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Abstract

Multiplexed immunofluorescence imaging enables high-dimensional molecular profiling at
subcellular resolution. However, learning disease-relevant cellular environments from these rich
imaging data is an open challenge. We developed SPAtial CEllular Graphical Modeling
(SPACE-GM), a geometric deep learning framework that flexibly models tumor
microenvironments (TMEs) as cellular graphs. We applied SPACE-GM to 658 head-and-neck
and colorectal human cancer samples assayed with 40-plex immunofluorescence imaging to
identify spatial motifs associated with cancer recurrence and patient survival after
immunotherapy. SPACE-GM is substantially more accurate in predicting patient outcomes than
previous approaches for modeling spatial data using neighborhood cell-type compositions.
Computational interpretation of the disease-relevant microenvironments identified by
SPACE-GM generates insights into the effect of spatial dispersion of tumor cells and
granulocytes on patient prognosis.

Introduction

Tumor microenvironments (TMEs) are complex niches characterized by cellular, molecular, and
genetic heterogeneity. Current research and clinical practice have begun to reflect this
complexity, with studies atlasing diseased cells in an unbiased fashion'? and novel therapies
increasingly targeted to non-cancer cells, including immune and stromal compartments®. Just as
the functions of healthy tissues depend on the spatial organization of cells, tumor pathology may
depend on the spatial organization of the TME*.
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In situ molecular profiling techniques, including spatial transcriptomic®” and proteomic?®"°
techniques, increasingly enable high-dimensional, high-resolution characterization of TMEs and
other tissues. Co-detection by indexing® (CODEX) is an in situ molecular profiling technique
based on iterative hybridization and fluorescence imaging of DNA-barcoded antibodies,
enabling multiplexed quantification of 40 or more antigens from histological specimens at
subcellular resolution.

While these new spatial technologies capture rich cellular and neighborhood information,
analysis of the spatial data presents new challenges. In particular, how to identify biologically
meaningful microenvironments from the rich spatial data and how to characterize the disease
relevance of microenvironments are important open questions.

Previous works typically assign cells to cellular neighborhoods according to the cell-type
compositions of their immediate neighbors®'-'*. However, these approaches may miss local
spatial relationships between cells. Moreover, since the neighborhoods are generated in a
purely unsupervised fashion, they have limited insight on which microenvironments are
disease-relevant. We hypothesize that local spatial arrangements of cells beyond composition
could encode rich disease-relevant information.

Here, we present SPAtial CEllular Graphical Modeling (SPACE-GM), a geometric deep learning
framework that employs a graph neural network (GNN) to flexibly model cellular niche
structures, or microenvironments, as subgraphs. Each node of the subgraph corresponds to a
cell represented by its multiplexed protein levels and the edges capture neighbor relations. We
apply SPACE-GM to three clinically annotated CODEX datasets and show that it identifies
disease-relevant microenvironments that accurately predict patient-level phenotypes. We show
that SPACE-GM generalizes across studies and disease contexts. Moreover, by analyzing the
network embeddings, we derive specific insights on how local structural dispersion explains
patient prognosis and treatment response.

There has been increased interest in applying graph-based deep learning methods to spatial
cellular structures in recent literature'-'6. Graph neural networks'”'® (GNNs), a class of deep
learning methods designed for graph structures, have been applied to a variety of analysis
tasks, including cell type prediction'®, representation learning?, cellular communication
modeling?' and tissue structure detection®?. As most of these methods are designed for cellular
property modeling, there still exists a gap between cellular-level graph analysis and patient-level
phenotypes. SPACE-GM bridges this gap by training models using microenvironments as inputs
to predict patient phenotypes. Interpretation of SPACE-GM sheds light on how cellular spatial
arrangements impact disease and treatment outcomes.
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Figure 1 Geometric deep learning on multiplexed immunofluorescence imaging. (A) Pre-processing of CODEX
data: we first transform the multiplexed fluorescence imaging data into Voronoi diagrams. Then we construct spatial
cellular graphs from the Voronoi polygons, where each node is one cell and edges indicate adjacent cells. (B) Model
structure of SPACE-GM: on the query node (marked by arrow and circle), a 3-layer GIN is applied to read the
structure of its 3-hop neighborhood, which we call a microenvironment. Embeddings from the GIN are then used to
predict cellular and phenotypic properties. (C) Dimensionality reduction (UMAP) of microenvironment embeddings
from SPACE-GM. The left panel is colored by model prediction on the microenvironment, the right panel is colored by
the center cell type. (D) Predictions on microenvironments are aggregated over the whole CODEX sample.

Results

Geometric deep learning models cellular microenvironments

To model cellular communities, we first develop a pipeline to segment and classify individual
cells from CODEX data (Methods). We then infer the 2D spatial structure of cells by constructing
a Delauney triangulation and Voronoi diagram of cell centroid coordinates (Fig. 1A, middle
panel). Lastly, we transform the data into a graph, defining cells as nodes and Delauney
neighbors as edges (Fig. 1A, right panel).

With the graphical representation as input, we propose SPAtial CEllular Graphical Modeling
(SPACE-GM), a geometric deep learning tool that reads spatial cellular community structures in
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TMEs. SPACE-GM employs a graph isomorphism network (GIN)? as the backbone and multiple
multilayer perceptrons (MLP) as prediction heads (Methods).

SPACE-GM treats cellular graphs of TMEs as collections of local subgraphs: center nodes
(cells) and their n-hop spatial neighbors (i.e., nodes within a graph distance of n edges from the
center node). Empirically, we find that 3-hop neighborhoods—corresponding to 40 cells on
average—is a suitable choice where the size of microenvironments and model performance is
balanced (Supplementary Notes and Supplementary Fig. 4). We hereafter refer to these 3-hop
local subgraphs as “microenvironments” (Fig. 1B). Correspondingly, a 3-layer GIN is employed
in SPACE-GM, which constructs embeddings for center cells and microenvironments based on
node features (e.g., one-hot encoded cell types) and edges (graph connectivity). Embeddings
can then be passed through the prediction heads to generate estimates for cellular properties
(e.g., center cell expression profile) and patient-level phenotypic properties (e.g., survival
outcome of the patient).

In practice, we first pre-train SPACE-GM on cellular property prediction tasks, then finetune the
backbone for patient phenotype predictions, both with microenvironment inputs (Fig. 1B, bottom
row). In the text below, “SPACE-GM” and “SPACE-GM no-pretraining” represent models trained
with or without the pre-training stage. During inference, we collect predictions from all individual
microenvironments from test samples and perform mean-aggregation to derive patient-level
predictions (Methods and Supplementary Notes).

Applying SPACE-GM to head and neck cancer and colorectal cancer

To demonstrate the ability of SPACE-GM to model biologically and clinically relevant signals, we
generated three 40-plex CODEX datasets from primary human cancer biopsies. Tissues were
collected at Stanford University, University of Pittsburgh Medical Center (UPMC) and Dana
Farber Cancer Institute (DFCI). In total, 658 samples were imaged, representing 139 head and
neck cancer®* (HNC) patients and 110 colorectal cancer?®® (CRC) patients (Fig. 2A). We refer to
these datasets as UPMC-HNC, Stanford-CRC, and DFCI-HNC. Samples were annotated with
clinical data, including patient survival, disease recurrence, and response to therapy
(Supplementary Table 1).

CODEX samples were transformed into graphical representations following the pipeline
described above. We extracted microenvironments by enumerating subgraphs of 3-hop
neighbors within a distance threshold of 75 ym around each cell. The median microenvironment
contains 38 cells, larger than previously proposed cellular neighborhoods®'? (Fig. 2C).
SPACE-GM is trained following the pre-training and/or finetuning approach, in which protein
expression of the center cell is used as the pre-training task, and clinical annotations are used
as phenotype prediction labels.
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Figure 2 CODEX sample and cell characteristics. (A) Distributions of the number of cells per sample and overall
survival curves. (B) Cell type compositions of UPMC-HNC and Stanford-CRC datasets. See Supplementary Fig. 1 for
composition of DFCI-HNC dataset. (C) Size of n-hop neighborhoods (n=1, 2, 3) in UPMC-HNC. SPACE-GM utilizes a
3-layer GIN to read 3-hop neighborhoods (microenvironment). Dashed line indicates the neighborhood size (10 cells)
commonly used in previous works'2. SPACE-GM captures substantially larger neighborhoods.

SPACE-GM predicts patient phenotypes from cell microenvironments
We apply SPACE-GM to predict survival and recurrence outcomes for UPMC-HNC (Table 1)

and Stanford-CRC (Table 2) patients. For each prediction task, SPACE-GM is trained with
around 70% of the samples and tested on the remaining unseen samples from different
coverslips (Methods). SPACE-GM achieves good performance on both datasets, with area
under the curve (ROC-AUC) above 0.85 on all binary classification tasks and concordance
index (C-index) around 0.8 on the survival analysis task in UPMC-HNC. Stanford-CRC shows
slightly worse performance, likely due to having fewer samples and cells.

For context, we compare SPACE-GM'’s clinical prediction performances against alternative
composition-based methods, applied on either whole samples or subgraphs. As input to these
baseline models, we use whole graphs or the same subgraphs of 3-hop neighborhoods
(microenvironment), but featurized as cell-type composition vectors (Methods). Compared with
graph representations, composition vectors collapse spatial structure, losing information about
the relative spatial arrangement of cells within a subgraph. Both a linear model (logistic
regression or proportional hazards regression) and a multilayer perceptron are trained and
evaluated following the same pipeline (Methods).
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Table 1 Prediction performance on UPMC-HNC and DFCI-HNC tasks. Binary classification and hazards columns
report average performances on the validation folds of UPMC-HNC. The generalization column reports the
cross-study (UPMC-HNC to DFCI-HNC) prediction performance.

Binary Classification (ROC-AUC)

Hazards Model

Generalization

(C-index) (ROC-AUC)
Model
OPl:It?;rLye Recurrence Inftle Et\i/on Survival Length Primary Outcome’

Linear on composition (sample) 0.783 0.852 0.870 0.696 0.731
MLP on composition (sample) 0.771 0.869 0.879 0.721 0.754
Linear on composition 0.774 0.823 0.864 0.700 0.799
(microenvironment)
MLP on composition
(microenvironment) 0.814 0.832 0.891 0.751 0.806
SPACE-GM
no-prefraining 0.854 0.882 0.918 0.778 0.853
SPACE-GM 0.867 0.883 0.926 0.799 0.873

"Models trained with UPMC-HNC primary outcome tasks are applied to DFCI-HNC samples, predictions are
evaluated for the binary primary tumor response task.

Table 2 Prediction performances on Stanford-CRC tasks. All columns report average performances on the

validation folds of Stanford-CRC.

Binary Classification (ROC-AUC)

Hazards Model (C-index)

Model
Primary Outcome Recurrence Survival Length Recurrence Interval
Linear on composition (sample) 0.563 0.592 0.524 0.537
MLP on composition (sample) 0.551 0.542 0.577 0.570
e oot " 0.576 0.599 0.562 0.569
mioreemrormeng 0.547 0.491 0.525 0.519
e oretaining 0.684 0.675 0.642 0.669
SPACE-GM 0.739 0.696 0.655 0.713

SPACE-GM consistently outperforms baseline methods on both classification and hazards
modeling (time-to-event) tasks (Table 1 and Supplementary Table 2). Uncertainty of the


https://doi.org/10.1101/2022.05.12.491707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.12.491707; this version posted May 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

performance metrics is calculated by bootstrapping (Supplementary Table 3 and Supplementary
Notes), which demonstrates consistent advantages from SPACE-GM. Model pre-training
confers an additional advantage on all prediction tasks. On the most challenging dataset
Stanford-CRC, where composition-based methods generate nearly random predictions,
SPACE-GM demonstrates a robust test set performance (Table 2).
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Figure 3 Model predictions on primary outcome and survival length in HNC. (A) Receiver operating
characteristic (ROC) curves of different methods on a representative task: primary outcome prediction in the
UPMC-HNC dataset. SPACE-GM outperforms all other methods by a comfortable margin. One of the two validation
folds is shown here, results are representative of the other fold. (B) Distribution of microenvironment prediction values
on the test set from SPACE-GM. The majority of the predictions are neutral, with a small portion of positive/negative
predictions. (C) Survival curves of patients in the test set grouped by SPACE-GM predicted risk. Two groups are
separated by the median predicted risk. Survival probability of the low-risk group is significantly higher than the
high-risk group (P < .001, log-rank test). (D) Predictions on the DFCI-HNC dataset from the primary outcome model
trained with UPMC-HNC samples. SPACE-GM predicts significantly higher scores (P < .001, two-sample t-test) for
the high response group (red box and white box) than for the low response group (blue box).

On a representative task - primary outcome of the UPMC-HNC dataset - we plot receiver
operating characteristic (ROC) curves for one of the test folds and observe a substantial
advantage for SPACE-GM predictions over baseline methods (Fig. 3A). It is also worth noting
that MLP based on microenvironment compositions outperforms the same model using whole
graph compositions, which is also reflected in most of the other prediction tasks.

The observation above indicates that the superiority of geometric deep learning stems in part
from our microenvironment-aggregation strategy. Fig. 3B plots the histogram of individual
microenvironment predictions before aggregation. In addition to the difference in distributions of
prediction values between positive and negative samples, we also notice that the majority of
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predictions, regardless of label, are neutral. This suggests that most spatial cellular structures
are shared among different patients, while only a small fraction of motifs are highly indicative of
patient outcomes. Identifying and characterizing these disease-relevant microenvironments will
be highly informative for better diagnostics and therapeutics.

Fig. 3C plots the survival curves of two patient cohorts in the test data, separated by median
predicted risk from SPACE-GM (trained under the survival length task). We observe a significant
difference (P < .001, log-rank test) in survival probability between the low-risk group and the
high-risk group. The survival curves stratitifed by SPACE-GM risk scores show greater
separation than curves stratified using cell-type composition risk scores (Supplementary Fig. 3),
suggesting that SPACE-GM captures more granular spatial motifs predictive of patient mortality.

Cross-study generalizability of SPACE-GM

We next seek to evaluate the generalizability of SPACE-GM across datasets. The DFCI-HNC
contains CODEX samples collected both before and after neoadjuvant therapy in 29 patients.
Though patient survival outcomes in this cohort are not available, samples are annotated based
on the degree of pathologic tumor response (PTR) in surgically resected tumors after
neoadjuvant anti-PD1 therapy?®, which serves as a proxy for primary outcome in this
experiment.

In the experiment, we train models on primary outcome labels from the UPMC-HNC dataset with
integrated cell types (Supplementary Notes) and directly apply them to pre-therapy DFCI-HNC
samples to predict therapeutic response. Despite potential batch effects resulting from tissue
handling, biopsy size (Fig. 2A), and independently-generated cell labels (Methods), we find that
SPACE-GM generates robust estimations, with accuracy surpassing all baseline
composition-based models (Table 1).

To examine this result in greater detail, we group SPACE-GM predictions by
pathologist-annotated PTR categories (Fig. 3D) and find that, strikingly, model predictions align
well with fine-grained PTR categories. A two-sample t-test suggests that there is significant
differences in predictions between <10% and >10% responder samples (P < .001, two-sample
t-test). These results demonstrate the robustness and generalizability of SPACE-GM.

Defining disease-relevant cell microenvironments with SPACE-GM

Motivated by the superior performance of SPACE-GM over composition-based baselines
methods, we further investigate how characteristics of cellular community structures beyond
composition are predictive of clinical outcomes. The prediction accuracy of SPACE-GM
suggests that its embedding space, which learns to present each microenvironment by a
numerical vector, is informative of the phenotypes of interest. Visualization with UMAP shows
that patient phenotypes are well-separated in the embedding space (Fig. 1C and
Supplementary Fig. 6).
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We use the primary outcome task from UPMC-HNC as an example to demonstrate how to
interpret SPACE-GM embeddings to generate biological hypotheses related to patient
outcomes. We first cluster all the microenvironments based on SPACE-GM embeddings
(Methods). Clusters show distinct cell type enrichment patterns and prediction values (Fig. 4A).
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Figure 4 Clustering of SPACE-GM embeddings identifies disease-relevant microenvironments. (A) 20 clusters
are identified by fitting a K-means clustering (K=20) on microenvironment embeddings. Clusters have different
enrichment for cell types and SPACE-GM predictions. (B) (top row) On four representative clusters, we count the
appearance of corresponding microenvironments in test samples, which show significant differences between NED
and non-NED samples. (middle row) Voronoi diagrams and (bottom row) raw CODEX images of sample
microenvironments from these clusters are illustrated.

Four clusters of interest are displayed in Fig. 4B, all of which show significant differences in
frequency between positive (no evidence of disease, NED) and negative (non-NED) patient
samples, indicating that they possess informative cellular motifs (Fig. 4B, P = .002 for
lymphocyte-rich microenvironments, P < .001 for the rest, two-sample t-test).

Voronoi diagrams and raw multiplexed fluorescence images are visualized for example
microenvironments in each cluster (Fig. 4B middle and bottom row). We name the clusters
based on their cell type compositions and spatial cellular structure patterns: a lymphocyte-rich
cluster, indicating high immune activity (circle symbol); a mixed lymphocyte/tumor cell cluster
(triangle); a heterogeneous tumor cluster characterized by various subtypes of tumor cells
(square); and a tumor cell and myeloid cell (granulocytes and macrophages) cluster
characterized by dispersed spatial distributions (star). The circle and triangle clusters appear
more in positive outcome samples and are thus associated with better prognosis. In contrast,
the square and star clusters are more enriched in negative outcome patients.
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In silico permutations suggest disease-relevant spatial motifs in
microenvironments

Clusters of disease-relevant microenvironments indicated correlations between
microenvironment structures and clinical phenotypes, in which we are especially interested in
structural characteristics beyond composition. For example, the formation of distinctly-shaped
boundaries between immune and tumor cells could indicate distinct pathways and programs
related to tumor progress or immune control.

To directly test how structural arrangements impact microenvironment function, we
computationally permute nodes in microenvironments and measure SPACE-GM outcome
predictions on the permuted graphs. Our permutations are designed to vary the amount of
dispersion allowed in the final graph. Thus, a “dispersed permutation” in our scheme rearranges
all cells amongst each other, resulting in highly mixed graphs. A “coherent permutation" extracts
target cell types, and places them into sectors around the center cell, resulting in cells of the
same type appearing together (Methods). In this section, we pick two representative clusters
discovered above and evaluate how permutations towards the two extremes of dispersion levels
affect model predictions.

In the heterogeneous tumor cluster, we observe a group of microenvironments enriched in
different tumor subtypes being highly indicative of non-NED outcomes. We compare its
appearance in all samples against each of the individual tumor subtypes and stromal cells (Fig.
5A). Interestingly, no individual tumor subtype is differentially enriched between positive and
negative samples.

To test whether the arrangement of tumor subtypes confers the prediction bias on these
samples, we select regional patches (Methods) and perform the permutations described above.
Fig. 5B illustrates an example patch (middle column) and the two permuted versions (left and
right columns) that mix/separate Tumor 4 and Tumor 5 (Ki67+). No major change is observed
after dispersed permutation as the original patch is highly mixed. In contrast, when subject to
coherent permutation, mean-aggregated prediction increases. Moreover, we observe that the
boundaries of different tumor subtypes (yellow and green boxes) overlap with the negative
prediction regions, suggesting that the mixing of these tumor subtypes explains the negative
prediction in this example.

We support this result on a diverse set of 50 heterogeneous tumor regional patches (Fig. 5C
and Methods): SPACE-GM predictions on coherent permuted patches are significantly higher (P
= .02, Wilcoxon signed-rank test). This trend could be even extended to the whole-sample level.
On all of the 83 samples from the test set, we run coherent permutations and evaluate changes
in predictions (Fig. 5D). Among the 29 samples that are predicted to have negative outcomes,
45% of them have predictions altered after coherent permutation, compared with 0% after
dispersed permutation. These results suggest that the spatial mixing of tumor subtypes is a
negative predictor of patient outcomes captured by SPACE-GM.
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Fig. 5 Permutation of nodes in microenvironments helps identify cell-cell interaction affecting predictions.
(A) Swarm plots show counts per sample of heterogeneous tumor microenvironments and each individual tumor
subtype. Note that even though no specific tumor subtype shows a strong correlation with phenotype, heterogeneous
tumor microenvironments display a significant difference between NED and non-NED samples (P < .001, two-sample
t-test). (B) Example heterogeneous tumor patch (middle column) and its two permuted versions (left and right
column) are displayed as Voronoi diagrams. Note that in the coherent permuted patch, areas of negative prediction
values (blue) overlap with tumor subtype boundaries. (C) Scatter plot of predictions on 50 heterogeneous tumor
patches. Coherent permuted patches have significantly higher predictions than their original patches (P = .02,
Wilcoxon signed-rank test). (D) Confusion matrices of predicted classes between original samples and permuted
samples. 45% of the samples originally classified as non-NED are predicted as NED after coherent permutation. (E)
Swarm plots of two granulocyte and tumor rich microenvironments: distributions in NED and non-NED samples show
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opposite trends. (F) Cell type compositions of the two granulocyte-tumor microenvironments are similar. (G) A
heuristic measure: count of non-granulocyte neighbors of granulocytes divided by count of granulocytes, is calculated
for the two microenvironment groups, distributions show significant differences (P < .001, two-sample t-test). (H)
Example microenvironments from the two groups undergoing permutation are displayed as Voronoi diagrams.
Distributions (Kernel Density Estimate) of SPACE-GM predictions on selected microenvironments and their permuted
versions are plotted in the right column, note the shift of distributions due to permutations.

We next evaluate the spatial organization of two SPACE-GM embedding clusters, termed
dispersed and coherent granulocyte-tumor microenvironments, with similar cell-type
compositions (Fig. 5F) but opposite outcome enrichment (Fig. 5E). Visualization of examples
from the two clusters (Fig. 5H, left column) suggests that the difference could potentially be
attributed to the dispersion of granulocytes, and we verified this by calculating the number of
non-granulocyte neighbors for 10,000 granulocytes from these two clusters (Fig. 5G). The
distribution shows a significant right shift (P < .001, two-sample t-test) for dispersed
granulocyte/tumor cluster samples, indicating that granulocytes are indeed more dispersed in
this cluster.

To further characterize the relations between the dispersion of granulocytes and predictions, we
perform the two types of permutations (Methods) on corresponding microenvironments to
reverse the spatial organization patterns of granulocytes (Fig. 5H, middle column and
Supplementary Fig. 6). Strikingly, coherent permutation of granulocytes in dispersed clusters
results in improved predicted prognoses. Conversely, dispersed permutation of coherent
granulocyte clusters results in microenvironments with poorer prognoses (Fig. 5H, right column).

Discussion

In this work, we present SPACE-GM, a graph neural network model that predicts clinical
properties of patient tumor samples with multiplexed immunofluorescence inputs. We evaluate
prediction performances on three independently collected patient cohorts and demonstrate the
predictive superiority of SPACE-GM over composition-based methods, suggesting that spatial
cellular arrangements beyond composition could encode phenotype-related information. We
further conduct dimensionality reduction and clustering on the microenvironment embeddings
from SPACE-GM to identify discrete groups of disease-relevant microenvironments.
Permutation on two example clusters unveils the relations between spatial dispersion of certain
cell types and patient outcomes.

More specifically, SPACE-GM learns that the dispersion of molecularly distinct tumor subtypes
could have a negative impact on patient survival outcomes. Of note, similar correlations
between cell type mixing (or tumor subtype mixing) and poorer outcomes have been observed
in recent literature®”?%, In another experiment, we verified that the dispersion level of
granulocytes within the TME is relevant to SPACE-GM predictions of primary outcomes.
Interestingly, similar trends have been reported in both head and neck cancer®**° and other solid
cancers®', in which multiple molecular pathways explaining how neutrophils promote tumor
growth3?3® and metastasis®** are presented.
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Results discussed in this work demonstrate the value of modeling patient phenotypes with
graph-based microenvironment inputs, from which connections between cellular community
structures and patient-level phenotypes can be established and validated. However, we
acknowledge that certain caveats still exist in our framework: Inference and analysis of unseen
data are still complicated due to the limitations of cell segmentation and classification
approaches. The lack of a unified image-cell type dictionary hinders the generalization of trained
models on new datasets or unseen cell types. Comprehensive results from human cell consortia
efforts®®*” as well as computational methods that accommodate unseen cell types'® could
potentially be incorporated to overcome these limitations.

Additionally, dense per-cell predictions by SPACE-GM are mean-aggregated to maximize
prediction performance in this work, based on the benchmarking results of basic aggregation
methods. As illustrated in Fig. 1D and Fig. 3B, highly disease-relevant microenvironments are
usually less prevalent, the spatial distribution of which in a sample could potentially contain
information about tissue architecture at different spatial scales. We foresee that more
sophisticated techniques (e.g., hierarchical aggregation on different spatial scales) could be
employed at this step, revealing insights into the interplay between tissue-level architectures
and patient-level phenotypic properties.

SPACE-GM is a versatile framework to capture disease-relevant motifs from
microenvironments. We applied SPACE-GM to analyze CODEX data in this work. The
framework of using local graphs to characterize disease-relevant spatial motifs can be extended
to other measurement modalities such as spatial transcriptomics, and this is an interesting
direction of future work. Disease-relevant microenvironment embeddings and dense predictions
of target phenotypes could be further coupled with downstream analysis (e.g., permutation) to
reveal relationships between cellular community structure and patient-level phenotypes.


https://paperpile.com/c/mNsnj7/xexv+HTjU
https://paperpile.com/c/mNsnj7/rClP
https://doi.org/10.1101/2022.05.12.491707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.12.491707; this version posted May 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

CODEX Data Collection

All samples are prepared, stained, and acquired following CODEX User Manual Rev C
(https://lwww.akoyabio.com).

Coverslip preparation: Coverslips are coated with 0.1% poly-L-lysine solution to enhance
adherence of tissue sections prior to mounting. The prepared coverslips are washed and stored
according to the guidelines in the CODEX User Manual.

Tissue sectioning: formaldehyde-fixed paraffin-embedded (FFPE) samples are sectioned at a
thickness of 3-5 ym on the poly-L-lysine coated glass coverslips.

Antibody conjugation: Custom conjugated antibodies are prepared using the CODEX
Conjugation Kit, which include the following steps: (1) the antibody is partially reduced to
expose thiol ends of the antibody heavy chains; (2) the reduced antibody is conjugated with a
CODEX barcode; (3) the conjugated antibody is purified; (4) Antibody Storage Solution is added
for antibody stabilization for long term storage. Post-conjugated antibodies are validated by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and quality control (QC) tissue testing,
where immunofluorescence images are stained and acquired following standard CODEX
protocols, then evaluated by immunologists.

Staining: CODEX multiplexed immunofluorescence imaging was performed on FFPE patient
biopsies using the Akoya Biosciences PhenoCycler platform (also known as CODEX). 5 ym
thick sections were mounted onto poly-L-lysine-treated glass coverslips as tumor microarrays.
Samples were pre-treated by heating on a 55 °C hot plate for 25 minutes and cooled for 5
minutes. Each coverslip was hydrated using an ethanol series: two washes in HistoChoice
Clearing Agent, two in 100% ethanol, one wash each in 90%, 70%, 50%, and 30% ethanol
solutions, and two washes in deionized water (ddH20). Next, antigen retrieval was performed
by immersing coverslips in Tris-EDTA pH 9.0 and incubating in a pressure cooker for 20 minutes
on the High setting, followed by 7 minutes to cool. Coverslips were washed twice for two
minutes each in ddH20, then washed in Hydration Buffer (Akoya Biosciences) twice for two
minutes each. Next, coverslips were equilibrated in Staining Buffer (Akoya Biosciences) for 30
minutes. The conjugated antibody cocktail solution in Staining Buffer was added to coverslips in
a humidity chamber and incubated for 3 hours at room temperature or 16 hours at 4 °C. After
incubation, the sample coverslips are washed and fixed following the CODEX User Manual.

Data acquisition: Sample coverslips are mounted on a microscope stage. Images are acquired
using a Keyence microscope that is configured to the PhenoCycler Instrument at a 20X
objective. All of the sample collections were approved by institutional review boards.


https://doi.org/10.1101/2022.05.12.491707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.12.491707; this version posted May 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cell segmentation and classification

After image preprocessing, we applied a neural network-based cell segmentation tool
DeepCell®® on DAPI image channels to identify nuclei, and these nuclear masks were dilated to
obtain whole-cell segmented cells. Nuclear segmentation masks were stochastically dilated by
flipping pixels with a probability equal to the fraction of positive neighboring pixels. This dilation
was repeated for 9 cycles for all CODEX data.

On each CODEX sample, given the segmentation of individual cells, single cell expression was
computed for biomarker j with the following steps™®:

e Compute the mean expression value across pixels within the cell segmentation mask.
)]

i

Denote the mean expression value of cell i as x

values {xij), xg), ..} as x?.

, and denote the array of all expression

e Normalize the expression value using quantile normalization and arcsinh transformation:
f (xl, ) = arcsmh(m)
in which Q(0. 2; X(’)) represents the 20-th quantile of x? and arcsinh is the inverse
hyperbolic sine function. Denote the array of all normalized expression

U, F6)), as fx)
e Calculate z-score of normalized expression value:
£GP - MEAN(F(x ™))
B spFx )

2(x")

To classify cells, we first obtained a cell-by-marker expression matrix filled with preprocessed

expression values (z(xfj))), then a Principal Component Analysis (PCA) model was applied to

extract the top 20 Principal Components (PCs). We constructed a k-nearest-neighbor graph
(KNN, k = 30) on the top 20 PCs of the expression matrix, then performed Louvain graph
clustering*® on the result. Clusters were manually annotated according to their cell biomarker
expression patterns. This procedure was performed on a subset of 10,000 cells and
subsequently used to train a KNN algorithm to predict cell type from the normalized expression
vector. This algorithm was used to transfer labels to the entire dataset. The average expression
of each cell type for all the three datasets used in this work is visualized in Supplementary Fig.
2.

Construction of spatial cellular graphs and microenvironments

For each multiplexed fluorescence image, we identified individual cells by the segmentation and
classification pipeline stated above. The set of cells will be represented by a set of discrete
points located at cellular centroids. 2D coordinates of these cellular centroids were determined
by the segmentation masks of the corresponding cell nuclei.
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To capture the spatial neighborhood relations, we run a Delauney triangulation operation on all
the cellular centroids. Corresponding Voronoi diagrams can be uniquely determined by
connecting the centers of the circumcircles. We employed the function

voronoi regions from coords from package geovoronoi®! in this step.

The graphical representation of multiplexed fluorescence images can then be determined by
defining cellular centroids as nodes and neighboring Voronoi polygons (or edges in the
Delauney triangulation) as edges. We further defined two types of edges based on the distance
between cellular centroids: edges shorter than 20 ym are treated as neighboring edges; edges
longer than 20 ym are treated as distant edges. Edge types will be considered in the following
neural network forward pass.

Microenvironment represents the local environment around a cell in the entire cellular
community. Given the graphical representation derived above, we defined the microenvironment
of a query cell as its n-hop neighborhood. Here the n-hop neighborhood includes all cells within
a graph distance of n edges from the query cell. In this work, we applied n=3 in all datasets and
added another constraint of physical distance: microenvironment of a query cell includes all
cells that are in its 3-hop neighborhood and less than 75 ym away from the query cell.

Data split and evaluation metrics

We evaluated SPACE-GM and other baseline methods on the UPMC-HNC and Stanford-CRC
datasets. Samples were first split into training set and test set following the procedure below:

UPMC-HNC (Table 1, coverslip split)
e UPMC-HNC contains 308 samples collected from 7 batches/coverslips, class balance of
clinical annotations are calculated for each coverslip.
e \We proposed two validation folds:
o Fold 1
m 225 samples in the training set, 64% have positive primary outcomes;
m 83 samples in the test set, 65% have positive primary outcomes;
o Fold2
m 217 samples in the training set, 65% have positive primary outcomes;
m 91 samples in the test set, 62% have positive primary outcomes;

o In each fold, samples from 5 coverslips are used for training, samples from the
remaining 2 coverslips are used for testing. Class balance of clinical annotations
are kept similar between training and test sets.

o Two validation folds have no overlapping test samples.

e Training / evaluation are run independently on the two validation folds, prediction
performances for each task are averaged.

UPMC-HNC (Supplementary Table 2, patient cross validation)
e UPMC-HNC contains 308 samples collected from 81 patients.
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e Patients are randomly split into four groups, samples are assigned to their corresponding
patient groups.
e Training/evaluation following cross-validation scheme:
o In each of the four independent runs, models are trained on samples from 3
patient groups and evaluated on samples from the remaining group.
o Performances are averaged across the four runs.

Stanford-CRC (Table 2, coverslip split)
e Stanford-CRC contains 292 samples from 4 batches/coverslips, class balance of clinical
annotations are calculated for each coverslip.
e \We proposed two validation folds based on coverslip:
o Fold 1
m 229 samples in the training set, 75% have positive primary outcomes;
m 63 samples in the test set, 71% have positive primary outcomes;
o Fold2
m 220 samples in the training set, 78% have positive primary outcomes;
m 72 samples in the test set, 64% have positive primary outcomes;

o In each fold, samples from 3 coverslips are used for training, samples from the
remaining coverslip are used for testing.

o Two validation folds have no overlapping test samples or patients. Note that the
two coverslips solely used for training are excluded from testing because of their
different size/class balance.

e Training/evaluation are run independently on the two validation folds, and prediction
performances for each task are averaged.

In this work, we use clinical annotations as prediction tasks. Annotations are categorized into
two forms (Supplementary Table 1): binary classification (e.g., primary outcome) and hazards
modeling (e.g., survival length). On binary classification tasks, we evaluate model performances
by calculating area under the curve (AUC) of receiver operating characteristics (ROC); on
hazards modeling tasks, we evaluate performances by calculating concordance index (C-index)
between predicted hazards and observed events (recurrence or death).

SPACE-GM and baseline methods

SPACE-GM

SPACE-GM consists of a Graph Isomorphism Network (GIN)?® backbone and multiple multilayer
perceptron (MLP) prediction heads.

Inputs of SPACE-GM contain the local spatial graphical structures of microenvironments derived
above, as well as identity and size of each cell in the microenvironments. More specifically, GIN
has the following inputs:

e Node features


https://paperpile.com/c/mNsnj7/bA5N
https://doi.org/10.1101/2022.05.12.491707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.12.491707; this version posted May 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

o Cell type is formed as a one-hot vector of length Nce e’ which is mapped to

llty
trainable embeddings of length 512 through a lookup table.

cell type
o Other features: Cell size (in pixel) log-transformed and scaled to 0-1 range, a flag
indicating if the cell is the center taking value O (if no) or 1 (if yes), are
concatenated and transformed to a vector of length 512 through a trainable linear
layer. Note that we experimented with explicitly adding normalized expression to
node features, but the resulting models have more severe overfitting and lower
test set performances. Expression is hence excluded from node features.
o The two embeddings above are summed and used as the initial node

embeddings for GIN. We denote the initial embedding of node v as hio).

Edge features
o Self-loop edges (connecting same nodes) are added to input graphs before
forward pass.
o Edges are divided into three classes: neighboring edge, distant edge, and
self-loop edge. In each GIN layer, an edge is mapped to one of the three edge

embeddings of length 512 through a lookup table. We denote the embedding of
the edge between node v and node u in k-th layer as efj;), which is dependent on
W0 _

vu uv

the edge type between v and u. Note that e

SPACE-GM employed a 3-layer GIN, and in the k-th graph convolutional layer:

Messages are calculated on each edge as:
k k—
m( ) = hi Y +e

vu

(k)

vu

Note that edges in microenvironments are undirected, messages in both directions are
calculated, though they will not necessarily be equal.

Embedding of node v is updated based on all incoming messages to v:

h(k) _ MLP(k)( ¥ m(k))
v ueN@w) %
in which N(v) is the set of neighboring nodes of v, the self-loop edge guarantees

v € N(v), and MLP" is the 2-layer MLP of the k-th layer.

Embeddings from the last graph convolutional layer are treated as node embeddings, in which

the embedding of the center cell h:zlter is used as input for expression prediction (pre-training of

SPACE-GM). We aggregated node embeddings to generate the microenvironment embedding:

_ ®)
h, = MAXPOOL_ _ (h.")

in which G represents the microenvironment, MAXPOOL is a channel-wise maximum operation
(torch.nn.global max_ pool). Microenvironment embeddings are used for sample
phenotype predictions.
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For expression and phenotype prediction tasks, we employed two separate 3-layer MLP with
3

center

Leaky RelLU activation function, each with Nmsks outputs, taking center cell embedding h
and microenvironment embedding hG as input respectively. For expression prediction tasks, we

minimize squared L2 norm loss between predictions and labels (torch.nn.MSELoss). For
binary classification tasks, we minimize binary cross entropy between sigmoid logit: outputs of
the 3-layer MLP and class labels (torch.nn.BCEWithLogitsLoss). For hazards modeling
tasks, we adapted the Cox partial likelihood for SGD introduced by Kvamme et al.**.

Baseline methods

Baseline methods in this work are constructed based on composition vector inputs. Composition
vectors are calculated on whole-sample graphs or microenvironments. In both cases, we count
the number of each cell type appearing in the graph/subgraph. The count vector of length

is then normalized to the frequency vector, denoted as the composition vector.

cell type

We trained a linear model and a 3-layer MLP model on the composition vectors. Logistic
regression and Cox regression are used for binary classification and hazards modeling tasks
respectively as linear models. MLP used the same loss function as SPACE-GM introduced
above.

Model training and inference

During training (of microenvironment-based methods), we randomly select microenvironments
from all samples in the training set. Their labels came from center cells (expression prediction)
or clinical annotations of the CODEX samples they belong to (phenotype prediction).
Microenvironments are weighted based on their labels to balance loss of different classes.
Adam optimizer*® is employed to minimize corresponding losses in different tasks.

SPACE-GM is first trained on the expression prediction task. After convergence, we retain the
GIN backbone and connect it with the phenotype prediction head (initialized from scratch), and
both modules are finetuned on the phenotype task. SPACE-GM no-pretraining has the same
model structure as SPACE-GM, but all initialized from scratch. It is directly trained on the
phenotype task until convergence; microenvironment-based MLP models follow the same
training pipeline.

During inference, we run microenvironment-based models (SPACE-GM, MLP, etc.) on all
microenvironments from the test set, generating dense per-node predictions for test samples.
Predictions within the same CODEX sample are then mean-aggregated
(microenvironment-aggregation, see Supplementary Notes and Supplementary Fig. 5 for
discussion), the results of which are evaluated using corresponding metrics.

All models are implemented in Python with scikit-learn®, pytorch?, and pytorch
geometric*®. More details about the hyperparameters and implementations can be found in
our github repository at https://qgitlab.com/enable-medicine-public/space-gm.
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Clustering of microenvironment embeddings

To identify clusters of disease-relevant microenvironments, we applied dimensionality reduction
and clustering on microenvironment embeddings. Clusters discussed in the main text are
generated following the procedure below:
e 100,000 cells and their microenvironments from the training set are randomly sampled
and extracted, denoted as the reference dataset;
e SPACE-GM (trained on the UPMC-HNC primary outcome task) is applied to all
microenvironments in the reference dataset, their microenvironment embeddings (hG)

and predictions are collected, denoted as reference embeddings and reference
predictions;

e A Principal Component Analysis (PCA) model is initialized and fitted to the reference
embeddings. We extracted the top 20 Principal Components (PCs), which captured
>70% of total variance;

e A UMAP dimensionality reduction model* is fitted on the top 20 PCs of reference
embeddings, generating 2D visualizations of microenvironment space;

e A K-means clustering (K=20) is fitted on the top 20 PCs of reference embeddings to
identify 20 clusters of microenvironments;

We then applied the PCA and K-means model to the test set:
e All cells and microenvironments from test set samples are extracted;
e SPACE-GM is applied to test set microenvironments to extract embeddings;
e PCA and K-means models trained with the reference dataset are directly applied to test
set microenvironment embeddings, their cluster assignments are collected and
summarized.

For PCA and K-means, we used the Python implementations from scikit-learn®*:
sklearn.decomposition.PCA and sklearn.cluster.KMeans. For UMAP, we used the
Python implementation from umap-1learn®“®.

In silico permutation of cells in microenvironments

Analysis of SPACE-GM embeddings uncovered groups of microenvironments that are
disease-relevant; we then applied permutation experiments on microenvironments-of-interest to
discover and validate structural motifs that are indicative of phenotypes.

Two general forms of permutations are implemented:
e Dispersed permutation:

o Alist of target cell types are provided;

o On the microenvironment/patch/sample (jointly denoted as cellular graphs),
identify all cells whose cell type appears in the target list and record their spatial
location and other cellular features;

o Randomly permute the list of cells identified in the previous step, then assign the
permuted cell types and cellular features back to the original cellular graph;
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o Run (trained) SPACE-GM on the permuted cellular graph and perform

microenvironment-aggregation if needed;
e Coherent permutation:

o Alist of target cell types and the center coordinate of cellular graph are provided;

o On the cellular graph, identify all cells whose cell type appears in the target list
and record their spatial location and other cellular features;

Sort the list of cells identified in the previous step by cell type;
Calculate polar coordinates for the list of cells using the cellular graph center as
the pole;

o Assign cell types and cellular features back to the original cellular graph
sequentially following the order of azimuthal angle. Resulting permuted cellular
graphs should have cells of the same type appearing in the same sector around
the graph center.

In the experiment on heterogeneous tumor microenvironments, we performed permutations on
patches and whole samples. Patches are selected following the procedure below:

e On each of the UPMC-HNC samples, we derive the cluster assignment of every
individual cell following the dimensionality reduction and clustering pipeline introduced
above;

e \We iterate through the list of all cells that are assigned to the heterogeneous tumor
microenvironment until we find a cell that satisfies the following criterion. Note that up to
one patch can be selected per sample.

o Isolate all cells that are within a distance of 185 um to the query cell (denoted as
a patch);

o More than 40% of the cells in the patch are assigned to heterogeneous tumor
microenvironments;

e [Extract the query cell and its surrounding patch. For all cells in the patch that are within a
distance of 110 um to the center (to guarantee the completeness of the 3-hop
neighborhood), extract their microenvironments and perform predictions.

61 patches are selected, from which we picked the 50 patches that have higher entropy (of cell
type frequency vector). Permutations are performed on the following cell types: Tumor 2, Tumor
4, Tumor 5 (Ki67+), and Tumor 6, in which the interaction between Tumor 4 and Tumor 5 (Ki67+)
has the biggest influence.

In the experiment on granulocyte-tumor microenvironments, we performed coherent and
dispersed permutations on different microenvironment groups to reverse the organization
pattern of granulocytes. We didn’t perform patch-level permutation due to difficulty in finding
regional patches rich in either microenvironment. All cell types are included in the target list and
permuted in this experiment. Note that in the coherent permutation case, all cells except for
tumor cells (Tumor 1 through Tumor 6) are aligned coherently according to the procedure
above, tumor cells are first combined and randomly permuted before aligning to avoid
confounding. See Supplementary Fig. 7 for example.
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Supplementary Tables and Figures

Supplementary Table 1 Details of datasets and phenotype annotations. Tasks “Primary Outcome”, “Recurrence”
and “Other” have binary labels and are used for binary classification. Tasks “Survival Length” and “Recurrence
Interval” provide time-to-event data and are used for hazards modeling.

Phenotype Annotations
Dataset sample patient Nbutch Ncell
Primary Outcome Survival Length Recurrence Recurrence Interval Other
1.0 O
UPMC- no evidence of disease (NED): 197 . = recurred: 31 HPV infected: 158
HNC 308 81 7 2061102 n N/A
non-NED: 111 0% i, 3 25 notrecurred: 253 not HPV infected: 150
Years
1.0 1.0
Stanford- alive after 60 months: 122 \_( recurred: 57 \
CRC 292 161 4 632280 N/A
recurred/dead in 60 months: 74 0% 1,345 notrecurred: 129 %% o345
Years Years
Low primary tumor response to
- 0/ -
a;gl 58 29 1 131748 treatment (pTR), <10%: 33 N/A
High pTR, >10%: 25

Supplementary Table 2 Prediction performances on UPMC tasks: four-fold patient cross-validation, average
performances over all four folds are reported.

Binary Classification (ROC-AUC)

Hazards Model

Model (C-index)
HPV Infection  Primary Outcome Recurrence  Survival Length
Linear on composition (sample) 0.830 0.739 0.702 0.694
MLP on composition (sample) 0.757 0.711 0.672 0.669
pbefdhadiicied 0.852 0.749 0.720 0.700
mioreemrormong 0.863 0.743 0.706 0.693
SPACE-GM no-pretraining 0.895 0.756 0.755 0.705
SPACE-GM 0.900 0.760 0.766 0.722
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Supplementary Table 3 Prediction uncertainty on UPMC tasks: on each of the two cross-coverslip validation
folds, we randomly select validation samples (with replacement) and evaluate model performances. Means and

standard deviations of 10 independently bootstrapped runs are reported.

Binary Classification (ROC-AUC)

Hazards Model

Validation (C-index)
Model Fold
HPV Infection Primary Outcome Recurrence Survival Length
P 0 0.850  0.030 0.773 £ 0.035 0.840 + 0.045 0.700  0.032
composition
(sample) 1 0.873 £ 0.022 0.768 + 0.031 0.826 + 0.040 0.684 + 0.026
P o 0 0.851 £ 0.029 0.789 £ 0.033 0.888 + 0.040 0.694 + 0.053
composition
(sample) 1 0.848 £ 0.033 0.760 + 0.028 0.794 £ 0.040 0.704 + 0.030
aron 0 0.854 + 0.029 0.775 + 0.041 0.816 £ 0.053 0.706  0.057
composition
(microenvironment) 0.876 £ 0.032 0.775 £ 0.043 0.818 £ 0.066 0.695 + 0.042
P on 0 0.885 + 0.026 0.841 £ 0.048 0.867 £ 0.038 0.768 + 0.054
composition
(microenvironment) 0.903 £ 0.023 0.790 + 0.048 0.827 £ 0.043 0.734 £ 0.021
0 0.912 £ 0.017 0.885 £ 0.025 0.906 + 0.057 0.798 + 0.033
SPACE-GM
no-pretraining
1 0.917 £0.018 0.835 £ 0.019 0.874 £ 0.033 0.766 + 0.027
0 0.928 + 0.020 0.902  0.020 0.921 £ 0.048 0.814 £ 0.027
SPACE-GM
1 0.928 £ 0.017 0.845 + 0.022 0.876 + 0.028 0.788 + 0.022
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Supplementary Figure 1 DFCI-HNC cell characteristics.

(A) Cell type composition of the DFCI-HNC dataset. We further match the cell type to the UPMC-HNC dataset. (B)
Distribution of normalized cell sizes (Methods) in UPMC-HNC and DFCI-HNC samples. (C) Composition of integrated
cell types in UPMC-HNC and DFCI-HNC samples. Note that all tumor subtypes (except for Ki67+ subtype) are
combined into the “Tumor” category; certain cell types (NK cell, mast cell) that are unique to one of the datasets are
moved to the “Other cell” category.
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Supplementary Figure 2 Marker expression of different cell types.
Heatmaps of average marker expression for each cell type in UPMC-HNC (top row), DFCI-HNC (middle row) and
Stanford-CRC (bottom row) are visualized. Note that each dataset uses a different marker panel.
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Supplementary Figure 3 Survival curves of different cell type composition groups.

In each of the 16 panels, we separate all test samples into two groups based on the composition of the corresponding
cell type. The survival curves of the two groups are visualized. Note that the separation between groups is much
weaker than the risk-based grouping in Figure 3C.
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Supplementary Figure 4 Performance on microenvironments of different sizes.

We trained a series of SPACE-GM no-pretraining models with microenvironment inputs of different sizes (from 1-hop
to 4-hop). Three-layer GINs are used in cases of 1-hop, 2-hop, and 3-hop inputs. Four-layer GIN is used for 4-hop
inputs. Results show that performances increase monotonically before 3-hop and plateau around 3-hop and 4-hop.
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Supplementary Figure 5 Performance of different aggregation thresholds.

Microenvironment-aggregation is a necessary step to calculate whole-sample predictions for SPACE-GM (and other
microenvironment-based methods). On one of the validation folds of UPMC-HNC, we evaluate performances on
predictions of different percentile thresholds. Dashed lines mark the performance of mean-aggregated predictions.
We conclude that mean aggregation provides robust performances.
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Supplementary Figure 6 UMAP of composition vectors and microenvironment embeddings.

Embeddings are extracted after each of the two training stages of SPACE-GM (pre-training on cellular expression
and finetuning on primary outcome task). Embeddings from the pre-trained model show strong correlations with
center cell type. Note that the clustering captured the similarity between cell types: lymphocytes appear together;
tumor cells form a large cluster. Embeddings from the final finetuned SPACE-GM model correlate more with
phenotype, as we see a clear blue-red color separation in the distribution.
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Supplementary Figure 7 In silico permutation of granulocyte-tumor microenvironments.

On the two granulocyte-tumor rich microenvironments, we perform coherent and dispersed permutations that could
change the local arrangement pattern of granulocytes (Methods). We observe significant shifts in the distribution of
SPACE-GM predictions when applying coherent permutation on the dispersed group (and vice versa), indicating that
the dispersion of granulocytes affects model predictions and can have potential correlations with patient outcomes.
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Supplementary Figure 8 Comparison of composition-based clusters and microenvironment clusters.

(A) and (B) We generate composition-based clusters with cell type compositions of 3-hop subgraphs
(microenvironments) following the same procedure. Note that the average predictions of microenvironment clusters
are much more polarized. (C) The composition cluster highly enriched with granulocytes has neutral average
predictions/labels, it could be further dissected into multiple sub-clusters that belong to different microenvironment
clusters. We see a pair of granulocyte/tumor microenvironments that have opposite outcome labels, see (Results) for
further discussion. (D) Similarly, the composition cluster enriched with vessel/lymph vessel cells could be dissected
into multiple sub-clusters, from which we notice two microenvironment clusters that are both enriched with lymph
vessel cells but have different composition and outcome predictions. (E) Comparison of the two microenvironments
enriched in lymph vessel cells: the left column shows a microenvironment with more lymphocytes and has overall
positive outcomes; the right column shows a contrasting group with more tumor cells and much worse outcome
predictions. Observation of tumor cells in close vicinity of lymph vessels indicates potential lymphovascular invasion
and will lead to worse prognosis, which aligns with model predictions.
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Supplementary Notes

Microenvironments of different sizes

SPACE-GM constructs microenvironments based on n-hop neighborhoods. To balance
prediction performance and microenvironment size (which is directly related to ease of
interpretability), we benchmark microenvironments of different sizes in their prediction
performances.

We define n-hop neighborhoods as all the nodes reachable from the query nodes within n
edges: 1-hop neighborhoods only contain immediate neighbors, and 2-hop neighborhoods
contain neighboring cells of the immediate neighbors. In this experiment, we train a series of
SPACE-GM models with different sizes of inputs by enumerating neighborhood radius (n). For
ease of computation, we only compare performances of SPACE-GM no-pretraining models.
Supplementary Fig. 4 illustrates the phenotype prediction performance with regards to input
microenvironment size, in which the same 3-layer GIN model structure is used for 1-hop, 2-hop,
and 3-hop inputs, while a 4-layer GIN model is used for 4-hop inputs.

We notice that performances increase monotonically before 3-hop, suggesting that a larger
microenvironment is indeed beneficial for modeling phenotypic properties. 4-hop models are
slightly better on two out of the four tasks evaluated, but do not present a strong overall
advantage. Given that microenvironment size grows quadratically with increasing neighborhood
radius, using inputs larger than 3-hop might cause difficulties in the following structural and
permutation analysis, so we choose to work with microenvironments defined as 3-hop
neighborhoods.

Microenvironment-aggregation methods

SPACE-GM is trained on subgraphs/microenvironments. To evaluate final prediction
performance, we need a post hoc procedure that aggregates predictions of all
microenvironments from a single sample. For this step, we evaluate aggregation functions
including mean, median, and a series of quantile functions at different thresholds
(Supplementary Fig. 5). Plots show that different tasks have different preferences for quantile
thresholds; survival length has the best performance when using the 80-th percentile, indicating
that within each slice nodes with high risk predictions are more correlated with actual survival
probabilities. While there are no clear clues on a universally suitable threshold for quantiles,
averaging microenvironment predictions is usually as good as the best quantile thresholds.
Therefore, mean-aggregation is used as the default method for microenvironment-aggregation.

Cross-study application of SPACE-GM

We test the generalizability of SPACE-GM by applying models trained with UPMC-HNC samples
to DFCI-HNC. In this procedure, due to the independent preprocessing pipelines for both
datasets, we need to integrate cellular features (node features) before deploying the model.
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SPACE-GM uses cellular features including cell type and cell size (Methods). While cell size is
calculated based on the size of segmentation masks, cell type is derived through a per-dataset
unsupervised PCA-kNN procedure (Methods). Supplementary Fig. 1A illustrates the cell
classification results for DFCI-HNC, which shared many common cell type populations with
UPMC-HNC; we further define integrated cell types between the two datasets to unify input
features to SPACE-GM. Note that most tumor subpopulations are combined to avoid confusion,
except that Tumor (Ki67+) is separated and treated as the proliferating tumor sub-population. It
is worth noting that integrating cell types hurts SPACE-GM prediction performance due to the
decrease in the heterogeneity of inputs.

After integration, we compare the input features of UPMC-HNC and DFCI-HNC datasets.
Supplementary Fig. 1B compares the distribution of normalized cell size (Methods), in which the
difference is minimal. Supplementary Fig. 1C compares the distribution of integrated cell types,
DFCI-HNC has more CD4 T cells and fewer B cells, but the overall balance between immune
cells and tumor cells is similar to UPMC-HNC. Note that we assign minor cell populations (e.g.,
Mast cell) not present in both datasets to the “Other cell” group.

Benchmark prediction uncertainty

The main evaluation experiment of SPACE-GM compares its performance against baseline
composition-based methods on a series of patient phenotype prediction tasks using two
independent cross-coverslip validation folds. To study the uncertainty of model prediction
performances, we calculate the standard deviations (SDs) of performance metrics by
bootstrapping.

In Supplementary Table 3, we evaluate model prediction performances by bootstrapping
validation samples (random resampling with replacement). 10 independent runs are conducted,
from which means and SDs are calculated and reported. In most test cases, SPACE-GM
performance exceeds the best-performing composition-based model by at least 2 SD, indicating
a robust advantage over baseline methods.

Parallel composition-based clusters and microenvironment clusters

In the main text, we discussed clustering using microenvironment embeddings derived from
SPACE-GM models trained with phenotypic property prediction. The resulting clusters are
intrinsically correlated with target phenotypes. To further validate this argument, we perform the
same clustering analysis on composition inputs, excluding any phenotype-guided supervision.

We apply the same dimensionality reduction and clustering procedure as introduced in
(Methods) on composition vectors of the same set of reference microenvironments. Instead of
using the top 20 PCs, we used the top PCs (12) that capture 90% of the total variance in
compositions. K-means clustering is adjusted accordingly (K = 15).

Supplementary Fig. 8A plots the enrichment of cell types and average SPACE-GM predictions
(very similar to labels) for each cluster. Compared with Supplementary Fig. 8B
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(microenvironment cluster characteristics), it is obvious that composition-based clusters are
more coherent in terms of cell types: most of the clusters are highly enriched for one or two cell
types while having fewer other cells. On the other hand, average predictions of
microenvironment clusters are more polarized than composition-based ones, facilitating the
discovery of disease-relevant clusters.

We further look at two concrete examples: Supplementary Fig. 8C shows a granulocyte-rich
composition cluster that has overall neutral average predictions or labels. If we look at the
microenvironment cluster assignments, this composition-based cluster can be dissected into
multiple subgroups belonging to different microenvironment clusters. More specifically, we
notice that it maps to two microenvironment clusters @ and &), which are exactly the pair we
discussed with permutation experiments. They have similar composition but opposite
phenotypic predictions, which can be partially attributed to the dispersion of granulocytes.

Microenvironments enriched in lymph vessel cells

In the other example, we look at the composition-based cluster enriched in Vessel and Lymph
vessel cells (Supplementary Fig. 8D). We similarly parallel it with microenvironment clusters and
found a pair of contrasting groups that are both enriched in lymph vessel cells. They display
different cell type compositions other than Lymph vessel (Supplementary Fig. 8E): cluster @
has more immune cells including B cell, CD4 T cell, etc., while cluster @3 is more enriched in
Tumor 1, Tumor 5 (Ki67+). We hypothesize that cluster (2 represents normal lymph vessel
structure, while cluster @d might indicate lymphovascular invasion, a known negative factor for
prognosis.

Though such differences can already be captured with composition vectors, their distinction will
likely be overwhelmed by major variance such as the amount of dominating cell population (i.e.,
Lymph vessel cells) when applying unsupervised clustering. However, when clustering on
phenotype-guided embeddings, key distinctions captured by the neural network will be enlarged
in the embedding space and hence more easily perceived in the downstream analysis.
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