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ABSTRACT

Objective: Pancreatic 3 cells play a key role in glucose homeostasis; dysfunction of this
critical cell type causes type 2 diabetes (T2D). Emerging evidence points to sex differences in
B cells, but few studies have examined male-female differences in B cell stress responses
and resilience across multiple contexts, including diabetes. Here, we address the need for
high-quality information on sex differences in B cell/islet gene expression and function using

both human and rodent samples.

Methods: We compared (3 cell gene expression and insulin secretion in donors living with
T2D to non-diabetic donors in both males and females. In mice, we generated a well-powered
islet RNAseq dataset from 20-week-old male and female siblings with equivalent insulin
sensitivity. Because on our unbiased analysis of gene expression pointed to sex differences
in endoplasmic reticulum (ER) stress response, we subjected islets isolated from age-
matched male and female mice to thapsigargin treatment and monitored protein synthesis,
cell death, and {3 cell insulin production and secretion. Transcriptomic and proteomic analyses
were used to characterize sex differences in islet responses to ER stress.

Results: Our single-cell analysis of human 3 cells revealed sex-specific changes to gene
expression and function in T2D, correlating with more robust insulin secretion in islets isolated
from female donors living with T2D compared to male T2D donors. In mice, RNA sequencing
revealed differential enrichment of unfolded protein response pathway-associated genes,
where female islets showed higher expression of genes linked with protein synthesis, folding,
and processing. This differential expression was biologically significant, as female islets were
more resilient to ER stress induction with thapsigargin. Specifically, female islets maintained
better insulin secretion and showed a distinct transcriptional response under ER stress

compared with males.

Conclusions: Our data demonstrate that physiologically significant sex differences in 3 cell
gene expression exist in both humans and mice, and that female (3 cells maintain better

insulin production and secretion across multiple physiological and pathological contexts.
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1. Introduction

Pancreatic 3 cells make and secrete insulin, an essential hormone required to maintain
whole-body glucose homeostasis. Emerging evidence from multiple species suggests
biological sex is an important, but often overlooked, factor that affects 3 cell biology (1-6).
Large-scale surveys of gene expression in mice and humans show that differences exist
between the sexes in the pancreas (7-9), in islets (10), and in B cells specifically (4,11).
Humans also have a sex-specific § cell gene expression response to aging (12), and show
male-female differences in pancreatic 3 cell number (6). With respect to 8 cell function, most
data from rodent and human studies suggests glucose-stimulated insulin secretion is higher in
females than in males (5,10,13-16). While male-female differences in peripheral insulin
sensitivity (15,17—27) may contribute to these differences, sex-biased insulin secretion in
humans persists in the context of equivalent insulin sensitivity between males and females
(5). Whether sex differences in additional aspects of 3 cell gene expression and function
similarly persist remains unclear, as insulin sensitivity is not routinely monitored across
datasets showing sex differences in 3 cell biology.

Biological sex also affects the risk of developing T2D. Across many population groups,
men are at a higher risk of developing T2D than women (28-31). Some of the differential risk
is explained by lifestyle and cultural factors (31-33). Biological sex also plays a role, however,
as the male-biased risk of developing diabetes-like phenotypes exists across multiple animal
models (22,34-39). Despite a dominant role for 3 cell function in T2D pathogenesis (40,41),
T2D- and stress-associated changes to 3 cell gene expression and function in each sex
remain largely unexplored, as many studies on this topic did not include biological sex as a
variable in their analysis (42—49). More detailed knowledge of B cell gene expression and
function in physiological and pathological contexts is therefore a key first step toward
understanding how sex differences in this important cell type may contribute to T2D risk.

The overall goal of our study was to provide detailed knowledge of 3 cell gene expression
and function in both males and females across multiple contexts to advance our
understanding of sex differences in this important cell type. Collectively, our data show
significant sex differences in islet and 3 cell gene expression and stress responses in both
humans and mice. These differences contribute to sex differences in B cell resilience, where
we find female B cells maintain better insulin secretion in response to stress and T2D.

Importantly, these differences cannot be fully explained by differential peripheral insulin
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sensitivity between the sexes, suggesting biological sex is an important variable to consider in

studies on islet and 8 cell function.

2. Materials and methods

2.1. Animals

Mice were bred in-house or purchased from the Jackson Laboratory. Unless otherwise stated
mouse islets were isolated from C57BL/6J mice aged 20-24 weeks. Animals were housed
and studied in the UBC Modified Barrier Facility using protocols approved by the UBC Animal
Care Committee and in accordance with international guidelines. Mice were housed on a 12-
hour light/dark cycle with food and drinking water ad libitum. Mice were fed a regular chow
diet (LabDiet #5053); 24.5% energy from protein, 13.1% energy from fat, and 62.4% energy
from carbohydrates.

2.2. Islet Isolation, Culture, Dispersion and Treatment

Mouse islet isolations were performed by ductal collagenase injection followed by filtration
and hand-picking, using modifications of the protocol described by Salvalaggio (50). Islets
recovered overnight, in islet culture media (RPMI media with 11.1 mM D-glucose
supplemented with 10% vol/vol fetal bovine serum (FBS) (Thermo: 12483020) and 1% vol/vol
Penicillin-Streptomycin (P/S) (GIBCO: 15140-148)) at 37°C with 5% CO.. After four washes
with Minimal Essential Medium [L-glutamine, calcium and magnesium free] (Corning: 15-015
CV) islets were dispersed with 0.01% trypsin and resuspended in islet culture media. Cell
seedings were done as per the experimental procedure (protein synthesis: 20,000 cells per
well, live cell imaging: 5,000 cells per well). ER stress was induced by treating islets with the
SERCA inhibitor thapsigargin. For assays less than 24 hours, we used (11.1 mM D-glucose
RPMI, 1% vol/vol P/S). For assays greater than 24 hours we used (11.1 mM D-glucose RPMI,
1% vol/vol P/S, 10% vol/vol FBS).

2.3. Analysis of protein synthesis

Dispersed islets were seeded into an optical 96-well plate (Perkin Elmer) at a density of
approximately 20,000 cells per well islet culture media (11.1 mM D-glucose RPMI, 1% vol/vol
P/S, 10% vol/vol FBS). 24 hours after seeding, treatments were applied in fresh islet culture
media (11.1 mM D-glucose RPMI, 1% vol/vol P/S). After incubation, fresh culture media was
applied (11.1 mM D-glucose RPMI, 1% vol/vol P/S), supplemented with 20 yM OPP
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(Invitrogen) and respective drug treatments. The assay was performed according to
manufacturer’s instructions; cells were then imaged at 10x with an ImageXpressM!CRO high-
content imager and analyzed with MetaXpress (Molecular Devices) to quantify the integrated

staining intensity of OPP-Alexa Fluor 594 in cells identified by NuclearMask Blue Stain.

2.4. Live cell imaging

Dispersed islets were seeded into 384-well plates (Perkin Elmer) at a density of
approximately 5,000 cells per well and allowed to adhere for 48 hours in islet culture media
(11.1 mM D-glucose RPMI, 1% vol/vol P/S, 10% vol/vol FBS). Cells were stained with
Hoechst 33342 (Sigma-Aldrich) (0.05 ug/mL) and propidium iodide (Sigma-Aldrich) (0.5
pug/mL) for one hour in islet culture media (11.1 mM D-glucose RPMI, 1% vol/vol P/S, 10%
vol/vol FBS) prior to the addition of treatments and imaging. 384-well plates were placed into
environmentally controlled (37°C, 5% CO2) ImageXpressMCRO high content imaging system.
To measure cell death, islet cells were imaged every 2 hours for 84 hours, and MetaXpress
software was used to quantify cell death, defined as the number of Propidium lodide-
positive/Hoechst 33342-positive cells. To measure Ins2 gene activity, dispersed islets from
Ins2CFPWT mice aged 21-23 weeks were used (51). Islet cells were imaged every 30 minutes
for 60 hours. MetaXpress analysis software and custom R scripts were used to perform

single-cell tracking of Ins2CFPWT B cells as previously described (51).

2.5. Western blot

After a 24-hour treatment with 1 yM Tg in islet culture media (11.1 mM D-glucose RPMI, 1%
vol/vol P/S, 10% vol/vol FBS), mouse islets were sonicated in RIPA lysis buffer (150 mM
NaCl, 1% Nonidet P-40, 0.5% DOC, 0.1% SDS, 50 mM Tris (pH 7.4), 2 mM EGTA, 2 mM
NasVOs4, and 2 mM NaF supplemented with complete mini protease inhibitor cocktail (Roche,
Laval, QC)). Protein lysates were incubated in Laemmli loading buffer (Thermo, J61337AC) at
95°C for 5 minutes and resolved by SDS-PAGE. Proteins were then transferred to PVDF
membranes (BioRad, CA) and probed with antibodies against HSPA5 (1:1000, Cat. #3183,
Cell Signalling), elF2a (1:1000, Cat. #2103, Cell Signalling), phospho-elF2a (1:1000, Cat.
#3398, Cell Signalling), IRE1a (1:1000, Cat. #3294, Cell Signalling), phospho-IRE1a (1:1000,
Cat. #PA1-16927, Thermo Fisher Scientific), CHOP (1:1000, #ab11419, Abcam), B-actin
(1:1000, NB600-501, Novus Biologicals). The signals were detected by secondary HRP-
conjugated antibodies (Anti-mouse, Cat. #7076; Anti-rabbit, Cat. #7074; CST) and either
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Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific) or Forte (Immobilon).

Protein band intensities were quantified using Image Studio (LI-COR).

2.6. Islet Secretion and Content

Glucose-stimulated insulin/proinsulin production and secretion were assessed using size-
matched islets (five islets per well, in triplicate) seeded into 96-well V-bottom Tissue Culture
Treated Microplates (Corning: #CLS3894). Islets were allowed to adhere for 48 hours in
culture media (11.1 mM D-glucose RPMI, 1% vol/vol P/S, 10% vol/vol FBS). Islets were
washed with Krebs-Ringer Buffer (KRB; 129 mM NaCl, 4.8 mM KClI, 1.2 mM MgSO4, 1.2 mM
KH2PO4, 2.5 mM CaClz, 5 mM NaHCOs, 10 mM HEPES, 0.5% bovine serum albumin)
containing 3 mM glucose then pre-incubated for 4 hours in 3 mM glucose KRB. 1 uM Tg was
added to the 3 mM low glucose pre-incubation buffer 4 hours prior, 2 hours prior, or at the
start of the low glucose incubation period. Islets were incubated in KRB with 3 mM glucose
then 20 mM glucose for 45 minutes each. Supernatant was collected after each stimulation.
Islet insulin and proinsulin content was extracted by freeze-thawing in 100 uL of acid ethanol,
then the plates were shaken at 1200 rpm for 10 minutes at 4°C to lyse the islets. Insulin was
measured by Rodent Insulin Chemiluminescent ELISA (ALPCO: 80-INSMR) and proinsulin by
Rat/Mouse Proinsulin ELISA (Mercodia: 10-1232-01). Measurements were performed on a
Spark plate reader (TECAN).

2.7. Blood collection and in vivo analysis of glucose homeostasis and insulin secretion
Mice were fasted for 6 hours prior to glucose and insulin tolerance tests. During glucose and
insulin tolerance tests, tail blood was collected for blood glucose measurements using a
glucometer (One Touch Ultra 2 Glucometer, Lifescan, Canada). For intraperitoneal (i.p.)
glucose tolerance tests, the glucose dose was 2 g glucose/kg of body mass. For insulin
tolerance tests, the insulin dose was 0.75U insulin/kg body mass. For measurements of in
vivo glucose-stimulated insulin secretion, femoral blood was collected after i.p. injection of 2 g
glucose/kg body mass. Blood samples were kept on ice during collection, centrifuged at 2000
rom for 10 minutes at 4°C and stored as plasma at -20°C. Plasma samples were analysed for
insulin using Rodent Insulin Chemiluminescent ELISA (ALPCO: 80-INSMR).

2.8. RNA sequencing
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197 To assess basal transcriptional differences islets from male and female mice (n=9, 8) were
198 snap frozen and stored at -80°C until RNA extraction. To assess Tg-induced transcriptional
199 changes islets from each mouse were treated with DMSO or Tg for 6- or 12-hours in culture
200 media (11.1 mM D-glucose RPMI, 1% vol/vol P/S) (8 groups, n=3-4 per group, each n

201 represents pooled islet RNA from two mice). Islets were frozen at -80°C in 100 yL of RLT
202  buffer (Qiagen) with beta mercaptoethanol (1%). RNA was isolated using RNeasy Mini Kit
203 (Qiagen #74106) according to manufacturer’s instructions. RNA sequencing was performed at
204 the UBC Biomedical Research Centre Sequencing Core. Sample quality control was

205 performed using the Agilent 2100 Bioanalyzer System (RNA Pico LabChip Kit). Qualifying
206 samples were prepped following the standard protocol for the NEBNext Ultra Il Stranded

207 mRNA (New England Biolabs). Sequencing was performed on the lllumina NextSeq 500 with
208 Paired End 42bp x 42bp reads. Demultiplexed read sequences were then aligned to the

209 reference sequence (UCSC mm10) using STAR aligner (v 2.5.0b) (52). Gene differential

210 expression was analyzed using DESeq2 R package (53). Pathway enrichment analysis were
211  performed using Reactome (54). Over-representation analysis was performed using

212 NetworkAnalyst3.0 (www.networkanalyst.ca) (55).

213

214 2.9. Proteomics

215  Islets were treated with DMSO or Tg for 6 hours in islet culture media (11.1 mM D-glucose
216 RPMI, 1% vol/vol P/S) (4 groups, n=5-7 per group, each n represents pooled islets from two
217  mice). Islet pellets were frozen at -80°C in 100 pL of SDS lysis buffer (4% SDS, 100 mM Tris,
218 pH 8) and the proteins in each sample were precipitated using acetone. University of Victoria
219 proteomics service performed non-targeted quantitative proteomic analysis using data-

220 independent acquisition (DIA) with LC-MS/MS on an Orbitrap mass spectrometer. A mouse
221 FASTA database was downloaded from Uniprot (http://uniprot.org). This file was used with
222  the 6 gas phase fraction files from the analysis of the chromatogram library sample to create
223  a mouse islet specific chromatogram library using the EncyclopeDIA (v 1.2.2) software

224  package (Searle et al, 2018). This chromatogram library file was then used to perform

225 identification and quantitation of the proteins in the samples again using EncyclopeDIA with
226  Overlapping DIA as the acquisition type, trypsin used as the enzyme, CID/HCD as the

227  fragmentation, 10 ppm mass tolerances for the precursor, fragment, and library mass

228 tolerances. The Percolator version used was 3.10. The precursor FDR rate was set to 1%.
229 Protein abundances were log2 transformed, imputation was performed for missing values,
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then proteins were normalized to median sample intensities. Gene differential expression was

analyzed using limma in Perseus (56).

2.10. Data from HPAP

To compare sex differences in dynamic insulin secretion, data acquired was from the Human
Pancreas Analysis Program (HPAP-RRID:SCR_016202) Database
(https://hpap.pmacs.upenn.edu), a Human Islet Research Network (RRID:SCR_014393)
consortium (UC4-DK-112217, U01-DK-123594, UC4-DK-112232, and U01-DK-123716).

2.11. Statistical Analysis

Statistical analyses and data presentation were carried out using GraphPad Prism 9
(GraphPad Software, San Diego, CA, USA) or R (v 4.1.1). Student’s t-tests or two-way
ANOVAs were used for parametric data. A Mann-Whitney test was used for non-parametric
data. Statistical tests are indicated in the figure legends. For all statistical analyses,
differences were considered significant if the p-value was less than 0.05. *: p<0.05; ** p<0.01;
*** p<0.001. Data were presented as means + SEM with individual data points from biological
replicates.

3. Results

3.1. Sex differences in 8 cell transcriptional and functional responses in ND and T2D
human islets

To define B cell-specific gene expression changes in T2D in each sex, we used a recently
compiled meta-analysis of publicly available scRNAseq datasets from male and female
human islets (57). In line with prior reports (12), non-diabetic (ND) and T2D £ cells showed
significant transcriptional differences. In 8 cells isolated from female T2D donors, mRNA
levels of 127 genes were significantly different from ND female donors (77 downregulated, 50
upregulated in T2D) (Figure 1A-C). In B cells isolated from male T2D donors, 462 genes were
differentially expressed compared with male ND donors (138 downregulated, 324 upregulated
in T2D) (Figure 1A-C). Of the 660 genes that were differentially regulated in T2D, 71 were
differentially regulated in both males and females (15 downregulated, 56 upregulated in T2D)
(Figure 1A-C); however, the fold change for these 71 shared genes was different between
males and females (Figure S1A; Supplementary file 1). This suggests that for shared genes,
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the magnitude of gene expression changes in T2D was not the same between the sexes.
Beyond shared genes, we observed that the majority of differentially expressed genes in T2D
(589/660) were unique to either males or females (Figure S1B, C; Supplementary file 1).
Given that the most prominent gene expression changes in T2D were found in genes that
were unique to one sex (Figure S2A, B; Supplementary file 1), these data suggest there are
important sex differences in the 3 cell gene expression response to T2D.

To determine which biological pathways were altered in 8 cells of T2D donors in each sex,
we performed pathway enrichment analysis. Genes that were upregulated in 3 cells isolated
from T2D donors included genes involved in Golgi-ER transport and the unfolded protein
response (UPR) pathways (Figure 1D-F; Supplementary file 1). While these biological
pathways were significantly upregulated in T2D in both males and females, ~75% of the
differentially regulated genes in these categories were unique to each sex (Table 1). Genes
that were downregulated in 3 cells from T2D donors revealed further differences between the
sexes: biological pathways downregulated in B cells from female T2D donors included cellular
responses to stress and to stimuli (Figure 1E; Supplementary file 1), whereas (3 cells from
male T2D donors showed downregulation of pathways associated with respiratory electron
transport and translation initiation (Figure 1F; Supplementary file 1). Thus, our analysis
suggests that sex-biased B cell gene expression responses to T2D may influence different
cellular processes in males and females.

The sex-biased B cell transcriptional response in T2D prompted us to compare glucose-
stimulated insulin secretion in each sex from ND and T2D human islets using data from the
Human Pancreas Analysis Program database (58). In ND donors, islets from males and
females showed similar patterns of insulin secretion in response to various stimulatory media
(Figure 1G, H). In donors living with T2D, we found that insulin secretion was impaired to a
greater degree in islets from males than in females (Figure 1G-K). Indeed, in male but not
female islets, insulin secretion was significantly lower in donors with T2D following stimulation
with both high glucose and IBMX (Figure 11, J), which potentiates insulin secretion by
increasing cCAMP levels to a similar degree as the incretins (59). Human islets from female
donors living with T2D therefore show better 3 insulin release than islets from males living
with T2D (Figure 1K). Indeed, while diabetes status was the main donor characteristic that
correlated with changes in insulin secretion (Figure S3A), we noted that in T2D sex and age

were two donor characteristics showing trends toward an effect on insulin secretion (Figure
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S3B). Combined with our B cell gene expression data, these findings suggest that 8 cell

transcriptional and functional responses in T2D are not shared between the sexes.

3.2. Sex differences in UPR-associated gene expression in mouse islets

Our unbiased analysis of human [3 cell gene expression and function in T2D revealed
differences between male and female donors living with T2D. Because human B cell gene
expression and function can be affected by factors such as peripheral insulin sensitivity,
disease processes, and medication (31,33), we investigated sex differences in 3 cell gene
expression and function in another context. We generated a well-powered islet RNAseq
dataset from 20-week-old male and female C57BL/6J mice, an age where we show insulin
sensitivity is equivalent between the sexes (Figure S4A). Principal component analysis and
unsupervised clustering clearly separated male and female islets on the basis of gene
expression (Figure 2A; Figure S5A). We found that 17.7% (3268/18938) of genes were
differentially expressed between the sexes (1648 upregulated in females, 1620 upregulated in
males), in line with estimates of sex-biased gene expression in other tissues (60,61).
Overrepresentation and pathway enrichment analysis both identified UPR-associated
pathways as a biological process that differed significantly between the sexes, where the
majority of genes in this category were enriched in female islets (Figure 2B, C;
Supplementary file 2). Additional genes that were enriched in female islets were those
associated with the gene ontology term “Cellular response to ER stress” (G0O:0034976),
which included many genes involved in regulating protein synthesis (Figure 2D). For example,
females showed significantly higher levels of most ribosomal protein genes (Figure 2E).
Further genes enriched in females included those associated with protein folding, protein
processing, and quality control (Figure 2D). Given that protein synthesis, processing, and
folding capacity are intrinsically important for multiple islet cell types (62—-65), including 3 cells
(66,67), this suggests female islets may have a larger protein production and folding capacity

than male islets.

3.3. Female islets are more resilient to endoplasmic reticulum stress in mice

The burden of insulin production causes endoplasmic reticulum (ER) stress in B cells (68-70).
ER stress is associated with an attenuation of mMRNA translation (71), and, if ER stress is
prolonged, can lead to cell death (72—74). Given that female islets exhibited higher
expression of genes associated with protein synthesis, processing, and folding than males,
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and higher expression of genes associated with the UPR, which is activated in response to
ER stress (75), we examined global protein synthesis rates in male and female islets under
basal conditions and under ER stress. We incubated islets with O-propargyl-puromycin
(OPP), which is incorporated into newly-translated proteins and can be ligated to a
fluorophore. Using this technique, we monitored the accumulation of newly-synthesized islet
proteins with single-cell resolution (Figure S6A). In basal culture conditions, male islet cells
had significantly greater protein synthesis rates compared with female islet cells (Figure S6B).
To investigate islet protein synthesis under ER stress in each sex, we treated islets with
thapsigargin (Tg), a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca?*-ATPase
(SERCA) that induces ER stress and the UPR by lowering ER calcium levels (72,76). At 2
hours post-Tg treatment, protein synthesis was repressed in both male and female islet cells
(Figure 3A, B; Figure S6C). At 24 hours post-Tg treatment, we found that protein synthesis
was restored to basal levels in female islet cells, but not in male islet cells (Figure 3A, B;
Figure S6C). Importantly, recovery from protein synthesis repression was significantly
different in males and females (sex:treatment interaction p=0.0115). This suggests that while
protein synthesis repression associated with ER stress was transient in female islets, this
phenotype persisted for longer in male islets. Because insulin biosynthesis accounts for
approximately half the total protein production in 8 cells (77), one potential explanation for the
sex-specific recovery from protein synthesis repression is a sex difference in transcriptional
changes to insulin. To test this, we quantified GFP levels in 3 cells isolated from male and
female mice with GFP knocked into the endogenous mouse /ns2 locus (Ins26FPWT)(51,78).
While ER stress induced a significant reduction in Ins2 gene activity, this response was
equivalent between the sexes. This suggests Ins2 transcriptional changes cannot fully explain
the sex difference in recovery from protein synthesis repression during ER stress (Figure S7).
Given the prolonged protein synthesis repression in males following ER stress, we next
quantified cell death, another ER stress-associated phenotype (75), in male and female islets.
Using a kinetic cell death analysis, we observed clear sex differences in Tg-induced cell death
at 0.1 yM and 1.0 uM Tg doses throughout the time course of the experiment (Figure 3C, D).
After 84 hours of Tg treatment, no significant increase in female islet cell apoptosis was
observed with either 0.1 uM or 1.0 uM Tg treatment compared with controls (Figure 3E). In
contrast, cell death was significantly increased at both the 0.1 yM and the 1.0 yM doses of Tg
in male islet cells compared with vehicle-only controls (Figure 3F). Importantly, our analysis
shows the magnitude of Tg-induced cell death was larger in male islet cells compared with
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female islet cells (sex:treatment interaction p=0.0399 [0.1 pM], p=0.0007 [1.0 uM]). While one
possible explanation for these data is that female islets are resistant to Tg-induced cell death,
we found a significant increase in apoptosis in both female and male islet cells treated with 10
MM Tg (Figure 3G, H, sex:treatment interaction p=0.0996 [0.1 puM]). This suggests female
islets were more resilient to mild ER stress caused by low-dose Tg than male islets.

To determine whether this increased ER stress resilience was caused by differential UPR
signaling, we monitored levels of several protein markers of UPR activation including binding
immunoglobulin protein (BiP), phosphorylated inositol-requiring enzyme 1 (pIRE1),
phosphorylated eukaryotic initiation factor alpha (pelF2a), and C/EBP homologous protein
(CHOP) (79,80) after treating male and female islets with 1 uM Tg for 24 hours. We found no
sex difference in UPR protein markers between male and female islets without Tg treatment
(Figure S8A-D) and observed a significant increase in levels of pIRE1a and CHOP in islets
from both sexes and BiP in female islets after a 24-hour Tg treatment (Figure S8A-D). Lack of
a sex difference in protein markers suggests UPR activation by Tg treatment was similar
between male and female islets at 20 weeks of age. While this finding differs from other
studies showing male-biased UPR activation (37), we reproduced the male-biased induction
of BiP in islets isolated from 60-week-old male and female mice (Figure S8E-G), suggesting
that age plays a role in the sex difference in UPR activation. Together, our data indicate that
despite equivalent UPR activation in male and female islets treated with Tg, significant sex

differences exist in ER stress-associated protein synthesis repression and cell death.

3.4. Female islets retain greater B8 cell function during ER stress in mice

We next examined glucose-stimulated insulin secretion in islets cultured under basal
conditions and after Tg treatment (Figure 4A). In all conditions tested, high glucose
significantly stimulated insulin secretion in both sexes (Figure S9A); however, we identified
sex differences in how well islets sustained glucose-stimulated insulin secretion during longer
Tg treatments (Figure 4B, C, Figure S9A). Female islets, in both low and high glucose,
maintained robust insulin secretion during Tg treatment (Figure 4B). Specifically, we observed
a significant increase in insulin secretion after short Tg treatment (0 and 2 hours post-Tg),
with a return to basal secretion levels 4 hours post-Tg (Figure 4B). In contrast, male islets
showed no significant increase in insulin secretion after short Tg treatment, and there was a
significant drop in insulin secretion at 4 hours post-Tg treatment (Figure 4C). This suggests
female islets sustained insulin secretion for a longer period than male islets during ER stress.
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Given that insulin content measurements showed insulin content significantly increased
during the 4-hour Tg treatment in female islets, but not male islets (Figure 4D), our data
suggest one reason female islets maintain insulin secretion during ER stress is by
augmenting islet insulin content. Proinsulin secretion followed similar trends to what we
observed with insulin secretion (Figure S9B), but Tg treatment reduced proinsulin content to a
greater degree in male islets (Figure 4E). This suggests that in addition to females
maintaining better insulin secretion during ER stress, they also show a larger increase in
insulin content and a smaller decrease in proinsulin content.

To determine whether female islets show improved 8 cell function under ER stress in other
contexts, we next monitored glucose-stimulated insulin secretion and glucose tolerance in
mice at 20 weeks, an age where we show insulin sensitivity was equivalent between the
sexes (Figure 4F-H; Figure S4). Despite higher fasting plasma insulin levels in males (Figure
4F), and similar glucose tolerance (Figure 4H), we found that the magnitude of glucose-
stimulated insulin secretion was greater in females (Figure 4G). Given that ER stress exists
even in normal physiological conditions due to the burden of insulin production (81), this adds
further support to a model in which female 3 cells maintain better insulin production than male
B cells under ER stress.

3.5. Sex differences in islet transcriptional and proteomic responses to ER stress in
mice

To gain insight into the differential ER stress-associated phenotypes in male and female
islets, we investigated global transcriptional changes after either a 6- or 12-hour Tg treatment
in each sex. Principal component analysis and unsupervised clustering shows that islets
clustered by sex, treatment, and treatment time (Figure 5A; Figure S10A). The majority of the
variance was explained by treatment (Figure 5B), and pathway enrichment analysis confirms
the UPR as the top upregulated pathway in Tg-treated male and female islets at both 6- and
12-hours after treatment (Figure S11A, B; Supplementary file 3). While some UPR-associated
genes differentially regulated by Tg treatment were shared between the sexes (6-hour: 29/36,
12-hour: 25/31), biological sex explained a large proportion of variance in the gene
expression response to ER stress. This suggests the transcriptional response to ER stress
was not fully shared between the sexes. Indeed, after a 6-hour Tg treatment, 32.6%

(2247/4655) of genes that were differentially expressed between DMSO and Tg were unique
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to one sex (881 to females, 1376 to males). After a 12-hour Tg treatment, 29% (2259/7785)
were unique to one sex (1017 to males, 1242 to females).

To describe the transcriptional response of each sex to Tg treatment in more detail, we
used a two-way ANOVA to identify genes that were upregulated, downregulated, or
unchanged in male and female islets between 6- and 12-hours post-Tg (Supplementary file
4). By performing pathway enrichment analysis, we were able to determine which processes
were shared, and which processes differed, between the sexes during Tg treatment. For
example, we observed a significant increase in mMRNA levels of genes corresponding to
pathways such as cellular responses to stimuli, stress, and starvation in both male and female
islets between 6- and 12-hour Tg treatments (Figure 5C; Supplementary file 4), suggesting Tg
has similar effects on genes related to these pathways in both sexes. In contrast, there was a
male-specific increase in mMRNA levels of genes associated with translation during Tg
treatment (Figure 5C; Supplementary file 4). In females, there was a decrease in mRNA
levels of genes associated with B cell identity, such as Pklr, Rfx6, Hnf4a, Sic2a2, Pdx1, and
MafA (Figure S12A), and in genes linked with regulation of gene expression in B cells (Figure
5C). Neither of these categories were altered between 6- and 12-hour Tg treatments in males
(Figure 5C; Figure S12B). While this data suggests some aspects of the gene expression
response to ER stress were shared between the sexes, we found that many genes
corresponding to important cellular processes were differentially regulated during Tg
treatment in only one sex.

Beyond sex-specific transcriptional changes following Tg treatment, ER stress also had a
sex-specific effect on the islet proteome. Although the majority of proteins were
downregulated by Tg treatment due to the generalized repression of protein synthesis under
ER stress (Figure 5D), we identified 47 proteins (35 downregulated, 12 upregulated in Tg)
that were differentially expressed in female islets and 82 proteins (72 downregulated, 10
upregulated in Tg) that were differentially expressed after Tg treatment in male islets
(Supplementary table 1). Proteins downregulated only in females include proteins associated
with GO term ‘endoplasmic reticulum to Golgi vesicle-mediated transport’ (GO:0006888)
(BCAP31, COG5, COG3, GOSR1), whereas proteins downregulated only in males include
proteins associated with GO terms ‘insulin secretion’ (GO:0030073) (PTPRN2, CLTRN,
PTPRN) and ‘lysosome pathway’ (KEGG) (NPC2, CTSZ, LAMP2, PSAP, CLTA). Importantly,
only seven differentially expressed proteins were in common between the sexes (Figure 5D).


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491428; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

This suggests that as with our phenotypic and transcriptomic data, the proteomic response to

Tg treatment was largely not shared between the sexes.

4. Discussion

Emerging evidence shows biological sex affects many aspects of 3 cell gene expression and
function. Yet, many studies on B cells do not include both sexes, or fail to analyze male and
female data separately. To address this gap in knowledge, the goal of our study was to
provide detailed information on sex differences in islet and 3 cell gene expression and
function in multiple contexts. In humans, we used a large scRNAseq dataset from ND and
T2D donors to reveal significant male-female differences in the magnitude of gene expression
changes, and in the identity of genes that were differentially regulated, between ND and T2D
donors. This suggests 3 cell gene expression changes in T2D are not fully shared between
the sexes. Given that our analysis shows (3 cells from female donors living with T2D maintain
better insulin production than (3 cells from male donors living with T2D, our findings suggest
female 3 cells are more resilient than male B cells in the context of T2D. In mice, our
unbiased analysis of gene expression in islets from males and females with equivalent insulin
sensitivity revealed sex differences in genes associated with the UPR under normal
physiological conditions. This differential gene expression was significant, as female islets
were more resilient to phenotypes caused by ER stress and UPR activation than male islets,
showed sex-specific transcriptional and proteomic changes in this context, and maintained
better insulin secretion. Collectively, these data suggest that in rodents, 3 cells from females
are more resilient to ER stress. Considering the well-established links between ER stress and
T2D (79,82-84), our data suggests a model in which female 3 cells maintain better function in
T2D because they are more resilient to ER stress and UPR activation. While future studies
are needed to test this model, and to assess the relative contribution of sex differences in 3
cells to the sex-biased risk of T2D, our findings highlight the importance of including both
sexes in islet and B cell studies.

With respect to gene expression, including both sexes in our analysis of 3 cell gene
expression in human ND and T2D allowed us to uncover genes that were differentially
regulated in T2D in each sex. Because many of these genes may have been missed if the
scRNAseq data was not analyzed by sex, our findings advance knowledge of 3 cell changes
in T2D by identifying additional genes that are differentially regulated in this context. This
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knowledge adds to a growing number of studies that identify sex differences in 3 cell gene
expression during aging in humans (12), and in mice fed either a normal (4,11) or a high fat
diet (11). Further, given that our RNAseq on islets from male and female mice with equivalent
insulin sensitivity identifies genes and biological pathways that align with previous studies on
sex differences in murine B cell gene expression (4,11), our data suggests that sex
differences in islet and B cell gene expression cannot be explained solely by a male-female
difference in peripheral insulin resistance. Instead, there is likely a basal sex difference in 3
cell gene expression that forms the foundation for sex-specific transcriptional responses to
perturbations such as ER stress and T2D. By generating large gene expression datasets from
islet from male and female mice with equivalent peripheral insulin sensitivity and from islets
subjected to pharmacological induction of ER stress, our studies provide a foundation of
knowledge for future studies aimed at studying the causes and consequences of sex
differences in islet ER stress responses and 3 cell function following UPR activation. This will
provide deeper mechanistic insight into the sex-specific phenotypic effects reported in animal
models of B cell dysfunction (35-39,85—-88) and the sex-biased risk of diseases such as T2D
that are associated with (3 cell dysfunction (12,22,89,90).

Beyond gene expression, our sex-based analysis of mouse islets allowed us to uncover
male-female differences in ER stress-associated phenotypes (e.g. protein synthesis
repression, cell death). While previous studies identify a sex difference in B cell loss in
diabetic mouse models (37,39,91), and show that estrogen plays a protective role via
estrogen receptor a (ERa) against ER stress to preserve 3 cell mass and prevent apoptosis in
cell lines, mouse models, and human islets (39,91,92), we extend prior findings by showing
that differences in ER stress-induced cell death were present in the context of equivalent
insulin sensitivity between the sexes. This suggests sex differences in ER stress-associated
phenotypes occur prior to male-female differences in peripheral insulin sensitivity. Indeed,
islets isolated from males and females with equivalent sensitivity also show a sex difference
in protein synthesis repression, a classical ER stress-associated phenotype (75). While
estrogen affects insulin biosynthesis via ERa (93), future studies will need to determine
whether estrogen also allows female islets to restore protein synthesis to basal levels faster
than male islets following ER stress. We currently lack this knowledge, as most studies on
UPR-mediated recovery from protein translation repression use single- and mixed-sex animal

groups, or cultured cells (94-99).
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Assessing whether the recovery of protein synthesis contributes to reduced cell death in
female islets following ER stress will also be an important task for future studies, as prior
studies suggest the inability to recover from protein synthesis repression increases ER-stress
induced apoptosis (94). Ideally, this type of study would also monitor the activity of pathways
known to regulate protein synthesis repression during ER stress. For example, while we did
not detect any changes in levels of phosphorylated elF2a (also known as Eif2s1), which is
known to mediate UPR-induced protein synthesis repression (75), our chosen timepoints did
not overlap with the rapid changes in phospho-elF2a following ER stress published in other
studies (100,101). A more detailed time course will therefore be necessary to assess p-elF2a
levels during ER stress in both sexes, and to test a role for phospho-elF2a in mediating
differences in protein synthesis repression. Ultimately, a better understanding of sex
differences in ER stress-associated phenotypes in 3 cells will provide a mechanistic
explanation for the strongly male-biased onset of diabetes-like phenotypes in mouse models
of B cell ER stress (e.g. Akita, KINGS, Munich mice) (37,38,85). Given the known relationship
between ER stress, B cell death, and T2D, studies on the male-female difference in 8 cell ER
stress-associated phenotypes may also advance our understanding of the male-biased risk of
developing T2D in some population groups.

A further benefit of additional studies on the sex difference in 3 cell ER stress responses
will be to identify mechanisms that support 8 cell insulin production. In rodents, we found that
female islets maintained high glucose-stimulated insulin secretion and increased insulin
content following ER stress, whereas male islets showed significant repression of high
glucose-stimulated insulin secretion under the same conditions. In humans, while a study
using a mixed-sex group of T2D donors shows B cells experience ER stress associated with 3
cell dysfunction (102), we found that changes to 3 cell insulin secretion in T2D were not the
same between the sexes. Specifically, the magnitude of the reduction in insulin release by
cells from female donors living with T2D was smaller than in 8 cells from male donors living
with T2D. Together with our data from rodents, this suggests female  cells maintain
enhanced insulin production and/or secretion in multiple contexts, and the increased 3 cell
function cannot be solely attributed to a sex difference in peripheral insulin sensitivity.

Clues into potential ways that female B cells maintain improved insulin production and
secretion emerge from our examination of the transcriptional response to ER stress in each
sex. Our data shows that Tg treatment induces gene expression changes characteristic of ER
stress (103), and revealed similar biological pathways that were upregulated in T2D donors.
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Furthermore, we identified significant differences between male and female islets in the
transcriptional response to ER stress over time. One notable finding was that a greater
number of B cell identity genes were downregulated between 6- and 12-hour Tg treatments in
females, but not in males. Because most studies on the relationship between 3 cell identity
and function used a mixed-sex pool of islets and (3 cells (68,104,105), more studies will be
needed to test whether there are sex-specific changes to 3 cell identity during ER stress, and
to determine the functional consequences of this sex-specific effect. Ultimately, a better
understanding of changes to 3 cell gene expression and function in males and females will
suggest effective ways to reverse disease-associated changes to this important cell type in

each sex, improving equity in health outcomes (106).

4.1. Conclusions

Our study reports significant sex differences in islet and 3 cell gene expression and stress
responses in both humans and mice. These differences likely contribute to sex differences in
B cell resilience, allowing female 3 cells to maintain better insulin production across multiple
contexts. This knowledge forms a foundation for future studies aimed at understanding how
sex differences [3 cell function affect physiology and the pathophysiology of diseases such as
T2D.
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FIGURE LEGENDS

Figure 1. Sex differences in human islet transcriptomic and functional responses in
type 2 diabetes. scRNAseq data from male and female human 3 cells. For donor metadata
see Supplementary file 6. (A-C) Venn diagrams compare the number of significantly
differentially expressed genes between ND and T2D donors (p-adj<0.05). All differentially

expressed genes (A), downregulated genes (B), upregulated genes (C) in T2D human 3 cells.
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For complete gene lists see Supplementary file 1. (D-F) Top 10 significantly enriched
Reactome pathways (ND vs T2D) from non-sex-specific (D), female (E), or male (F)
significantly differentially expressed genes (p-adj< 0.05). Gene ratio is calculated as k/n,
where k is the number of genes identified in each Reactome pathway, and n is the number of
genes from the submitted gene list participating in any Reactome pathway. For complete
Reactome pathway lists see Supplementary file 1. (G-K) Human islet perifusion data from the
Human Pancreas Analysis Program in ND and T2D donor islets in females (F, I) and males
(G, H). 3 mM glucose (3 mM G); 16.7 mM glucose (16.7 mM G); 0.1 mM
isobutylmethylxanthine (0.1 mM IBMX); 30 mM potassium chloride (30 mM KCI); 4 mM amino
acid mixture (4 mM AAM; mM: 0.44 alanine, 0.19 arginine, 0.038 aspartate, 0.094 citrulline,
0.12 glutamate, 0.30 glycine, 0.077 histidine, 0.094 isoleucine, 0.16 leucine, 0.37 lysine, 0.05
methionine, 0.70 ornithine, 0.08 phenylalanine, 0.35 proline, 0.57 serine, 0.27 threonine,
0.073 tryptophan, and 0.20 valine, 2 mM glutamine). (I-K) Quantification of area under the
curve (AUC) is shown for the various stimulatory media in females (I), males (J) and donors
with T2D (K). (1) In females, insulin secretion from ND islets was not significantly higher than
T2D islets. (J) In males, insulin secretion from ND islets was significantly higher than T2D
islets under 4 mM AAM +16.7 mM glucose (HG) + 0.1 mM IBMX stimulation (p=0.0442;
unpaired Student’s t-test). (K) Total insulin secretion was lower in T2D male islets than ND
male islets (p=0.0503; unpaired Student’s t-test). * indicates p<0.05; ns indicates not

significant; error bars indicate SEM.

Figure 2. Sex-biased gene expression in mouse islet bulk RNAseq. (A) Principal
component analysis (PCA) of RNAseq data from male and female mouse islets. (B) Over-
representation analysis (ORA) of all significantly differentially expressed genes (p-adj < 0.01)
from male and female mouse islets. Top 30 enriched KEGG pathways (large nodes; size =
proportional to connections, darker red color = greater significance) and associated genes
(small nodes; green = male enriched, yellow = female enriched). (C) Top significantly
enriched Reactome pathways from the top 1000 significantly differentially expressed genes.
(p-adj < 0.01) for males and females. Gene ratio is calculated as k/n, where k is the number of
genes identified in each Reactome pathway, and n is the number of genes from the submitted
gene list participating in any Reactome pathway. For complete Reactome pathway lists see
Supplementary file 1. (D) All transcripts of differentially expressed genes under the gene
ontology term “Cellular response to ER stress” (GO:0034976) and genes labeled by their role
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in transcription, translation, protein processing, protein folding, secretion and protein quality

control. (E) All transcripts of differentially expressed ribosomal genes.

Figure 3. Sex differences in mouse islet ER stress-associated phenotypes. (A) Protein
synthesis was quantified in dispersed islet cells from 20-week-old male and female B6 mice
after treatment with 1 uM Tg for 2- or 24-hours. In female islet cells, protein synthesis was
significantly lower after a 2-hour Tg treatment compared to control (p=0.0152; paired
Student’s t-test) and significantly higher after a 24-hour Tg treatment compared to a 2-hour Tg
treatment (p=0.0027; paired Student’s t-test). In male islet cells, protein synthesis was
significantly lower after a 2- and 24-hour Tg treatment compared to control (p=0.0289 [0-2
hour] and p=0.0485 [0-24 hour]; paired Student’s t-test). (B) In both male and female islet
cells protein synthesis was repressed after 2 hours. By 24 hours, protein synthesis repression
was resolved in female, but not male islet cells. (C-H) Quantification of propidium iodide (PI)
cell death assay of dispersed islets from 20-week-old male and female B6 mice treated with
thapsigargin (0.1 uM, 1 uM or 10 uM Tg) or DMSO for 84 hours. n=4-5 mice, >1000 cells per
group. Percentage (%) of Pl positive cells was quantified as the number of PI-
positive/Hoechst 33342-positive cells in female (C) and male (D) islet cells. Relative cell death
at 84 hr in Tg treatments compared with DMSO treatment in females (E, G) and males (F, H).
In female islet cells, cell death was significantly higher in 10 uM Tg compared to control
(p<0.0001; unpaired Student’s t-test). In male islet cells, cell death was significantly higher in
0.1, 1.0 and 10 uM Tg compared to control (p=0.0230 [0.1 pM], p<0.0001 [1 yM] and
p<0.0001 [10 yM]; unpaired Student’s t-test) (D). For E-H, at 84 hours the % of PI positive
cells for each treatment was normalized to the DMSO control avg for each sex. * indicates
p<0.05, ** indicates p<0.01, **** indicates p<0.0001; ns indicates not significant; error bars
indicate SEM.

Figure 4. Sex differences in ex vivo and in vivo insulin secretion. (A) Experimental
workflow of static glucose-stimulated insulin secretion. (B, C) Relative high glucose (20 mM,;
high glucose, HG) in treatments compared with DMSO in female (B) and male (C) islets.
Female islet HG secretion was significantly higher compared with control after 0- and 2-hour
Tg pre-treatments (p=0.0083 [0-hour] and p=0.0371 [2-hour]; Mann Whitney test). Male islet
HG secretion was significantly lower compared with control after a 4-hour Tg pre-treatment
(p=0.0013; Mann Whitney test). (D) Insulin content. Female islet insulin content was
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significantly higher compared with control after a 4-hour Tg pre-treatment (p=0.0269; Mann
Whitney test). (E) Proinsulin content. Female islet proinsulin content was significantly lower
compared with control after a 2-hour Tg pre-treatment (p=0.0437; Mann Whitney test). Male
islet proinsulin content was significantly lower compared with control after 2- and 4-hour Tg
pre-treatments (p=0.0014 [2-hour] and p=0.0005 [4-hour]; Mann Whitney test). (F-H)
Physiology measurements after a 6-hour fast in 20-week-old male and female B6 mice. (F, G)
Insulin levels from glucose-stimulated insulin secretion tests (F: nM, G: % basal insulin)
following a single glucose injection (2 g glucose/kg body weight, i.p). Area under the curve
(AUC) calculations (n=13 females, n=18 males). (F) Insulin levels were significantly higher in
male mice at 0 minutes and 30 minutes post injection (p=0.0063 [0 minutes] and p=0.0009
[30 minutes]; Student’s t-test). AUC was significantly higher in males (p=0.0159; Student’s t-
test). (G) Insulin levels (% baseline). Glucose-stimulated insulin secretion was significantly
higher in female mice 15 minutes post injection (p=0.0279; Student’s t-test). (H) Glucose
levels from glucose tolerance tests following a single glucose injection (2 g glucose/kg body
weight). AUC calculations (n=11 females, n=11 males). For B-E, grey triangles indicate the
concentration of insulin or proinsulin from five islets, black circles indicate the average values
per mouse. For B, ## indicates p<0.01 and ### indicates p<0.001 for comparisons between
treatments and DMSO in low glucose. For all other figures, * indicates p<0.05, ** indicates

p<0.01, *** indicates p<0.001; ns indicates not significant; error bars indicate SEM.

Figure 5. Sex-specific transcriptomic and proteomic profiles following ER stress in
mouse islets. (A) Principal component analysis (PCA) of RNAseq data from male and female
mouse islets treated with DMSO or 1 uM Tg for 6- or 12-hours. (B) Spearman correlation
depicting the variance for the first 5 principal components. (C) Top significantly enriched
Reactome pathways from the top 1000 significantly differentially expressed genes (p-
adj<0.01) for females and males that were upregulated or downregulated between 6-12 hours
of Tg treatment. Gene ratio is calculated as k/n, where k is the number of genes identified in
each Reactome pathway, and n is the number of genes from the submitted gene list
participating in any Reactome pathway. (D) Protein abundance from proteomics data of
female and male mouse islets treated with DMSO or 1 uM Tg for 6 hours. Top 45 differentially

expressed proteins are shown (p< 0.05).
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Table 1 — Human B cell pathway gene numbers. The number of genes corresponding to

each T2D upregulated pathway in males, females or both sexes.

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Sex-specific and non-sex-specific differentially expressed genes in T2D.
scRNAseq data from male and female human B cells. (A-C) Top 60 significantly differentially
expressed genes (p-adj < 0.05). Non-sex-specific (A), female-specific (B), or male-specific

(C). For complete gene lists see Supplementary file 1.

Figure S2. Gene expression changes in T2D. scRNAseq data from male and female
human B cells. (A, B) Top 60 differentially expressed genes (p-adj < 0.05) in females (A) and
males (B). Sex-specific genes are indicated in red text. For complete gene lists see
Supplementary file 1.

Figure S3. Correlations between donor attributes and insulin secretion. Pearson
correlation of all human donors (A), or all donors with Type 2 Diabetes. Significant
correlations are denoted with a star (*). For donor metadata see Supplementary file 6.

Figure S4. Equivalent insulin sensitivity in male and female mice. (A) Insulin tolerance
test (ITT). 20-week-old female and male B6 mice were fasted for 6 hours. Glucose levels (%
baseline) from insulin tolerance tests (ITT) following a single insulin injection (0.75U insulin/kg
body weight). AUC calculations (n=11 females, n=11 males). ns indicates not significant; error
bars indicate SEM.

Figure S5. Mouse islet gene expression clusters by sex. (A) Unsupervised hierarchical
clustering of RNAseq data from female and male mouse islets. Sorting was based on all

genes where the total count was >10 across all samples.

Figure S6. ER stress-induced protein synthesis repression persists in male mouse islet
cells. (A) Representative images of dispersed islets stained with nuclear mask and OPP
labeled with Alexa Fluor 594. (B, C) Integrated staining intensity of Alexa Fluor 594 in nuclear
mask positive islet cells in control media (B, FBS+) or after treatment with DMSO control or 1
MM Tg for 2- or 24-hours (C, FBS-). Protein synthesis is displayed on a per cell basis from
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data shown in Figure 3. n=4-5 mice, >1000 cells per group. Mean values are indicated under
each group. (B) Protein synthesis was significantly higher in male islet cells than female islet
cells in control media, 3.9% (p=0.027; unpaired Student’s t-test). (C) In female islet cells,
protein synthesis was significantly repressed from control-2 hour treatments (p=<0.0001;
unpaired Student’s t-test) and significantly increased from both control-24 hour treatments
and 2-24 hour treatments (p=<0.0001; unpaired Student’s t-test). In male islet cells, protein
synthesis was significantly repressed from control-2 hour treatments (p=<0.0001; unpaired
Student’s t-test) and control-24 hour treatments (p=<0.0001; unpaired Student’s t-test);
however, was not significantly different between 2-24 hour treatments (p=0.07; unpaired
Student’s t-test). * indicates p<0.05, *** indicates p<0.001; ns indicates not significant; error
bars indicate SEM.

Figure S7. Ins2 gene activity is repressed by ER stress induction. /ns2 gene activity in B
cells from 20-week-old male and female B6 mice treated with Tg (0.1 uM or 1 yuM TQ) or
DMSO for 60 hours (n=6 mice per sex, > 1000 cells per group). (A, B) Average change in
fluorescence intensity from all GFP expressing female (A) and male (B) B cells over time.
Data was normalized to the first 2 hours to examine relative change in /ns2 gene activity. (C,
D) Density plot of Ins26FPWT 3 cell GFP fluorescence intensity, log transformed. Data is
shown for each run for females (C) and males (D). (E-H) Average change in high (E, F) and
low (G,H) GFP Ins2CFPWT B cells fluorescence over time from females (E, G) and males (F,
H). Data was normalized to the first two hours to examine relative change in Ins2 gene

activity.

Figure S8. Representative western blot images of UPR protein markers. (A-D) Levels of
ER stress proteins were quantified in isolated islets from 20-week-old male and female B6
mice cultured in DMSO or 1 yM Tg for 24 hours. (A) BiP levels were significantly upregulated
in female Tg vs DMSO (p=0.0011; paired Student’s {-test) but not male Tg vs DMSO
(p=0.1187; paired Student’s t-test). (B) pIRE1a levels were significantly upregulated in female
Tg vs DMSO (p=0.0001; paired Student’s t-test) and in male Tg vs DMSO (p=0.0148; paired
Student’s t-test). (C) CHOP levels were significantly upregulated in female Tg vs DMSO
(p=0.0333; paired Student’s t-test) and in male Tg vs DMSO (p=0.0164; paired Student’s t-
test). (D) p-elF2a levels were not significantly upregulated in either sex. (E-G) Levels of ER
stress proteins were quantified in isolated islets from 60-week-old male and female B6 mice


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491428; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cultured in DMSO or 1 uM Tg for 24 hours. (E) BiP levels were significantly upregulated in
male Tg vs DMSO (p=0.0048; paired Student’s t-test) but not in female Tg vs DMSO
(p=0.3319; paired Student’s t-test). (F) p-IRE1a levels were not significantly upregulated in
either sex (p=0.9257 [female] and p=0.8273 [male]; paired Student’s t-test). (G) p-elF2a
levels were not significantly upregulated in either sex (p=0.8451 [female] and p=0.3076
[male]; paired Student’s t-test). (H) Representative western blot images of 20-week Tg treated
mouse islets. (I) Representative western blot images of 60-week Tg treated mouse islets. *

indicates p<0.05, ** indicates p<0.01; ns indicates not significant.

Figure S9. Female mouse islets retain greater insulin secretion during ER stress. (A)
Insulin secretion at basal (3 mM; low glucose, LG) and stimulatory (20 mM; high glucose, HG)
glucose. Female islet LG secretion was significantly higher compared with control after 2- and
4-hour Tg pre-treatments (p=0.0047 [2-hour] and p=0.0003 [4-hour]; Mann Whitney test).
Female islet HG secretion was significantly higher compared with control after 0- and 2-hour
Tg pre-treatments (p=0.0012 [0-hour] and p=0.0061 [2-hour]; Mann Whitney test). Male islet
LG secretion was significantly higher compared with control after a 0-hour Tg pre-treatment
(p=0.0371; Mann Whitney test). Male islet HG secretion was significantly lower compared with
control after a 4-hour Tg pre-treatment (p=0.0012; Mann Whitney test). (B) Proinsulin
secretion at basal (3 mM) and stimulatory (20 mM) glucose. Female islet HG secretion was
significantly higher compared with control after 0- and 2-hour Tg pre-treatments (p=0.0075 [0-
hour] and p=0.0437 [2-hour],; Mann Whitney test). Male islet HG secretion was significantly
lower compared with control after a 4-hour Tg pre-treatment (p=0.0025; Mann Whitney test). *

indicates p<0.05, ** indicates p<0.01; ns indicates not significant; error bars indicate SEM.

Figure S10. Mouse islet gene expression clusters by sex, treatment and time. (A)
Unsupervised hierarchical clustering of RNAseq data from female and male DMSO or Tg
treated mouse islets. Sorting was based on all genes where the total count >10 across all

samples.

Figure S11. Female and Male mouse islets are enriched in similar pathways following
6- and 12-hour Tg treatments. (A, B) Most significantly enriched Reactome pathways from
the top 1000 significantly differentially expressed genes. (p-adj < 0.01) for females and males
between DMSO vs Tg after 6 hours (A) or 12 hours (B) of Tg treatment. Gene ratio is
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calculated as k/n, where k is the number of genes identified in each Reactome pathway, and

n is the number of genes from the submitted gene list participating in any Reactome pathway.

Figure S12. A greater number of  cell identity genes are downregulated between 6-
and 12- hour Tg treatment times in female mouse islets. (A, B) Treatment:Time interaction
plots of female islet (A) and male islet (B) B cell identity genes in Reactome pathway
“‘Regulation of gene expression in B cells”. The fold change (FC) for DMSO vs Tg was
calculated for each sex and time point (Female 6-hour, Female 12-hour, Male 6-hour, Male
12-hour). The change in FC values (12-hour FC — 6-hour FC) were plotted according to p-adj
values. In females, FC values between 6- and 12-hours are represented by orange and
purple dots, respectively. In males, FC values at 6- and 12-hours are represented by green
and blue dots, respectively. A solid black line connecting the dots indicates genes with a

significant treatment:time interaction.


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Differentially Expressed

Male
Female

127 | 71
(19%) |(11%)

462

D Non-Sex-Specific B Ce// Enr/ched

B 72D Downregulated

Female Male

77
(34%)

15
7%)

138
(60%)

E Female B Cell Enriched

C T2D Upregulated

Female

50| 56
(12%)| (13%)

324

F Male B Cell Enriched

Male

Condition ~ ND Condition ND T2D Condition  ND 20 |
COPI-dependent Golgi-to-ER retro?:%i ® COPI-dependent Golgi-to-ER retro?rraafcéz Cellular responses ta stimul ®
Unfelded Protein Response (UPR) L] COPI-mediated anterograde transport Unfolded Protein Response (UPR) @
Golgi-to-ER retrograde transport ® IRE1alpha activates chaperones Cellular responses to stress (=]
COPI-mediated anterograde transport L Golgi-to-ER retrograde transport IRE1alpha activates chaperones ®
. The role of GTSE1 in G2/M progression a
IRE1alpha activates chaperones L] Unfolded Protein Response (UPR) after G2 checkpoint .
Asparagine N-linked glycosylation @ Metabolism of proteins XBP1(S) activates chaperone genes L
Metabolism of proteins. ® Asparagine N-linked glycosylation Signaling by Hedgehog [
Intra-Goigland relrograde Goigl—&fﬁi 2] Gene Ratio ER to Golgi Anterograde Transport Hh mutants are degraded by ERAD a
056
ER to Golgi Anterograde Transport L] : s Signaling by Hedgehog Hedgehog ligand biogenesis L
Transport fo the Golgi and f"bseq”,e"f [ ] ® o XBP1(S) activates chaperone genes Hh mutants abrogate ligand secretion L]
; ® o008
NGTGH? Intracallaler Dnma-'r?a'::g#aﬁf: (8] Peptide chain elongation Eukaryotic Translation Elongation o
Increti th i s p Nonsense Mediated Decay (NMD)
neretin synthess, ga=r 4 (o] Significance Cellular response to starvation independent of the Exon Junction Complex{ ©
Synthesis, secretion, and inactivation ~ ® <001 h HSP90 ihap?sr?_‘ﬁ)qy?he for steroid Peptide chain el (EIJC)
it 3 (@] ormone receptors in the presence 'eptide chain elongation
of Glucagon-like Peptide-1 (GLP-1) O 001005 of ligand
Signaling by NOTCH2 (@} Cellular responses to stimuli Cap-dep Tr ion Initiati
NOTCHY infracalluter D“ma'T:;":g:Ji:it:: 0] Cellular responses to stress Eukaryotic Translation Initiation{ ©
NOTCH4 Intracellular Domain Regulates " GTP hydrolysis and joining of the 60S
B ranscrigtlo_n 0 HSF1 activation ribosomal subunit
Regulation of gene expression in
late stage (branching morphogenesis) QO HSF1-dependent transactivation Complex | biogenesis
pancreatic bud precursor cells i
NOTCH2 mlraoellular domain regulates ) The citric acid (TCA) cycle and |
transcription o Attenuation phase respiratory electron transport o
RUNX3 regulates NOTCH signaling{ O Regulation.of HSF1-mediated hf:;s"gg; Respiratory electron transport] &
po Respiratory electron transport, ATP
Signaling by NOTCH O Cellular response to heat stress synthesis by chemiosmotic coupling, and{ @
heat production by uncoupling proteins.
-50-25 00 25 50 75 -15 10 -5 0 -5 0 5 10 1§
~logp(FDR) —log;o(FDR) ~logyo(FDR)
G 8 ‘ 4mi AAM H 8 [ 4mM AAM
—— Female ND 3mMMG 167mMG 167 mMG. 30 mM KCI —— Male ND ImMMG  167mMG 167 mM G 130 mM KCI
0.1 mM IBMX c ~ 0.1 mM IBMX
s Female T2D : : (o= —— Male T2D
SE g : 2 &
'ﬁ [= 6 i @ —g.
B 1 —
] i O =
Q 5 @ [5)
B e 4 @
ne 2
(=]
£o £ o
3 > 2 2%
£E 2L
0 1 I I 1 ] I 1 0 I 1 I 1 1 1 1
Duration of Perifusion (min) Duration of Perifusion (min)
| J ns 00503 F M
= 200 - 200 . 2507 — —
3 130‘_|_IND(F) : O 1301.ND ot ; : OEn~o
2 125 -+ O T2p ) ns 2 125 - “@ 120 ™) N 8 ) : O 2o
= ns —_ — o 00+ *
c — [ o
§ 1004 . S 100+ $ 150
5 5 ®
5 754 5 757 c
3 ® S 100+
50 504 z
£ £ —~ 504
S 254 S 254 g
2 z =
AAM AAM AAM KClI AAM AAM AAM KCI Female Male
+LG +HG +HG +LG +HG +HG
+ IBMX + IBMX

Figure 1


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

B . Clearance of Nuclear Envelope Unfolded Protein Response

L ]
A ® .Membmneafmmchromam ) - Neglycan trimming in the ER and
- ~ Calnexin/Calreticulin cycle
ag w. * Sphingolid metabolm PP L e Uprequmed
Female Male Genes by XBP1S) %%, o e e e o0
Q a »® ‘M L] r: Pathway Nodes
§ L ! . * .Anﬂvﬂmnfcmmnwmam A R N fee i p.adj Gene Set Size
= . EEE L S 0.03
g o . N .o m}mn;mtupmmnpgpms". oo
o e, PR e
£ . s 2, @ CIILE ot
“50 - - . 4 C T ‘.. o’."‘u--
'69 L/ . o: 6.
9 ® * . =F B
& L L=
o £ b5 Nk
L] - =
g-10 .Aﬂhﬁwﬂ"&m Expression by SREBP st wTransponlomeGolgiandsubmuerdmodmmm
e W S Mi d trafficking of
i .RaguMmofcmmutamymwskﬁsp '_ mmhhﬁmﬂmm“
4 | Chaperonin-mediated protein foldi
e U o .cyimoilciRNAam'huacylaf g etadent = halt! ~ a8 Recruitment of NuMA o "
. 270, : i ion & i ekt " Recr
PC1: 37% of the variance = —4 .nﬁapwnohonka&ﬁchng ‘aeuiﬂan 2 st ot
..."- . Y : " Protein folding
¥ .-./--\ . bt \Trunmodﬁfwmmnshmepmm
e (| IRNAAminoacylation * © o % ."', . | Post-chaperonin tubuin folding pathway
€ = '-.:.-'  Cooperation of Prefodin and THC/CCT
- o %o ~ in actin and tubulin folding
““_" Membrane Trafficking
C Enriched Pathways D ER Stress Genes
Sex
Unfolded Protein Response (UPR) kol
SRP-dep. Cotranslational | ®
protein targeting to membrane
IRE1alpha activates chaperones - L]
XBP1(S) activates chaperone genes L ]
Axon guidance ) Sex
Activation of gene expression by SREBF @ ® Ml
Translation 3] @ Fernale
rRNA processing in nucleolus and cytosol 1 D
Regulation of cholesterol | ®
biosynthesis by SREBP Gene Ratio
Eukaryotic Translation Elongation - ® . 015
Peptide chain elongation 1 ] ® oo
Formation of free 408 subunits | ® ® oo
Cap-dep. Translation Initiation { @ ® oo .
Eukaryotic Translation Initiation ®
NMD indep. of Exon Junction Complex 1 [ Significance
rRNA processing in nucleus and cytosol { [ @ oo
L13a-mediated translational | P :
silencing of Ceruloplasmin QO 001005 B
GTP hydrolysis and joining of 60S subunit- ®
Eukaryotic Translation Termination @
MT-dep. trafficking of connexons | ®
from Golgi to membrane |
Nuclear Receptor transcription pathway O |
5 0 5 10 |
—log4p(FDR)
Ei
E Ribosome Genes
4
2 e =
3
n
N ¥ Transcription
0 c
g [ Translation
-2 g [l Protein Processing
[ Protein Folding
-4 ¥ secretion

¥ Protein Quality Control

Row Z-score

Figure 2


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

Islet Protein Synthesis B Relative Islet Protein Synthesis
ns * *
200000+ * kR * ns
o

>

110+ 'T *%k

1004 © o
1500004 | ' -

©
T

1000004 o o

F 0 B

o
<

8 - o.{: e

so0004 L | e

Average Integrated
Flourescence Intensity

Relative protein synthesis (%)
(o)}
<

O Female ‘@ Male
T T T T T

50_0 Female © Male
Tg (treatment '

0
Tg (treatment ;Ig hr Tg 24 hrTg

. = 24 hr .
time) 2hr 24 hr 2 hr time)
C Time Course Cell Death - Female D Time Course Cell Death - Male
1009 o~ 0.1% bMSO 1009 o~ 0.1% DMSO
—— 0.1uMTg —— 01pMTg
w 804 -+ 10uMTg o 804-+ 10uMTg
© -8 0.2% DMSO © -8 0.2% DMSO
3 10 M Tg g ~— 10uMTg
= 804 2 509
= =
g 8 40
o o
2 2 20-
0 II T L] L T L T 1
0 12 24 36 48 60 72 84 0 12 24 36 48 60 72 84
Time (hours) Time (hours)

E 5 1250 ns F o 1250+ - G 1250  wnne H 12500 wune
2 rs 2 e 2 2 :
o 10004 —— o 10004 o 10004 O 1000- .
[ [ [ [ s
2 750 2 750+ Q750 :* 2 750+
ke © © °2’ ©
& 500+ ¢ 5004 ¢ 5004 & 500-

S * o = = =
§ 2509 o % § 250 § 250 o § 250-
[ ]
RS T W B = 100 = 1003
Tg(uMm) - 01 1.0 Tg (uM) Tg (uM) - 10 Tg (uM) - 10

Figure 3


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

Relative HG
Insulin Secretion

Insulin Content

A

4 hr

Pre-incubation in 3 mM KRB

Discard Media

2 hr

et

(pmol/L) per 5 islets
- -
[$)] o [$)]
o o o
o o o
1 1 1

_|
[(e]
S o
3

-

0.20+

Insulin (nM

Female - Male

T
15

Time (min)

Female - Male

0

Treatments

e 0 hr Tg pre-treatment
e 2 hr Tg pre-treatment
E=—=—-T ] 4 hr Tg pre-treatment

T DMSO

hr

04
0

15 3 60
Time (min)

90

Relative HG
Insulin Secretion

0.75 hr

High Glucose 20 mM Extraction Buffer

:) Collect Media Freeze Plate

1.5 hr

8000+

6000+

4000+

20004

Proinsulin Content
(pmol/L) per 5 islets

Tg (hr)

()

300+

2004

1004

Insulin (% fasting)

Female -+ Male

15
Time (min)

Figure 4


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

A 5
Female 6 hr
10
Female 6 hr
s | To gt
S SFemale 12 hr s
2 DMSO Female
2 12 hr Tg
= 0
o
S Male 6 hr
& -5/Male 12 hr Tg/ = A
g |DMSQ . .
Male 6 hr :
-10 DMSO Male
12 hr Tg
-15 | |
-30 -20 -10 0 10 20 30

PC1: 63% of the variance

C Islet Pathway Enrichment [up/downregulated genes 6-12 hr]
Regulation at 12 hr oo [INURIIIN

Cellular responses to stimuli{
Cellular responses to stress

Axon guidance 1

Cellular response to starvation
Cap-dependent Translation Initiation {

EIF2AK4 (GCN2) response to amino acid deficiency
mRNA activation upon binding of cap-binding |

complex and elFs and binding to 43S

Response of EIF2AK1 (HRI) to heme deficiency
Transcriptional Regulation by MECP2 1
Regulation of MECP2 expression and activity 1
ECM proteoglycans

Regulation of beta-cell development{ ©

NCAMT1 interactions{ =
Assembly of collagen fibrils |

and other multimeric structures

Regulation of gene expression in beta cells{~
5 0 5

Sex

e Female
@ Make

Gene Ratio

) @ o:
- @ o

of ® o1

Significance

® <001

QO 001008
>0.05

10 15 20
-logy(FDR)

B =

0]

o &

5 E O

n = -
PC1|-02 0.1

PC2 0.1 041

PC3| 0.0 -0.1

PC4| 0.0 -0.1 -01

PC5(-01 01 -00

| M
-1 -05 0 05 1
Spearman's Correlation

D Differentially Expressed Islet Proteins
o Mae

Hmgb1 *
Ak3 *
Psph *
Atpbvid *
Tssc4
Rpl2211 *
Ddrgk1 *
Hba *
Sarnp
Emb
Pfn1*
Rent *
Praf2 *
Cog3 *
Ctnnbl1 *
Ube2o *
Cyp20at *
Cog5 *
Slc7a14 *
Surf4 *
Gosr1 *
Nceht *
Ptprf *

Cltrn
Nsun2 *
Becip *
Sunt *
Parp1 *
Tbetd? *
Ostf1 *
Bcap31 *
Rps24 *
Ktn1 *
Tmem33 *
Fbxo6 *
Huwet *
Ca15*
Rtn3 *
Pdcd4
Abcb9 *
Fkbp9
Sh3glb1 *
Abcf1 *

e
0 0.1 02
log,(Fold Change)

L 3
-0.2 -0.1

Cacna2d1 *

-
02 -0.1

log,(Fold Change)

Fam20b *

Krtcap2 *
Ca47 *
LucTi3 *
Sgstm1 *
Snap23 *

Timm13 *

Psap ™
Ptms *
Cfdp1 *
Chgb *
Arpin *
7

Sic9a3r1 "

Rps28 *
Tacct *
Inst *
Piprn *
Pdyn *
Tsscd
Emb
0s9 *
Igfbp7 *
Krtto*
30 *
Nuch1*
Kit2 *
Peals”
K79 *
Pdcd4
Krt5 *

Chchd2*

Neild *
Sdf4 *
Ren2 *
Scgs *
Cltrn

Krt72 *
Fkbp9

Runde3a *

Polr2h *
Chd4 *

i
0 01 02

Figure 5


https://doi.org/10.1101/2022.05.10.491428
http://creativecommons.org/licenses/by-nc-nd/4.0/

Number of Pathway Genes
Pathway Name Unique Common Unique

Male Female
Asparagine N-linked glycosylation 16 9 4
Cellular responses to stimuli 49 9 6
Cellular responses to stress 47 9 6
COPI-dependent Golgi-to-ER retrograde traffic 7 6 2
COPI-mediated anterograde transport 7 5 2
ER to Golgi Anterograde Transport 10 5 2
Golgi-to-ER retrograde transport 7 6 2
Hedgehog ligand biogenesis 12 4 1
Hh mutants abrogate ligand secretion 12 3 1
Hh mutants are degraded by ERAD 12 3 1
IRE1alpha activates chaperones 9 3 1
Metabolism of proteins 69 20 13
Signaling by Hedgehog 16 6 2
The role of GTSE1 in G2/M progression after G2 checkpoint 14 4 1
Unfolded Protein Response (UPR) 13 3 1
XBP1(S) activates chaperone genes 8 3 1

Table 1
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A Non-Sex-Specific Differentially Female-Specific Differentially C Male-Specific Differentially
Expressed Genes in 8 Cells Expressed Genes in 8 Cells Expressed Genes in 3 Cells

G6PC2 * HSPA5 ™
1APP * C2zorf42 *
HADH * PITHDT *
NPTX2* s8DS *
INSIGT * UBE2D1*
SCGN* sLcaaz*
RPN2 * RHBDDZ *
GNAS * EFGAM *
PCSK1T * EEF1A1*
ACPP * RAB1A *
ABCCS * ATPEVODT *
PTPRN * GADD458 *
KCNK17 PPP1R15A *
ASB9 * MLF1*
PAM* Clort43 *
TNFRSF21 * usc*
MT-ATPS * TR *
OTULINL * RBP4 *
scps* UBE2D3 *
PROXY * MYDGF *
|mr-no7* DNTTIPZ *
|EHF* PERP*
GOLGA4 * cnBP
ZC3HAV1* HMGN2 *
IPPK * DCP1A *
. RPS27* NUDC *
287838 * NEUT *
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A Top 60 Differentially Expressed B Top 60 Differentially Expressed
Genes in Female 3 Cells Genes in Male 3 Cells
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A Ins2 Gene Activity - Female B Ins2 Gene Activity - Male
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