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Abstract

Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells,
offering resolution in the tens of nm range and strong contrast for membranous structures without
requirement for labeling or chemical fixation. The short acquisition time and the relatively large
volumes acquired allow for fast acquisition of large amounts of tomographic image data.
Segmentation of these data into accessible features is a necessary step in gaining biologically relevant
information from cryo-soft X-ray tomograms. However, manual image segmentation still requires
several orders of magnitude more time than data acquisition. To address this challenge, we have here
developed an end-to-end automated 3D-segmentation pipeline based on semi-supervised deep
learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data,
while being robust when faced with limited manual annotations and variations in the tomographic
conditions. We validate our approach by extracting three-dimensional information on cellular
ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian

cells.
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Introduction

All cells are filled with a dense and complex mixture of organelles and macromolecular structures that
rely on nanoscale interactions to perform vital functions. To understand the organization and
interaction of cellular organelles, the resolution of native cellular ultrastructure is essential. Electron
microscopy (EM) is considered the gold standard for ultrastructural analysis. However, while much of
our current understanding of cellular processes is based on EM methods, several limitations in sample
preparation, volume coverage, acquisition speed and throughput remain. Cryo-soft X-ray microscopy
(XRM) offers several advantages over EM approaches, but with the trade-off of somewhat lower

resolution.

XRM takes advantage of the intrinsic different absorption contrast of elements. In the spectral region
called the ‘water window’, carbon atoms absorb very strongly compared to oxygen atoms. This is of
great relevance for biological specimens, where the natural contrast between carbon-dense material
such as proteins and lipids and the aqueous environment can be exploited to visualize membranous
organelles and small particles (e.g. nanoparticles® or viruses?) at a resolution of 30 - 40 nm?3. Moreover,
specific organelles or structures can be distinguished based on their linear absorption coefficient,
which is directly related to their chemical composition*. Unlike many EM methods, cryo-XRM samples
require neither chemical fixation nor embedding or labeling. Instead, cells can be grown on gold TEM
grids, plunge frozen and directly imaged in the transmission x-ray microscope. Furthermore, the
penetration depth of soft x-rays is with 15 um significantly deeper than what would be accessible by
transmission electron microscopy techniques. This allows transmission microscopy and tomography

of the entirety of the cellular volume in minutes without the need for physical sectioning®®.

Cryo-soft X-ray tomography (SXT) yields projection images acquired at tilt angles within +65°, which
are then aligned and a tomographic reconstruction algorithm is then applied to produce a tomogram.
In this paper, we use the term “tomogram” instead of “tomographic reconstruction” in order to avoid
confusion with the reconstruction procedure performed by our network. This tomographic dataset
composed of hundreds of image slices contains the 3D-ultrastructure of the cell that must then be
extracted using segmentation to yield more quantifiable information, as for instance the size,
organization and distribution of organelles in the cytosol®. In comparison to conventional EM methods,
cryo-SXT covers a significantly larger volume in a shorter period of time and does not suffer from
preparation artifacts such as section compression or shrinkage’®. Fast-paced development of 3D-EM
techniques towards larger volumes and imaging under cryogenic and non-cryogenic conditions has
led to remarkable results in the ultrastructure of biological specimens®?*2. Sample preparation and

acquisition times of techniques such as focused ion beam (FIB) SEM are several orders of magnitude
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higher than those of SXT*3, meaning that the throughput is generally low. In contrast, cryo-SXT can
acquire a tomogram covering ~1000 um? within less than 30 min and thus allows the comparison of
changes in i.e. the organization of cellular organelles with statistically relevant amounts of data in 3D
volumes as in the yeast cell cycle!®, nanoparticle uptake! and parasite infection'®>. Moreover, the
compatibility of cryo-SXT with cryo-fluorescence microscopy or cryo-hard x-ray fluorescence

microscopy allows the identification and visualization of specific cellular structures and processes!®’,

While volumetric data can be generated rather quickly in cryo-SXT, the data analysis is still time-
consuming. Specifically, in the cryo-SXT workflow, manual segmentation remains the key bottleneck®®.
The complete manual segmentation of a dataset may take several days or even weeks, discouraging
effort to segment the data beyond the structures of interest. As a result, subtle but potentially
important changes in cellular ultrastructure may go unnoticed, even if that information was present
in the original data. Automated or semi-automated segmentation using machine learning algorithms,
especially artificial neural networks, hold the promise of overcoming this barrier'®2!, Deep learning
(DL) has already made great impact in microscopy, with promising applications in resolution
enhancement?>?> and denoising?®, missing data reconstruction? and rapid phenotyping®. More
specifically, first contributions have already been made for automated segmentation in various
microscopy applications, including volume-EM%1%2%3°  QOpen source solutions offering basic

3134 3nd the design of dedicated novel networks will likely lead to

functionality are also available
further improvements. The design of methods suited for automated segmentation of cryo-SXT
tomograms is an ongoing effort®3° and faces inherent challenges such as limited depth of focus as
well as the missing wedge problem®. The missing wedge refers to larger tilt angles that are missing in
the 3D tomogram, for example in XRM, +/-65° instead of +/- 90°. Reconstruction of data with a missing
wedge introduces artifacts, such as blurring and apparent elongation in the Z-axis*®*!. Addressing

these challenges using DL image analysis requires a large pool of consistent, high-quality training data,

which in turn requires extensive access to suitable cryo-soft X-ray microscopes for acquiring such data.

Deep convolutional networks remain the most popular approach for supervised learning of image

42-44 while other approaches such as learning weighted random walks have also

segmentation tasks
been suggested®. Relying exclusively on supervised learning requires access to large amounts of
manually annotated data. Moreover, in supervised training the network can overfit on the
instrument(s) used in the training data and fail to generalize to a different imaging source. To address
these challenges, we here introduce a deep convolutional network for semi-supervised learning of
cryo-SXT image segmentation. We propose a new architecture that uses a combination of manually

annotated as well as unannotated images for training. While the network learns to classify features of

interest, such as membrane structures, in the tomographic image using the manual annotations,
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significantly larger amounts of unannotated data enable the network to learn a representation of
various possible image features and imaging conditions, and thereby significantly reduce the amount
of annotated images required to make reliable predictions. Once trained on both annotated and
unannotated data, the network can be applied out-of-the-box for automatic segmentation and surface
reconstruction of a variety of tomograms from different instruments without the need for parameter
tweaking and retraining. The entire procedure requires minutes for whole-cell tomograms, offering a
versatile tool to fully harness the structural information in cryo-soft X-ray tomographic datasets. We
test our model on unseen data acquired at three different synchrotrons to demonstrate transferability
and quantify a significant amount of subresolution 3D data to demonstrate the throughput of our

technique.
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Results

Semi-supervised deep neural network for cryo-SXT segmentation

We first needed to develop an end-to-end deep-learning network suited for the analysis of cryo-SXT
datasets. After testing a large number of different network architectures, we determined that the
significant variety of image features and the relatively low contrast in cryo-SXT images demand a very

deep network with a large representation power.

Consequently, we constructed a convolutional feed forward network, (Figure 1, for details on network
design and training, see Methods)). This network takes 2D slices of cryo-SXT tomograms, and
processes them to two parallel outputs by using “image” and “annotation” decoders, respectively®®.
Besides width and height dimensions, an image processed by the network is assigned an extra

I”

“channel” dimension, which is one for the input grayscale images. The channel dimension contains
parallel sets of information about an image, that are being processed simultaneously at each layer of
the network. Since using residual learning allows the training of significantly deeper networks*®, our
proposed architecture heavily relies on residual blocks made up of convolutional layers with residuals

concatenated in channel space, accumulating extended pixel-wise information.

Overall, our deep learning network contains 30 layers in the segmentation path (Fig. 1) with a total of
~76 million trainable parameters. In order to facilitate semi-supervised training on cryo-soft X-ray
tomograms, we have implemented a network architecture which allows for simultaneous learning of
both image reconstruction and image segmentation. To improve the training procedure of the
network, we have employed batch normalization in the majority of blocks, which leads to faster
convergence by regularizing the mean and variance of brightness values across batches of image
data®” (Fig. 1). The global bottleneck of the network introduces a cardinality of 3, i.e. three parallel
convolutional paths with different kernel sizes (Fig. 1). This allows for higher representation power
with less network depth, and prevents vanishing gradients during the training procedure®, The
outputs of the bottleneck are concatenated and passed to the two decoders. The image decoder
(Fig. 1) is tasked with reproducing the input image, while the annotation decoder performs the

29,30

segmentation. The characteristic skip connections of the U-Net architecture are only introduced

between the encoder and the annotation decoder (Fig. 1).

For the image segmentation branch, we have made hyperparameter choices similar to the original U-
Net design in the number of down/up-sampling stages, kernel sizes, and number of channels. For
other hyperparameters, such as the number of residual blocks in each stage, the cardinality of the
bottleneck region, final layers in the decoders, and the learning rate, we have relied on extensive

experimentation and manual selection of the combinations that resulted in best results, both


https://doi.org/10.1101/2022.05.16.492055
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.16.492055; this version posted May 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

qualitatively as judged by the final segmentation, and quantitatively as measured via pixel-wise
accuracy and SSIM. After the training of the network is complete, full-sized slices can be processed in
one-shot scans. In order to handle large image slices with limited memory, we have also implemented
a procedure for partitioning images into overlapping chunks, and gathering the segmented labels

subsequently.

The network was trained in a semi-supervised approach by two protocols: (i) we used a large number
of slices from different tomograms to train the reconstruction path of the network without updating
the weights in the segmentation decoder. This forces the encoder to learn a compressed
representation transferable between different cell and tomography conditions. (ii) we used the
smaller number of manually segmented inputs to train both paths simultaneously in order to
reproduce the image and its accompanying label, respectively. The training loop entails alternating

between the two protocols until satisfactory convergence is achieved (Fig. 1).

We have used a pixel-wise accuracy score that measures the percentage of pixels correctly predicted,
respectively within 1% margin for segmented labels, and within one standard deviation of brightness
for reconstructed images. After 700 training iterations, the image reconstruction path achieves a pixel-
wise accuracy of >80%. Reconstructing images also entails reproducing the background noise.
Because the network lacks any stochastic input for noise sampling, the background noise is implicitly
approximated (Fig. 1 and Fig. S1). The segmentation path reproduces manual labels with pixel-wise

test accuracy of > 96%.
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Figure 1: Processing workflow from raw tilt data to 3D volume rendering of cryo-SXT datasets. Top, INPUT: A
full tomogram or manually annotated training data are used as input. Shown are a 0° tilt image of a
representative cryo-soft X-ray tomographic dataset, showing a part of the cytosol of a plunge-frozen CRFK cell
and examples of training data presented to the network. Middle, Processing: Schematic of the two-headed
convolutional neural network. Bottom, Output, from left: Overlay of the tomographic slice shown at the top
and the corresponding network output labels (in red). Three segmentation outputs for the training data input
shown in the top right. 3D volume rendering of all network output labels from the entire tomographic
reconstruction with the detected and reconstructed objects displayed in random colors. Scale bar: 2 um.
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Evaluation of segmentation speed, quality and robustness.

Using a GeForce RTX 3090 graphics card with 24 GB of graphics memory, and using the already trained
network, automated segmentation took less than 5 minutes for a tomogram with 350 slices of
1324x1284 pixel images or 8 minutes for a tomogram of 500 similarly-sized slices, respectively. The
performance was limited by the necessary slicing of large images into overlapping chunks suitable for
GPU processing,, which is ultimately constrained by graphics card memory, and the resulting repeated
data communications to and from the graphics card. Using more memory would thus further enhance
the reported performance. A human expert user classified the automatically generated labels and
filled in missing features into a representative set of 59 slices from 3 different tomograms. By
comparing the pixels in each category, we found that out of all labeled pixels per slice, an average of
69.8% (s.d. = 10.4) were true positives, i.e. correctly labeled by the network and 27.7% (s.d. = 10.8)
were false negatives, i.e. structures additionally labeled by the human user. 1.3 % (s.d. = 2.2) and 1.2

% (s.d. = 2.1) were false positives or labeled reconstruction artifacts, respectively (Fig. 2).

&

- o T . : true  false artifacts false
M True Positives |l Reconstruction Artifacts positive negative positives

M False Negatives ™ False Positives
Figure 2: Quantification of Image Segmentation Robustness and Accuracy. A) A representative example 2D

slice from the 3D tomographic image stack that was analyzed. B) Overlay of the example slice in A with the
labels automatically produced by the deep network. C) The labels produced by the network were manually
filled in on a series of randomly selected single slices and classified into true positives (green), reconstruction
artifacts (pink), false positives (cyan). Manually added labels (false negatives) are shown in blue. D) The
network performance was evaluated based on the percentage of surface pixels per class for each analyzed
slice. Bars indicate the mean percentage. Scale bar: 2um.
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Since SXT requires synchrotron radiation, it can at this time only be performed at a few institutions
worldwide. Thus, to be widely applicable, our method should generalize to data acquired form other
synchrotrons. To test if this is the case, we applied our trained deep-learning network on X-ray
microscopy datasets obtained from two other synchrotrons. We used a dataset of A549 lung cancer
cells incubated with nanoparticles for endocytosis that was imaged on the MISTRAL beamline at the
ALBA synchrotron (Barcelona, Spain; Fig.53)?, and a dataset of mock-infected U20S cells imaged on
the B24 beamline at Diamond Light Source (Didcot, UK)® (Fig. S4). The data provided by the Diamond
Light Source were acquired with a different X-ray microscope objective with somewhat lower
resolution but higher depth of field compared to the objectives used for all the other data (40 nm vs.
25 nm zone plates). Despite the different experimental conditions, both datasets were readily
segmented by our trained network in seconds and identified a vast majority of membranous
organelles inside the cytosol. These results demonstrate the utility of our deep network for data
generated at cryo-soft x-ray microscopes from other synchrotron facilities and under different imaging

and cell-biological conditions.

Using deep learning to quantify filopodia morphology

Next, we asked whether our automated segmentation would allow for medium-throughput, high-
resolution image analysis. As a ubiquitous example, we investigated cellular filopodia, which are
abundant, sub-resolution plasma membrane protrusions, whose spatial dimensions are inaccessible
by 2D-imaging. These elongated, submicron-thick, actin-filled structures play an important role in
cellular migration and spreading of cells*. We obtained 3D images of 59 filipodia from three different

cells, which we then quickly segmented, reconstructed and analysed (Fig. 3A).

As expected, we found that the spatial orientation of the filopodia affected their analysis in 2D-
tomogram slices. Filopodia crossing a lateral tomographic slice at a low angle would be observed as a
very elongated ellipse (i.e. having a long first axis length, Fig. 3A). Consistent with this observation, we
noticed a high variation of the first axis length of the filopodia cross-section (302 + 189 nm). The
second axis length, more robustly reflecting filopodial diameter, was with 132 + 28 nm generally more
homogeneous. The diameter of filopodia is thus essentially constant but 3-dimensional orientation
prevents accurate measurements of volume, surface area and perimeter from 2D cross-sections. It is

thus essential to analyze entire filopodia from 3D-reconstructions.

Our fast deep learning-based reconstruction provided the basis for swift 3D analysis as well, in which
we found a major axis length of 966 + 394 nm by fitting an ellipsoid to the segmented data. The 3D-
second axis length also had a higher error with 320 £ 141 nm (Fig. 3B). We found that the average

volume and surface area of filopodia was highly variable, with 2.2-10’+1.7-10’nm3® and
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6.1-10°+ 3.6 -10° nm? respectively. However, the surface area to volume ratio was consistent with
30.2 + 5.3 um™ (or 0.3021 +0.0534 nm™, respectively) for the entire population, indicative of a
consistent shape of all filopodia. Taken together, we concluded that the combination of SXT with DL

image analysis allowed for fast reconstruction and analysis of small subresolution 3D structures.
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Figure 3: Quantification of filopodial 3D structure. A) Representative tomographic slice of an
analysed dataset, overlaid with the automatically generated labels in red (i). The yellow box in i
denotes the area shown up close in ii. A selection of individual filopodia used for analysis are
shown in isosurface renderings, illustrating the general rod-like morphology of the filopodia. The
box with dashed outline illustrates the orientation of first and second axis lengths on a
representative filopodium. B) Dot-plots illustrating the mean first and second axis lengths and
perimeter of the 2D cross-sections of the filopodia, as well as the 3D surface area, volume and
surface area to volume ratio of all of the filopodia analysed in this study. The bar denotes the
mean of the parameter across the population (n = 59). Scale bar: 2 um.
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Discussion

In this work, we have developed a new deep neural network that allows for rapid and robust
segmentation and surface reconstruction of three-dimensional cryo-SXT data. On average, it
recognizes 70 % of the feature pixels in a cryo-soft X-ray tomogram within 10 minutes or less,
regardless of the complexity of the dataset. Hence, even highly complex datasets such as mammalian
cells can be segmented in a very short period of time. Even a semi-manual segmentation requires
more than an order of magnitude more hands-on time by the user. We purposefully chose a more
cautious automated segmentation approach with the deep network, since correcting false labels will
be much more time-consuming than filling in missing labels. This suggests that future iterations with

additional training data may recognize significantly more features.

Based on our segmentation evaluation, only about 1.8% or 1.6% of the automatic label pixels were
either false positives or reconstruction artifacts on average per slice. These erroneous labels could at
most times easily be distinguished from cellular features, since they were either localized in
extracellular space and/or on the direct boundaries of the reconstructed volume. The appearance of
these errors can be further reduced prior to classification without loss of information by cropping the
dataset by a few pixels on the boundaries to avoid most reconstruction artifacts and by using a rough
mask to differentiate the cellular volume from extracellular space to reduce the presence of false
positives. Figure S2 illustrates examples of the falsely labeled reconstruction artifacts and false

positives that were the most common in our datasets.

It is possible to perform the automatic segmentation with additional filtering to remove small objects,
or to perform several iterations of erosion, leading to increasingly thinner contours and better object
separation, as well as increasing the rate of false negatives. Depending on the intended use of the
segmentation, i.e. rapid inspection vs. accurate analysis, as well as the size of the smallest objects of

interest, tweaking of filtering and erosion settings may be useful for optimal results.
Filopodia Analysis

Toillustrate the utility of our deep network, we quantified several spatial parameters of a high number
of filopodia. We found that 2D-analysis is not sufficient for the accurate determination of critical
parameters, but 3D analysis after fast reconstruction through our algorithm allows for the swift
determination of filopodial volume and surface area. These values have a high standard deviation,
since the measured population represents filopodia in various states of extension and retraction of
these highly dynamic and often transient structures®. The measurement of filopodial dimensions is

due to their important role in cell migration and cancer of high interest >°%4, Our method will allow
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for a fast and convenient readout at the nanoscale and opens new avenues of research on filopodial

growth.

Advantages of our deep learning approach
Our network provides several key advantages for segmenting cryo-SXT data:

Using this network, a segmentation can be produced in less than ten minutes on a modern GPU. This
dramatically simplifies and accelerates the data analysis step to the point where data can already be
analyzed at the synchrotron during the acquisition of the data. This saves not only a significant amount
of time, but also enables researchers to learn from their data faster and potentially adjust critical
sample parameters before acquiring the next datasets, thereby increasing the quality of the data they
obtain. This is especially important since cryo-SXT is predominantly available at synchrotrons, which

only allows for limited amounts of measurement slots.

The manual input required for obtaining a 3D-segmentation of the data is significantly reduced, saving
time and providing more objective segmentation results. The time required for a full segmentation of
a dataset is considerable, so that users may focus their segmentation efforts on only a part of their
data, looking for an expected result. An unbiased, automated segmentation can help in revealing more
subtle or unexpected changes in the cells under the experimental conditions. At the same time, it
becomes possible to generate statistically relevant amounts of data in a reasonable timeframe. This
allows to take advantage of the full potential of cryo-SXT in indiscriminately visualizing all carbon-

dense cellular structures, such as membranous and cytoskeletal structures.

Our network can be retrained with new training data. This should allow to improve the network’s
performance under specific tomographic reconstruction conditions, or when different cell types other
than adherent mammalian cells are being investigated. Thanks to the high processing speed and
accuracy, it is a lot faster to generate a high number of training data based on preliminary
segmentations, instead of manually segmenting a comparable amount of data. This can also be helpful

for experimenting with other deep-learning tools.

The output data of the network can be exported as common file formats, including .TIFF format and
thus easily imported into a variety of programs commonly used by biologists, such as Imagel or
Microscopy Image Browser (MIB). This ensures an easier integration into the user’s individual image

processing and analysis workflow.


https://doi.org/10.1101/2022.05.16.492055
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.16.492055; this version posted May 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Remaining Challenges

A few issues remain to be addressed in the future. While cryo-SXT as a method allows for rapid
acquisition of a large portion of a cell, this imaging technique is still predominantly available at a few
synchrotron facilities worldwide. Laboratory-based cryo-soft x-ray microscopes are under
development but are currently not capable of achieving results of comparable quality. The limited
accessibility of this technique, together with the diversity of applications and generated datasets
results in a scarcity of comparable training data for effective training, which was one of the central

challenges of this work.

The interior ultrastructure of mammalian cells is often highly complex, with many organelles in close
proximity or even in direct contact with each other. This high degree of connectivity among the
organelles poses a problem of object separation. This network was designed to rapidly and objectively
segment all membranous structures of the cell. A user interested in separately quantifying one
organelle from another must still invest manual effort in classifying and separating the objects (i.e. the
organelles) from each other. The high speed and accuracy of our automated segmentation will now
help to generate sufficient training data for such a classification network, which will learn to

distinguish the major organelle types present in mammalian cells and assist in separating objects.

Finally, our automated procedure can be further improved to address the complications introduced
by the missing wedge problem. This problem arises from incomplete rotation of a tomographic
specimen, and cannot be avoided when imaging specimens grown on a flat substrate. Reconstruction
of data with a missing wedge leads to blurring, elongation and ray artifacts which may obscure actual
cellular features. As a consequence, cellular features distorted by missing-wedge artifacts become
very difficult to discern, even for the human eye. Such cases formed only a small part of our training
data space, and so our network is not yet sufficiently well trained to compensate for these artifacts.
This will be overcome as the network is exposed to more and more data which suffer from such
artifacts, and so with time the network will learn to more accurately segment features obscured by

missing-wedge artifacts.

Conclusion

In conclusion, we present here a convolutional neural network that dramatically reduces the manual
effort and time required for segmentation of cryo-soft x-ray tomographic datasets. We show that the
network recognizes about 70% of the features present in different datasets correctly and thus allows

for an instant assessment of the dataset. This will allow soft X-ray microscope users to analyze their


https://doi.org/10.1101/2022.05.16.492055
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.16.492055; this version posted May 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

data more rapidly, efficiently and objectively, and thereby optimize their microscope time, which is
constrained by the heavy demand for these instruments at synchrotron beamlines. Our deep network
can segment the entire tomographic reconstruction within ten minutes or less without any manual
user input. This allows users to assess their data as 3D-renderings during their experiment and as a
result, they can make more informed choices about the use of their very limited beamtime and
address their biological questions more efficiently. Furthermore, our work opens the door to the
generation of statistically relevant amounts of data on large cytosolic volumes from many cells. This
will be of great importance in the quantitative investigation of the organization and reorganization of

the cellular organelle complement.
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Methods
Sample preparation. Crandell-Rees Feline Kidney (CRFK) cells were cultivated in DMEM with 4,5 g/l D-

glucose, supplemented with 2 mM glutamine and 10 % FCS inside a humidified incubator at 37 °C. For
preparing specimens, Quantifoil R2/2 AuG200F1 finder or Au-HZB-2 grids (Quantifoil Micro Tools
GmbH, Germany) were first plasma-cleaned, then sterilized in 70 % ethanol and placed inside empty
wells of a 24-well plate. After letting the remaining ethanol evaporate, fresh full medium was added
and subsequently CRFK cells were seeded, such that they had reached a confluency of 70 - 80 % the
next day, when the cells were either fixed for two hours at room temperature in freshly prepared 2 %
glutaraldehyde or directly plunge-frozen in liquid ethane. The frozen specimens were stored in liquid

nitrogen until imaging.

Cryo-soft x-ray tomography and tomographic reconstruction. The acquisitions were performed at
the U41 beamline at the BESSY Il synchrotron facility. Tilt images ranging from + 60° (round Quantifoil
grids) or * 65° (HZB-2 grids) with an increment of 1° were acquired at 510 eV with a 25 nm Fresnel
Zone Plate (FZP). Tracking, alignment and tomographic reconstruction were performed using the
Simultaneous Iterative Reconstruction Technique (SIRT)*® in IMOD®®, using gold nanoparticles as

fiducial markers.

Deep network for image segmentation. The architecture shown in Fig. 1 is an end-to-end
convolutional feed forward network, taking 2D slices of cryo-SXT tomograms, and processing them to
two concurrent outputs, respectively from “image” and “annotation” decoders'®. Beside the familiar
width and height dimensions, an image that is being processed by the network is assigned an extra

Ill

“channel” dimension, holding an array of brightness information per pixel. Our proposed architecture
heavily relies on residual blocks made up of convolutional layers with residuals concatenated in
channel space, accumulating extended pixel-wise information. Using residual learning allows the
training of significantly deeper networks*. Convolutional layers of the network apply a convolution
with a learnable kernel plus an additive bias, followed by the nonlinear activation function g. Thus,
for image X being transformed by the network, X, = g(W,, * X,, + b,,), with W;, and b,, being the
trainable kernel and bias, respectively. We have used Rectified Linear Unit (ReLU) as the activation
function g throughout the network. Each individual convolution step in the network is composed of
mini “bottle-neck” convolutional blocks, as described by He et al.?®. In these blocks, the number of
image channels is reduced by a convolution step with a kernel of size 1x1, followed by the main
convolution with a 3x3 kernel, and a mapping back to the desired output channels by another 1x1

kernel. This setup reduces the number of trainable parameters in the network, while enhancing the

abstraction learned by each convolution step.
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Data pipeline. The manually annotated data consists of 79 pairs of raw 1324 x 1284 pixel slices from
a single tomogram and their corresponding manually fully annotated binary labels. For semi-
supervised training, these data are complemented with 513 unannotated slices from different
tomograms, for which manual labels are not produced. These unannotated data are used for training
the image-reconstruction branch of the network. The network is trained on 256 x 256 pixel images, or
image/label pairs, depending on if the input data is taken from the set with manual labels or
unannotated images. We designed an image augmentation procedure which randomly crops the input
slices into these smaller images, while additionally applying random 90° rotations and
horizontal/vertical reflections. We have implemented the entire data preparation and augmentation
pipeline using TensorFlow Dataset API, which benefits from automated GPU processing, hence
offering uninterrupted training of the network while augmented data is prepared on-the-fly. The
stochastic manner in which the training data are prepared and fed to the network results in a more
robust prediction as well as less chance of over-fitting. The original data are split 90 % - 10 % between
training and hold-out test sets before the augmentation, with the quality of image reconstruction and

the accuracy of label prediction verified on the test set.

Training and optimization. For the decoder performing image segmentation, we have used the

pointwise Huber loss between manual (Y) and predicted (X) annotations®’,

1

E(X—Y)Z,lX—YI <é
LH == _1
762 + 68 - |X — Y|, otherwise

This function provides the robustness of [;-norm with constant gradients, with well-behaving near-
zero gradients similar to the [,-norm. We found Huber loss to produce the sharpest segmentations
with minimal artefacts. For the image reconstruction decoder, we have used as the loss function a
combination of the Huber function and the Structural Similarity Index (SSIM), proposed by Wang and
Sheikh®8,

Ls = 1 — SSIM(X, Y)

2uxpuy + €1 20xy + G,

SSIM(X,Y) = .
&) Yo +puz+C, of +op+0C,

This choice has been backed by the systematic study of Zhao et al. on the loss functions for image

reconstruction®®.

Gradients of the loss function with respect to trainable parameters are calculated in the forward pass

and the optimizer algorithm updates the parameters via backpropagation?®. We monitor the training
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procedure by comparing the loss between training and test datasets. We stop the training loop when

the test loss plateaus, which implies the network might begin to overfit to the training data.

In case the slice size results in memory shortage, we have also implemented a procedure for

partitioning images into overlapping chunks, and gathering the segmented labels after the fact.

3D volumetric reconstruction. The two-dimensional outputs of the segmentation network provide a
voxelized representation of the membranes in the tomogram. We have applied the well-established
marching-cube algorithm to obtain surface reconstructions from the voxels®. The implementation
from the SciPy package has been used for this purpose®!. The PyVista python package has been used

for processing of the 3D data®2. Final renderings are achieved via the POV-Ray package®:.

Output export and import into software for downstream applications. The output labels generated
by the deep network were exported as stacks of binary mask images in .TIFF format. These stacks were
then imported into Microscopy Image Browser ®*. By thresholding, the binary labels could be quickly
selected and used as a mask to be overlaid on the original input image. This result was saved as a
.MODEL file and could be used for inspection of segmentation quality, label classification, manual

complementation of labels and quantification of objects.

Evaluating Segmentation Quality. In order to determine the quality of the automatic segmentation
results, an expert user manually inspected the predicted labels of 59 randomly selected slices of 3
representative tomographic datasets, covering the entire range of the datasets by setting appropriate
intervals between the slices. The labels generated by the network were overlaid with the
corresponding, original slice and then classified into correct labels (a feature was being recognized
correctly), false positives (a label was placed where no feature was present) and reconstruction
artifacts. Cellular features that were missing in the network’s segmentation were manually labeled
and classified as false negatives. The evaluation was performed by scoring the number of pixels of
each category for each slice analyzed versus the total amount of labeled pixels. The inspection of
slices, classification and evaluation was performed in Microscopy Image Browser®. Due to the missing
wedge problem that arises in tomographic techniques with incomplete sample rotation and the
limited depth of focus of the 25 nm FZP, some apparent features were present but too blurred for a
human user to confidently trace the feature contour with a 4 pixel brush tool. These features were
excluded from the analysis, since training a network to recognize such features would lead to a high

increase of false positives.

Filopodia Analysis. A total of sixty automatically labeled filopodia from three different datasets were

selected for analysis. Filopodia had to be covered entirely by the reconstructed volume, i.e. filopodia
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protruding beyond the x, y, or z boundaries of the field of view were excluded, since 3D parameters
cannot be conclusively determined from incomplete objects. Similarly, filopodia partially interrupted
by e.g. reconstruction artifacts from gold fiducials were also excluded, since these artifacts prevent
unambiguous labeling of underlying structures in tomographic datasets.

The automatically generated labels were inspected individually for each filopodium, tracing the entire
structure from its base at the plasma membrane to the tip of the protrusion. While doing so, the object
was manually separated from any adjacent labels, especially of the plasma membrane. Any open loops
of the labels were closed and the contour’s shape filled, such that the volume and surface area values
could be determined accurately. The isolated and filled objects were then quantified both as a series
of 2D objects and as a fitted ellipsoid around the 3D object using the built-in quantification toolbox in
Microscopy Image Browser'®. For 2D quantification of each individual filopodium, the mean and
standard deviation of all values in all slices of its component 2D objects were determined. The final
guantification of all filopodia is based on the mean and standard deviation of all sixty individual means
(2D) or 3D-parameters, respectively. For calculating the nanometer-scale values, an isotropic voxel

size of 9.8 nm was used.
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Table S1:
Parameter Mean £ SD (n=60)
Area Cross-section 33155 * 25244 nm?
First Axis Length 302 £189 nm
2D Analysis Second Axis Length 133 £ 28 nm
Perimeter 727 £ 391 nm
Eccentricity 0.80 £0.17
Volume 2.28+10"+£1.77 « 10" nm®
Surface Area 6.16 *+ 10° £ 3.66 » 10° nm?
Surface Area to Volume Ratio 30.2+5.3 ym’
3D Analysis
Major Axis Length 966 £ 394 nm
Second Axis Length 320 £ 141 nm
Third Axis Length 206 £ 61 nm
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original slice manual label

Figure S1: Training data. Shown are example images for input slices, their corresponding manual
labels, as well as output images for the image decoder (generated images) and annotation decoder
(prediction).
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Figure S2: Examples for label categories. A) Raw input tomogram. B) Tomogram overlaid with labels
categorized as “false positives”, “reconstruction artifacts”, “false negatives” and “true positives”. The
green and orange boxes denote the close-ups in C. C) Close-ups of example regions, illustrating the

label categories. Scale bars: 2um.
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Figure S3: Reconstruction of Tomographic Data from the MISTRAL Beamline. A) Tomographic
reconstruction of an A549 cell treated with PEIl nanoparticles for 2 hours . B) Overlay of the raw
tomogram (A) with automatically generated labels (red) by the deep network. C) 3D-rendering of the
automated segmentation, objects shown in random colors. Scale bar: 2 um.
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Figure S4: Reconstruction of Tomographic Data from the Diamond Light Source. A) Tomogram
based on raw data for EMPIAR-10416 provided by Harkiolaki et al. (Diamond Light Source, UK). B)
Overlay of the raw tomogram (A) with automatically generated labels (red) by the deep network. C)
3D-rendering of the automated segmentation, objects shown in random colors. Scale bars: 2um.
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