

1 Climatic niche evolution of infectious diseases driving amphibian declines

2 Gajaba Ellepola^{1,2†}, Jayampathi Herath^{1†}, Sun Dan^{1†}, Marcio R. Pie^{3,4}, Kris A. Murray^{5,6}, Rohan
3 Pethiyagoda⁷, James Hanken⁸ and Madhava Meegaskumbura^{1*}

4 ¹ Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry,
5 Guangxi University; Nanning, Guangxi 53004, China.

6 ² Department of Zoology, Faculty of Science, University of Peradeniya; Peradeniya
7 KY20400, Sri Lanka.

8 ³ Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.

9 ⁴ Biology Department, Edge Hill University, Ormskirk, United Kingdom.

10 ⁵ MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Atlantic
11 Boulevard, Fajara, The Gambia.

12 ⁶ MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial
13 College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom.

14 ⁷ Ichthyology Section, Australian Museum, Sydney, NSW 2010, Australia.

15 ⁸ Museum of Comparative Zoology, Harvard University, Cambridge MA 02138, USA.

16 [†] These authors contributed equally.

17
18 * Corresponding author. *E-mail:* madhava_m@mac.com

19

20

21 **Abstract**

22 Climate change and infectious diseases continue to drive global amphibian population declines,
23 contributing to one of the greatest vertebrate extinctions of the Anthropocene. Currently around
24 16% amphibian species across the world are affected by four pathogens – *Batrachochytrium*
25 *dendrobatidis* (*Bd*), *B. salamandrivorans* (*Bsal*), *Ranavirus* and *Perkinsea*. A climatic context
26 behind the dispersal of some of these diseases is hypothesized. However, the interplay between
27 niche conservatism (NC) and climatic niche evolution (CNE), essential to understand disease
28 evolution and dispersal, has so far received little attention. Here we show that the impacts of
29 amphibian pathogens are intensifying as their climatic niches evolve. NC-based analyses suggest
30 that niches of these diseases overlap, especially in Europe and East/southeast Asia (ESEA), and
31 that all four pathogens will continue to devastate amphibians through seasonality shifts and range
32 expansions, penetrating deeper into temperate regions and global amphibian diversity hotspots.
33 *Bd* will spread over diversity-rich mountain ranges and ranaviruses will overwhelm lowlands.
34 CNE-based analyses suggest that the earliest lineages of these diseases originated in colder
35 regions and that some lineages subsequently evolved towards warmer climatic niches. We
36 caution that quiescent, warm-adapted strains are likely to become widespread and novel
37 ranaviruses adapted to local climatic conditions and new hosts are likely to emerge. These results
38 portend the dangers of introducing pathogens into new regions given their ability to adapt to
39 changing climate scenarios. In a climatic background conducive to most of these diseases,
40 frequent monitoring, enhanced biosecurity measures and policy reforms are needed for disease
41 control and mitigation.

42

43

44

45

Introduction

46 Pathogens that cause amphibian diseases, largely unknown only a few decades ago but having
47 found providence through human activities^{1,2}, are now dispersing across the world. Working
48 synergistically with other environmental stressors, they are driving amphibian population
49 declines. This sets the stage for possibly the greatest vertebrate species extinction witnessed to
50 date³⁻⁶. About 1350 of Earth's 8400 amphibian species are known to have been infected up to
51 now^{3,7-11}, with *Batrachochytrium dendrobatidis* (*Bd*), *B. salamandrivorans* (*Bsal*), *Ranavirus* and
52 Severe Perkinsea Infection (SPI) being the most significant (Supplementary Table 1). While
53 these pathogens are associated with population declines, extirpations or extinctions in wild
54 amphibians, chytridiomycosis (both *Bd* and *Bsal*) and ranavirosis are currently recognized as
55 notifiable diseases by the World Organization for Animal Health¹².

56

57 Some of these diseases were first detected by studying the devastation they caused well beyond
58 their native regions of origin. *Bd* was uncovered in Central America and Australia¹³, but its
59 origins are in Asia⁵. By now, numerous lineages have been described, which are known to infect
60 amphibians in 93 countries across the world¹⁰. *Bsal* was first detected following salamander die-
61 offs in Europe¹⁴, again with origins in Asia⁷. *Bsal* has not yet been reported in the southern
62 hemisphere, likely due to the near absence of its host taxon (salamanders). *Frog virus 3*, the first
63 ranavirus isolate, was discovered in the United States¹⁵ but has now been recorded across 25
64 countries covering all continents except Antarctica⁸. Several clades of cryptic SPI have been
65 detected in five countries in Africa, Europe and North America^{3,16} since its discovery in the
66 United States¹⁷. It is an emerging frog disease in North America¹⁸ of unknown global concern.
67 Despite their widespread impacts, the patterns of distribution and dispersal of these diseases

68 remain poorly understood, limiting the formulation and implementation of adequate disease
69 control measures in affected or at-risk regions.

70

71 These diseases have dispersed beyond their northern-hemisphere centers of origin^{5,7,8} and for the
72 most part their spread has been human-aided and potentially facilitated by recent climate change.
73 Several studies highlight the role of climate in providing the background for the distribution and
74 impacts of amphibian pathogens¹⁹⁻²⁴. Yet, and despite the urgent need for mitigation and the
75 clear potential role of climate change to facilitate worldwide expansion, global projections of
76 future spread of amphibian diseases remain poorly resolved.

77

78 The contrasting theories of niche conservatism (NC)²⁵ and climatic niche evolution (CNE)^{26,27},
79 or the interplay between NC and CNE²⁸, have been central to efforts to understand the
80 distribution and dispersal patterns of species. However, few studies have applied such theory to
81 invasive pathogens that contribute to catastrophic biodiversity loss^{29,30}. NC proposes that species
82 maintain a relatively stable ecological niche over time, particularly with respect to climatic axes.
83 In contrast, CNE postulates that some lineages adapt to novel niches while others remain in
84 climatic stasis, i.e., close to their ancestral climatic niche.

85

86 To better understand the distribution and dispersal patterns of these four pathogens, we carried
87 out a series of analyses based on NC and CNE in a phylogenetic context. We examined the
88 climatic niches of these pathogens as a proxy of their n-dimensional environmental niches. We
89 also contrast NC and CNE concepts to examine potential evolutionary shifts in climate
90 preferences that may help explain current—and predict future—geographic spread. We use

91 global occurrence data and bioclimatic variables, in combination with spatial point process
92 models³¹ and maximum entropy (Maxent) models³², to assess the climatic suitability for these
93 pathogens and the extent to which they currently occupy their available climatic niche spaces and
94 their corresponding potential global geographic distributions. We then quantify their climatic
95 niche preferences based on a principal components analysis. Further, we use CMIP6 downscaled
96 climatic scenarios (2021-2040 time period) to predict future potential geographical range shifts
97 due to a changing climate and evaluate the extent to which biodiversity hotspots may eventually
98 be infiltrated by these diseases.

99

100 The above analyses begin by assuming NC, wherein species are thought to maintain their
101 climatic niche preferences over time. Thus, in the future, species are predicted to be distributed
102 in areas that have climatic conditions similar to those they currently occupy²⁵. In addition, and to
103 evaluate the possibility of CNE, we hypothesize that some variants/isolates may have deviated
104 from their ancestral climatic niches to achieve novel climate characteristics. We assume that
105 most variants/isolates remain in climate stasis close to the climatic conditions in which they
106 evolved, such that the deviation of some variants/isolates from the inferred ancestral niche (taken
107 as the average of all strains/lineages^{26,33} serves as an indicator of climatic niche evolution. Such
108 deviation is visualized by means of traitgrams, disparity-through-time plots and bin-based
109 ancestral reconstructions. In total, this comparative analysis reveals the climatic context that
110 underpins the distributions of these four amphibian diseases. It also allows both comparisons
111 among pathogens and an examination of the geographic shifts that could be expected under
112 future climatic projections. This, in turn, enhances the critical knowledge base relevant to disease
113 mitigation.

114

115

116

Results and Discussion

117 *Predicted distributions of amphibian diseases*

118 We found that the climatic niches of these four pathogens, and hence their predicted geographic
119 distributions, overlap considerably, especially in Europe and East/Southeast Asia (ESEA) (Fig.
120 1). *Bd* has a potential geographic distribution that includes North America, South America,
121 regions bordering the Mediterranean, southern Africa, ESEA and eastern Australia. Meanwhile,
122 the potential distribution of *Bsal* includes Europe, the Mediterranean, and ESEA. Importantly,
123 whereas the predicted distributions of *Bd* and *Bsal* are consistent with previous reports^{10,29,30},
124 ours is the first study to predict in addition the global distribution of ranaviruses and SPI.
125 Ranaviruses have a predicted potential distribution that spans Central America, Europe, ESEA
126 and Australia, while SPI is predicted to be potentially distributed around eastern North America
127 and parts of South America, Europe, Africa, ESEA and Australia.

128

129 The analyses also identify climatically suitable areas that are not yet infiltrated by these diseases.
130 These include many amphibian-rich Global Biodiversity Hotspots³⁴ (Fig. 1, map). In general,
131 both spatial point-process models (PPM; Extended Data Figure 1) and Maxent distribution
132 models (Fig. 1) yield similar results. However, PPMs generally yield lower probability-of-
133 occurrence values, possibly due to edge effect and spatial dependence³¹.

134

135 In a PCA of the average bioclimatic conditions associated with occurrence of the studied taxa,
136 the first three axes explain over 75% of the data variance (Fig. 1 sub panel, Supplementary Table
137 2). For PC1 (45.7%; mainly bio11, bio1, bio6; Supplementary Table 2), higher scores
138 correspond to less-cold-tolerant variants/isolates and *vice versa*. For PC2 (20.5%; mainly bio2),
139 higher scores represent more-temperate variants/isolates while lower scores represent more-
140 tropical ones. Consistent with previous studies, these results confirm that all four pathogens are
141 temperature-sensitive^{14,18,35,36}. More specifically, they indicate that the pathogens' distributions
142 are primarily constrained by temperature, with other climatic factors being of secondary
143 importance. Similar to the geographic overlap among pathogens based on niche models and
144 PPMs (Fig 1, map), the climatic niche spaces of the four pathogens also overlap to a considerable
145 degree (Fig. 1 sub panel, Fig. 2 main panel). In general, higher probabilities of occurrences of all
146 four diseases occur towards cooler, subtropical climatic conditions, especially in the case of *Bsal*
147 and ranaviruses. *Bd* and SPI extend more widely into the tropics, i.e., regions of higher
148 temperature (Fig. 2 main plot)^{3,37,38}. Distribution models for both *Bd* and SPI further suggest that
149 these pathogens could potentially be distributed in cool, high-altitude areas in tropical regions as
150 well (Extended Data Figure 2).

151

152 ***Breadth of the climatic niches of amphibian pathogens***

153 SPI and *Bsal* have the broadest and narrowest climatic niche space occupations, respectively (Fig
154 2, main plot). Yet, the relatively narrow climatic niche of *Bsal* appears to consist of two different
155 climatic clusters, one that is a restricted subset within the 95% confidence limits of the other
156 (Fig. 2, main plot, Fig. 2B). When stratified by geographic region, these clusters are associated
157 with distinct clusters of *Bsal* in Europe (colder niche) and *Bsal* in ESEA (relatively milder

158 climates), which represent widely disjunct distributions in the introduced European population
159 and the native Asian population⁷. The *Bsal* introduced to Europe occupies a considerably
160 restricted climatic niche space than does native *Bsal* in ESEA, possibly due to incomplete
161 invasion in Europe. *Bd* in Africa, South America and Europe has a restricted climatic niche along
162 PC1 but a broader occupation in North America, ESEA and Australia (Fig 2A). Ranaviruses in
163 ESEA are represented by broader climatic niches, whereas SPI in different regions occupies non-
164 overlapping climatic niches, an artifact possibly due to sparse sampling of this emerging
165 disease^{3,18,39}. Overall, *Bd*, *Bsal* and ranaviruses tend to occupy a broader climatic niche in Asia
166 relative to other regions, which suggests that strains/variants in Asia are generalists that have
167 been able to adapt to varying climatic conditions and/or that they occupy a greater potential
168 niche space as some originated in Asia (*Bd* and *Bsal*). In this respect, variants in Asia may be of
169 particular concern in terms of risk of establishment when introduced to novel regions (e.g.,
170 through live-animal trade) due to their higher adaptability to different climatic conditions.

171

172 Climatic niche axes differ in some respects among the four pathogens (Extended Data Figure 3).
173 Although temperature variables limiting cold tolerance are common to all the pathogens along
174 the PC1 axis, other variables differ along the PC2 and PC3 axes (Supplementary Table 3).
175 Temperature sensitivity (explained by PC1 for all pathogens) is confirmed generally by the fact
176 that *Bd* and *Bsal* are reported during milder weather or during cooler months in warm regions³⁶,
177 whereas ranavirosis and SPI in the United States is reported in warmer months^{18,35}. *Bsal* and SPI
178 seem to be dependent on rainfall during the driest period, whereas *Bd* and ranaviruses seem to be
179 less dependent on rainfall on PC2 but require less variable diurnal temperatures (isothermal
180 conditions) along PC3 (Extended Data Figure 3). Overall, seasonality and precipitation variables
181 appear to segregate the climatic niche spaces of these diseases. The dependence of *Bsal* and SPI

182 on rainfall during the driest periods can be inferred from the life histories of their potential hosts.

183 *Bsal* affects salamanders and newts^{14,40} and SPI affects post-metamorphic stages of anurans^{18,39}.

184 The life histories of these hosts are largely dependent on water bodies, with associated

185 differences in disease spread^{39,41,42}. Transmission remains low during dry periods but may

186 increase with the onset of rains, which usually coincides with the hosts' breeding periods as well.

187

188 ***Climatic niche evolution (CNE) of amphibian pathogens and their clades/strains***

189 Our climate niche-based analyses provide evidence for potential CNE in various strains/isolates.

190 The CNE traitgrams of the four pathogens based on ancestral reconstructions of PC scores of the

191 climatic niche axes (the evolving trait) suggest that all European and a few North American

192 variants of *Bd* have evolved from their ancestral climatic conditions towards a colder climate.

193 Meanwhile, most other *Bd* variants suggest possible evolution towards a warmer climate (Fig. 3).

194 Here, "ancestral climatic conditions" refers to the PC value at the node of the phylogenetic tree.

195 The alternative bin-based method, which explicitly incorporates phylogenetic uncertainty in

196 ancestral reconstructions, also supports possible CNE in different *Bd* strains (Extended Data

197 Figure 4). For example, strain ASIA-1 shows potential niche expansion under bio2, bio3, bio5,

198 bio11, bio17 and bio19, while niche retraction is evident in CAPE under most of the climatic

199 variables. Moreover, according to the DTT plots, the climatic niche of *Bd* evolves at a faster rate

200 than a null model of constant accumulation of disparity over time. In contrast, based on its

201 traitgram, *Bsal* does not appear to have deviated substantially from its ancestral climatic

202 conditions (subtropical and temperate climates in Asia) despite occupying novel habitats in

203 Europe (Fig. 2). The bin-based ancestral reconstruction method, however, shows potential

204 evidence for niche retraction under bio3, bio6 and bio11 (Extended Data Figure 4). These results

205 indicate that the climatic niche of *Bsal* is conservative. Hence, the broader climatic conditions
206 under which it currently occurs likely reflect the conditions under which it evolved^{7,43}.

207

208 For ranaviruses, the ancestral climatic conditions inferred from traitgrams predict cold
209 adaptation, which is different from most current ranavirus strains. A few strains have evolved
210 towards warmer climates, and some have evolved towards cooler conditions, but only recently in
211 their evolutionary history (see relative time axis on Fig. 3 center panel). The bin-based ancestral
212 reconstructions for different clades of ranaviruses supply potential evidence for niche retraction
213 in ATV-like ranaviruses under bio11 and bio15, and for CMTV-like ranaviruses under bio3.
214 Potential niche expansion is evident for CMTV-like ranaviruses under bio6, bio14 and bio17,
215 while no evidence for CNE is apparent in FV-3-like ranaviruses (Extended Data Figure 5).
216 However, in a CNE context, pathogens would require time to establish (ranaviruses may be an
217 exception). Climatic niche evolution of SPI seems to be slow and irregular. However, this
218 pathogen seems to have evolved towards two temperature extremes along PC1, with cold-
219 adapted variants concentrated in areas with high precipitation along PC2. While the absence of
220 intermediate variants may be an artifact of sparse sampling, the potential niche expansion shown
221 by the Pathogenic Perkinsea Clade along bio2, bio6, bio14 and bio17 could be of particular
222 interest (PPC; Figs. 3, Extended Data Figure 6). Nevertheless, because some variants/strains
223 among these pathogens are adapted to warmer climatic conditions, we infer that these pathogens
224 undergo CNE. This portends that some variants will evolve in response to ongoing climate
225 change. If they do, the vulnerability of cool□ and warm□adapted hosts could escalate as the
226 pathogens evolve their climatic niches towards unusually warm and cool temperatures,
227 respectively^{44,45}.

228

229 ***Climatic context of Bd virulence***

230 With available data for *Bd*, the best known of the four pathogens, we further investigated
231 whether climatic niche differences exist between lineages that differ in their apparent virulence.
232 Six known virulent *Bd* lineages (GPL, CAPE, ASIA-1, ASIA-2, CH and HYBRID)⁵ were traced
233 on our PC plots and traitgrams (Fig. 4). GPL, the most recently evolved and pandemic-causing
234 lineage that is primarily responsible for global disease-associated amphibian declines and
235 extinctions, exhibits the broadest niche occupation, followed by CAPE (also frequently disease
236 causing) and ASIA-2 (rarely observed to cause disease in wild amphibians). All other lineages
237 fall within the broad climatic niche space of GPL (Fig. 4B). Traitgrams also suggest that GPL
238 has deviated the most from its ancestral climatic niche, followed by CAPE and ASIA-2.
239 However, ASIA-1, CH and HYBRID seem to have retained the ancestral climatic niche (Fig.
240 4C). These results do not offer clear evidence that virulence has a strong climatic niche
241 component at the lineage level (Extended Data Figure 7).

242

243 ***Future climatic change and amphibian pathogen distributions***

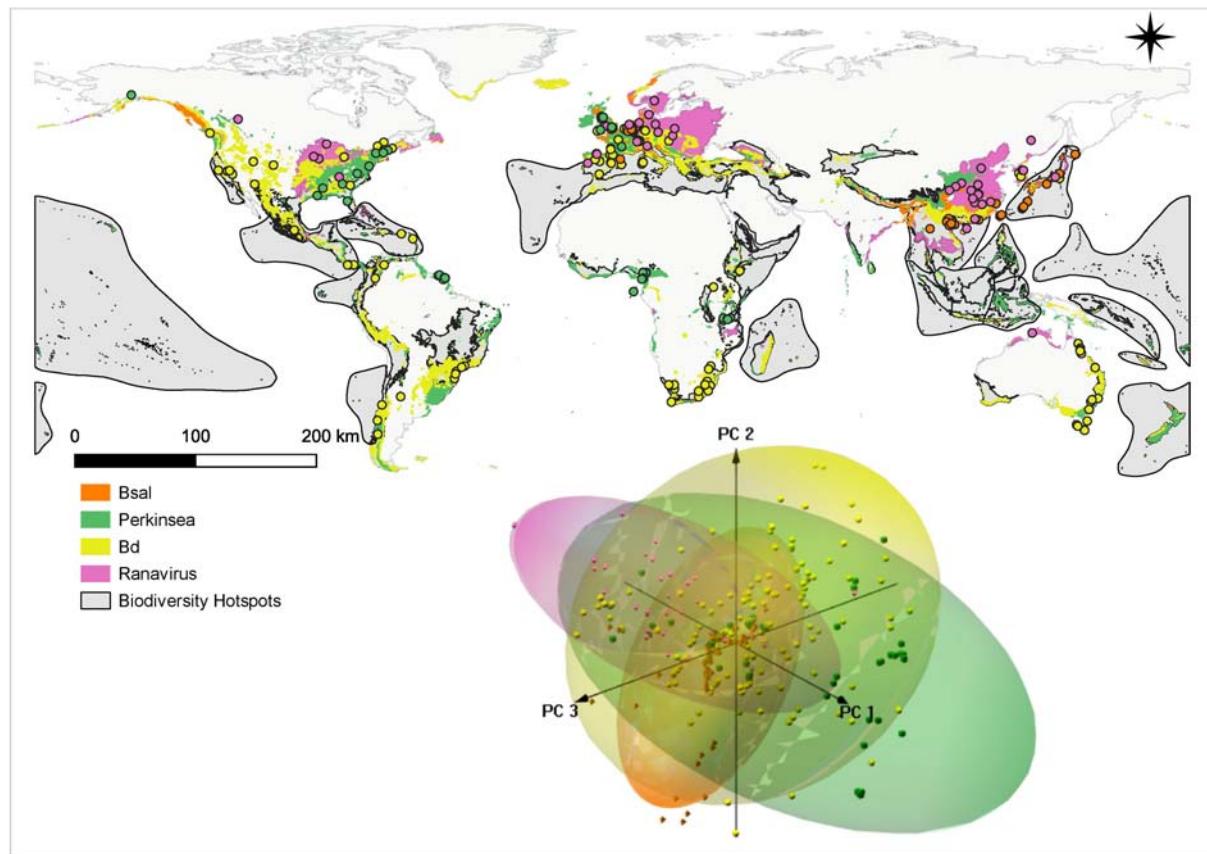
244 Predicted geographic distributions of the four major amphibian diseases two decades from now
245 (2040) suggest that *Bd* and *Bsal* will occupy less of their overall current potential distributions
246 while ranavirus and SPI will likely occupy more of theirs (Figs. 5, Extended Data Figure 8). For
247 *Bd*, this prediction is corroborated by earlier findings¹⁹. However, if appropriate host species are
248 present, *Bd* still has the potential to expand into high-elevation areas in North America, the
249 Andes Mountains in South America, parts of South Africa, Asia, Europe, southern parts of
250 Australia and the Sunda Islands in response to a changing climate (Extended Data Figure 2). *Bsal*

251 is predicted to spread more widely into high-altitude areas in temperate regions but remain
252 largely absent from tropical regions. The overall reduction of *Bsal* seen in the projections may be
253 explained by its apparently narrow and conservative, cool-adapted climatic requirements in the
254 context of global warming. In contrast, ranaviruses appear likely to expand their distribution
255 throughout the tropics and subtropics in regions such as North America, Europe, South Asia,
256 ESEA and northern parts of Australia. Similarly, apart from its current distribution, SPI may also
257 expand into Asia, Africa, the Panamanian isthmus, and some parts of Indonesia if given
258 opportunity to establish. Despite the seemingly complacent scenario regarding future expansion
259 of the global strain of *Bd* and ranaviruses, the situation remains precarious, especially in relation
260 to biodiversity hotspots and tropical montane regions. Furthermore, potential hosts that are
261 adapted to relatively cool conditions may be the most vulnerable to increases in mean
262 temperature⁴⁴. We therefore predict that Asian amphibians will soon be at greater risk due to
263 these diseases. Among the four pathogens, ranavirus, with its potential to exploit even non-
264 amphibian host species, will become widespread in temperate and tropical regions, while
265 infiltrating biodiversity hotspots. These pathogens thus pose an emerging, perhaps imminent
266 threat to amphibians throughout the world⁸.

267

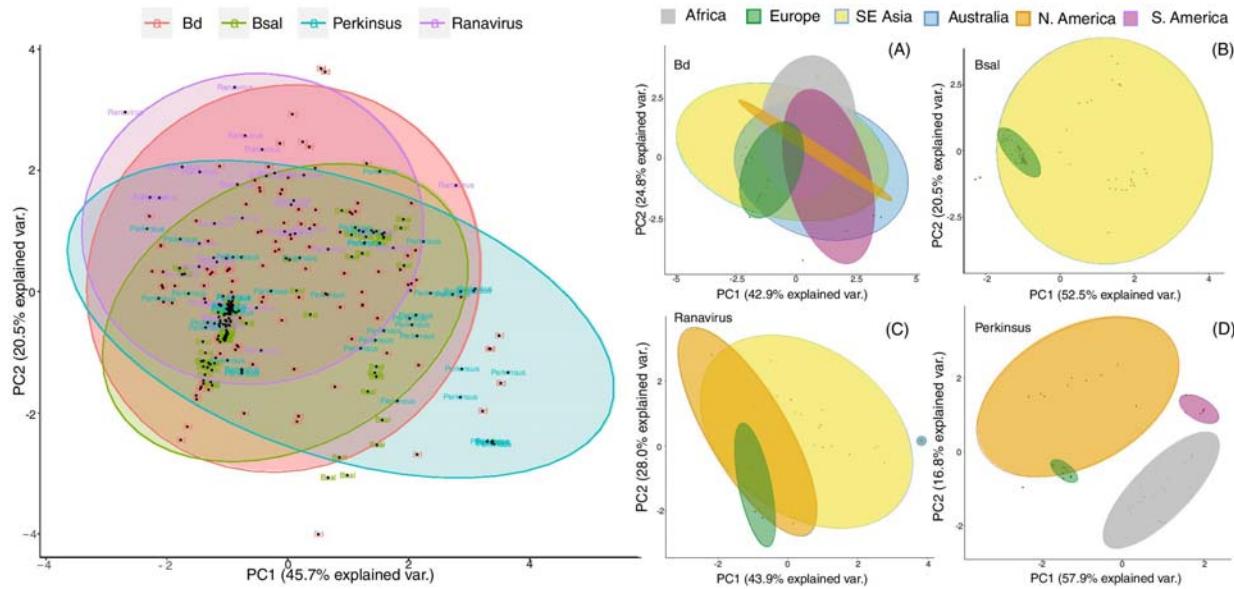
268 ***Potential global risks of amphibian diseases***

269 In the absence of adequate mitigating measures, these diseases are likely to further devastate
270 amphibian populations. The wide availability of additional regions that are suitable for the
271 establishment of these diseases and their presence in the commercial trade of amphibians⁴⁶ calls
272 for regulations that prevent, or at least inhibit, further anthropogenic spread. Biodiversity
273 hotspots and high-elevation areas with high amphibian diversity are especially vulnerable^{47,48}.

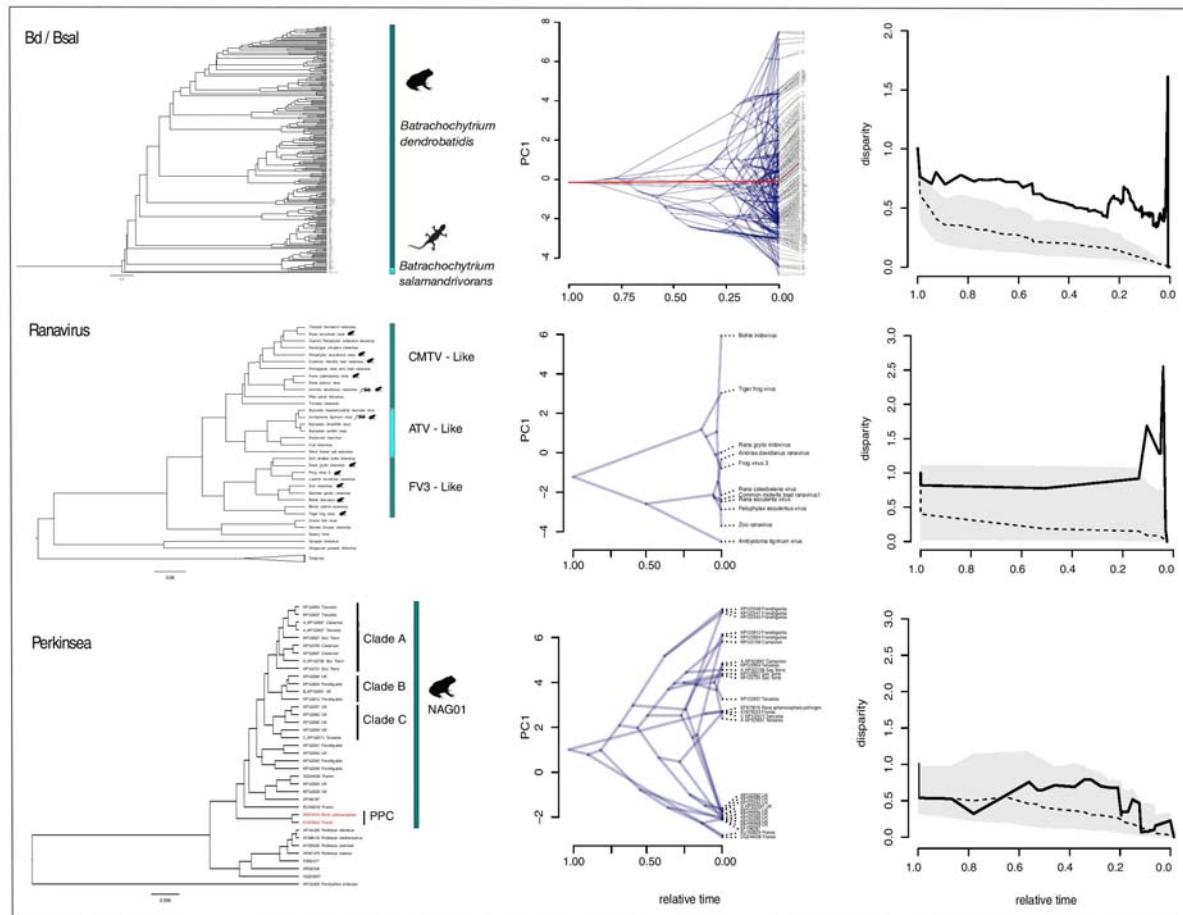

274 There is mounting evidence that species popular for frog aquaculture, such as the American
275 bullfrog (*Lithobates catesbeianus*) and the Pig frog (*L. grylio*) imported from North America to
276 Asia, may have acted as reservoir hosts for ranavirus strains⁴⁹. SPI outbreaks are causing mass
277 mortalities of tadpoles across the United States since the pathogen was first detected in 1999¹⁸
278 and are likely distributed throughout much of the Nearctic region¹⁸. Perkinsea SSU rDNA
279 sequences obtained from seemingly healthy wild tadpoles sampled in Panama and from captive-
280 bred *Hyla arborea* tadpoles from the United Kingdom are similar to Pathogenic Perkinsea Clade
281 sequences sampled from mortality events in the United States¹⁶. However, *Bd* and *Bsal* likely
282 originated in Asia^{5,7}. We predict that amphibians in many parts of the southern hemisphere are
283 vulnerable to all four diseases as they have never encountered the corresponding pathogens until
284 recently, if at all. Furthermore, introduction of pathogens from Asia to other regions may pose
285 serious threats to amphibians worldwide because they have the ability to persist under broader
286 climatic tolerance limits, especially if climatic niches evolve with time. Hybridization among
287 variants of a particular pathogen species can result in the emergence of lineages adapted to
288 warmer conditions as well as enhanced virulence. Variants already adapted towards warmer
289 climates require especially close monitoring.

290

291 While several mitigatory strategies have been developed (mostly in vitro; Supplementary Table
292 4), these are difficult to implement in the wild, which leaves prevention of dispersal as the most
293 potent form of mitigation available at present. At a global scale, climate change alone is likely
294 insufficient to instigate the spread of these amphibian pathogens into vulnerable but currently
295 unoccupied areas; human-aided spread remains critical. This provides both challenges and
296 opportunities to controlling disease spread, as biosecurity measures are easier to implement than
297 is ending climate change. Nevertheless, controlling disease spread remains a profound challenge,


298 where distances are not barriers for human-induced transmission, in the absence of strong and
299 enforceable biosecurity measures. Our results draw attention to the likely serious consequences
300 of introducing pathogens into novel regions, while the exacerbating effect of climate change in
301 promoting pathogen establishment and spread appear to outweigh any gains in terms of
302 controlling disease impacts. In situations where amphibians are transferred across national
303 borders for commercial purposes, International Import Risk Analysis (IRAs) should be used to
304 establish or revise trade or translocation guidelines for wildlife⁵⁰. Risk analysis on wildlife
305 species in trade, pre-border pathogen screening, and voluntary support could reduce the
306 substantial costs associated with invasive species as well as protect public, environmental and
307 animal health⁵². Unless adequate mitigation measures are taken, these diseases could ultimately
308 devastate already imperiled amphibian populations. Effective biosecurity measures, better
309 monitoring and policy innovations are crucial for reducing the otherwise inevitable destruction
310 that will result from their global spread.

311


312

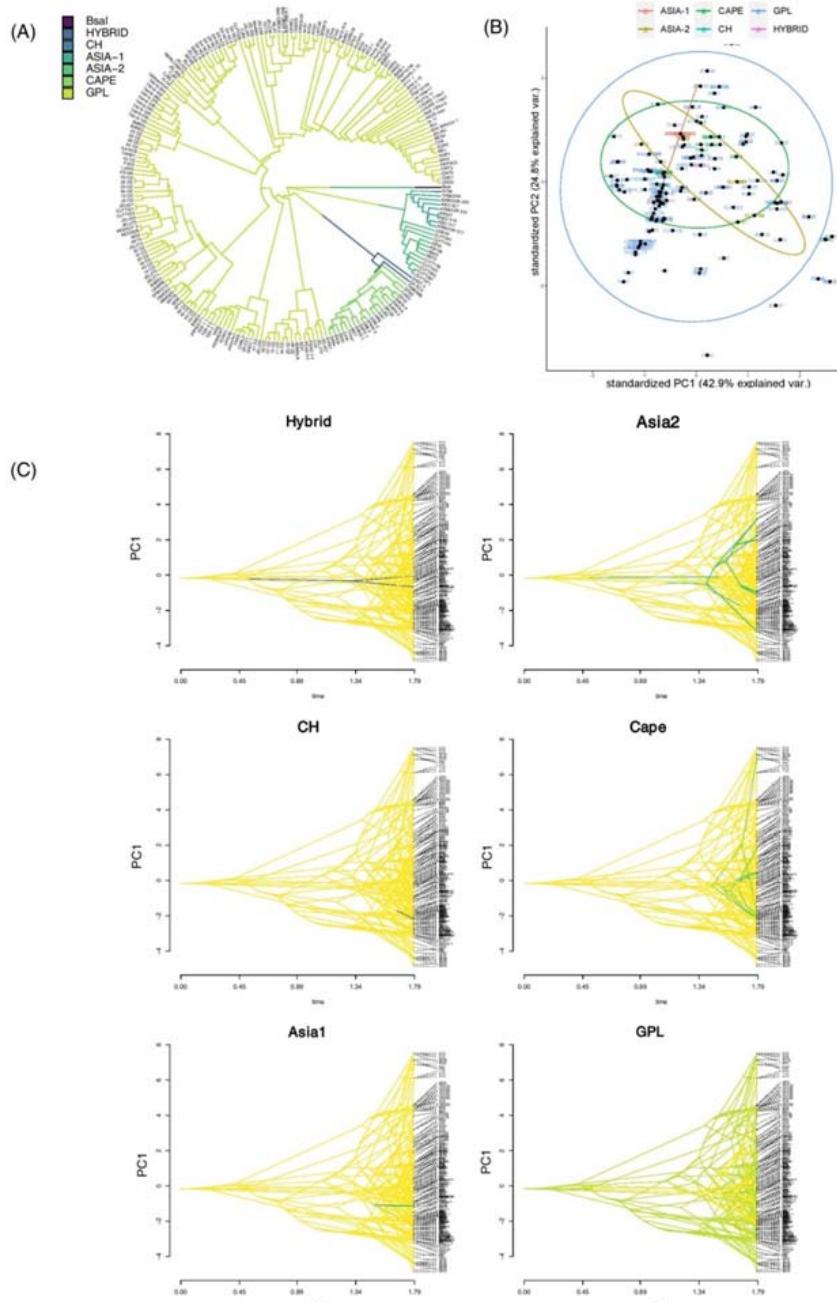
313 **Fig. 1. Potential geographic distributions of *Bd*, *Bsal*, ranaviruses and *Perkinsea*, and their**
314 **climatic niche spaces defined by the first three principal components.** Disease distribution
315 range polygons are based on > 0.5 Maxent probability distributions (see Extended Data Figure
316 1 for broadly congruent PPM results). Colored dots indicate up-to-date occurrence records of
317 these four amphibian diseases. Their potential distributions largely overlap, especially in Europe
318 and ESEA. *Bsal* (possibly due to a dearth of salamanders, a principal host taxon) has not been
319 reported in the southern hemisphere. Most occurrences are currently seen outside biodiversity
320 hotspots (shaded in grey). The 3D PCA plot indicates climatic niche space defined by the first
321 three principal component axes of climatic niches of these diseases. Each point represents the
322 average climatic conditions for each taxon/variant/strain. PCA loadings are provided in
323 Supplementary Table 2. The first three axes explain more than 75% of the variance in the data.
324 Temperature dependence of each disease is indicated by the PCA loadings, in which PC1
325 (45.7%) is represented mainly by 'Mean annual temperature of coldest quarter, Annual mean
326 temperature, Min temperature of coldest month'; PC2 (20.5%) by 'mean diurnal range'; and PC3
327 by 'Temperature seasonality and Precipitation of warmest quarter'. Climatic niches of the four
328 diseases overlap to a certain extent but segregate along PC2 and PC3 (Supplementary Table 3).
329 *Perkinsea* occupies the broadest climatic niche space, while *Bsal* occupies the narrowest.

330

331 **Fig. 2. 2D climatic niche spaces traced by the geographic distribution regions of *Bd*, *Bsal*,
332 ranaviruses and Perkinsea.** Ellipses outline 95% confidence intervals. There is a higher
333 prevalence of all four diseases under colder climatic conditions. Generally, *Bsal* and ranaviruses
334 seem to prevail under cold and subtropical climatic conditions, whereas *Bd* and Perkinsea are
335 more widely distributed from warm to cold climatic conditions. *Bsal* is represented by two
336 distinct climatic clusters that segregate along PC1 (main plot). This reflects the widely disjunct
337 distribution of the introduced European population vis-à-vis the native Asian population.
338 Geographic regions of each disease mapped on climatic space (Figs. 2A–D) identify these two
339 clusters as *Bsal* in Europe (colder climates) and *Bsal* in ESEA (tropical/subtropical climates).
340 The climatic niche space of *Bsal* in Europe is more conservative than that of *Bsal* in ESEA and is
341 found at the edge of the latter's niche space. *Bd* in North and South America has a restricted
342 climatic niche along PC1 but a broader occupation in ESEA and Australia. Ranaviruses in ESEA
343 are represented by broader climatic niches, whereas Perkinsea in different regions occupy non-
344 overlapping climatic niches, possibly due to inadequate detection of this emerging pathogen.
345

346

347 **Fig. 3. Molecular phylogenies (left), variation in the rate of evolution of the climatic niche**
348 **(middle) and relative disparity-through-time plots (right) of pathogens causing major**
349 **amphibian diseases (*Bd/Bs*, ranaviruses and Perkinsea) worldwide.** Phylogenies were
350 reconstructed using available genomic and Sanger sequence data and represent the most current
351 phylogenies of the variants/strains of the four main amphibian disease-causing agents (left
352 column). *Bd* and *Bs* phylogenies include 235 *Bd* variants and a single *Bs* variant, whereas the
353 ranavirus phylogeny includes 33 strains representing CMTV-like, ATV-like and FV3-like
354 ranaviruses. Eleven ranaviral strains known to infect amphibians are indicated by silhouettes of
355 frogs and salamanders. The Perkinsea phylogeny is represented by 29 NAG01 variants. The
356 variants highlighted in red indicate two representatives from the pathogenic Perkinsea clade
357 (PPC). Deviations from the ancestral climatic conditions of the major amphibian disease-causing
358 pathogens are explained by the first principal component axis (middle column). The X-axis
359 depicts relative age from the origin of the pathogen to the present; nodes indicate the inferred
360 climatic niches for the most recent common ancestor of the extant taxa defined by that node.
361 Among all pathogens, some variants/strains have evolved from their ancestral climatic conditions
362 towards a colder climate, while most others have evolved towards a warmer climate. *Bs* has not
363 deviated much from its original climatic condition, despite occupying new habitats in Europe. A

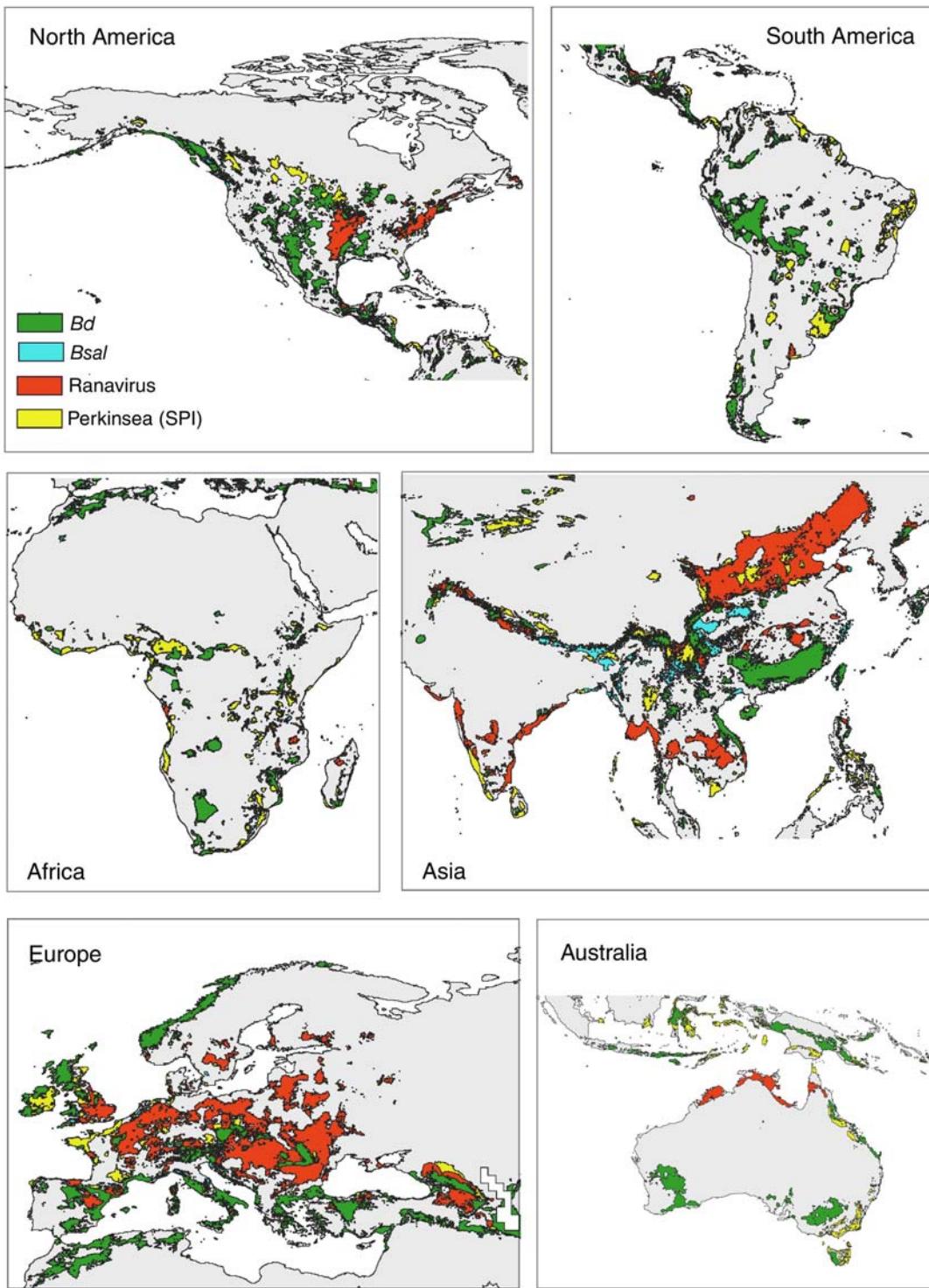

364 cold-adapted ancestral climatic state is recovered for ranaviruses; divergent branches are more
365 frequent near the present, suggesting recent climatic niche evolution. Perkinsea distributions
366 suggest a pattern of climatic niche evolution towards two temperature extremes along PC1, but
367 this may be an artifact of inadequate sampling. Relative disparity-through-time (DTT) plots of
368 PC1 scores depict change of rate of climatic niche evolution of the four major amphibian
369 disease-causing pathogens (right column). Solid lines indicate the observed DTT, whereas
370 dashed lines and corresponding polygons represent the averages and 95% confidence intervals of
371 the expectations given a constant accumulation of disparity over time based on 999 pseudo-
372 replicates. For *Bd*, closely related variants differ considerably in their climatic niches. A higher
373 rate of climatic niche evolution is observed in *Bd* throughout its evolutionary history; for
374 ranaviruses, the acceleration along PC1 seems rapid and recent. The disparity of climatic niche
375 evolution for SPI did not deviate much from a null model of constant accumulation of disparity
376 over time.

377

378

379

380


381

382 **Fig. 4. Climate correlates of different *Bd* lineages.** (A) Six main lineages of *Bd* (GPL, CAPE, 383 ASIA-1, ASIA-2, CH and HYBRID) and *Bsal* traced on the phylogeny. *Bsal*, ASIA-1, ASIA-2 384 CAPE are early diverging lineages and GPL is the most recently diverging lineage. (B) Climatic 385 niche occupation of the six main lineages of *Bd*. Circles represent 95% confidence intervals. 386 GPL exhibits the broadest niche occupation, followed by CAPE and Asia2. All other lineages are 387 found within the broad climatic niche space of GPL. Comparison among the lineages in (A) and 388 (B) suggests that GPL, the most recently evolved lineage, has evolved the broadest climatic 389 niche space. (C) The six main lineages of *Bd* traced on the traitgram showing climatic niche

390 evolution of *Bd* lineages. Yellow branches represent the background data whereas the green
391 branches represent the lineage being considered. GPL shows the greatest deviation from the
392 ancestral climatic niche. CAPE and Asia2 also show considerable deviation from the ancestral
393 climatic niche, whereas ASIA-1, CH and HYBRID have retained it.

394

395

Fig. 5. Predicted potential mean range expansion (in 2040) of *Bd*, *Bsal*, ranavirus and Perkinsea based on CMIP6 downscaled future climate projections. An expansion of climatic conditions suitable for *Bd* is evident throughout the subtropics and around the Mediterranean climatic region, while *Bsal* continues to expand specifically in high-altitude regions in Asia. Ranaviruses are evident throughout the tropics and subtropics. Perkinsea will expand into Asia,

402 to Africa, Europe, South America, the isthmus of Panama, North America and some parts of
403 Indonesia in another 20-30 years. See Extended Data Figure 8 for areas that are currently suitable
404 but likely to become less suitable under future climatic scenarios.

405

406 **Methods**

407

408 ***Phylogenies***

409 Initially, we collected all available data on different aspects of the four amphibian diseases of
410 interest and prepared a summary table of their prominent characteristics (Supplementary Table
411 1). This allowed us to identify all potential variants/strains and isolates of these diseases
412 described in literature. Extensive taxon sampling is important in phylogenetic systematics, as
413 it increases accuracy and support of evolutionary relationships⁵¹. Hence, we present updated
414 phylogenies of the taxa being considered. The available genetic data for different lineages is
415 uneven, from species with none to ones in which Sanger sequence data and whole genomes have
416 been reported. To derive phylogenies with complete taxon sampling that combine all available
417 data, we used a two-staged Bayesian approach named PASTIS⁵², which uses as inputs a
418 backbone topology based on molecular data, a set of taxonomic postulates (e.g., constraining
419 species to belong to their closest sister taxa, specific genera or families), and user-defined priors
420 on branch lengths and topologies. Based on these components, PASTIS produces input files for
421 MrBayes 3.2.5⁵³, which generates a posterior distribution of complete ultrametric trees that
422 capture uncertainty under a homogeneous birth-death prior model of diversification and
423 placement constraints. We used PASTIS version 0.1-2, with functions from the APE 5.4⁵⁴ and
424 CAPER 0.2⁵⁵ packages.

425

426 To infer the phylogenetic relationships among *Bd* variants, we used the previously published
427 phylogeny of⁵⁶ available at <https://microreact.org/project/GlobalBd> (last accessed on March
428 2021). Microreact provides an updated robust phylogeny constructed from genomic data. To
429 infer the phylogenetic relationship between *Bd* and *Bsal*, we used the PASTIS approach and used
430 the *Bd* phylogeny of⁵⁶ as the backbone tree. Next, we used the available genomic data for both
431 *Bd* and *Bsal* from GenBank (last accessed on March 2021) and compiled a data set comprised of
432 4660 base pairs (bp), which was aligned using MAFFT⁵⁷. The data were constrained based on
433 their sister taxa relationship and was run on MrBayes 3.2.5⁵³ under a homogeneous birth-death
434 prior model of diversification for 10 million generations. Convergence was assessed by
435 inspecting the log-output file in TRACER v.1.6⁵⁸ and by ensuring ESS values were above 200.
436 The first 10% of the trees were discarded, and the post burn-in trees were used to infer the
437 maximum clade credibility tree using TREEANNOTATOR v.1.10.4⁵⁹.

438

439 A similar method was adopted to infer the phylogenetic relationships among different ranaviral
440 strains. Initially, we retrieved 25 complete genomes of different ranaviral strains from GenBank
441 (last accessed on March 2021), which consisted of more than 100,000 bp. Downloaded
442 nucleotide sequences were aligned using MAFFT⁵⁷ in the Cipres Science Gateway Server⁶⁰. The
443 sequence alignment was analyzed in several tree building programs such as IQtree⁶¹, NDtree⁶²
444 and CSI phylogeny⁶³ by assigning TVMe+R2, the best-fitting nucleotide model. The same
445 topology was recovered regardless of the tree building method; we used the ultrametric tree
446 output from MAFFT as the backbone tree for subsequent analyses. To incorporate additional
447 taxa having only short sequence data into the backbone tree, we downloaded from Genbank
448 nucleotide sequence data for several loci available for all ranaviral taxa (MCP, DPG, RDRASPG
449 and RDRBS). The nucleotide sequences were aligned in MEGA X⁶⁴ and the concatenated file

450 was analyzed in BEAST v.1.4⁵⁸. This step was carried out especially to infer the sister-taxon
451 relationships among ranaviral strains and assign phylogenetic constraints to them, as we could
452 not recover these relationships from published literature. We could retrieve possible sister taxa
453 relationships of the strains that had only partial sequence data. Using these recovered
454 relationships as a guide, we constrained them as 'soft constraints' into specific clades and ran the
455 analysis in MrBayes 3.2.5⁵³ for 60 million generations under the PASTIS tree building
456 framework⁵². We pruned the resulting maximum clade-credibility tree by removing taxa that do
457 not cause diseases on amphibians and used the resulting tree in subsequent analyses.

458

459 To infer phylogenetic relationships among *Perkinsea*, we downloaded NAG01 sequences
460 deposited by³ and¹⁸ in GenBank (last accessed March 2021). Reference sequences for four
461 *Perkinsus* species (*P. atlanticus*, *P. mediterraneus*, *P. andrewsi* and *P. merinus*) and a reference
462 sequence for *Parvilucifera infectans* were also used to root the tree. After carefully curating the
463 sequences, an alignment of the sequence data with 641 bp was generated using MUSCLE in
464 MEGA X⁶⁴. Maximum likelihood and Bayesian methods were performed using RAxML-
465 HPC236 and BEAST v.1.4, respectively, through the CIPRES Science Gateway⁶⁰. For the
466 maximum likelihood analysis, a general time-reversible model with gamma distribution was used
467 and 1000 bootstrap iterations were performed. For the Bayesian analysis, a GTR+I model with
468 gamma distribution was used, and the number of generations was set to 5 million. Convergence
469 was assessed by inspecting the log-output file in TRACER v.1.6⁵⁸ and by ensuring ESS values
470 were above 200. The first 10% of the trees were discarded and the post burn-in trees were used
471 to infer the maximum clade credibility tree using TREEANNOTATOR v.1.10.4⁵⁹. However, we
472 used the ultrametric trees obtained from BEAST for further analyses.

473

474 The inferred phylogenies (Fig. 3 left column) were congruent with the latest available
475 phylogenies of these four diseases^{3,5,18,56,65}. Our *Bd/Bsal* phylogeny includes 235 *Bd* variants and
476 the single known strain of *Bsal*. The *Bd* variants have a wide geographic distribution, which
477 ranges from North America to South America, Europe, Africa, ESEA and Australia, thus
478 infecting frogs and toads worldwide. *Bsal* is distributed in Europe and ESEA and thus infects
479 salamanders in these regions. Seven species of *Ranavirus* have been described according to the
480 updated classification of the International Committee on Taxonomy of Viruses (ICTV):
481 *Ambystoma tigrinum* virus (ATV), *Common midwife toad virus* (CMTV), *Epizootic*
482 *haematopoietic necrosis virus* (EHNV), *European North Atlantic ranavirus* (LfRV), *Frog virus*
483 3 (FV3), *Santee-Cooper ranavirus* and *Singapore grouper iridovirus* (SGIV)⁶⁶. *Ranavirus*
484 isolates are considered members of the same viral species if they share > 95% amino acid
485 identity. However, *Ranavirus maximus*, *Cod iridovirus* and *Short-finned eel virus* are potential
486 new species that remain unclassified⁶⁶. Among these, 11 strains are known to infect amphibians
487 distributed in Canada, China, Japan, Australia, Netherlands, England, Spain, Germany, Italy,
488 Sweden, Slovakia, Poland and the Czech Republic. FV3, ATV, and BIV are recognized species
489 of ranavirus that are known to infect amphibians, though several additional ranaviral strains have
490 been isolated from amphibians⁸ FV3s are amphibian specialists, whereas ATVs are
491 predominantly fish specialists that switched once to caudate amphibians⁶⁷. The Perkinsea
492 phylogeny is represented by 29 NAG01 variants spanning Africa, French Guinea, the United
493 Kingdom, France and the Pathogenic Perkinsea clade (PPC) in the USA.

494

495 ***Climatic and distribution data***

496 We obtained from published literature present-day geographical occurrences in the form of GPS
497 coordinates for all taxa represented in our three phylogenies of amphibian diseases (*Bd/Bsal*,

498 *Ranavirus* and *Perkinsea*). *Bd* occurrence data were obtained directly from
499 <https://microreact.org/project/GlobalBd>⁵⁶. *Bsal* occurrence records were obtained
500 from^{7,30,40,43,68,69}. *Ranavirus* occurrence data were obtained from relevant literature. Occurrence
501 data for *Perkinsea* were obtained from^{3,18}. However, when GPS coordinates were not available
502 for certain taxa (especially ranaviruses and *Perkinsea*), we arbitrarily assigned a GPS location
503 based on the name of place (village/town/county/province) provided in published literature,
504 assuming that average climatic conditions are similar among nearby locations. Location data are
505 provided in Data S1. Our final data set included a total of 487 occurrence records of all four
506 diseases.

507

508 Information on 19 bioclimatic variables for each occurrence point was obtained from
509 WORLDCLIM 2.0⁷⁰ using the “extract” function in RASTER 3.0-7⁷¹. Mean values for each
510 bioclimatic variable for each taxon are provided in Data S1.

511

512 ***Climatic niche evolution***

513 Method 1: We used the average bioclimatic conditions in a principal components analysis (PCA)
514 based on their correlation matrix to illustrate climatic niche occupation of different diseases. The
515 axes to be retained for further analyses were determined using the broken-stick method as
516 implemented in VEGAN 2.5-6⁷². We assumed that the measured variant/strain means are a
517 reasonable approximation of the realized climatic niche of the variant/strain^{26,73}. However, given
518 the fact that only a single geo-coordinate exists for most *Bd* isolates (except for *Bsal* and a few
519 isolates of ranaviruses and *Perkinsea*), we caution that, there is a possibility of sampling artifacts
520 or localized acclimatization can influence the calculation of mean bioclimatic variables from this
521 data set. Therefore, we examined if calculated PC scores of each isolate/strain of each pathogen

522 fall within the range of observed variation for the grouping considered. We used geographical
523 regions as the common grouping variable for all four pathogens. Because most data points fall
524 within the range of observed variation, we regard them as valid and used them in further analyses
525 (Extended Data Figures 9-12). Outliers were not removed from the analyses, as they do not
526 affect the interpretation of our results.

527

528 We assessed the extent to which traits (climatic niche evolution along each PC axis) had
529 accumulated over time in each biogeographic region using disparity-through-time (DTT) plots⁷⁴,
530 with expected disparities calculated based on 1000 resamplings by using the ‘dtt’ function in
531 GEIGER 2.0.6.2⁷⁵ and with phenograms (projections of the phylogenetic tree in a space defined
532 by phenotype/PC axis and time) constructed by using the ‘phenogram’ function in PHYTOOLS.

533

534 Although we wanted to test if climate is non-randomly associated with isolates of each lineage
535 and their virulence, relevant data are available only for *Bd*. Therefore, we conducted this analysis
536 only for *Bd* by following the classification of lineages and virulence of⁵. We traced the six main
537 lineages of *Bd* (GPL, CAPE, ASIA-1, ASIA-2, CH and HYBRID) on the PCA plot as well as on
538 the traitgrams (Fig.4). We also traced virulence and non-virulence on the PCA plot and the
539 traitgram to see if phylogenetic signals associated with climate are visible in relation to virulence
540 (Extended Data Figure 7).

541

542 Method 2: We used the ‘package nichevol 0.1.19⁷⁶ in R 3.6.1 (<www.r-project.org>), an
543 alternative method to check for evidence of climatic niche evolution, on the 19 bioclimatic
544 variables for these diseases. This method enables critical steps for assessing ecological niche
545 evolution over phylogenies, with uncertainty incorporated explicitly in reconstructions. It relies

546 on ancestral reconstruction of ecological niches using a bin-based approach that incorporates
547 uncertainty in estimations. Compared to other existing methods, this approach reduces the risk of
548 overestimation of amounts and rates of ecological niche evolution⁷⁶. However, since the current
549 data set does not yield sufficient variance for occurrence records of most of the variants/isolates,
550 we categorized all occurrence points into their strain or a clade. We categorized chytridiomycosis
551 into its specific strains; Bd-GPL, CAPE, ASIA-1, ASIA-2 and Bsal (CH and HYBRID were
552 omitted as they contain very few occurrence records). Ranavirus occurrences were categorized as
553 ATV-like, CMTV-like and FV3-like, and Perkinsea occurrences were categorized into clades A,
554 B, C and Pathogenic Perkinsea Clade (PPC). The phylogenetic trees were also pruned and
555 renamed so that only the considered strains/clades were retained.

556

557 As spatial distribution polygons are not available for above strains or clades, we created spatial
558 distribution polygons as ‘.shp’ files. We used all occurrence records of a variant/clade and
559 predicted the potential geographical distribution of them using MaxEnt³²; see the “ecological
560 niche modeling” section below for more methodological details. This allowed us to define the
561 fundamental niches of these strains/clades and to detect areas that present suitable
562 conditions/accessible areas (termed **M**)⁷⁷, which in turn are the areas across which niche models
563 should be calibrated⁷⁸.

564

565 We developed tables of character values for all strains/clades considered for each environmental
566 dimension (19 bioclimatic variables), summarizing ranges of variable values occupied by each
567 strain/clade and manifested across each species' **M**. Variable values in **M** then were categorized
568 into multiple classes (bins) and, by using values in occurrences, the presence or absence of the
569 species in each bin was tested. Values of characters are 0 = absent, 1 = present, and ? = unknown

570 (uncertain). Ancestral reconstructions of ecological niches (represented by 19 bioclimatic
571 variables) were performed using both the MCC tree and 1000 posterior trees. Reconstructions
572 were performed using maximum parsimony and maximum likelihood methods (results were
573 more or less similar, but variation was higher in MP). Next, the variability of each bioclim
574 variable was plotted on separate MCC trees (Extended Data Figures 4-6). Overall, this method
575 allowed us to combine both NC (through MaxEnt based niche models) and CNE (through
576 ancestral reconstructions) to understand their combined effects.

577

578 *Spatial point pattern analysis and ecological niche modeling*

579 To assess the potential distribution of these four amphibian diseases, we mapped their climatic
580 niches based on environmental layers and their global occurrences obtained above. The model
581 was built using two methods (Extended Data Figure 1): the maximum entropy algorithm
582 MaxEnt³² in the R packages ‘dismo’⁷¹, and ‘ENMeval’⁷⁹ and spatial point process analysis
583 (PPM)³¹ in the R package ‘spatstat’⁸⁰. In the main text we only provide the results obtained from
584 MaxEnt (Fig. 1) as results from both methods were very similar. Results obtained using PPMs
585 are provided in supplementary material.

586

587 MaxEnt estimates the probability of species occurrence by finding the distribution of maximum
588 entropy, which is subject to constraints defined by the environmental variables being analyzed.

589 Nineteen bioclimatic layers were extracted from the WorldClim 2.1 database
590 (<http://www.worldclim.org>) for present-day conditions (~ 1970–2000) at a spatial resolution of
591 30 arc-seconds (~ 1 km). Predictor collinearity was eliminated by calculating Pearson’s
592 correlation coefficients for all pairs of bioclimatic variables, excluding the variables from a
593 correlated pair ($|r| > 0.85$). The MaxEnt model was optimized using the ENMeval package⁷⁹ and

594 the records were partitioned for background testing and training data to check for spatial
595 autocorrelation and over-fitting. Model performance was measured using the Area Under the
596 Curve (AUC) and the results were overlaid on raster maps.

597

598 Point process models (PPMs) are used to analyze species presence-only data in a regression
599 framework^{31,81}. Presence-only data typically arise as point events – a set of point locations where
600 a species has been observed. In the statistical literature, a set of point events (in which the
601 location and number of points is random) is known as a point process. However, PPMs are
602 closely connected to methods already in widespread use in ecology such as MAXENT⁸²⁻⁸⁴, some
603 implementations of logistic regression^{31,85} and estimation of resource selection functions^{82,86}.
604 Here we used both MaxEnt and PPMs because PPMs confer particular benefits for interpretation
605 and implementation.

606

607 PPMs are a natural choice of analysis method for presence-only SDM, especially when the data
608 arise as point events. Initially, we converted our raster covariates (19 bioclimatic variables at a
609 spatial resolution of 2.5 arcmin) into image objects using as.im.RasterLayer function from the
610 ‘maptools’ library. Next, our analysis window was set up and our point pattern object was
611 created to the extent of the world map. After accounting for edge effect, we explored for
612 evidence of spatial dependence using Ripley’s K and the more intuitive L function along with
613 envelope tests. According to the Kest, Lest and envelope tests, our data deviated from complete
614 spatial randomness. Therefore, an inhomogeneous point processes model was developed. We
615 used the quadscheme function from spatstat to create quadrature points. The resolution of these
616 points and the best-performing value for quadrature scheme was determined by setting the number
617 of grid points in the horizontal and vertical directions and by checking for lowest AIC values,

618 respectively. We experimented many combinations of predictor variables and tested their
619 suitability through comparison of the model AIC statistics. As our initial model results exhibited
620 spatial clustering, we used a Matern process to account for this. The model coefficients were
621 checked by calling `coef` (`maternMod`) to see the relationship between our predictor variables and
622 the predicted intensity of points. The AUC value, which is the probability that a randomly
623 selected data point has higher predicted intensity than does a randomly selected spatial location,
624 was calculated. The `roc` curve and `auc` statistic for our models were high, suggesting a well-
625 specified inhomogeneous point process model. Finally, a mapped output of our results was
626 generated using the `predict` function (Extended Data Figure 13).

627
628 For future projections, we used future climate change scenarios for the years 2021-2040 based on
629 the CMIP6 downscaled future climate projections available at
630 <https://www.worldclim.org/data/cmip6/cmip6climate.html>. We used nine global climate models
631 (GCMs)—BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-
632 CM6A-LR, MIROC-ES2L, MIROC6 and MRI-ESM2-0—and four Shared Socio-economic
633 Pathways (SSPs)—126, 245, 370 and 585—to make future projections using MaxEnt. Mean
634 model values obtained were overlaid on raster maps to assess the future potential distribution of
635 the four amphibian diseases. Finally, we measured the differences among present and future
636 rasters for each disease using raster calculations in package ‘raster’⁸⁷ in R v. 3.6.1⁸⁸.

637
638 **Data and materials availability:** The authors declare that data supporting the findings of this
639 study are available within the file Data S1. All codes used in support of this publication and the
640 additional data are publicly available in specific R packages and public data repositories as
641 indicated in the text.

642

643 **Acknowledgments:** We thank Tingru Mao for assistance with the data analysis; Guangxi
644 University Laboratory Startup Funding (MM), Ziff Environmental Postdoctoral Fellowship,
645 Harvard University Center for the Environment (MM), National Research Council Sri Lanka 11-
646 124 (MM) and China Student Council Fellowship for graduate studies (GE, JH1) for providing
647 financial assistance and the Wildlife Heritage Trust of Sri Lanka (RP).

648

649 **Author contributions:**

650 GE, JH1, SD and MM conceptualized the study. GE, JH1, SD, MRP, KAM, MM designed
651 methodology. RP, JH2, MM acquisitioned funding. All authors contributed in writing the
652 original draft, review and editing. MM supervised the study.

653

654 **Competing interests:** Authors declare that they have no competing interests.

655

656 **References**

- 657 1. Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population
658 declines in the rain forests of Australia and Central America. *Proc. Natl. Acad. Sci. U.S.A.*
659 **95**, 9031-9036 (1998).
- 660 2. Daszak, P. et al. Emerging infectious diseases and amphibian population declines. *Emerg.*
661 *Infect. Dis.* **5**, 735-748 (1999).
- 662 3. Chambouvet, A. et al. Cryptic infection of a broad taxonomic and geographic diversity of
663 tadpoles by Perkinsea protists. *Proc. Natl. Acad. Sci. U.S.A.* **112**, E4743-E4751 (2015).
- 664 4. North, A. C., Hodgson, D. J., Price, S. J. & Griffiths, A. G. F. Anthropogenic and ecological
665 drivers of amphibian disease (ranavirosis). *PLOS ONE* **10**, e0127037 (2015).

666 5. O'Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian
667 declines.
668 *Science* **360**, 621-627 (2018).
669 6. Scheele, B. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of
670 biodiversity. *Science* **363**, 1459-1463 (2019).
671 7. Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic
672 salamanders. *Science* **346**, 630-631 (2014).
673 8. Duffus, A. L. J. et al. "Distribution and host range of ranaviruses" in *Ranaviruses: Lethal*
674 *pathogens of ectothermic vertebrates*, Gray M. J. & Chinchar, V. G. Eds. (Springer, 2015),
675 chap. 2. pp. 9-57.
676 9. Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. *Nat. Rev.*
677 *Microbiol.* **18**, 332-343 (2020).
678 10. Olson, D. H., Ronnenberg, K. L., Glidden, C. K., Christiansen, K. R. & Blaustein, A. R.
679 Global patterns of the fungal pathogen *Batrachochytrium dendrobatidis* support
680 conservation Urgency. *Front. Vet. Sci.* **8**, 2021.685877 (2021).
681 11. AmphibiaWeb, University of California, Berkeley, CA, USA. Accessed 11 Mar 2022;
682 <https://amphibiaweb.org> (2022).
683 12. World Organisation for Animal Health (OIE), "Aquatic Code Online Access";
684 [https://www.oie.int/en/what-wedo/standards/codes-and-manuals/aquatic-code-online-](https://www.oie.int/en/what-wedo/standards/codes-and-manuals/aquatic-code-online-access/?id=169&L=1&htmfile=chapitre_diseases_listed.htm)
685 access/?id=169&L=1&htmfile=chapitre_diseases_listed.htm (2022).
686 13. Longcore, J. E., Pessier, A. P. & Nichols, D. K. *Batrachochytrium dendrobatidis* gen. et sp.
687 nov., a chytrid pathogenic to amphibians. *Mycologia* **91**, 219-227 (1999).
688 14. Martel, A. et al. *Batrachochytrium salamandrivorans* sp. nov. causes lethal chytridiomycosis
689 in amphibians. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 15325-15329 (2013).

690 15. Granoff, A., Came, P. E. & Rafferty, K. A. The isolation and properties of viruses from
691 *Rana pipiens*: Their possible relationship to the renal adenocarcinoma of the leopard frog.
692 *Ann. N.Y. Acad. Sci.* **126**, 237-255 (1965).

693 16. Smilansky, V. et al. Expanded host and geographic range of tadpole associations with the
694 Severe Perkinsea Infection group. *Biol. Lett.* **17**, 20210166 (2021).

695 17. Green, D. E., Feldman, S. H. & Wimsatt, J. Emergence of a *Perkinsus*-like agent in anuran
696 liver during die-offs of local populations: PCR detection and phylogenetic characterization.
697 *Proc. Am. Assoc. Zoo. Vet.* **2003**, 120–121 (2003).

698 18. Isidoro-Ayza, M. et al. Pathogenic lineage of Perkinsea associated with mass mortality of
699 frogs across the United States. *Sci. Rep.* **7**, 10288 (2017).

700 19. Rödder, D., Kielgast, J. & Lötters, S. Future potential distribution of the emerging
701 amphibian chytrid fungus under anthropogenic climate change. *Dis. Aquat. Organ.* **92**, 201-
702 U118 (2010).

703 20. Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread
704 amphibian declines putatively caused by disease. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 8269-
705 8274 (2010).

706 21. Murray, K. A. et al. Assessing spatial patterns of disease risk to biodiversity: Implications
707 for the management of the amphibian pathogen, *Batrachochytrium dendrobatidis*. *J. Appl.*
708 *Ecol.* **48**, 163-173 (2011).

709 22. Murray K. A. & Skerratt, L. F. Predicting wild hosts for amphibian chytridiomycosis:
710 Integrating host life-history traits with pathogen environmental requirements. *Hum. Ecol.*
711 *Risk. Assess.* **18**, 200-224 (2012).

712 23. Olson, D. H. et al. Mapping the global emergence of *Batrachochytrium dendrobatidis*, the
713 amphibian chytrid fungus. *PLOS ONE* **8**, 56802 (2013).

714 24. Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by
715 global warming. *Nature* **439**, 161-167 (2006).

716 25. Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation
717 biology. *Ecol. Lett.* **13**, 1310-1324 (2010).

718 26. Pie, M. R., Campos, L. L. F., Meyer, A. L. S. & Duran, A. The evolution of climatic niches
719 in squamate reptiles. *Proc. Biol. Sci.* **284**, 20170268 (2017).

720 27. Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the
721 distribution of vertebrate diversity. *Nat. Ecol. Evol.* **2**, 459-464 (2018).

722 28. Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the
723 origin of species. *Evolution* **58**, 193-197 (2004).

724 29. Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the
725 emerging amphibian fungal pathogen, *Batrachochytrium dendrobatidis*, based on IPCC
726 climate futures. *PLOS ONE* **11**, e0160746 (2016).

727 30. Beukema, W. et al. Environmental context and differences between native and invasive
728 observed niches of *Batrachochytrium salamandrivorans* affect invasion risk assessments in
729 the Western Palaearctic. *Divers. Distrib.* **24**, 1788-1801 (2018).

730 31. Warton, D. I. & Shepherd, L. C. Poisson point process models solve the “pseudo-absence
731 problem” for presence-only data in ecology. *Ann. Appl. Stat.* **4**, 1383-1402 (2010).

732 32. Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions
733 and a comprehensive evaluation. *Ecography* **31**, 161-175 (2008).

734 33. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. *Science*
735 **335**, 1344-1348 (2012).

736 34. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J.
737 Biodiversity hotspots for conservation priorities. *Nature* **403**, 853-858 (2000).

738 35. Green, D. E., Converse, K. A. & Schrader, A. K. Epizootiology of sixty-four amphibian
739 morbidity and mortality events in the USA, 1996-2001. *Ann. N.Y. Acad. Sci.* **969**, 323-339
740 (2002).

741 36. Berger, L. et al. Effect of season and temperature on mortality in amphibians due to
742 chytridiomycosis. *Aust. Vet. J.* **82**, 434-439 (2004).

743 37. Hanselmann, R. et al. Presence of an emerging pathogen of amphibians in introduced
744 bullfrogs *Rana catesbeiana* in Venezuela. *Biol. Conserv.* **120**, 115-119 (2004).

745 38. Crawford, A. J., Lips, K. R. & Bermingham, E. Epidemic disease decimates
746 amphibian abundance, species diversity, and evolutionary history in the highlands of central
747 Panama. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 13777-13782 (2010).

748 39. Kriger, K. M. & Hero, J. M. The chytrid fungus *Batrachochytrium dendrobatidis* is non-
749 randomly distributed across amphibian breeding habitats. *Divers. Distrib.* **13**, 781-788
750 (2007).

751 40. Spitzen-van der Sluijs, A. et al. Expanding distribution of lethal amphibian fungus
752 *Batrachochytrium salamandrivorans* in Europe. *Emerg. Infect. Dis.* **22**, 1286-1288 (2016).

753 41. Stegen, G. et al. Drivers of salamander extirpation mediated by *Batrachochytrium*
754 *salamandrivorans*. *Nature* **544**, 353-356 (2017).

755 42. Kelly, M. et al. Diversity, multifaceted evolution, and facultative saprotrophism in the
756 European *Batrachochytrium salamandrivorans* epidemic. *Nat. Commun* **12**, 6688 (2021).

757 43. Yuan, Z. Y. et al. Widespread occurrence of an emerging fungal pathogen in heavily traded
758 Chinese urodelan species. *Conserv. Lett.* **11**, 12436 (2018).

759 44. Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an
760 emerging infectious disease. *Ecol. Lett.* **20**, 184-193 (2017).

761 45. Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction

762 between climate change and infectious disease drove widespread amphibian declines.

763 *Global.*

764 *Change Biol.* **25**, 927-937 (2018).

765 46. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population

766 declines. *Divers. Distrib.* **9**, 141-150 (2003).

767 47. James, T. Y. et al. Disentangling host, pathogen, and environmental determinants of a

768 recently emerged wildlife disease: lessons from the first 15 years of amphibian

769 chytridiomycosis research. *Ecol. Evol.* **5**, 4079-4097 (2015).

770 48. Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North

771 American biodiversity crisis. *Science* **349**, 481-482 (2015).

772 49. Herath, J., Ellepola, G. & Meegaskumbura, M. Patterns of infection, origins, and

773 transmission of ranaviruses among the ectothermic vertebrates of Asia. *Ecol. Evol.* **11**,

774 15498-15519 (2021).

775 50. Smith, K. F. et al. Reducing the risks of the wildlife trade. *Science* **324**, 594-595 (2009).

776

777 **References for Methods and Extended data**

778

779 51. Zwickl, D. J. & Hillis, D. M. Increased taxon sampling greatly reduces phylogenetic error.

780 *Syst. Biol.* **51**, 588-598 (2002).

781 52. Thomas, J. A., Trueman, J. W. H., Rambaut, A. & Welch, J. J. Relaxed phylogenetics and

782 the palaeoptera problem: Resolving deep ancestral splits in the insect phylogeny. *Syst. Biol.*

783 **62**, 285-297 (2013).

784 53. Ronquist, F. et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice

785 across a large model space. *Syst. Biol.* **61**, 539-542 (2012).

786 54. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R
787 language. *Bioinformatics* **20**, 289-290 (2004).

788 55. Orme, D. et al. Caper: Comparative analyses of phylogenetics and evolution in R. *Methods*
789 *Ecol. Evol.* **3**, 145-151 (2012).

790 56. Argimon, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and
791 phylogeography. *Microb Genomics* **2** 000093 (2016).

792 57. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple
793 sequence alignment based on fast Fourier transform. *Nucleic. Acids. Res.* **30**, 3059-3066
794 (2002).

795 58. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with
796 BEAUti and the BEAST 1.7. *Mol. Biol. Evol.* **29**, 1969-1973 (2012).

797 59. Rambaut, A. & Drummond, A. J. TreeAnnotator v1.10.4: MCMC output analysis. (2013).

798 60. Miller, M. A. et al. A restful API for access to phylogenetic tools via the CIPRES science
799 gateway. *Evol. Bioinform.* **11**, 43-48 (2015).

800 61. Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online
801 phylogenetic tool for maximum likelihood analysis. *Nucleic. Acids. Res.* **44**, W232-W235
802 (2016).

803 62. Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing,surveillance,
804 and outbreak detection of *verotoxigenic escherichia coli*. *J. Clin. Microbiol.* **52**, 1501-1510
805 (2014).

806 63. Kaas, R. S., Leekitcharoenphon, P., Aarestrup, F. M. & Lund, O. Solving the problem of
807 comparing whole bacterial genomes across different sequencing platforms. *PLOS ONE* **9**,
808 e104984 (2014).

809 64. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary

genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547-1549 (2018).

65. Jancovich, J. K., Steckler, N. K. & Waltzek, T. B. "Ranavirus taxonomy and phylogeny" in
811 *Ranaviruses: Lethal pathogens of ectothermic vertebrates*, Gray, M. J. Chinchar, V. G. Eds.
812 (Springer, 2015), chap. 3. pp. 59-70.

813

66. International Committee on Taxonomy of Viruses (2021). ICTV virus taxonomy profile:
814 "Iridoviridae, Genus Ranavirus"https://talk.ictvonline.org/ictvreports/ictv_online_report/
815 dsdnaviruses/w/iridoviridae/616/genus-ranavirus (Accessed on 10. 10. 2021).

816

67. Price S. J. et al. From fish to frogs and beyond: Impact and host range of emergent
817 ranaviruses. *Virology* **511**, 272-279 (2017).

818

68. Laking, A. E., Ngo, H. N., Pasmans, F., Martel, A. & Nguyen, T. T. *Batrachochytrium*
819 *salamandivorans* is the predominant chytrid fungus in Vietnamese salamanders. *Sci. Rep.* **7**,
820 44443 (2017).

821

69. Lötters, S. et al. The amphibian pathogen *Batrachochytrium salamandivorans* in the
822 hotspot of its European invasive range: past - present - future. *Salamandra* **56**, 173-188
823 (2020).

824

70. Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for
825 global land areas. *Int. J. Climatol.* **37**, 4302-4315 (2017).

826

71. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Dismo: Species distribution modeling.
827 R package version 1.0-12. <http://CRAN.R-project.org/package=dismo> (2015).

828

72. Oksanen, J. et al. Vegan: Community Ecology Package. R package Version 2.4-3.
829 <https://CRAN.R-project.org/package=vegan> (2017).

830

73. Wiens, J. J., Parra-Olea, G., Garcia-Paris, M. & Wake, D. B. Phylogenetic history underlies
831 elevational biodiversity patterns in tropical salamanders. *Proc. Biol. Sci.* **274**, 919-928
832 (2007).

833

834 74. Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary
835 radiation in iguanian lizards. *Science* **301**, 961-964 (2003).

836 75. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. Geiger: Investigating
837 evolutionary radiations. *Bioinformatics* **24**, 129-131 (2008).

838 76. Cobos, M. E., Owens, H. L. & Peterson, A. T. Nichevol: Tools for ecological niche
839 evolution assessment considering uncertainty. R package version 0.1.19. <https://CRAN.R>
840 project.org/package=nichevol (2020).

841 77. Soberón, J. A. T. Peterson, Interpretation of models of fundamental ecological niches and
842 species' distributional areas. *Biodivers. Inform.* **2**, 1–10 (2005).

843 78. Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and
844 species distribution modeling. *Ecol. Model.* **222**, 1810–1819 (2011).

845 79. Muscarella, R. et al. ENMeval: An R package for conducting spatially independent
846 evaluations and estimating optimal model complexity for Maxent ecological niche models.
847 *Methods Ecol. Evol.* **5**, 1198-1205 (2014).

848 80. Baddeley, A., Rubak, E. & Turner, R. Spatial point patterns: Methodology and applications
849 with R. Chapman and Hall/CRC Press. (2015).

850 81. Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M. & Silander, J. A. Point
851 pattern modelling for degraded presence-only data over large regions. *J. R. Stat. Soc., C:*
852 *Appl. Stat.* **60**, 757-776 (2011).

853 82. Aarts, G., Fieberg, J. & Matthiopoulos, J. Comparative interpretation of count, presence-
854 absence and point methods for species distribution models. *Methods Ecol. Evol.* **3**, 177-187
855 (2012).

856 83. Fithian, W. & Hastie, T. Finite-sample equivalence in statistical models for presence-only
857 data. *Ann. Appl. Stat.* **7**, 1917-1939 (2013).

858 84. Renner, I. W. & Warton, D. I. Equivalence of Maxent and poisson point process models for
859 species distribution modeling in ecology. *Biometrics* **69**, 274-281 (2013).

860 85. Baddeley, A. et al. Spatial logistic regression and change-of-support in poisson point
861 processes. *Electron. J. Stat.* **4**, 1151-1201(2010).

862 86. McDonald, T. L. The point process use-availability or presence-only likelihood and
863 comments on analysis. *J. Anim. Ecol.* **82**, 1174-1182 (2013).

864 87. Hijmans, R. J. & van Etten, J. Raster: Geographic analysis and modeling with raster data. R
865 package version 2.0-12 (2012).

866 88. R Core Team. R: A language and environment for statistical computing. Foundation for
867 statistical computing, Vienna, Austria. URL <https://www.R-project.org/> (2019).

868 89. Byrne, A. Q. et al. Cryptic diversity of a widespread global pathogen reveals expanded
869 threats to amphibian conservation. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 20382-20387 (2019).

870 90. Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of *Batrachochytrium*
871 *dendrobatidis* and amphibian chytridiomycosis in space, time, and host. *Annu. Rev.*
872 *Microbiol.* **63**, 291-310 (2009).

873 91. Cunningham, A. A. et al. Emerging disease in UK amphibians. *Vet. Rec.* **176**, 468-468
874 (2015).

875 92. Sabino-Pinto, J. et al. First detection of the emerging fungal pathogen *Batrachochytrium*
876 *salamandrivorans* in Germany. *Amphib-reptil.* **36**, 411-416 (2015).

877 93. Fitzpatrick, L. D., Pasmans, F., Martel, A. & Cunningham, A. A. Epidemiological tracing of
878 *Batrachochytrium salamandrivorans* identifies widespread infection and associated
879 mortalities in private amphibian collections. *Sci. Rep.* **8**, 13845 (2018).

880 94. Sabino-Pinto, J., Veith, M., Vences, M. & Steinfartz, S. Asymptomatic infection of the
881 fungal pathogen *Batrachochytrium salamandrivorans* in captivity. *Sci. Rep.* **8**, 11767 (2018).

882 95. González, D. L. et al. Recent findings of potentially lethal salamander fungus
883 *Batrachochytrium salamandrivorans*. *Emerg. Infect. Dis.* **25**, 1416-1418 (2019).

884 96. Isidoro-Ayza, M., Lorch, J., M. Ballmann, & A. E. Businga, N. K. Mass mortality of green
885 frog (*Rana clamitans*) tadpoles in Wisconsin, USA, associated with severe infection with the
886 pathogenic *Perkinsea* clade. *J. Wildl. Dis* **55**, 000–000 (2019).

887 97. Carter, E. D. et al. Conservation risk of *Batrachochytrium salamandrivorans* to endemic
888 lungless salamanders. *Conserv. Lett.* **13**, e12675 (2020).

889 98. Schmeller, D. S., Utzel, R., Pasmans, F. & Martel, A. *Batrachochytrium salamandrivorans*
890 kills alpine newts (*Ichthyosaura alpestris*) in southernmost Germany. *Salamandra* **56**, 230-
891 232 (2020).

892 99. Karwacki, E. E., Martin, K. R. & Savage, A. E. One hundred years of infection with three
893 global pathogens in frog populations of Florida, USA. *Biol. Conserv.* **257**, 109088 (2021).

894 100. Urgiles, V. L., Ramírez, E. R., Villalta, C. I., Siddons, D. C. & Savage, A. E. Three
895 pathogens impact terrestrial frogs from a high-elevation tropical hotspot. *Ecohealth* **18**, 451-
896 464 (2021).

897 101. Davis, A. K., Yabsley, M. J., Keel, M. K. & Maerz, J. C. Discovery of a novel alveolate
898 pathogen affecting southern leopard frogs in Georgia: Description of the disease and host
899 effects. *Ecohealth* **4**, 310-317 (2007).

900 102. Kilpatrick, A. M., Briggs, C. J. & Daszak, P. The ecology and impact of chytridiomycosis:
901 An emerging disease of amphibians. *Trends Ecol. Evol.* **25**, 109-118 (2010).

902 103. Waddle, J. H. et al. *Batrachochytrium salamandrivorans* (*Bsal*) not detected in an intensive
903 survey of wild North American amphibians. *Sci. Rep.* **10**, 13012 (2020).

904 104. Piotrowski, J. S., Annis, S. L. & Longcore, J. E. Physiology of *Batrachochytrium*
905 *dendrobatisidis*, a chytrid pathogen of amphibians. *Mycologia* **96**, 9-15 (2004).

906 105. Knapp, R. A., Briggs, C. J., Smith, T. C. & Maurer, J. R. Nowhere to hide: Impact of a
907 temperature-sensitive amphibian pathogen along an elevation gradient in the temperate
908 zone. *Ecosphere* **2**, 11-00028.00021 (2011).

909 106. Tarrant, J., Cilliers, D., du Preez, L. H. & Weldon, C. Spatial assessment of amphibian
910 chytrid fungus (*Batrachochytrium dendrobatidis*) in South Africa confirms endemic and
911 widespread infection. *PLOS ONE* **8**, 69591 (2013).

912 107. Vredenburg, V. T., Knapp, R. A., Tunstall, T. S. & Briggs, C. J. Dynamics of an emerging
913 disease drive large-scale amphibian population extinctions. *Proc. Natl. Acad. Sci. U.S.A.*
914 **107**, 9689-9694 (2010).

915 108. Nguyen, T. T., Nguyen, T. V., Ziegler, T., Pasman, F. & Martel, A. Trade in wild anurans
916 vectors the urodelan pathogen *Batrachochytrium salamandrivorans* into Europe. *Amphib
917 reptil.* **38**, 554-556 (2017).

918 109. Woodhams, D. C. et al. Mitigating amphibian disease: Strategies to maintain wild
919 populations and control chytridiomycosis. *Front. Zool.* **8**, 1-24 (2011).

920 110. Thomas, V. et al. Mitigating *Batrachochytrium salamandrivorans* in Europe. *Amphib-reptil.*
921 **40**, 265-290 (2019).

922 111. Martel, A. et al. Developing a safe antifungal treatment protocol to eliminate
923 *Batrachochytrium dendrobatidis* from amphibians. *Med. Mycol.* **49**, 143-149 (2011).

924 112. Stockwell, M. P., Clulow, J. & Mahony, M. J. Sodium chloride inhibits the growth and
925 infective capacity of the amphibian chytrid fungus and increases host survival rates. *PLOS
926 ONE* **7**, 0036942 (2012).

927 113. Antwis, R. E. & Harrison, X. A. Probiotic consortia are not uniformly effective against
928 different amphibian chytrid pathogen isolates. *Mol. Ecol.* **27**, 577-589 (2018).

929 114. Harrison, X. A., Sewell, T., Fisher, M. & Antwis, R. E. Designing probiotic therapies with
930 broad-spectrum activity against a wildlife pathogen. *Front. Microbiol.* **10**, 3134 (2020).

931 115. Kosch, T. A. et al. Genetic potential for disease resistance in critically endangered
932 amphibians decimated by chytridiomycosis. *Anim. Conserv.* **22**, 238-250 (2018).

933 116. Chen, Z. Y., Li, T., Gao, X. C., Wang, C. F. & Zhang, Q. Y. Protective immunity induced
934 by DNA vaccination against ranavirus infection in Chinese giant salamander *Andrias*
935 *davidianus*. *Viruses* **10**, 10020052 (2018).

936 117. Yu, N. T., Zheng, X. B. & Liu, Z. X. Protective immunity induced by DNA vaccine
937 encoding viral membrane protein against SGIV infection in grouper. *Fish Shellfish
938 Immunol.* **92**, 649-654 (2019).

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954