

1 **Title**

2 The targeted deletion of genes responsible for expression of the Mth60 fimbriae
3 leads to loss of cell-cell connections in *M. thermautotrophicus* ΔH

4 Christian Fink¹, Gines Martinez-Cano¹, Jeremiah Shuster², Aurora Panzera³, Largus T. Angenent^{1,4,5,6,7},
5 Bastian Molitor^{1,4,*}

6 ¹ Environmental Biotechnology Group, Department of Geosciences, University of Tübingen,
7 Schnarrenbergstraße 94-96, 72076 Tübingen, Germany

8 ² Tübingen Structural Microscopy, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen,
9 Germany

10 ³ BioOptics Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen,
11 Germany

12 ⁴ Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der
13 Morgenstelle 28, 72076 Tübingen, Germany

14 ⁵ AG Angenent, Max Planck Institute for Biology Tübingen, Max Planck Ring 5, 72076 Tübingen, Germany

15 ⁶ Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000
16 Aarhus C, Denmark

17 ⁷ The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Gustav Wieds Vej 10,
18 8000 Aarhus C, Denmark

19 * Corresponding author: Bastian Molitor

20 Email: bastian.molitor@uni-tuebingen.de

21 **Keywords:** Archaea, Genetics, *Methanothermobacter*, Mth60 fimbriae, Gene deletion, Adherence

22 Abstract

23 This study was continued by the Environmental Biotechnology Group of the University of Tübingen *in*
24 *memoriam* to Reinhard Wirth, who initiated the work on Mth60 fimbriae at the University of
25 Regensburg.

26 Growth in biofilms or biofilm-like structures is the prevailing lifestyle for most microbes in nature. The
27 first step to initiate biofilms is the adherence of microbes to biotic and abiotic surfaces. Therefore, it is
28 important to elucidate the initial step of biofilm formation, which is generally established through cell-
29 surface structures (*i.e.*, cell appendages), such as fimbriae or pili, that adhere to surfaces. The Mth60
30 fimbriae of *Methanothermobacter thermautotrophicus* ΔH are one of only few known archaeal cell
31 appendages that do not assemble *via* the type-IV assembly mechanism. Here, we report the constitutive
32 expression of Mth60 fimbriae-encoding genes from a shuttle-vector construct, as well as the deletion of
33 the Mth60 fimbriae-encoding genes from the genomic DNA of *M. thermautotrophicus* ΔH. We expanded
34 our system for genetic modification of *M. thermautotrophicus* ΔH by an allelic-exchange method. While
35 overexpression of the respective genes resulted in an increase of the Mth60 fimbriae, deletion of the
36 Mth60 fimbriae-encoding genes led to a loss of Mth60 fimbriae in planktonic cells of *M.*
37 *thermautotrophicus* ΔH. This either increased or decreased number of Mth60 fimbriae correlated with a
38 significant increase or decrease of biotic cell-cell connections in the respective *M. thermautotrophicus*
39 ΔH strains compared to the wild-type strain.

40

41 Originality-Significance Statement

42 *Methanothermobacter* spp. have been studied for the biochemistry of hydrogenotrophic
43 methanogenesis for many years. However, due to the lack of genetic tools, the detailed investigation of
44 certain aspects, such as regulatory processes, was not possible. Here, we amend our genetic toolbox for
45 *M. thermautotrophicus* ΔH with an allelic exchange method. We report the deletion of genes that

46 encode for the Mth60 fimbriae. Our findings provide a first insight into the regulation of the expression
47 of these genes and reveal a role of the Mth60 fimbriae in the formation of cell-cell connections of *M.*
48 *thermautotrophicus* ΔH.

49

50 **Introduction**

51 Microbial biofilm formation, maintenance, and dispersion in various habitats has been investigated in
52 numerous studies ¹⁻³. For bacteria, a plethora of studies elucidated biofilm formation, especially for
53 clinically relevant pathogenic species ⁴⁻⁷. However, knowledge about archaeal biofilm formation still
54 remains in an early stage ^{8,9}. Archaea are found in extreme habitats with respect to pH, temperature, or
55 salinity, as well as in moderate conditions such as sea water, the human gut, and rice paddy fields. Thus,
56 there must have been several ways evolved to colonize habitats with different environmental properties
57 ¹⁰. In general, formation of a biofilm in new habitats is established through cell-surface molecules and
58 structures, which enable microbes to attach, and therefore adhere to a surface in the respective habitat
59 ^{6,11}. One possibility is adherence *via* extracellular polymeric substances ¹². However, this was more
60 frequently described to be important in a later stage of colonization and not for the initial attachment
61 ^{3,12}. For archaea, this initial attachment to surfaces mostly relies on archaeal cell appendages, such as
62 archaella, pili, fimbriae, and other specialized archaeal cell appendages ^{13,14}. In general, archaella differ
63 from all other cell appendages in two ways: **1)** the diameter, which is 10-15 nm compared to ~5 nm for
64 fimbriae and pili; and **2)** the ability to rotate, and therefore enable directed motility of the microbe ¹³. It
65 was shown that several archaella structures allow for adherence to surfaces *via* adhesins on the
66 archaella tip ^{14,15}. Archaella and the majority of cell appendages that have been described for archaea so
67 far, are assembled *via* the type-IV assembly mechanism ^{16,17}. However, some archaeal cell appendages
68 assemble by mechanisms that are different from the type-IV assembly mechanism such as the ham from
69 *Altarchaeum hamiconnexum* and the Mth60 fimbriae from *M. thermautotrophicus* ΔH ^{18,19}. These

70 archaeal cell appendages do not enable the microbe for motility but for adherence to abiotic surfaces
71 and biotic adherence between microbes.

72 Here, we focused on the Mth60 fimbriae from *M. thermautotrophicus* ΔH. The Mth60 fimbriae were first
73 described by Doddema, *et al.*²⁰. They differ from archaella by their diameter and a length of up to 5 µm
74^{13,20}. Planktonic wild-type *M. thermautotrophicus* ΔH cells contain between one to three Mth60 fimbriae.
75 In contrast, cells that are adhered to surfaces were found to contain significantly higher numbers of
76 Mth60 fimbriae per microbial cell¹⁹. *M. thermautotrophicus* ΔH was shown to adhere to several distinct
77 surfaces, such as glass, carbon coated gold, copper grids, and silicium wavers, *via* the Mth60 fimbriae¹⁹.
78 Additional to abiotic surfaces, also biotic cell-cell connections with surface adhered *M.*
79 *thermautotrophicus* ΔH have been demonstrated¹⁹.

80 The Mth60 fimbriae mainly consist of the major fimbrin protein Mth60, which is eponymous for the
81 Mth60 fimbriae. The corresponding gene, *mth60*, is transcribed in two transcriptional units (*i.e.*,
82 operons), *mth58-mth60* and *mth60-mth61* (MTH_RS00275-MTH_RS00285, MTH_RS00285-
83 MTH_RS00290). Therefore, the level of transcription of *mth60* is largely elevated compared to the other
84 genes *mth58*, *mth59*, and *mth61* in the two operons²¹. Recombinant Mth60 protein, produced in
85 *Escherichia coli*, led to auto-assembly of filamentous fimbriae structures when incubated at 65°C in *M.*
86 *thermautotrophicus* ΔH growth medium^{19,21,22}. This auto-assembly feature of recombinant Mth60
87 protein was patented for a potential application as heat-induced glue through solidification of the Mth60
88 protein at elevated temperatures²². Furthermore, the auto-assembly feature indicated an extraordinary
89 assembly mechanism of Mth60 fimbriae compared to the type-IV assembly mechanism that was
90 described for the majority of cell appendages in archaea¹³. The function of *mth58*, *mth59*, and *mth61*,
91 which are the three genes that are co-transcribed with *mth60*, remain largely unknown. Auto-assembly
92 tests of Mth59 together with Mth60 failed in assembling filamentous structures. However, additional

93 bioinformatics modelling of the Mth59 protein structure indicated a potential chaperone function of
94 Mth59 for Mth60²¹.

95 To further investigate the relevance of Mth60 fimbriae for biotic cell-cell connections¹⁹, we expanded
96 the genetic tool-box for *M. thermautotrophicus* ΔH²³ with suicide vectors for targeted gene deletion.
97 This enabled us to delete the Mth60 fimbriae-encoding operons (*mth58-mth60* and *mth60-mth61*) from
98 the genomic DNA of *M. thermautotrophicus* ΔH by an allelic-exchange method. We further generated a
99 strain of *M. thermautotrophicus* ΔH that contained a shuttle-vector construct for the constitutive
100 expression of the Mth60 fimbriae-encoding operons. We observed varying phenotypes and significantly
101 different numbers of Mth60 fimbriae per microbe for the different strains, and thus we were able to
102 elucidate the intraspecies adherence ability of *M. thermautotrophicus* ΔH.

103 **Materials and Methods**

104 **Microbial strains, media, and cultivation conditions**

105 For cloning/gene manipulation and DNA transfer into *Methanothermobacter thermautotrophicus* ΔH we
106 utilized the *Escherichia coli* strains NEB stable (New England Biolabs, Frankfurt/Main, Germany) and S17-
107 1²⁴, respectively. We cultivated *E. coli* in LB medium that contained: sodium chloride, 10 g/L; yeast
108 extract, 5 g/L; tryptone, 10 g/L. For solidified LB media plates, we added 1.5 weight% of Kobe I Agar (Carl
109 Roth, Karlsruhe, Germany). We supplemented LB medium with antibiotic substances for complementary
110 antibiotic resistance genes on plasmids and integrated into genomic DNA of *E. coli* S17-1, with
111 chloramphenicol, 30 µg/mL (plasmids) and trimethoprim, 10 µg/ml (*E. coli* S17-1). We incubated all *E.*
112 *coli* cultures at 37°C. We incubated solidified media plates upside down in a static incubator, and liquid
113 cultures in a shaker incubator with rotation (150 rpm).

114 For genetic modification and phenotypical analysis, we purchased *M. thermautotrophicus* ΔH (DSM
115 1053) from the DSMZ (Braunschweig, Germany). We cultivated *M. thermautotrophicus* ΔH in mineral

116 medium that contained: sodium chloride, 0.45 g/L; sodium hydrogen carbonate, 6.00 g/L; di-potassium
117 hydrogen phosphate, 0.17 g/L; potassium di-hydrogen phosphate, 0.23 g/L; ammonium chloride, 0.19
118 g/L; magnesium chloride hexahydrate, 0.08 g/L; calcium chloride dihydrate, 0.06 g/L; ammonium nickel
119 sulfate, 1 mL (0.2 weight%); iron(II)chloride pentahydrate, 1 ml (0.2 weight%); resazurin indicator
120 solution, 4 mL (0.025 weight%); and trace element solution, 1 mL (10-fold as stated in Balch and Wolfe
121 ²⁵). All chemicals were *per analysis (p.a.)* grade. We did not add vitamins. For solidified media plates, we
122 added 1.5 weight% Bacto™ agar (BD Life Science, Berkshire, UK) *prior* to autoclaving. Neomycin sodium
123 salt was supplemented for cultivation of genetically modified *M. thermautotrophicus* ΔH strains with
124 concentrations of 250 µg/mL in liquid mineral media and 100 µg/mL in solidified media plates at 60°C,
125 respectively.

126 We performed media preparation on the basis of anaerobic techniques as stated in Balch and Wolfe ²⁵
127 with the modifications described in Fink, *et al.* ²³. In brief, the composed media was sparged with N₂/CO₂
128 (80/20 volume%). Afterwards, for liquid media, we reduced the media with 0.5 g/L cysteine
129 hydrochloride, dispensed the medium in serum bottles with a liquid/headspace ratio of 20 mL/80 mL
130 (v/v) in an anaerobic chamber with a 100% N₂ atmosphere (UniLab Pro Eco, MBraun, Garching,
131 Germany), and performed a gas exchange to H₂/CO₂ (80/20 volume%). For solidified media plates, in
132 addition, we added 0.3 g/L sodium sulfide monohydrate and dispensed 80 mL into 100-mL serum
133 bottles. We exchanged the gas phase to N₂/CO₂ (80/20 volume%), and boiled the media to liquefy it
134 directly *prior* to use. The amount of 80 mL per serum bottle was sufficient for 3-4 solidified media plates.
135 We dried the plates for two hours in the anaerobic chamber. Afterwards, *M. thermautotrophicus* ΔH cell
136 suspension could be plated on the surface ²³. We incubated solidified media plates in pressurized
137 stainless-steel jars (Raff und Grund, Freiberg, Germany) with an H₂/CO₂ (80/20 volume%) headspace at
138 60°C. *M. thermautotrophicus* ΔH in liquid culture was incubated rotating with 150 rpm at 60°C.

139 **Molecular cloning and vector construction**

140 All primers, gBlocks (IDT, Coralville, IA, USA), and plasmids from this study are given in **Supplementary**
141 **Table S1-S3**. We generated the template genomic DNA from *M. thermautotrophicus* ΔH for PCR
142 amplification by using a gDNA extraction kit (Macherey+Nagel, Düren, Germany) with slight
143 modifications. Instead of bead beating, we vortexed the microbe suspension for 1 min with 4-s intervals
144 and eluted genomic DNA in 50 µL water instead of 100 µL elution buffer. We performed PCR
145 amplification of vector and insert fragments with Q5 high-fidelity polymerase (New England Biolabs,
146 Frankfurt/Main, Germany), followed by *Dpn*I restriction enzyme digest when necessary. We purified all
147 PCR products *via* a PCR purification kit (Qiagen, Hilden, Germany), and extracted vector DNA from *E. coli*
148 *via* QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) *prior* to restriction enzyme digestion.
149 Afterwards, we performed the restriction enzyme digestion and fragment ligation according to the
150 manufacturer's manual. We purchased all enzymes from New England Biolabs, Frankfurt/Main,
151 Germany. We (re)transformed *E. coli* with vector constructs by chemical transformation following a
152 standard heat-shock protocol²⁶. We confirmed all plasmids and vectors by Sanger sequencing performed
153 at Genewiz (Azenta Life Sciences, Griesheim, Germany).
154 We generated a shuttle-vector construct for constitutive expression of the Mth60-fimbriae operons. For
155 this, we PCR amplified the genes *mth58-mth61* (MTH_RS00275-MTH_RS00290) without the putative
156 native promoter region upstream of *mth61* with primers Res_CF8 + Res_CF10 (**Supplementary Table S1**).
157 Afterwards, we fused this PCR product with a gBlock containing the *P_{hmtB}* promoter *via* overlap extension
158 PCR. This PCR amplicon contained the modular restriction sites *Pac*I and *Ascl* and could, thus, be fused
159 after restriction enzyme digestion to the *Pac*I and *Ascl* digested pMVS1111A:*P_{hmtB}-bgaB*, resulting in
160 pMVS1111A:*P_{hmtB}-mth58-61* (**Supplementary Table S3**).
161 To generate suitable suicide-vector constructs for genome integration of a thermostable neomycin
162 resistance gene at the Mth60 fimbriae-encoding operon site, we deployed a three-step cloning strategy
163 (**Supplementary Methods**). In brief, first the *E. coli* backbone was fused with 1-kb upstream and second

164 with the downstream homologous flanking regions of the Mth60 fimbriae-encoding operons with a
165 construct containing the neomycin resistance (Neo^r) and $\text{P}_{mcrB(M.v.)}$ as non-functional spacer in between. In
166 a third step, we exchanged the spacer flanked by *Fsel* and *Ascl* as modular restriction enzyme recognition
167 sites toward the functional selectable marker module with P_{Synth} in further suicide-vector constructs^{23,27}.

168 **Transformation of *M. thermautotrophicus* ΔH**

169 We performed transformation of *M. thermautotrophicus* ΔH with an interdomain conjugation protocol
170 for DNA transfer from *E. coli* S17-1 to *M. thermautotrophicus* ΔH as described in Fink, *et al.*²³.
171 Summarized in short, we centrifuged 10 mL of stationary *E. coli* S17-1 that contained the shuttle- or
172 suicide-vector construct at 3700 rpm for 10 min at room temperature (Centrifuge 5920 R, rotor S-
173 4x1000, Eppendorf, Hamburg, Germany). We mixed the *E. coli* S17-1 cell pellet with a cell pellet from 8
174 mL of a stationary *M. thermautotrophicus* ΔH culture that we stepwise harvested inside the anaerobic
175 chamber at 12500 rpm for 4 min at room temperature (MySPIN™ 12 Mini Centrifuge, Thermo Scientific
176 Waltham MA, USA). Afterwards, the cell suspension of *E. coli* and *M. thermautotrophicus* ΔH was spot-
177 mated on a solidified medium plate containing 50 volume% LB medium without sodium chloride and 50
178 volume% mineral medium. After the cell suspension was completely absorbed, the plate was incubated
179 for 24 h at 37°C in a pressurized stainless-steel jar. The incubated spot-mated cells were washed-off the
180 plate and transferred into sterile anaerobic mineral medium and incubated for 4 h at 60°C for recovery,
181 expression of the neomycin resistance gene, and counterselection against *E. coli*. After the recovery, the
182 *M. thermautotrophicus* ΔH mutants were enriched in 250 µg/mL neomycin-containing selective liquid
183 mineral medium. The stationary grown enrichment culture was spread-plated on selective solidified
184 medium plates and individual clonal populations were subjected to further analysis *via* PCR.

185 **Confirmation of *M. thermautotrophicus* ΔH mutant strains *via* PCR analysis**

186 For screening purposes, we resuspended an individual clonal population in 50 μ L of nuclease-free water
187 or used 0.1 mL of *M. thermautotrophicus* Δ H culture directly and boiled the suspension at 100°C for 12
188 min *prior* to using 1 μ L of suspension for PCR analysis. Final analysis was performed with 1 μ L of genomic
189 DNA extractions of respective *M. thermautotrophicus* Δ H mutant strains as template DNA for 10 μ L PCR
190 reaction mixes. PCR analysis was performed using Phire plant PCR master mix (Thermo Scientific,
191 Waltham MA, USA). The denaturation and annealing times were increased to 20 sec and to 10 sec,
192 respectively. A total of 30 cycles were performed for all analyses. We observed false positive PCR signals
193 for shuttle-vector DNA and suicide-vector constructs due to plasmid DNA carry-over from *E. coli* for up to
194 two transfers after the non-selective liquid recovery step. From the third transfer on, plasmid DNA from
195 *E. coli* was not detectable anymore in any of our experiments.

196 **Immuno-fluorescence staining**

197 For immuno-fluorescence staining analysis, we placed 20 μ L of late exponential *M. thermautotrophicus*
198 Δ H culture on a poly-L-lysine coated glass slide (VWR, Darmstadt, Germany). After allowing cells to settle
199 onto the glass slide for 20 min, we washed the glass slide three times, for 5 min each, with phosphate-
200 buffered saline (PBS, pH 7.4). Afterwards, we applied the anti-Mth60-fimbriae antibody (1:2000 diluted;
201 rabbit)¹⁹ in PBS, containing 0.3 weight% BSA (Carl Roth, Karlsruhe, Germany) and incubated for 2 h. We
202 washed the sample three times, for 5 min each, with PBS (pH 7.4). Then, we applied a goat anti-rabbit
203 IgG (Thermo Fisher Scientific, Waltham (MA), USA) cross-adsorbed secondary antibody with Alexa Fluor
204 488 (1:2000 diluted) in PBS, containing 0.3 weight% BSA, and incubated for 1 h. To reduce the
205 background, the incubation was followed by three additional washing steps with PBS (pH 7.4). After the
206 sample was almost dry, we applied 10 μ L of Invitrogen™ ProLong™ Gold Antifade Mountant with DAPI on
207 the sample and covered with a cover glass. Prolong Gold Antifade Mountant was allowed to solidify at
208 4°C for 24 h *prior* to Airyscan imaging analysis.

209 We performed Airyscan imaging at the Max Planck Institute for Biology Tübingen BioOptics Facility using
210 a laser scanning inverted confocal microscope (Zeiss LSM 780; Carl Zeiss AG, Oberkochen, Germany) with
211 a 63X oil/1.4NA oil-immersion objective. We used the diode laser line 405 nm for the excitation of DAPI,
212 while using the 488 nm Argon laser line for the excitation of Alexa Fluor 488-conjugated antibody.

213 For the Airyscan images, we used the add-on Airyscan detection unit (Carl Zeiss AG), set to super
214 resolution mode (SR). For each area we acquired a z-stack of images and processed the obtained data set
215 first through the Airyscan software, which operates a 3D deconvolution on top of the pixel reassignment
216 ²⁸, followed then by maximum intensity projection along the z axis, to easily visualize the collected
217 information on a single plane.

218 **Scanning electron microscopy**

219 For scanning electron microscopy (SEM) analysis, we coated glow-discharged glass slides with 30 µL of
220 0.1% poly-L-Lysine (PLANO, Wetzlar, item number 18026) and dried them in a 60°C incubator oven for 1
221 h. In a fumehood, we placed a prepared glass slide (coated-side up) at the bottom of each well of a 24-
222 well plate. We separately added a 100-µL aliquot of each strain (*i.e.*, late exponential culture of *M.*
223 *thermautotrophicus* ΔH wild-type, constitutive expression, and deletion strains) to a well and cells were
224 allowed to settle onto the glass slide. After 20 min of incubation, we removed the supernatant and
225 added 100-µL PBS. Electron microscopy grade glutaraldehyde (25%, PLANO, Agar Scientific, item number
226 R1011) was added to each sample to obtain an overall 2.5 volume%. Afterwards, we covered and
227 incubated the 24-well plate at room temperature (ca. 21°C) for 1 h, allowing for fixation and for cells to
228 settle onto the slides. After incubation, we removed the supernatant from each well and rinsed the
229 sample-bearing slides by adding deionized water to each well and incubating for 10 min to remove
230 material that did not attach to the glass slide. This rinsing procedure was repeated by removing the
231 supernatant and adding fresh deionized water. After the final rinse, we dehydrated the samples using a
232 graded ethanol series: 25, 50, 75 volume% ethanol (15 min incubation at each concentration), and three

233 times 100 volume% ethanol (30 min incubations). After the last ethanol dehydration, we added 100
234 volume% hexamethyldisilazane (HMDS) to each sample so that each well contained a 50/50 volume%
235 ratio of HMDS/100 volume% ethanol. Then, we covered the plate and allowed to incubate for 30 min.
236 After incubation, we removed the HMDS/ethanol solution and added 100 volume% HMDS to each well.
237 We left the plate lid partially open to allow airdrying to occur overnight. The sample-bearing glass slides
238 were adhered to aluminum stubs using carbon adhesive tabs (PLANO, Wetzlar, item numbers G301 &
239 G3347) and coated with ca. 8 nm of platinum using a BAL-TEC™ SCD 005 sputter coater. We performed
240 the structural characterization of *M. thermautotrophicus* ΔH strains using a Zeiss Crossbeam 550L
241 Focused Ion Beam (FIB) – Scanning Electron Microscope (Oberkochen, Germany), operating with an
242 acceleration voltage of 2 kV. We took all micrographs using secondary electron (SE) mode.

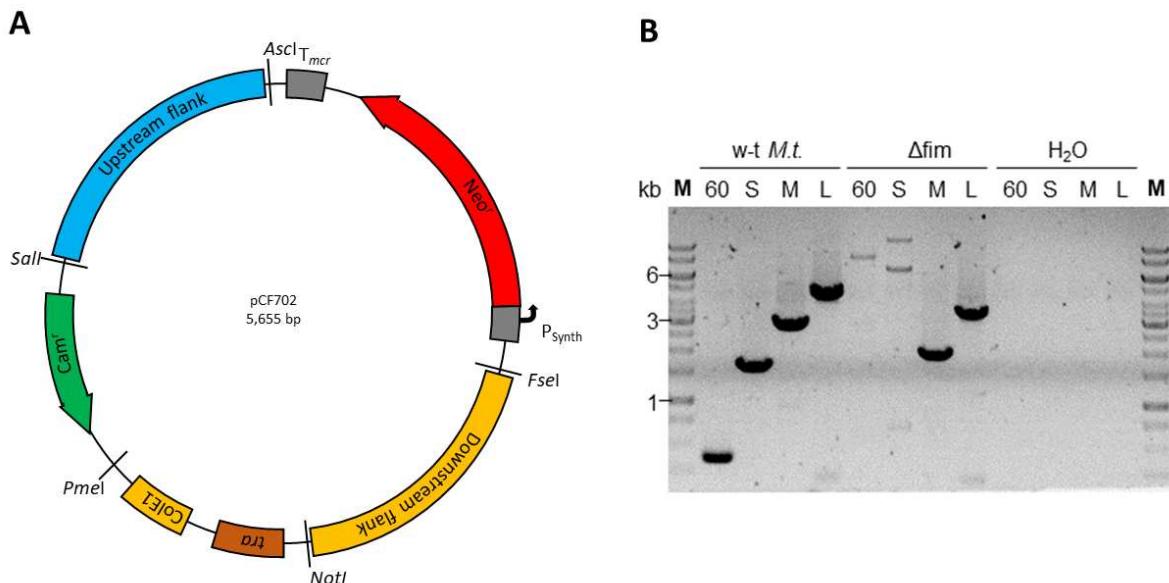
243 **Phase-contrast microscopy analysis**

244 We placed 10 µL of untreated late exponential ($OD_{600}=0.28$) *M. thermautotrophicus* ΔH cultures (each of
245 wild-type, constitutive expression, and deletion strain) on microscopy slides and added cover slips (N=3
246 for each strain). After 10 min of incubation at room temperature, 30 pictures (10 pictures of each
247 replicate) for all three *M. thermautotrophicus* ΔH strains were taken. For this, we chose random vision
248 fields at 100-fold magnification and phase contrast 3 with System Microscope BX41TF (Olympus,
249 Shinjuku, Japan; equipped with a U-TV0.5XC-3 camera).

250 In all 30 pictures for each *M. thermautotrophicus* ΔH strain, we counted the total number of microbes
251 and the number of microbes, which showed connection to another microbe. Afterwards, we calculated
252 the ratio between the total number and number of connected microbes using R^{29,30}.

253

254 **Results**

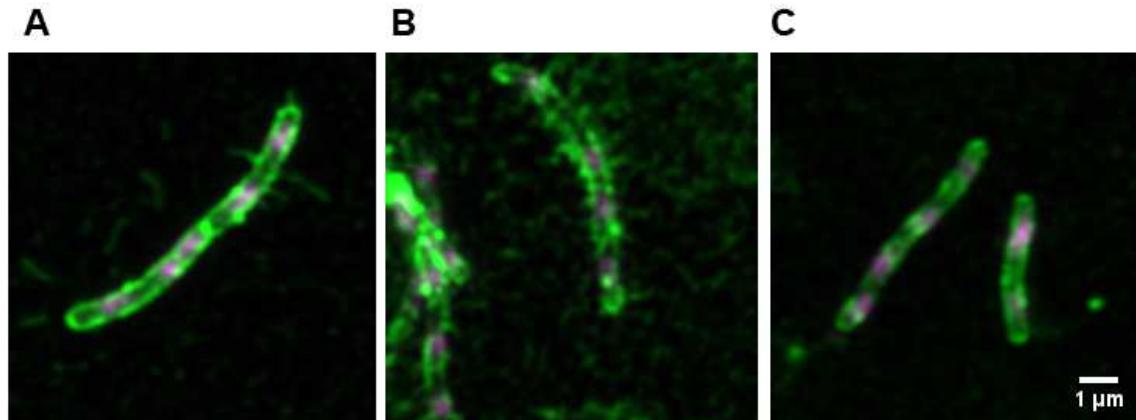

255 **Suicide-vector constructs allow site-specific deletion of Mth60 fimbriae-encoding operons in *M. thermautotrophicus* ΔH**

257 We chose suicide-vector constructs to substitute *mth58-mth61* (i.e., the Mth60 fimbriae-encoding
258 operons MTH_RS00275-MTH_RS00290) with a positive selectable marker. Therefore, we created suicide-
259 vector constructs with ~1-kb homologous flanking regions upstream and downstream of the Mth60
260 fimbriae-encoding operons (Figure 1). We placed unique restriction enzyme-recognition sites at the
261 interfaces between the homologous flanking regions, which do rarely/do not occur in the genome of *M.*
262 *thermautotrophicus* ΔH. While *Sall* and *NotI* occur 137 and 7 times on the genome of *M.*
263 *thermautotrophicus* ΔH, respectively, *Ascl* and *Fsel* are not present at all. By using these restriction
264 enzyme-recognition sites, we ensured that exchangeability with virtually all homologous flanking regions
265 for *M. thermautotrophicus* ΔH genes is possible. This modularity facilitates the generation of future
266 suicide-vector constructs. We implemented the restriction enzyme-recognition sites *Ascl* and *Fsel* at the
267 selectable-marker interfaces. With that, it is also possible to directly implement selectable markers from
268 the pMVS shuttle-vector design for *M. thermautotrophicus* ΔH into suicide vector constructs²³. As
269 selectable marker, we used the thermostable neomycin resistance gene under the control of the P_{Synth}
270 promoter^{23,31,32}. The commonly used $T_{mcr(M.v.)}$ sequence served as terminator³³.

271 We performed the transformation of *M. thermautotrophicus* ΔH with the suicide-vector construct as
272 described before²³. However, for plating of *M. thermautotrophicus* ΔH deletion mutants we applied 100
273 µg/mL of neomycin instead of 250 µg/mL, which we used for liquid selective media. This ensured the
274 generation of individual clonal populations on selective solidified media plates because no clonal
275 population appeared on plates with the higher antibiotic concentration. The generation of a clean *M.*
276 *thermautotrophicus* ΔH strain with a deletion of the Mth60 fimbriae-encoding operons was challenging,
277 and we continuously found wild-type signals in the PCR analysis in addition to the correct signal for

278 double-homologous recombination events (**Supplementary Figure S2**). Nanopore sequencing of one of
279 these cultures with mixed PCR signals revealed the co-existence of single- and double-homologous
280 recombination events of the suicide vector with genomic DNA of *M. thermautotrophicus* ΔH
281 (**Supplementary Figure S4**), while wild-type *M. thermautotrophicus* ΔH nanopore sequencing reads did
282 not align with the neomycin resistance gene (**Supplementary Figure S3**). After an additional screening
283 step with four individual clonal populations, we were able to isolate a *M. thermautotrophicus* ΔH
284 Δmth58-61::NeoR mutant without wild-type genomic DNA background (**Figure 1B**). We confirmed the
285 absence of wild-type *mth58-61* with the help of two specific primer combinations. Furthermore, we
286 determined the substitution of the Mth60 fimbriae-encoding operons with the neomycin selectable
287 marker with two additional specific primer pairs. The latter primer combinations would result in two PCR
288 fragments, when wild-type *M. thermautotrophicus* ΔH genomic DNA background was still present. Thus,
289 the uniformity of the genotype, and therefore the purity of *M. thermautotrophicus* ΔH Δmth58-61::NeoR
290 strain was confirmed (**Figure 1B**).

291 Additional to the Mth60 fimbriae deletion strain of *M. thermautotrophicus* ΔH, we generated a *M.*
292 *thermautotrophicus* ΔH strain (*M. thermautotrophicus* ΔH pMVS1111A:P_{hmtB}-*mth58-61*) that
293 constitutively expressed the Mth60 fimbriae-encoding operons. For this, we exchanged the gene of
294 interest module of the pMVS1111A:P_{Synth}-*bgaB* shuttle vector with the *mth58-mth61* genes under the
295 control of the P_{hmtB} promoter, which substituted the putative promoter region that is located upstream
296 of *mth61* (**Supplementary Figure S1A**)²³. After transformation of wild-type *M. thermautotrophicus* ΔH
297 with the shuttle-vector construct for constitutive expression, we confirmed the maintenance of the
298 construct after three and four transfers of the culture with a specific primer combination for the origin of
299 replication module (**Supplementary Figure S1B**).

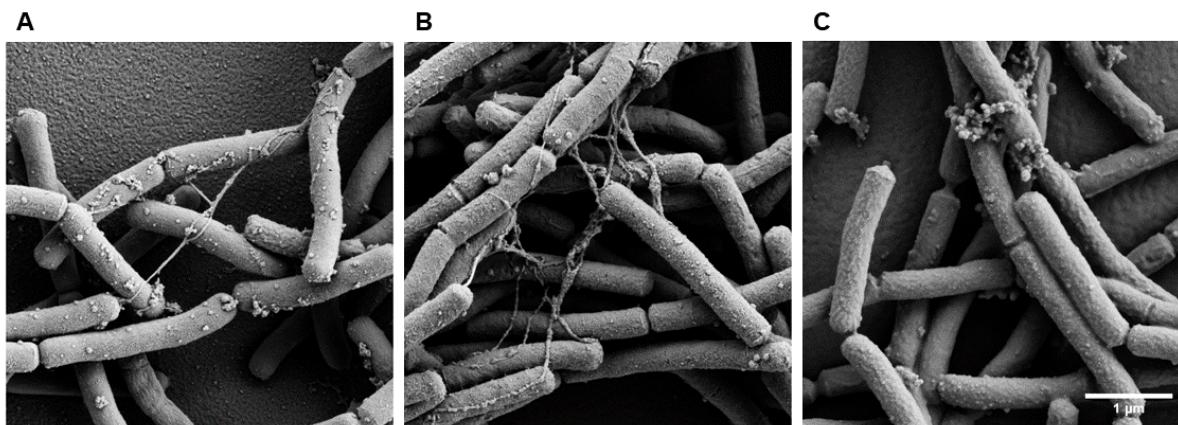

300

301 **Figure 1.** Plasmid map of pCF702, a suicide-vector construct for deletion of the Mth60 fimbriae-encoding operons, (A) and the
302 agarose gel of a corresponding PCR analysis (B). A) The suicide-vector construct pCF702 consists of five exchangeable modules
303 flanked by unique restriction enzymes-recognition sites as stated in parentheses below. The origin of replication ColEl for *E. coli*
304 including a *tra* region for mobilization during conjugation (*Not*l, *Pmel*), the antibiotic resistance against chloramphenicol (*Cam*^R)
305 as selectable marker for *E. coli* (*Pmel*, *Sall*), 1-kb upstream (*Sall*, *Ascl*) and downstream homologous regions (*Fsel*, *Not*l) for
306 homologous recombination in *M. thermautotrophicus* ΔH. In between the homologous flanking regions, a thermostable
307 neomycin resistance gene (*Neo*^R) with constitutive promoter *Psynth* and terminator *Tmcr* as selectable marker for *M.*
308 *thermautotrophicus* ΔH is located (*Ascl*, *Fsel*). B) PCR analysis with four primer combinations to confirm the Mth60-fimbriae
309 operon deletion. Two primer combinations amplify a fragment inside the Mth60 fimbriae-encoding operons (60, S), two primer
310 combinations amplify a fragment outside-outside the Mth60 fimbriae-encoding operons (M, L). These combinations result in
311 amplified fragments of reduced lengths since the Mth60 fimbriae-encoding operons (2.8 kb) were substituted with *Neo*^R (1.2
312 kb).

313 **Constitutive expression of Mth60 fimbriae-encoding operons results in an increase, and deletion**
314 **results in a loss of visualizable Mth60 fimbriae compared to wild-type *M. thermautotrophicus* ΔH**

315 The *M. thermautotrophicus* ΔH mutant strains for constitutive expression and with the deletion of Mth60
316 fimbriae-encoding operons allowed us to compare the resulting phenotypes to wild-type *M.*
317 *thermautotrophicus* ΔH and with each other. For analysis of the phenotypes, we chose two distinct
318 microscopical approaches to visualize Mth60 fimbriae. First, we used immuno-fluorescence staining with
319 confocal light microscopy, and second, scanning electron microscopy of native *M. thermautotrophicus*
320 ΔH (mutant) strain samples.

321 For immuno-fluorescence staining, we applied an anti-Mth60-fimbriae antibody as the first antibody.
322 This antibody was generated by Christina Sarbu from the University of Regensburg from a density
323 gradient centrifugation fraction with a high content of Mth60 fimbriae ²¹. The anti-Mth60-fimbriae
324 antibody does bind to Mth60 fimbriae. However, it was also shown to bind to other cell-membrane
325 components. This resulted in immuno-fluorescence staining of the entire *M. thermautotrophicus* ΔH cell
326 additionally to the Mth60 fimbriae (**Figure 2, larger field of view in Supplementary Figure S5**). We
327 passively attached planktonic wild-type *M. thermautotrophicus* ΔH from liquid media on poly-lysine glass
328 slides. After immuno-fluorescence staining, we found one to a few stained Mth60 fimbriae per
329 planktonic wild-type *M. thermautotrophicus* ΔH cell, which provided us with the necessary proof-of-
330 principle for the success of the immuno-staining procedure (**Figure 2A**). Similar numbers of Mth60
331 fimbriae for planktonic wild-type *M. thermautotrophicus* ΔH were also described in Thoma, *et al.* ¹⁹.
332 Thus, we analyzed specimens of the *M. thermautotrophicus* ΔH pMVS1111A:P_{hmtB}-mth58-61 that
333 constitutively expressed Mth60 fimbriae, and we found a number of Mth60 fimbriae per cell that largely
334 exceeded those of stained wild-type *M. thermautotrophicus* ΔH cells (**Figure 2A+B**). On the other hand,
335 we compared the *M. thermautotrophicus* ΔH Δmth58-61::NeoR strain to the wild-type strain with the
336 same immuno-fluorescence staining procedure, and found that specimens of the *M. thermautotrophicus*
337 ΔH Δmth58-61::NeoR strain contained the stained cell wall, but did not show any Mth60 fimbriae (**Figure**
338 **2C**). Additionally, we observed detached/solitary Mth60 fimbriae frequently in the constitutively
339 expressing strain and low numbers for the wild-type strain, but never in the Mth60-fimbriae deletion
340 strain.

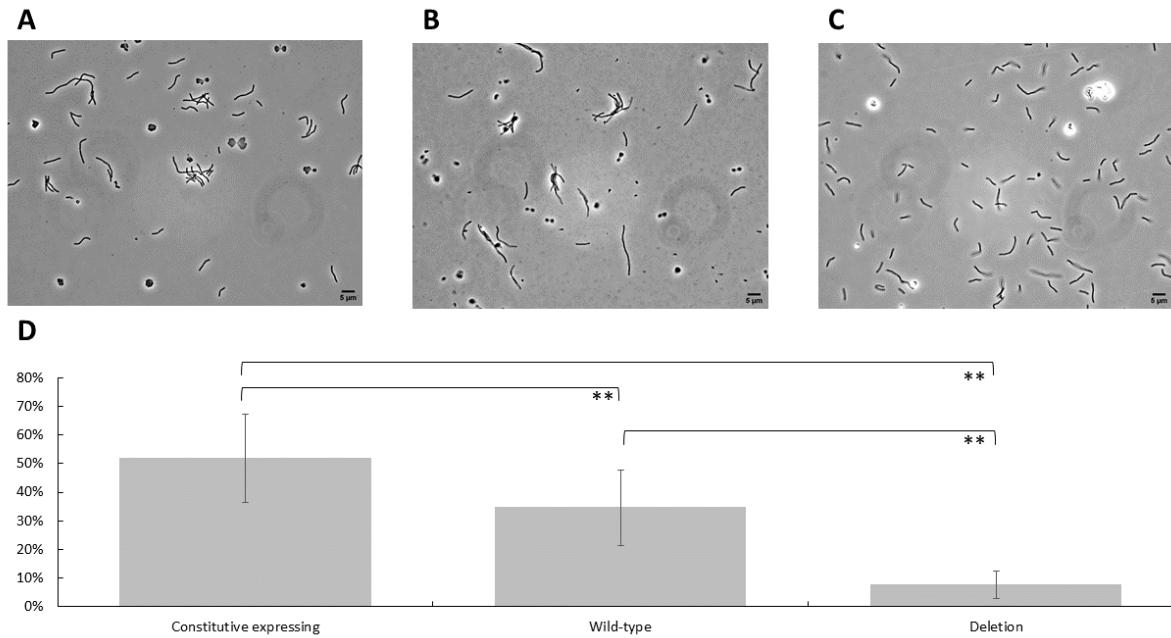


341

342 **Figure 2.** Two-channel maximum intensity z-projection of Airyscan processed z-stacks of immune-fluorescence-stained *M.*
343 *thermautotrophicus* ΔH strains (A-C). Dapi staining is represented in magenta. The Alexafluor-488 conjugated antibody, which is
344 attached to primary anti-Mth60-fimbriae antibody is depicted in green. The 1-μm scale bar represents the size for pictures A-C,
345 because the magnification is the same. A) *M. thermautotrophicus* ΔH wild-type. B) *M. thermautotrophicus* ΔH containing a
346 shuttle vector for constitutive expression of the Mth60 fimbriae-encoding operons. C) *M. thermautotrophicus* ΔH with a deletion
347 of the Mth60 fimbriae-encoding operons.

348 The immuno-fluorescence staining enabled us to visualize varying numbers of Mth60 fimbriae for the
349 different *M. thermautotrophicus* ΔH strains (wild-type, constitutive expression, and deletion strain).
350 However, we aimed for another layer of evidence to confirm differences for the three strains, and
351 decided to employ scanning electron microscopy. To maintain a state that is closest to the physiological
352 conditions in the serum bottles, we passively attached the planktonic *M. thermautotrophicus* ΔH cells to
353 poly-lysine coated SEM cover slips. This avoided centrifugation, and therefore potential disruption of
354 Mth60 fimbriae. The results of scanning electron microscopical analysis of wild-type *M.*
355 *thermautotrophicus* ΔH aligned with the observations from immuno-fluorescence staining and revealed
356 in general one to a few stained Mth60 fimbriae per *M. thermautotrophicus* ΔH wild-type cell (**Figure 3A**).
357 In the constitutive expression strain, the Mth60 fimbriae appeared to be more frequent than in
358 specimens of wild-type *M. thermautotrophicus* ΔH (**Figure 3B**). These Mth60 fimbriae were visible as
359 filaments that connect different cells with each other (**Figure 3A+B**). However, the difference did not
360 appear as strong as indicated by the immuno-fluorescence staining procedure. We did not observe
361 Mth60 fimbriae that connect microbes with each other in the Mth60-fimbriae deletion strain, such as we

362 did for wild-type *M. thermautotrophicus* ΔH and the constitutive expression strain specimens (**Figure**
363 **3C**). In all specimens, including in the Mth60-fimbriae deletion strain, we found additional extracellular
364 structures that were attached to cells, which: **1**) where round and condensed in shape; **2**) did not
365 connect cells with each other; and **3**) did not resemble the filamentous structure of Mth60 fimbriae that
366 we found only in wild-type *M. thermautotrophicus* ΔH and the constitutive expression strain.


367
368 **Figure 3.** Scanning electron microscopy pictures of three untreated *M. thermautotrophicus* ΔH strains (A-C). The scale bar is
369 indicating 1 μm for A-C with a magnification of 10000x. **A)** *M. thermautotrophicus* ΔH wild-type. **B)** *M. thermautotrophicus* ΔH
370 containing a shuttle vector for constitutive expression of the Mth60 fimbriae-encoding operons. **C)** *M. thermautotrophicus* ΔH
371 with a deletion of the Mth60 fimbriae-encoding operons.

372 **The number of Mth60 fimbriae significantly influences intraspecies biotic interaction ability of *M.***
373 ***thermautotrophicus* ΔH**

374 The experiments described above strongly indicated an increase of Mth60 fimbriae in the constitutive
375 expression strain, as well as a loss of Mth60 fimbriae in the deletion strain, compared to wild-type *M.*
376 *thermautotrophicus* ΔH. Thus, we hypothesized that these changes would be reflected in physiological
377 differences between the strains. All three strains (wild-type, constitutive expression, and deletion strain)
378 grew over night to a final optical density at 600 nm (OD_{600}) of around 0.3. However, we observed a
379 considerable difference between the strains with phase-contrast microscopy without further treatment
380 in the early stationary growth phase. For wild-type *M. thermautotrophicus* ΔH, we found several cell
381 clumps but also cells that remained planktonic (**Figure 4A**). For the constitutive expression strain, the

382 ratio of cell clumps to planktonic cells shifted towards cell clumps (**Figure 4B**), while for the deletion
383 strain it shifted towards planktonic cells (**Figure 4C**). This finding prompted us to develop a method to
384 define significant differences in the number of cell clumps, and thus to determine a significant
385 physiological difference between the three strains. Therefore, we collected a relevant number of phase-
386 contrast microscopy pictures (n=10) from biological replicates (N=3) for each strain. Afterwards, we
387 counted: **1)** the total number of microbes in each picture; and **2)** the number of microbes that had an
388 immediate connection to another microbe. It was crucial to dilute the cells to the same optical density
389 ($OD_{600}=\sim 0.28$) to gather comparable results. The ratio of the number of total cells to connected cells
390 resulted in significant differences in cell-cell connections for the three strains (**Figure 4D**). While in wild-
391 type *M. thermautotrophicus* Δ H, $34.5\pm 13\%$ of the cells showed a connection to another cell, this was
392 $52\pm 15\%$ in the constitutive expression strain. The Mth60-fimbriae deletion strain only showed a
393 remaining $7.5\pm 4.5\%$ of cells that were connected to other cells.

394

395

396 **Figure 4.** Phase-contrast microscopy pictures with magnification of 1000x of three *M. thermautotrophicus* ΔH strains (A-C) as
397 representative pictures on which basis the analysis of the cell-cell connections was performed (D). A) Wild-type *M.*
398 *thermautotrophicus* ΔH. B) Constitutive Mth60 fimbriae expressing *M. thermautotrophicus* ΔH. C) Mth60 fimbriae deletion
399 strain of *M. thermautotrophicus* ΔH. D) Comparison of the three *M. thermautotrophicus* ΔH strains mentioned above regarding
400 total number of microbial cells with the number of microbial cells connected to another cell in percent. Average (N=3, n=10)
401 with error bars indicating standard deviation. Significance was tested with Student's t-test (two-tailed): *, significant difference
402 (P<0.05); **, highly significant difference (P<0.01).

403 Discussion

404 In this study, we reported the implementation of suicide-vector constructs for homologous
405 recombination in *M. thermautotrophicus* ΔH to generate site-specific gene deletion mutants *via* allelic
406 exchange with a positive selectable marker. With our expanded genetic tools, we elucidated the positive
407 and negative influence of constitutive expression and deletion of the Mth60 fimbriae-encoding operons
408 on the *in-vivo* production of Mth60 fimbriae in *M. thermautotrophicus* ΔH. We demonstrated a
409 correlation between the number of Mth60 fimbriae and the number of cell-cell connections with a
410 constitutive Mth60-fimbriae expression strain, wild-type strain, and Mth60-fimbriae deletion strain of *M.*
411 *thermautotrophicus* ΔH. We measured significantly lower numbers of cell-cell connections in *M.*
412 *thermautotrophicus* ΔH strains with lower numbers of Mth60 fimbriae, and therefore demonstrated the

413 importance of Mth60 fimbriae for the establishment of cell-cell connections, which is essential for initial
414 biofilm formation.

415 The DNA-transfer protocol, and therefore the generation of deletion mutants of *M. thermautotrophicus*
416 ΔH, was performed with the identical procedure as we had established for shuttle-vector constructs
417 before ²³. However, for the successful isolation of mutant strains, the concentration of neomycin as the
418 antibiotic substance had to be lowered to 100 µg/mL instead of 250 µg/mL on solidified media plates
419 when a genomic alteration was introduced. It is known that cells can adapt the copy number of plasmids
420 in response to higher antibiotic-substance concentrations, which leads to higher resistance levels
421 towards these antibiotic substances ³⁴. It is further known that *M. thermautotrophicus* ΔH is always
422 diploidic ³⁵. Thus, we argue that the copy number of our shuttle vector is likely higher than two (as for
423 the genome copies) or potentially can be increased with higher antibiotic-substance concentrations. This
424 would explain higher neomycin resistance levels of shuttle-vector containing *M. thermautotrophicus* ΔH
425 compared to genome-altered *M. thermautotrophicus* ΔH mutant strains.

426 During the procedure of isolating a clean *M. thermautotrophicus* ΔH strain with a deletion of the Mth60
427 fimbriae-encoding operons, PCR signals and Nanopore sequencing reads for wild-type *M.*
428 *thermautotrophicus* ΔH, single-homologous recombined, and double-homologous recombined mutant
429 strains were obtained from the same colony sample, even after two steps that included the isolation of
430 an individual clonal population and the transfer to liquid growth medium (**Supplementary Figure S2**).
431 One possible explanation is the diploid character of *M. thermautotrophicus* ΔH, which might result in
432 residual wild-type or single-homologous recombined alleles on the second chromosome ³⁵. This could
433 result in a heterozygous culture of *M. thermautotrophicus* ΔH as it was shown to appear in heterozygous
434 and many genome copies-containing *Methanococcus maripaludis* cultures ³⁶. Another possible
435 explanation is the characteristic of *M. thermautotrophicus* ΔH of forming multicellular filaments. This
436 could result in different genotypes in one filament of multiple individual *M. thermautotrophicus* ΔH cells

437 ^{35,37}. These observations of various genotypical PCR signals make it difficult, but not impossible, to isolate
438 clean deletion strains of *M. thermautotrophicus* ΔH (**Figure 1B**).

439 We performed immuno-fluorescence staining to visualize the Mth60 fimbriae with the Mth60-fimbriae
440 deletion, the constitutive Mth60-fimbriae producing, and wild-type *M. thermautotrophicus* strains. The
441 Mth60-fimbriae antibodies, that we used for immuno-fluorescence staining, were generated from a
442 native Mth60-fimbriae preparation, which was purified through density gradient centrifugation. After
443 our staining approach, we demonstrated that in addition to the Mth60 fimbriae also the entire cell wall
444 was stained, which resulted in a staining of the entire cell (**Figure 2A-C**). One possible explanation is that
445 cell-wall components were purified in the same fraction of the density gradient centrifugation, resulting
446 in a mixture of the polyclonal antibodies against several antigens. Another explanation is that the Mth60
447 fimbriae antibody recognizes glycosylated epitopes of the major fimbriae Mth60 of the Mth60 fimbriae ¹⁹.
448 In that case, the Mth60-fimbriae antibody might also bind glycosylated cell-wall components on the
449 envelope of *M. thermautotrophicus* ΔH cells ³⁸.

450 Thoma, *et al.* ¹⁹ mentioned a difference in the number of Mth60 fimbriae in planktonic *M.*
451 *thermautotrophicus* ΔH cells *vs.* cells that were actively grown in the presence of a surface to which the
452 cells adhered. While only 50% of planktonic cells contained few Mth60 fimbriae, cells that were adhered
453 to surfaces contained large numbers of Mth60 fimbriae per microbial cell ¹⁹. This finding clearly indicated
454 a regulation of the expression of the Mth60 fimbriae-encoding operons. When we exchanged the
455 putatively regulated promoter to the constitutive P_{hmtB} promoter, fimbriae were identified in higher
456 numbers for each planktonic *M. thermautotrophicus* ΔH cell (**Figure 2, 3**) ²³. The regulatory mechanism of
457 putative promoter regions of the Mth60 fimbriae-encoding operons, however, will need to be
458 investigated further.

459 The Mth60-fimbriae deletion mutant of *M. thermautotrophicus* ΔH does not contain any Mth60 fimbriae
460 (**Figure 2C, 3C**). This loss of Mth60 fimbriae did not influence the generation of individual multicellular

461 filaments, however, the connections to other multicellular filaments was significantly reduced (**Figure 4**).

462 From this, we concluded that Mth60 fimbriae are the only cell appendages of *M. thermautotrophicus* ΔH
463 that are responsible for biotic intraspecies cell-cell connections under the conditions that we
464 investigated. Furthermore, we argue that Mth60 fimbriae are not involved in the formation of
465 multicellular filaments, as these filaments were present in all *M. thermautotrophicus* ΔH strains that we
466 analyzed. It was shown that the addition of Mth60-fimbriae antibodies to surface-adhered *M.*
467 *thermautotrophicus* ΔH cells led to detachment of the cells, potentially by blocking the Mth60 fimbriae
468 adhesion mechanism¹⁹. With the deletion of the Mth60-fimbriae operons, and therefore the loss of
469 Mth60 fimbriae, we were now able to support these results on a genetic level by demonstrating reduced
470 cell-cell connections *in vivo*.

471 We demonstrated that deletion of all four genes that are co-transcribed with *mth60*, including *mth60*,
472 led to the loss of Mth60 fimbriae. In addition, we provided further evidence for the regulation of the
473 Mth60 fimbriae-encoding operons. Based on these findings, the functions of the individual genes in the
474 Mth60 fimbriae-encoding operons can be studied in further detail now. The putatively regulated
475 promoters of the Mth60 fimbriae-encoding operons are the first step towards the identification of a
476 sensory system in *M. thermautotrophicus* ΔH that allows adherence to biotic and abiotic surfaces for
477 initial biofilm formation. The reduced ability to form cell-cell connections might have an impact on the
478 rheology of a high-density microbial culture, and thus may affect the biotechnological applications with
479 *M. thermautotrophicus*, such as for power-to-gas processes, in large-scale fermentation to convert
480 carbon dioxide and hydrogen to renewable methane³⁹. Clearly, a possible effect of the rheology on
481 parameters, such as mixing, gas solubility, and gas conversion efficiency, with the pili-deficient strain of
482 *M. thermautotrophicus* ΔH will have to be addressed in future research.

483 **Acknowledgments**

484 The authors thank Marco-Linus Ernst and Andreas Mark Enkerlin for their support with wet lab
485 experiments. In addition, the authors thank the Archaea Centre of the University of Regensburg with
486 Annett Bellack for the Mth60-fimbriae antibodies. The work was funded by the Alexander von Humboldt
487 Foundation in the framework of the Alexander von Humboldt Professorship (L.T.A.) and the U.S. Office of
488 Naval Research Global (ONRG, N62909-19-1-2076; L.T.A., B.M.). We thank the additional funding
489 sources, which were the German Federal Ministry of Education and Research (MethanoPEP, 031B0851C,
490 B.M.; ThermoSynCon, 031B0857D, L.T.A), the Deutsche Forschungsgemeinschaft (DFG, German Research
491 Foundation) under Germany's Excellence Strategy – EXC 2124 – 390838134 (L.T.A., B.M.), and the DFG
492 (INST 37/1027-1 FUGG) for financial support provided for the acquisition of the cryogenic focused ion
493 beam scanning electron microscope.

494 **Author Contributions:** B.M. and L.T.A. initiated the work. C.F. and B.M. designed the experiments. J.S.
495 and C.F. did the preparation and analysis of scanning electron microscopy. A.P. performed Airyscan
496 microscopy and analysis. C.F. and G.M-C. performed laboratory experiments and analyzed the data.
497 L.T.A. and B.M. supervised the project. C.F. wrote the manuscript, while all edited the paper and
498 approved the final version.

499 **Competing Interest Statement:** The authors declare no conflict of interest.

500 **References**

- 501 1 Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. *Nat Rev Microbiol* **18**, 571-586 (2020).
- 502 2 Hobley, L., Harkins, C., MacPhee, C. E. & Stanley-Wall, N. R. Giving structure to the biofilm
503 matrix: An overview of individual strategies and emerging common themes. *FEMS Microbiol Rev*
504 **39**, 649-669 (2015).
- 505 3 Davey, M. E. & O'toole, G. A. Microbial biofilms: From ecology to molecular genetics. *Microbiol
506 Mol Biol Rev* **64**, 847-867 (2000).
- 507 4 Pelling, H. *et al.* Bacterial biofilm formation on indwelling urethral catheters. *Lett Appl Microbiol*
508 **68**, 277-293 (2019).
- 509 5 Jamal, M. *et al.* Bacterial biofilm and associated infections. *Chin Med J* **81**, 7-11 (2018).
- 510 6 O'Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. *Annu Rev
511 Microbiol* **54**, 49-79 (2000).
- 512 7 Ciofu, O., Moser, C., Jensen, P. Ø. & Høiby, N. Tolerance and resistance of microbial biofilms. *Nat
513 Rev Microbiol*, 1-15 (2022).

514 8 Wirth, R. Colonization of black smokers by hyperthermophilic microorganisms. *Trends Microbiol*
515 9 **25**, 92-99 (2017).

516 9 van Wolferen, M., Orell, A. & Albers, S.-V. Archaeal biofilm formation. *Nat Rev Microbiol* **16**, 699-
517 10 713 (2018).

518 10 Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. Methanogenesis. *Curr Biol* **28**, R727-R732
519 11 (2018).

520 11 Palmer, J., Flint, S. & Brooks, J. Bacterial cell attachment, the beginning of a biofilm. *J Ind
521 Microbiol Biotechnol* **34**, 577-588 (2007).

522 12 Flemming, H.-C. & Wingender, J. The biofilm matrix. *Nat Rev Microbiol* **8**, 623-633 (2010).

523 13 Jarrell, K. F., Ding, Y., Nair, D. B. & Siu, S. Surface appendages of archaea: Structure, function,
524 14 genetics and assembly. *Life* **3**, 86-117 (2013).

525 14 Chaudhury, P., Quax, T. E. F. & Albers, S. V. Versatile cell surface structures of archaea. *Mol
526 Microbiol* **107**, 298-311 (2018).

527 15 Näther, D. J., Rachel, R., Wanner, G. & Wirth, R. Flagella of *Pyrococcus furiosus*: Multifunctional
528 16 organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. *J Bacteriol*
529 17 **188**, 6915-6923 (2006).

530 16 Pohlschroder, M. & Esquivel, R. N. Archaeal type IV pili and their involvement in biofilm
531 17 formation. *Front Microbiol* **6**, 190 (2015).

532 17 Albers, S.-V. & Jarrell, K. F. The archaellum: an update on the unique archaeal motility structure.
533 18 *Trends Microbiol* **26**, 351-362 (2018).

534 18 Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal
535 19 'hami', highly complex cell appendages with nano-grappling hooks. *Mol Microbiol* **56**, 361-370
536 19 (2005).

537 19 Thoma, C. *et al.* The Mth60 fimbriae of *Methanothermobacter thermoautotrophicus* are
538 19 functional adhesins. *Environ Microbiol* **10**, 2785-2795 (2008).

539 20 Doddema, H. J., Derkens, J. W. & Vogels, G. D. Fimbriae and flagella of methanogenic bacteria.
540 20 *FEMS Microbiol Lett* **5**, 135-138 (1979).

541 21 Sarbu, C. *Untersuchung der Mth60-Fimbrien von Methanothermobacter thermoautotrophicus*
542 21 Doctoral thesis thesis, University of Regensburg, (2013).

543 22 Wirth, R., Näther, D. J., Rachel, R., Wanner, G. . Adhesives based on proteins; Adhesives based on
544 22 derivatives thereof. Germany patent WO2006128678A1 (2006).

545 23 Fink, C. *et al.* A shuttle-vector system allows heterologous gene expression in the thermophilic
546 23 methanogen *Methanothermobacter thermoautotrophicus* ΔH. *mBio*, e0276621 (2021).

547 24 Pozzi, R. *et al.* Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer
548 24 strain *Microbispora* ATCC PTA-5024. *Environ Microbiol* **18**, 118-132 (2016).

549 25 Balch, W. E. & Wolfe, R. New approach to the cultivation of methanogenic bacteria: 2-
550 25 mercaptoethanesulfonic acid (HS-CoM)-dependent growth of *Methanobacterium ruminantium*
551 26 in a pressureized atmosphere. *Appl. Environ. Microbiol.* **32**, 781-791 (1976).

552 26 Sambrook, J., Fritsch, E. F. & Maniatis, T. *Molecular Cloning: A Laboratory Manual*. (Cold spring
553 26 harbor laboratory press, 1989).

554 27 Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for *Clostridium*
555 27 shuttle plasmids. *J Microbiol Methods* **78**, 79-85 (2009).

556 28 Huff, J. The Airyscan detector from ZEISS: Confocal imaging with improved signal-to-noise ratio
557 28 and super-resolution. *Nat Methods* **12**, i-ii (2015).

558 29 Hadley, W. *Ggplot2: Elegant graphics for data analysis*. (Springer, 2016).

559 30 Core Team, R. R: A language and environment for statistical computing. *R Foundation for
560 30 statistical computing, Vienna* (2013).

561 31 Santangelo, T. J. *et al.* Polarity in archaeal operon transcription in *Thermococcus kodakaraensis*. *J
562 31 Bacteriol* **190**, 2244-2248 (2008).

563 32 Darcy, T. J. *et al.* *Methanobacterium thermoautotrophicum* RNA polymerase and transcription *in vitro*. *J Bacteriol* **181**, 4424-4429 (1999).

564 33 Metcalf, W. W., Zhang, J. K., Apolinario, E., Sowers, K. R. & Wolfe, R. S. A genetic system for archaea of the genus *Methanosarcina*: Liposome-mediated transformation and construction of shuttle vectors. *Proc Natl Acad Sci U S A* **94**, 2626-2631 (1997).

565 34 San Millan, A. *et al.* Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. *Antimicrob Agents Chemother* **59**, 3335-3341 (2015).

566 35 Majernik, A. I., Lundgren, M., McDermott, P., Bernander, R. & Chong, J. P. DNA content and nucleoid distribution in *Methanothermobacter thermoautotrophicus*. *J Bacteriol* **187**, 1856-1858 (2005).

567 36 Hildenbrand, C., Stock, T., Lange, C., Rother, M. & Soppa, J. Genome copy numbers and gene conversion in methanogenic archaea. *J Bacteriol* **193**, 734-743 (2011).

568 37 Zeikus, J. & Wolfe, R. Fine structure of *Methanobacterium thermoautotrophicum*: Effect of growth temperature on morphology and ultrastructure. *J Bacteriol* **113**, 461-467 (1973).

569 38 Yoshinaga, M. Y. *et al.* *Methanothermobacter thermoautotrophicus* modulates its membrane lipids in response to hydrogen and nutrient availability. *Front Microbiol* **6**, 5 (2015).

570 39 Pfeifer, K. *et al.* Archaea biotechnology. *Biotechnol Adv*, 107668 (2021).

571 580