understood (2,5,21).
Comparison of the few available high-quality genomes suggests that overall genomic architectures of
seed-free and seed plant genomes likely differ, which may be a consequence of their divergent

genome dynamics (5,22-24).

Very little is known about the evolution of seed-free plant genomes, in particular over shorter
timescales, mainly due to the lack of high-quality genome assemblies for groups of species with
shallower genetic divergence. For instance, only five pseudomolecule-scale genome assemblies are
available for the most intensively sequenced clade of seed-free plants, the mosses, but these are too
deeply divergent to provide information on genome dynamics on a shorter timescale (23-26).
Multiple aspects of seed-free plant genome dynamics remain unexplored. For example, the dynamics
of genome expansion/contraction and structural variation are poorly understood and the
contribution of transposable elements to these processes is debated (5,27-29). Also, little is known
about the variation in gene content among species and whether it is shaped primarily by gene family
diversification, genome duplication, or de novo gene gain/loss (30,31). Preliminary data suggest that
gene presence/absence variation may be common, nevertheless the contribution of gene family
diversification may also be considerable. Furthermore, the genomic consequences of gene
duplication, genome expansion/contraction and transposable element activity on genomic
collinearity remain unexplored. To further our understanding about genome evolution and dynamics
in seed-free plants, comparative genomic analyses of a group of relatively closely related species are

needed.
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101 Mosses compose the most species-rich lineage of bryophytes (mosses, liverworts and hornworts)
102  and the group with the greatest number of pseudomolecule-scale genome assemblies among seed-
103  free plants (23-26,32). Among mosses, the Funariaceae provide an appropriate model system to
104  investigate genome evolution and dynamics in seed-free plants, as they hold the most widely used
105 model organism of seed-free plants, the moss Physcomitrium (Physcomitrella) patens, for which a
106  high-quality genome sequence and an ever-growing plethora of genomic resources are available
107 (25,33-37). In addition, the Funariaceae exhibit broad diversity in morphology and development,
108 habitat preferences, genome size, ploidy level and chromosome numbers spanning 90 million years
109 of evolution (33,37-40). Finally, the family comprises shallow and more deeply divergent species
110  whose evolutionary relationship has been extensively investigated in the last years (34,35,37,41). The
111  considerable morphological and genomic diversity, the availability of the high-quality P. patens

112 reference genome, and the intensively investigated phylogenetic backbone makes the Funariaceae a
113 prime model to explore key questions of genome evolution in seed-free plants in general and in

114 mosses in particular.

115  We present pseudomolecule-scale genome assemblies for two accessions of the moss Funaria

116  hygrometrica, a further member of the Funariaceae, and compare these to the genomes of P. patens
117  and other mosses. F. hygrometrica and P. patens diverged some 60 my ago (37) and differ

118  considerably in their karyotype, genome size, gene content, and dispersal capability. In particular, (i)
119  the sequenced accession of P. patens has 27 chromosomes (25,42), while chromosome counts

120  between 14-18 have been also reported for other isolates (42). By contrast, chromosomal races with
121 14, 26, 28, and 56 chromosomes have been reported for F. hygrometrica (25,39,43—-46). Although
122  chromosome numbers of some F. hygrometrica accessions and P. patens are similar (26/28 in F.

123 hygrometrica and 27 in P. patens) their genome sizes considerably differ (P. patens: 511Mbp (c-value
124  0.53 pg); F. hygrometrica: 380 Mbp, 0.4 pg) (25,47-49). (ii) Preliminary data also suggest

125 considerable gene content divergence between the two species, which may be related to their

126  divergent habitat preferences and morphologies (30). Finally, (iii) genomic differences may also be
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127  driven by the different effective population size of the two species (50). Limited dispersal capability,
128  high selfing and turnover rates of P. patens populations are expected to decrease species-wide

129  effective population size, selection efficacy, and genome-wide genetic diversity (51-54). Therefore, F.
130  hygrometrica and P. patens provide an appropriate species pair to investigate (i) the mechanism of
131  genome size change, (ii) the contribution of gene gain/loss and duplication to gene content variation,
132 (iii) and their overall effect on genomic collinearity in mosses, a diverse lineage of seed-free plants, in

133  asimple haploid setting.

134  Our analyses consistently resolved 26 chromosomes in both accessions of F. hygrometrica, which can
135 be easily derived by a chromosome break/fusion from the 27 chromosomes of P. patens. Like in seed
136 plant genomes, the genome size difference between the two species (roughly 140 Mbp) was largely
137 due to the expansion/contraction of transposable elements (TE) with no genomic hotspots. Despite
138 similar gene numbers, the genomes of both species contained a large proportion (40%-30%) of

139 species-specific genes that likely arose de novo while gene gain/loss through gene family

140  expansion/contraction was less significant. Self- and between-species synteny revealed two whole-
141  genome duplications, the older one is shared with various mosses whereas the more recent one is
142  only shared with P. patens. Despite these dynamic changes, the F. hygrometrica and P. patens

143  genomes retained remarkable synteny and collinearity following 60 million years of divergence.

144  While synteny between chromosomes is maintained, inversion of hundreds of collinear blocks across
145  the genome can be observed. Finally, genes and transposable elements showed rather uniform

146  distribution across the chromosomes with no pericentromeric regions specifically enriched for TEs.
147  Thisis in line with the hypothesis that large-scale genome structure of bryophytes and seed plants
148  differ. Overall, our genome analyses suggest a genome structure in which rigid blocks of core genes
149  coexist with a highly dynamic set of non-homologous genes leading to considerable gene content
150 variation among genomes. Besides its contribution to understanding genome evolution in seed-free
151 plants, our data will enable comparative analyses across the Funariaceae to investigate the genomic

152 changes underlying the biological diversity at various scales.
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153 RESULTS

154

155  F. hygrometrica accessions have 26 pseudomolecules

156  We assembled the genome of two F. hygrometrica accessions (one collected in Sankt Gallen,
157 Switzerland [hereafter referred to as “Zurich”]; the other in Willimantic, Connecticut, USA [ “UConn”])
158  usinglong-reads, Chicago and Hi-C libraries at the level of pseudomolecules (Supplementary_Table_1).
159 Both assemblies were of high-quality resulting in 26 large scaffolds containing 99.10/96.11% (first 26
160  scaffolds Zurich accession=277486149 bp; first 26 scaffolds UConn accession=301785107 bp) of the
161 approx. 300 Mbp (Full length of the assemblies: 280 Mbp Zurich, 314 Mbp UConn) genome with a
162 minimum proportion of gaps for both accessions (Supplementary Table 2). [[A browsable version of
163 the genomes will be available upon acceptance]].

164  The assembled genomes were somewhat smaller than their estimated genome sizes using k-mer
165 analysis or flow cytometry (Supplementary information). Whole-genome alignment and dot plot
166  analysis of the genomes of the two accessions revealed highly collinear scaffolds (Figure 1 and
167  Supplementary information), suggesting the absence of large-scale misassemblies in either of the
168  assemblies and thus correspondence between the 26 largest scaffolds and the 26 putative
169 chromosomes. These observations are in line with previous chromosome counts reported for F.
170  hygrometrica (43,45,46,55). Contigs unanchored to the 26 pseudomolecules were short and contained
171  few genes (Supplementary_Table_3). Despite being highly collinear, assembly length of the two
172  accessions was different with the UConn accession genome being 34 Mbp longer, and the difference
173 partially due to structural variation (Supplementary_Table_4 and Supplementary information). When
174  aligning the assembled scaffolds of the two genomes with a similarity threshold of 50%, we found that
175 7% and 15% of the sequences were specific to the Zurich or UConn accession, respectively
176  (Supplementary_Table_5). Nevertheless, accession-specific scaffolds were short and housed few if any
177  genes (Supplementary Table_3, for a more comprehensive comparison of the two accessions’

178 genomes see the Supplementary information).
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179

180

181 Karyotypes of F. hygrometrica and P. patens are connected with a chromosome fusion/break

182 Both F. hygrometrica assemblies suggest the presence of 26 chromosomes in contrast to the 27
183  chromosomes reported for P. patens. Dot plots between the two genomes showed that all P. patens
184 chromosomes have a distinct corresponding collinear chromosome in the F. hygrometrica genome
185 (Figure 1 and 2, and Supplementary Information), except for Chr25 and Chr27 of P. patens (25) which
186 both mapped to a single F. hygrometrica chromosome. This difference between the P. patens and F.
187 hygrometrica assemblies was confirmed with both F. hygrometrica genomes and was not due to
188 misjoins of the Hi-C scaffolding (see Supplementary Information). This implies that the chromosome
189  number difference between P. patens and F. hygrometrica (27 and 26) can be either explained by a
190 chromosome fusion (P. patens -> F. hygrometrica) or a chromosome break (F. hygrometrica -> P.
191  patens) involving Chr27 and Chr25 of P. patens and Fh17 of F. hygrometrica (Figure 2).

192

193  The F. hygrometrica genome is considerably smaller than the P. patens genome

194  Evidence from flow cytometry measurements (P. patens: 511 Mbp [c-value 0.53 pg]; F. hygrometrica:
195 380 Mbp, [c-value 0.4 pg], for further information see Supplementary information) and genome

196  assembly results (assembly length: P. patens: 467 Mbp; F. hygrometrica Zurich accession: 280 Mbp;
197 UConn accession: 314 Mbp) reveals that the F. hygrometrica genome is at least 130-150 Mbp smaller
198  thanthe P. patens genome (Supplementary_Table_2, see also in Supplementary information)

199  (25,56). If genome size differences were due to random sequence gain/loss, we would expect that
200 both species exhibit a similar proportion of species-specific sequence content. Alternatively,

201  sequence gain/loss may have been asymmetric on the evolutionary branch connecting P. patens and
202 F. hygrometrica with their common ancestor. We found that only 36% of the F. hygrometrica

203 genome contained species-specific segments, whereas this fraction was almost twice as large

204  (amounted to 62%) in the P. patens genome (Supplementary Information), suggesting accelerated
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205  sequence gain or sequence loss on the branch leading to P. patens or to F. hygrometrica,

206  respectively. Genome size change has similarly affected each chromosome as was indicated by a
207  positive correlation between chromosome lengths of F. hygrometrica and P. patens (Spearman’s
208 Rho=0.8611966, p< 1.884e-06). Assuming that the homologous portion of the genomes was

209 inherited from the common ancestor, our finding suggests that the common ancestor of the two
210 species and likely that of the Funariaceae was characterized by a smaller genome size than that of P.

211 patens.

212

213 Overall repeat content of the F. hygrometrica genome considerably differs from that of P. patens
214  The larger size of the P. patens genome may mainly be explained by the higher proportion of repeat
215 elements. In line with this assumption, the nonalignable parts of the F. hygrometrica and P. patens
216  genomes were enriched in their respective dominant LTR elements (see below), whereas the alignable
217 segments were enriched in exonic and intronic regions (Figure 3A, Supplementary Table 6).
218 Nonalignable regions were also enriched in segments of the genomes containing no annotated
219  features (regions outside of exons, introns, and repeat elements). The contribution of repeat
220  expansionto the genome size increase was also supported by a significant positive correlation between
221  the length and proportional TE content increase of homologous P. patens and F. hygrometrica
222 chromosomes (Spearman’s Rho=0.517265, p-value = 0.00753). Altogether, this implies that the larger
223  genome size in P. patens was primarily resulted from an increased representation of repeat elements
224 and intergenic regions.

225 A closer look at the repeat element content of the two genomes revealed that they differ both
226  quantitatively and qualitatively. About a third of the F. hygrometrica genomes (32% and 37% of the
227  Zurich and UConn accession’s genome, respectively) were predicted to be occupied by repeats (Figure
228 3B, Supplementary_Table_6). Compared to the P. patens genome, of which 51% are covered by
229  repetitive elements, this amounts to a 13-18% difference in the fraction of repetitive elements

230 between the F. hygrometrica and P. patens genomes. In other words, almost 80% of the genome size
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231  difference between P. patens and F. hygrometrica can be attributed to differences in repetitive
232  element content alone. Furthermore, the class of LTR dominating the repeat content of the genome
233 differed between the two species, namely Gypsy elements in P. patens (41% out of the total 51%
234  repeat content) and Copia elements (16—17% [Copia] vs. 9-12% [Gypsy]) in F. hygrometrica (Figure 3B,
235  Supplementary_Table_6).

236  The overall difference in repeat content and the differential abundance of Copia and Gypsy elements
237 between the F. hygrometrica and P. patens genomes could have arisen by lineage-specific expansion
238 of LTRs. Intriguingly, our reanalysis of the temporal activity of Copia and Gypsy element insertions in
239  the P. patens and F. hygrometrica genomes revealed shared histories (Figure 4). While Copia elements
240  exhibited rather continuous activity through time albeit with a recent and an older peak of activity in
241  the genome of both species, and Gypsy elements having been active mainly in the recent past (Figure
242  4),the temporal dynamics of dominant LTR elements did not differ between the two genomes. Further,
243  the absolute number of intact Gypsy elements was more than two-fold higher in the repeat rich and
244  Gypsy-dominated P. patens than in F. hygrometrica (ca. 72000 [P. patens] vs. 16000/30000 [F.
245  hygrometrica Zurich/UConn], see Table 1). The significantly greater number of all and intact Gypsy
246  elements in P. patens and the similar proportion of intact elements in P. patens and F. hygrometrica
247  suggest that the difference between the two genomes likely arose via a more massive activation of
248  Gypsy elements in P. patens. By contrast, the activity of Copia and Gypsy LTRs was more balanced in F.
249  hygrometrica, but overall at a lower level compared to P. patens.

250

251

252

253

254  F. hygrometrica has higher gene density than P. patens

10
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255  While genomes of the sequenced F. hygrometrica accessions were considerably smaller than those of
256  P. patens, they harbored more genes. Our genome annotations resulted in 36,301 and 36,804 filtered
257 gene models for the UConn and Zurich accessions of F. hygrometrica, respectively
258  (Supplementary_Table_7), which is about 3,000 genes more than the predicted 32,926 genes in P.
259  patens (25). Predicted gene sets of the F. hygrometrica accessions were of high-quality. Importantly, about
260  80% of the predicted gene models were supported by expression evidence (85% of Zurich and 74% of
261 UConn gene models have RNAseq coverage higher than 80%) (Supplementary_Figure_1). Furthermore,
262 BUSCO scores of both the annotated gene set and that of the genome sequence were among the top
263  of currently published chromosome-scale genomes (including P. patens) (Supplementary_Table_8).
264  Due to the smaller genome size and the larger gene set, gene density of the F. hygrometrica genome
265 is nearly twice that of P. patens (13.08/12.20 genes/100 kbp [F. hygrometrica Zurich/UConn] vs 7.12
266  genes/100 kbp [P. patens]).

267

268

269 Both the F. hygrometrica and P. patens genomes harbor a large proportion of species-specific genes
270  To compare homology of the gene set in the two species using a phylogenetic approach, we created
271  orthogroups using proteomes of 38 plant species including 12 bryophytes, the two F. hygrometrica
272  accessions, various vascular plants, green and streptophyte algae (Supplementary_Table_9). We
273 recovered 52,231 orthogroups including 82.5% of the genes with only 0.5% of the orthogroups being
274  species-specific (Supplementary_Table_10). The majority (40,966 or 78.43%) of these families
275  contained bryophyte genes and more than half had at least one moss gene (30,510 or 58.41%). 44.51%
276  (23,248) of the gene families harbored genes for the three Funariaceae species (F. hygrometrica, P.
277  patens, and Physcomitrium pyriforme) included in our analyses and 22,324 gene families contained at
278 least one gene for our two focal species (F. hygrometrica and P. patens). Overall, 75.44%
279  (24,839/32,926) of the P. patens and 90.01-90.41% (Zurich: 33,146/36,103; UConn: 33,274/36,804) of

280  the F. hygrometrica gene models could be assigned to orthogroups (Supplementary_Table_10).

11
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281

282 A significant proportion (41.11%, 15,026 genes) of the F. hygrometrica gene set occurs in lineage-
283  specific gene families, compared to 30.5% (i.e., 10,044 genes) of the P. patens gene set. Therefore,
284 shared gene families housed about 60% (58.89% 21,527/36,553) and 70% (69.50% 22,882/32,926) of
285 the F. hygrometrica and P. patens gene sets, respectively (Supplementary Table 10).
286 Presence/absence polymorphism of genes was not an artifact of gene prediction. Virtually all predicted
287 F. hygrometrica gene models had RNA-seq coverage (see Supplementary_Figure_1) and gene families
288  with species-specific genes had genes predicted for both accessions (Supplementary Table 10).
289 Furthermore, only 4.92% (739 gene models) of the 15,026 Funaria-specific genes could be partially
290  (50% coverage threshold) mapped to the P. patens genomic sequence of which 42.63% (315) produced
291  truncated gene models with one or more frameshifts. P. patens holds a similar set of species-specific
292  genes. Only 8.69% (873) of the 10,044 P. patens-specific genes had partial matches in the F.
293  hygrometrica genome sequence of which 20.96% (183) were further interrupted by frameshifts. Thus,
294  most of the lineage-specific genes cannot be detected in the alternate genome sequence, and
295 therefore likely represent de novo gene gains/losses following the divergence of the two species. By
296  contrast, a considerably smaller proportion of lineage-specific genes are likely due to gene
297  degeneration/pseudogenization in one of the two genomes.

298

299

300  Although the proportion of genes unique to either of the two species was considerably high, over 60%
301  of the gene set occurred in shared gene families (Supplementary Table 10). Therefore, we also
302 assessed how gene family expansions and contractions of shared gene families have contributed to
303 the gene space of the two species (Supplementary_Table_11). Our Bayesian analysis indicated that
304 only a few gene families have significantly expanded/contracted (posterior probability of
305 expansion/contraction > 0.8) on the branch leading to F. hygrometrica or P. patens from their most

306 recent common ancestor. The proportion of shared gene families showing significant size change
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307 (posterior probability > 0.8) was 0.91% (190/20,980) and 1.04% (219/20,980) for P. patens and F.
308  hygrometrica, respectively. Furthermore, gene family evolution proceeded almost exclusively through
309 expansions (i.e., 190 families) versus contractions (i.e., 0) in P. patens. By contrast, fewer families
310 expanded (175 families) on the branch leading to F. hygrometrica and significantly more families were
311  contracted (44 families). The gene set difference between P. patens and F. hygrometrica is therefore
312 likely achieved primarily by de novo gain/loss of genes and not by gene family diversification.

313

314  The F. hygrometrica and P. patens genomes retained high-level of collinearity

315 The P. patens genome appears to have significantly expanded via the activation of LTRs, which might
316 have led to an extensive spatial reshuffling of the gene set. We therefore assessed the effect of LTR
317  expansion on the collinearity of the two genomes. Despite considerable genome expansion and 60
318  million years of independent evolution, we found remarkable gene-level collinearity between the two
319 genomes (Figure 2A and Supplementary Table_12). More specifically, about half of the F.
320  hygrometrica and P. patens gene set (49.52% or 17,977 genes and 55.08% or 18,137 genes in F.
321  hygrometrica [Zurich accession] and P. patens, respectively) occurred in 845 collinear blocks
322  containing at least five collinear genes. Knowing that about 70% and 60% of the P. patens and F.
323 hygrometrica gene set has homologs in the alternate genome, this implies that almost all shared genes
324 (80-90%) are found in collinear blocks. Despite the remarkable collinearity, inversions of collinear gene
325 blocks were not uncommon between the two genomes. About half of the collinear blocks (51.95%,
326  439) were inverted. Nevertheless, inverted and noninverted collinear blocks had very similar genomic
327  properties: they did not differ in their overall number of genes, number of collinear gene pairs and the
328 genomic length of collinear segments in both genomes. Therefore, inverted regions did not serve as
329 hotspots of genome evolution. Altogether, our observations indicate that despite new LTR insertions
330 and 60 million years of divergence, collinearity was retained over most of the genome. Functional
331 significance and the genomic/molecular mechanisms leading to this remarkable collinearity are

332 unknown and must be explored.
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333

334  Smaller genome size of F. hygrometrica is mirrored by its shorter collinear regions compared to P.

335 patens

336 Because the majority of the genome was covered by collinear gene blocks, we expected that genome
337  size increase has led to expanded collinear blocks in P. patens compared to F. hygrometrica (Figure 2E
338 and Supplementary_Table_12). In line with our expectation, the overall size of the genomic segments
339  containing the collinear blocks was about twice as large in the P. patens compared to the F.
340  hygrometrica genome (Fhmedian= 271,894 bp, interquartile range [IQR]= 166,567-455,659 bp;
341  Ppmedian=444,906 bp, IQR= 260,162-779,820, Wilcoxon rank sum test W = 248333, p<2.2e-16). This
342  difference was largely due to the increased size of intergenic regions in P. patens compared to F.
343  hygrometrica (Fhmedian= 190,100 bp, IQR=109400-328200; Ppmedian= 325,400 bp, IQR= 182000-617800),
344  while genomic segments of the collinear blocks contained somewhat fewer genes in P. patens than in
345 F. hygrometrica (Ppmedian=34.00, IQR=22.00-56.00; Fhmedian= 39.00, IQR=25-64; W = 110432, p<2.2e-16).
346  This is in line with our previous assertion that genome expansion was primarily achieved by repeat
347  expansion leading to an overall decreased gene density in collinear blocks in P. patens versus in F.

348  hygrometrica (Figure 2E).

349

350 The most recent whole genome duplication is shared by F. hygrometrica and P. patens

351 Previous analyses suggested that the ancestor of mosses may have had seven chromosomes, which
352  then underwent two whole genome duplications (WGD) in P. patens (23—-25). Signatures of the older
353 whole-genome duplication dated to about 200 mya were shown to be shared by Ceratodon purpureus
354  (23,57) and Syntrichia caninervis (24), whereas the more recent one likely predated the origin of the
355 Funariaceae (25,30,38,41,58). We found abundant collinearity and synteny between the P. patens and
356  F. hygrometrica chromosomes (Figure 2A-D), and our Ks analysis resulted in very similar Ks

357  distributions in F. hygrometrica and P. patens (Figure 5). Furthermore, both species’ Ks distribution
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358  showed two major peaks at Ks=~0.8 and Ks="~1.2 representing two potential WGDs. Self-synteny maps
359  of both genomes were also very similar, further confirming the presence of two shared WGDs (Figure
360 5). Therefore, our Ks and self-synteny-based analyses suggest that both the old and the more recent
361  whole-genome duplications are shared by the two species (Figure 5). This confirms that both WGDs
362 preceded the split of F. hygrometrica and P. patens and that the more recent WGD represents a
363 Funariaceae-wide and potentially Funariaceae-specific duplication event.

364

365  Overall chromosome structure of F. hygrometrica resembles that of P. patens and other bryophytes
366  The overall chromosome structure of the F. hygrometrica genomes is very similar to that of the other
367 published bryophyte genomes. Pericentromeric regions enriched for TEs could not be identified and
368 gene and repeat features were rather uniformly distributed along the chromosomes (Figure 1A, Figure
369 3C-D). Although pericentromeric regions enriched in TEs are not present in the P. patens genome, RLC
370  Copia elements show a peak at the centromeric regions (25). In the F. hygrometrica genome, we could
371 not identify a single Copia or Gypsy subfamily that showed a clear and single peak in each
372 pseudomolecule (Figure 1 and Supplementary Information). Therefore, we conclude that association
373  of RLC elements with the putative centromeres is specific to P. patens and does not occur in F.
374 hygrometrica.

375

376

377

378

379

380

381

382 DISCUSSION
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383  Comparison of sequenced seed-free and seed plant genomes suggests that their overall genome
384  structure may differ in multiple aspects (5) yet given the paucity of information on the genome

385  evolution and dynamics of seed-free plants, the ultimate causes of their differential genome

386  structure is poorly understood (21). Here, we present two new pseudomolecule-scale genome

387  assemblies for two accessions of the moss F. hygrometrica, a relative of the most often employed
388 seed-free model Physcomitrium (Physcomitrella) patens to investigate genome evolution and

389 dynamics in the most diverse group of seed-free plants, the mosses, in a simple haploid setting. More
390 specifically, by conducting comparative analyses of the F. hygrometrica and P. patens genomes, we
391 focused on three major aspects of genome evolution: (a) the genomic processes underlying genome
392 size change, (b) the degree and evolution of genomic collinearity, and (c) the processes contributing
393  to gene set differentiation. We discuss these results and their genome evolutionary implications in

394  the following paragraphs.

395

396  Genome size is an important characteristic of organisms significantly affecting their short- and long-
397  term evolution (59-63). In many seed plants, genome size variation is caused by the

398  expansion/contraction of non-coding DNA, especially TE-elements (64—66). Nevertheless, exceptions
399  to this rule are known and the number and type of TE-families contributing to genome size change
400 varies among lineages of seed plants (67). By contrast, direct genomic evidence for the predominant
401  effect of TEs in the genome size variation of bryophytes such as mosses is lacking. We provide

402  evidence that the 150 Mbp larger genome size of the P. patens (versus the F. hygrometrica) genome
403 is primarily due to its increased TE content, suggesting that genome size variation in the Funariaceae,
404  and hence perhaps in mosses and bryophytes in general, is driven, like in seed plants, by

405  expansion/contraction in TE-elements. While very little indirect evidence is available for other

406  mosses to support this hypothesis, cytological data on liverworts suggests the presence and

407  expansion of large heterochromatic regions in taxa with larger genomes (68,69). Further studies will
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408 be needed to test the generality of this observation in mosses, bryophytes and other seed-free

409  plants.

410 While the contribution of TEs to genome size variation is evident, the driving factors of genome size
411  variation remain unclear. In flowering plants effective population size is likely one of the most

412 important factors affecting genome size evolution (70). Both P. patens and F. hygrometrica are

413 monoicous moss species capable of simultaneously producing genetically identical motile sperm cells
414  and sessile egg cells on the same haploid plant (gametophyte) (33). Therefore, fertilization often

415  occurs through the union of the genetically identical gametes (intragametophytic selfing) resulting in
416 a fully homozygous diploid sporophyte (71-73). In such sporophytes, spore formation via meiosis
417 resembles clonal reproduction because spore progeny is expected to be genetically identical.

418 Intragametophytic selfing is expected to severely decrease effective population size leading to an
419 overall reduction of selection efficacy (53,54). Intragametophytic selfing is thought to be more

420 frequentin P. patens with a sunken spore capsule, lacking active opening mechanism, containing
421 large and heavy spores preventing efficient spore dispersal via air currents. This is assumed to cause
422  agreater decrease in effective population size and less effective purging of TE-elements in P. patens
423  compared to F. hygrometrica (50,71,72). Therefore, the greater abundance of TEs is likely caused by
424  the severely reduced effective population size of P. patens leading to a less effective control over the

425  activity of TEs.

426

427 Previous comparative analyses among moss genomes that diverged over 170-200 million years ago
428  revealed detectable synteny among chromosomes (so-called “ancestral elements”), representing
429 conserved blocks inherited from the common ancestor of all mosses (23,24). Consequently, synteny
430 and collinearity should be even more pronounced between more recently diverged species, a

431 hypothesis virtually unexplored in seed-free plants (26). Our analysis recovered unexpectedly strong

432 collinearity between the F. hygrometrica and P. patens genomes, despite 60 million years of
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433  divergence (37). More specifically, almost all genes (roughly 80%) with homologs in the alternate

434  genome were in collinear blocks. Furthermore, collinear blocks were also syntenic, showing virtually
435 no movement of collinear blocks among chromosomes. This level of collinearity and synteny

436  represents a relatively rigid genome structure that is exceptional compared to the data available for
437  highly collinear grass and angiosperm genomes with similar depth of divergence (74—80) and is in line
438  with findings by (26). While gene order, gene content, and chromosomal position of collinear blocks
439 are highly conserved, their orientation appears to be dynamic. Indeed half of the collinear blocks are
440 inverted between F. hygrometrica and P. patens. Therefore, structural dynamics of chromosomes in
441 these two moss genomes is primarily driven by frequent inversion of highly stable collinear blocks
442 within chromosomes. The evolutionary forces maintaining this extensive collinearity despite WGD

443  and TE-expansion/contraction are currently unknown.

444

445 Despite extensive collinearity of homologous gene copies, we confirmed previous hypotheses that
446  both the F. hygrometrica and the P. patens genome contain a large proportion of species-specific
447  (lineage-specific) genes (30,81). Our analyses also show that these species-specific genes have no
448  detectable homologs in the other species’ genome and therefore likely arose de novo or emerged as
449  specific following the loss through deletion or excision of the homolog in the other species’ genome.
450 Finally, we also clarify that the observed gene content difference is not an artifact of the annotation
451 process. Together, these observations suggest that gene birth/death has considerably contributed to
452  the genome evolution of the Funarioid mosses. While the presence of lineage-specific genes is not
453 surprising, their relative contribution to the gene space of each species is exceptionally large,

454  reaching 20-30%. In comparison, gene space difference between highly contiguous angiosperm

455  genomes with similar depth of divergence is less pronounced (17,80,82—89). For instance, the

456  proportion of species-specific genes usually remains below 3—-10% in most studies. This suggests that

457  de novo gene birth/death may be more prevalent in mosses than in vascular plant genomes. While
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458  the mechanisms of gene birth/death are unclear, they may be linked to the activity of TEs, the

459  shifting of reading frames, and/or pervasive transcription of various genomic regions (90-93).

460 Our observations allow us to provide a putative graphical model describing genome evolution and
461  dynamics between F. hygrometrica and P. patens and potentially the Funarioid mosses. This differs in
462  two main aspects from the genome dynamics observed in vascular plants: (i) stronger conservation
463  of synteny and collinearity, and (ii) elevated rate of gene birth/death. More specifically, our

464  observations suggest that rigid collinear homologous gene segments coexist with a highly dynamic
465 non-homologous gene set with potential functional significance. While collinear homologous gene
466 segments are kept together and their chromosomal order is mostly preserved, their orientation can
467 change frequently. By contrast, lineage-specific genes are randomly dispersed across the genome
468  and arise in a punctuated manner. The mechanisms and/or constraints driving this genome dynamic
469 is unclear but may be related to the haploidy of the moss genome directly exposing mutations to
470 natural selection. This is expected to increase the efficacy of purifying selection potentially leading to
471  extended synteny and collinearity (54,73). It is also possible that high efficiency of homologous

472 recombination facilitates homology-mediated repair, which may increase genomic synteny and

473  collinearity (25,33,94). Finally, elevated collinearity and synteny could also be linked to the relatively
474  small and less variable genome size of mosses compared to flowering plants (49,59). Nevertheless,
475  the ultimate factors governing genome dynamics in mosses are unknown and need to be further

476  explored. Similarly, the contribution of genomic changes to non-adaptive/adaptive variation within

477  the Funarioid mosses are not known and need to be investigated.

478

479  All bryophyte genomes studied so far are characterized by an unusual chromosome structure with
480 repeat and gene features relatively evenly spread along the chromosomes. While specific TEs may
481 form a narrow peak in the middle of the centromeres, bryophyte chromosomes lack a broad TE

482  enriched pericentromeric region typical for flowering plants (Marchantia polymorpha (95),
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483 Ceratodon purpureus (96), Syntrichia caninervis (24), Anthoceros agrestis (27)). This is in stark

484  contrast to the usual chromosome structure of flowering plant genomes where gene density is

485 highest in the middle of the chromosome arms whereas repeats are more dominant in the

486  pericentromeric regions. It was proposed that this unique large-scale chromosome structure may be
487  afeature of most bryophyte and seed-free plant genomes (5). Nevertheless, early cytological studies
488 described the occurrence of chromocenters in F. hygrometrica, which can also be observed in the
489 liverwort M. polymorpha but not in P. patens suggesting that overall chromosome structure of F.
490 hygrometrica may differ from that of P. patens (25,97,98). Our study corroborates the hypothesis
491 that moss and potentially most bryophyte genomes show the above-described unique genome

492 structure. In addition, it also provides further evidence that not all moss and bryophyte genomes
493  accumulate specific TE-elements in their putative centromeric regions. We note that similarly to F.
494  hygrometrica, no dominant TE peak was found on the S. caninervis (24) and A. agrestis

495 pseudomolecules (27) but specific TE families were colocalized with the putative centromeres of C.
496  purpureus, M. polymorpha, and P. patens (23,25,97,99). It is currently unclear what processes shape
497  the accumulation of a specific TE class at the putative centromeres in some (P. patens, M.

498  polymorpha, and C. purpureus) but not in other bryophyte species. Detailed comparative analysis of
499  the putative pericentromeric/centromeric regions of F. hygrometrica and P. patens may provide

500 furtherinsights into this question.

501

502 Based on the P. patens chromosome-scale genome assembly, an earlier study reconstructed the
503 possible trajectory for karyotype evolution in mosses (25). According to this scenario, the first whole
504  genome duplication (WGD) of ancestral chromosomes resulted in 14 chromosomes, which was
505 followed by one chromosome loss and the fusion of another two chromosomes for a final karyotype
506  of 12 chromosomes. This hypothesis is also fully supported by our collinearity analysis between the F.
507  hygrometrica and P. patens genomes (Figure 6). The second WGD led to 24 chromosomes of which the

508 27 chromosomes of P. patens were derived by five breaks and two chromosome fusions. This scenario


https://doi.org/10.1101/2022.05.17.492078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.17.492078; this version posted May 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

509 may also underlie the history of the karyotype of 26 chromosomes in F. hygrometrica, except the
510 trajectory involving the origin of chr25 and chr27 in P. patens. This is because both F. hygrometrica
511  assemblies support the presence of 26 and not 27 chromosomes as reported for P. patens.

512  An alternative and equally likely scenario could be based on an ancestral chromosome number of six
513  Both six and seven ancestral chromosomes are in line with the chromosome number counts available
514  for mosses (55,100). This alternative scenario would involve one loss and one chromosome break after
515 the first WGD and four breaks and three fusions after the second WGD (Figure 6). Nevertheless,
516 available data are insufficient to distinguish between these two alternative scenarios.

517

518 Finally, the two pseudomolecule-scale F. hygrometrica assemblies also raise some questions

519 concerning the accuracy of the current P. patens genome assembly and its actual chromosome

520 number. Our study clearly implies that the F. hygrometrica accessions have 26 pseudomolecules,
521 which can be easily derived from the 27 pseudomolecules of the P. patens genome by fusing two
522 pseudomolecules (Chr25 and Chr27). Nevertheless, previous cytological studies have reported P.
523  patens accessions with 27 as well as 26 chromosomes (45,46,55). Therefore, the possibility that the
524  sequenced accession of P. patens had 26 chromosomes and that Chr27 and Chr25 represent falsely
525  split segments of a single P. patens chromosome cannot be ruled out. In line with this hypothesis,
526  putative centromeres of all P. patens pseudomolecules except Chr27 show a unique accumulation of
527 RLC elements (25). Unfortunately, like Chr25 and Chr27 none of the P. patens chromosomes bear
528  characteristic telomeric repeats, which could be used to trace their potential fusion. Furthermore,
529  neither Hi-C library nor extensive long-read data are available for P. patens to resolve this issue and

530 clarify the karyotypic changes between F. hygrometrica and P. patens.

531  CONCLUSIONS

532 In comparison to the rapidly growing understanding of genome evolution and dynamics in flowering

533 plants, very little is known about patterns and processes pertaining to changes in the genomes of

21


https://doi.org/10.1101/2022.05.17.492078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.17.492078; this version posted May 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

534  seed-free plants (2,5). Here, we sequenced and analyzed genomes of the moss family Funariaceae to
535 investigate their evolution in the most speciose groups of seed-free plants, the mosses. Our analyses
536  and the integration of previous observations suggest that moss genomes show more extensive

537  synteny/collinearity and greater rate of gene birth/death than those of flowering plants. Therefore,
538  our results provide further support to the hypothesis that genome dynamics of moss, bryophyte, and
539 potentially seed-free plants differ from those of seed plants (5,26). Our study provides a solid basis
540 for a more extensive exploration of genome dynamics within the Funariaceae, to test for the

541 generality of our observations. Moreover, availability of a high-quality genome sequence for two

542 species representing end points of the morphological and ecological diversity within the Funariaceae
543 will open the way for detailed investigations on the genetic basis of phenotypic diversity within the

544  family (30,33-35,41,81).

545

546

547

548

549

550
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551  METHODS

552 DNA sequencing

553 For both the Zurich and UConn accessions (Supplementary_Table_1) high molecular weight DNA was
554  extracted using a modified CTAB protocol (101). The Genome of the Zurich accession was sequenced
555  with Illumina and PacBio technology. lllumina libraries were generated with insert sizes of 250 bp, 350
556 bp, 2 kbp, and 5kbp and sequenced on Hiseq 2000, Hiseq 2500, and Hiseq 4000 systems (paired-end,
557 150 bp read length). PacBio data was generated on the RS Il platform using C1 chemistry (3 cells) and
558 P6-C4 chemistry (10 cells). lllumina sequencing yielded over 62 Gbp raw sequencing data in total, while
559 PacBio sequencing resulted in 13 Gbp of sequence data.

560 For the UConn accession we generated two Illumina libraries with an insert size of 400 bp and
561  sequenced them using the HiSeq Xten platform (paired-end, 150 bp read length). Using the very same
562 DNA, we also prepared a single DNA library for Oxford Nanopore sequencing using the ligation kit and
563  sequenced it on the Nanopore X5 platform. lllumina sequencing resulted in a total of 62 Gbp raw data.
564  Nanopore sequencing resulted in about 1.8 million reads longer than 10,000 bp after clean-up.

565 To improve continuity of the genome assemblies we created Hi-C libraries for the Zurich accession
566  (using the Dovetail Hi-C kit for genome assembly) and for the UConn accession using the protocol
567  described in (102). Furthermore, a Chicago library was also prepared by Dovetail Genomics for the
568  Zurich accession. We sequenced the Hi-C and CHiCAGO libraries using Illumina Hiseq 4500 and Novaseq
569  machines in paired-end mode (150 bp read length). Details of the DNA sequencing data used for the
570  genome assembly can be found in Supplementary_Table_1.

571

572

573 Genome assembly

574 For the Zurich accession the initial assembly was generated with the Canu assembler v1.5 (103)
575 combining all available PacBio data. Afterwards, we employed HiRise (104) together with the CHiICAGO

576  sequencing data to scaffold the original reads into larger scaffolds and improve assembly contiguity.
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577  The resulting assembly was further consolidated by a second HiRise run employing the Hi-C data. For
578  manual curation, Hi-C sequencing data was aligned to the assembly using the juicer pipeline (105) and
579 files for visual inspection of the Hi-C contact map were created with scripts supplied with the 3D-DNA
580 software package (106). Visual review with the Juicebox software (107) revealed no obvious
581 misassemblies, but we identified a misjoin in the largest pseudo-molecule. We manually corrected the
582 misjoin and the genome assembly was updated to accommodate for the introduced scaffold split (see
583  Supplementary Information).

584 For the UConn accession Nanopore raw reads were first corrected by Canu v1.9. The corrected reads
585  werethen assembled into contigs by NextDenovo v2.3.0 (https://github.com/Nextomics/NextDenovo)
586  with default parameters. After assembly polishing (see below), Hi-C raw reads were processed by
587  Juicebox v1.6 to extract valid reads which contain Hi-C contact information. The 3D-DNA pipeline was
588 then used to cluster, orient, and order the contigs, generating chromosome-scale scaffolds. We also
589  used Juicebox to manually adjust the scaffolding according to the contact map. After manual curation
590 in Juicebox, the post-process module of 3D-DNA pipeline was used to generate the corrected
591  chromosome-level scaffolds (see Supplementary Information).

592

593 Polishing

594  The assembly of the Zurich accession was first polished with the quiver tool, which is included in the
595 PacBio SMRT Analysis software package v2.3.0.140936, using all PacBio reads obtained with the P6-C4
596  chemistry. We used the default thresholds to remove very low coverage scaffolds from the assembly.
597  This polishing step also corrected base calls, filled in Ns, and corrected repeat regions. After that we
598 mapped Illumina reads to the quiver-polished assembly using BWA mem (108) to correct indels and
599 SNPs in the non-repetitive parts of the genome assembly using Pilon v1.23 (109) in three rounds. Final
600  polishing was done with PBSuite v.15.8.24 (110) to fill up some of the remaining gaps of the assembly

601 using all available PacBio reads.
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602  To fix SNPs, indels and SVs originated from sequencing errors, the UConn genome’s assembly was first
603  corrected using all Oxford Nanopore reads and the algorithm provided in racon v1.4.10 (111). We
604  further corrected the racon polished contigs using all lllumina reads and Pilon v1.23. We repeated the
605  successive polishing with racon and pilon three times. We used both tools with default parameters.
606

607  Contamination detection and filtering

608 Initial assessment of the Hi-C contact maps of the Zurich accession suggested that some scaffolds of
609 the assembly had very low coverage of Hi-C data and therefore represented potential contaminations.
610  We made similar observation using the UConn accession’s genome assembly. To identify contaminant
611 scaffolds, we used BlobTools v1.1.1 (112). More specifically, we used all lllumina reads and the full
612 NCBI nucleotide collection (nt) and the uniprot database to assess sequencing depth along the genomic
613  scaffolds and to assign them to broad taxonomic categories, respectively. After that, we removed all
614  scaffolds from the assembly that were assigned to bacterial or other non-eukaryotic taxonomic classes.
615

616  Repetitive element identification and annotation: RepeatModeler2

617  We used the automated approach implemented in the RepeatModeler2 package v2.0 (113) to

618  generate a de novo annotation of repetitive elements in the genomes. RepeatModeler2 combines
619  results from the repetitive DNA sequence discovery algorithms RepeatScout v1.0.6 (114) and RECON
620  v1.08 (115) to generate a non-redundant set of TE families. Additionally, the RepeatModeler2

621 pipeline employs LTRharvest (116), which is included in the GenomeTools library v1.6.1 (117), and
622 LTR retriever v2.9.0 (118) for discovery of LTR elements based on structural parameters. To get a
623  comprehensive annotation of repetitive elements, we first identified TE families present in the

624  genome using RepeatModeler2 in conjunction with version 3.1 of the Dfam database of repetitive
625 DNA families (119). The resulting library of TE families was then used for annotation of repetitive

626 elements in the genome sequence using RepeatMasker v4.1.0 (120) (Supplementary_Table 13-14A

627 andB).
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628

629  Transposable element annotation

630  We used the Extensive de-novo TE Annotator (EDTA) pipeline v1.9.6 (121) to get a comprehensive TE
631  annotation for both F. hygrometrica genome assemblies. The pipeline combines output from several
632  TE prediction and classification programs and applies a series of filtering steps to construct a
633 comprehensive library of transposable elements present in the assembled genome (121). The
634  contamination-filtered pseudomolecule-scale assemblies were used as an input to the pipeline
635  together with coding sequences of genes annotated by BRAKER v2.1.0 (122) and genBlastG v1.39 (123)
636 as described in the “Gene prediction” paragraphs. To avoid introducing a bias when comparing TE
637 composition and distribution between the F. hygrometrica accessions and P. patens caused by differing
638  annotation pipelines, we retrieved the most recent P. patens genome assembly and gene annotation
639  v.3.3 (25,47) and re-annotated transposable elements using the EDTA pipeline as described above
640  (Supplementary Table 15-17).

641

642 Phylogenetic analysis of LTR Copia and Gypsy super-families

643  For further sub-classification of annotated LTR elements of the Copia and Gypsy super-family, we
644  retrieved alighments of reverse transcriptase (RT) domain of several known sub-families from the
645  Gypsy Database (124) and built a Hidden Markov Model (HMM) for the protein domain employing the
646  hmmbuild function of the HMMER software package v3.3 (125). We then translated nucleotide
647  sequences of Copia and Gypsy elements annotated in the F. hygrometrica genome to their respective
648  peptide sequences in all six frames and scanned them for the presence of an RT domain in combination
649  with the previously built HMM using the hmmsearch utility (126) of the HMMER software package v3.3
650  (125). We retained significant hits (E-value threshold: 1le-5) covering at least 80% of the protein
651 domain. We discarded all LTR elements which had multiple valid hits in different reading frames. The
652 remaining RT domains were aligned to each other with MUSCLE v3.8.31 (Edgar 2004) using the

653  consensus sequence of the RT domain of the Bel-Pao superfamily, retrieved from GypsyDB, as
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654  outgroup. The phylogenetic tree of the RT domains was inferred using the Neighbor-Joining method
655 (128) in MEGA X v10.2.5 (129) applying 1000 bootstrap replicates (130) (Supplementary_Information).
656

657  LTRinsertion time estimation

658  The sequences of 5 and 3’ terminal repeats are supposed to be identical to each other when LTR
659 retrotransposons are newly inserted into the genome (131). Therefore, the degree of sequence
660 conservation between left and right terminal repeats can be used as a proxy for insertion age of
661 individual LTR elements. To assess the recent history of LTR retroelement insertions in F. hygrometrica
662 and P. patens, we extracted 5’ and 3’ terminal repeat sequences for each LTR element classified as full-
663 length and intact by the EDTA pipeline (121) and aligned them using MUSCLE v3.8.31 with default
664  parameters (127). We then calculated the Kimura 2 parameter distance (132) for each aligned pair
665 using a custom python script and modules from the Biopython library (133). The divergence time
666 between LTR pairs was estimated by dividing the distance parameter by two times the synonymous
667 substitution rate. We used a substitution rate of 9.4e-9 synonymous substitutions per synonymous site
668  per year for both genomes, which was established for P. patens elsewhere (134). We plotted LTR
669 insertion age distributions using the R package ggplot2 v3.3.3 (135).

670

671  Genome annotation

672 Transcriptome assembly

673  To aid gene prediction we generated RNA-seq data covering three developmental stages of the
674  gametophyte and four developmental stages of the sporophyte generations in three replicates (six
675  developmental stages in total) for the Zurich accession. Gametophyte and sporophyte RNA-seq data
676 was also obtained for sporophyte and gametophyte tissues of the UConn accession
677  (Supplementary_table_1). RNAseq data was first trimmed for low quality bases and adapter sequences
678  using Trimmomatic v0.36 (136). The strand-specific RNA-seq reads were then mapped to their

679 respective genome using Hisat2 v2.1.0 (137) and a genome-guided transcriptome assembly was
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680  generated using default options in Trinity (138). A second transcript assembly was generated using
681  StringTie2 v2.1.6 (139). Here, transcripts were assembled independently for each sample and a final
682  set of unique transcripts was computed using the —merge function.

683

684  Gene prediction

685 Gene models were initially predicted separately for both F. hygrometrica accessions, using BRAKER2
686  v2.1.0 (122). The prediction algorithm was first trained in the GeneMark-ETP+ mode, providing
687 mapped RNAseq data, proteome data of Viridiplantae species retrieved from OrthoDB_v10 (140),
688  transcriptome data of P. patens retrieved from Phytozome13 (25,141), and transcriptome assemblies
689 of F. hygrometrica (see previous paragraph). The resulting species model was used in a second
690 BRAKER2 run, omitting further training, and providing all available evidence to make a first
691  comprehensive gene prediction and annotation. The evidence for this run included hint files generated
692  from the repetitive element annotation by RepeatModeler2 v2.0 (113), RNAseq coverage data from all
693  available samples, and de novo assembled transcripts produced with Trinity (138) and StringTie2 v2.1.6

694  (139) as described in the previous paragraph (Supplementary_Table_6).

695

696  Consolidating gene models of the two F. hygrometrica accessions

697 In an attempt to consolidate the previously generated gene predictions of the two F. hygrometrica
698  accessions we employed the CGP extension of Augustus v3.3.1 (142) to transfer missing annotations
699  between the two genomes. The resulting annotations, however, showed significantly worse BUSCO
700 scores compared to the original annotations generated with the BRAKER2 pipeline. Visual inspection
701 of the newly generated gene models showed that many previously well supported annotations were
702 fragmented, leading to an overall decrease of annotation quality. Therefore, we decided to focus on
703 gene models that were potentially missed during the gene prediction process in one or the other
704  accession. To do so, we used the genBlastG algorithm v1.39 (123) to identify homologous regions of
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705 predicted gene sequences in the alternate accession’s genome and build valid exon-intron structures
706  based on high-scoring sequence pairs and intrinsic sequence signals. We then tested if these newly
707  generated gene models overlap with annotations generated by the BRAKER2 pipeline utilizing the --
708 intersect option of the BEDTools suite v2.26 (143). Only non-overlapping models generated by
709  genBlastG were retained and added to the respective accession’s gene annotation file. To make these
710 gene models distinguishable from the original annotation, the prefix “genb_” was added in front of the

711 respective gene identifier (Supplementary_Table_6).

712

713 Filtering of incomplete gene models

714  All annotations were filtered to remove incomplete gene models before further analysis. Filtering was
715 done using the program gFACs v1.1.2 (144). Models missing start or stop codons, showing
716  incompleteness at their 5’ or 3’ ends or containing any in-frame stop codons were removed during
717  filtering. Additionally, thresholds for minimum exon size (1), minimum intron size (10), and minimum

718  total CDS size (225) were applied to remove short gene models.

719

720  Whole genome alignments and collinearity analyses

721  We used dot plots generated with D-GENIES v1.2.0 (145) to assess collinearity between genomes of
722  the two F. hygrometrica accessions as well as between F. hygrometrica and P. patens (25). We aligned
723  the genomes using Minimap2 v2.17 (146). We excluded matches with less than 90% sequence identity
724  when aligning genomes of the two F. hygrometrica accessions, while a threshold of 70% was used for

725 alignments between F. hygrometrica and P. patens.

726  To assess structural variation between assemblies of the two F. hygrometrica accessions, we aligned

727  them using the NUCmer module of the MUMmer package v4.0.0 (147). To visualise and classify the
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728  observed differences, we submitted the resulting .delta file to the Assemblytics web service v1.2.1

729 (148) (for further details see Supplementary Information).

730 We utilized the MCScan algorithm (149) and MCScanX toolkit (150) to assess collinearity within and
731 between the studied genomes. We used peptide sequences of primary transcripts as input to an all-
732 vs-all homology search with the BLAST algorithm (151), as recommended in the MCScanX
733  documentation. The resulting tabular output was fed into the MCScan algorithm (149) to establish
734 blocks of collinear genes using default parameters. We calculated synonymous and non-synonymous
735 substitution rates for each syntenic gene pair using the tools supplied with the MCScanX toolkit (150).
736 We visualized collinearity within genomes using circular plots generated with Circos v0.69-9 (152),

737  while SynVisio (153) was employed to visualize collinearity between genomes.

738

739  Gene set comparison of the F. hygrometrica and P. patens genomes

740  We created orthogroups, groups of genes descended from a common ancestor, using 38 plant
741 proteomes including six species of green and streptophyte algae, 12 bryophytes, and 20 vascular plants
742 representing all major lineages of land plants (Supplementary Table_ 9, Supplementary _Table 10).
743  OrthoFinder v.2.5.2 (154) analysis was run using default parameters. We obtained the species tree
744  from orthogroup gene trees using the algorithm provided in OrthoFinder v.2.5.2. The species tree was
745  converted into a time tree (ultrametric tree with branch length in time units) using the ete toolkit v3
746  (155). To infer gene family evolution on the branches leading to F. hygrometrica and P. patens from
747  their common ancestor we used COUNT (156). COUNT applies a phylogenetic birth-and-death model
748  to reconstruct the evolution of gene numbers in gene families along a phylogenetic tree taking into
749  account the processes of gene loss, gene gain and duplication. All three parameters vary by the edges
750  of the phylogenetic tree and by family, the latter according to a discretized gamma distribution. We
751 used likelihood optimization to obtain numerical estimates for these parameters. To do so we

752 performed model optimization in a model hierarchy starting with the simplest model and changing
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753  only one parameter at a time and retained parameters that led to the most significant improvement
754  of the likelihood value. The final model included variable duplication rates, and edge length as well as
755  duplication and loss rates varied according to a discrete gamma distribution with two parameters
756  (length_k=2_dupl_k=2_loss_k=2). Gain was modelled with a simple gamma distribution as its inclusion
757  did not influence the likelihood value significantly. Using the model parameter estimates, we
758 calculated posterior probabilities for gene family expansion/contraction as well as gain/loss for each

759  family running the posteriors module of COUNT (Supplementary_Table_11).

760

761 Functional annotation of predicted genes

762  To obtain the functional annotation for the F. hygrometrica genes, we used two approaches. In
763 particular, we assigned GO annotations to the gene models of F. hygrometrica using the eggNOG-

764  mapper v2 (157) and InterProScan v5 (158) (Supplementray_Table 18-21.

765
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774  Raw DNA and RNA sequencing data used in this publication was submitted to NCBI Short Read

775 Archive (SRA) under the BioProject ID PRINA816911 (SRA submission SUB11197892) and to the

776 European Nucleotide Archive (ENA) under study accession number PRIEB36328 for the Zurich

777  accession, respectively. For the UConn strain, raw DNA and RNA data were deposited at the CNGB
778  data center (https://db.cngb.org/) under the project number CNP0002793. Genome assembly files,
779  their annotations, and all supplementary tables will be deposited on figshare upon acceptance. A
780  genome browser with Blast utilities will be made public upon acceptance.
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816  Figure 1 Organization and structural variation of the two F. hygrometrica genomes. (A) Circos
817  representation of chromosome-scale pseudomolecules of the Zurich assembly. From outer to inner
818  circle: Gene density in 250-kb windows along the putative chromosomes; Density of repetitive
819  elements in 250-kb windows; representation of the 26 putative chromosomes (tick spacing is one
820 Mbp). (B) Dot-plot of alignable regions between the UConn and Zurich assembly of the F. hygrometrica
821 genome. The plot was generated with D-GENIES using a similarity threshold of 70% (145). (C) Length
822  and frequency distribution of structural variants between the Zurich (reference) and UConn assembly.

823  Variants were classified and plotted using assemblytics (148).
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Figure 2 Intergenomic collinearity between the P. patens and F. hygrometrica acc. Zurich genome. (A)
Collinearity between the P. patens and F. hygrometrica pseudomolecules. Collinear blocks of the two
genomes are connected with colored lines and pseudomolecules are drawn to scale. (B-C) Collinearity
between syntenic pseudomolecules of F. hygrometrica and P. patens (fhl vs. pp1, and fh10 vs. pp16).
Blue ribbons connect collinear blocks with the same directionality, while red ribbons depict blocks with
inverted positions. (D) Collinearity and synteny between fhl7, pp25 and pp27 representing the
inferred chromosomal fusion/fission between chromosomes of P. patens and F. hygrometrica. (E)
Comparison of genomic features in the corresponding collinear blocks of P. patens and F.
hygrometrica. The box plots show the median and interquartile ranges, whiskers represent values up

to 1.5 times the interquartile range, values outside this range are represented as individual data points.
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Figure 3 Transposable element annotation of Funariaceae genomes. (A) Genome features in alignable
and not alignable regions between the F. hygrometrica acc. Zurich and P. patens genome. Only features
fully overlapping with the respective genomic regions are shown as annotated, partially overlapping
features are shown in black alongside regions without annotation. The whole-genome alignment was
computed using the minimap2 algorithm with default parameters (146). (B) Transposable element
annotation summary of the three studied genomes. The bar plot on the left shows the composition of

transposable element families as a fraction based on their total sequence length in the genome. The
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851 plot on the right shows the absolute length the different families occupy in the respective genome. (C,
852 D) Density of Long terminal repeat (LTR) retrotransposons on the chromosomal scaffolds of P. patens

853 (C) and F. hygrometrica (D) in 100 kb windows.
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857  Figure 4 Insertion age distribution of intact full-length LTR elements in the Funariaceae genomes.
858 Insertion time is estimated by calculating the sequence divergence between left and right terminal
859  repeats and provided in millions of years (Mya). "n” refers to to the number of full-length elements

860 included in the analysis..

861
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Figure 5 Dot plot of self synteny among pseudomolecules of the F. hygrometrica Zurich accession and
P. patens. Pseudomolecule blocks corresponding to the putative ancestral chromosomes are framed.
Histograms above the dot-plots show the distribution of average Ks values per collinear block.
Histograms are colored according to the two whole-genome duplication events.

Pseudomolecules in the dot plots are ordered according to intergenomic synteny between F.

hygrometrica and P. patens.
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Figure 6 Intragenomic collinearity and karyotype evolution model of the F. hygrometrica genome. (A)
Circular visualization of the 26 pseudomolecules of the F. hygrometrica genome (Zurich accession).
Blocks of collinear genes with a mean synonymous substitution rate (Ks) < 1.05 (corresponding to the
most recent whole-genome duplication [WGD]) are connected by colored ribbons. Pseudomolecules
are arranged to reflect their putative evolutionary relationship. Pseudomolecules potentially
originating from the same ancestral chromosome are grouped together and labelled with | — VI. (B)
Visualization of collinear blocks with a mean synonymous substitution rate (Ks) > 1.05 (corresponding
to the older WGD). (C) Hypothetical model of karyotype evolution in the F. hygrometrica lineage. Six
ancestral chromosomes underwent two whole genome duplication events accompanied by one
chromosome loss, five chromosome breaks, and three chromosome fusions, resulting in 26 recent

chromosomes.
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F. hygrometrica  F. hygrometrice P, patens v3.3

ace. Zurich ace. Uconn
# Copia elements 49.215 64,501 19.670
# intact Clopia elements 27,990 (57 %) 40,481 (63 %) 13.451 (68 %)
# Gypay elements 24,801 (9,216 187,270

# intact Gvpsy elements 16,204 (65 %) 30.697 (44 %) 72,565 (39 %)

Table 1: Proportional and absolute abundance of Copia- and Gypsy-like LTR elements in the F.
hygrometrica and P. patens genomes as estimated by the EDTA pipeline (121).
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