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Abstract

Theoretical and empirical accounts suggest that adolescence is associated with
heightened reward learning and impulsivity. Experimental tasks and computational
models that can dissociate reward learning from the tendency to initiate actions
impulsively (action initiation bias) are thus critical to characterise the mechanisms
that drive developmental differences. However, existing work has rarely quantified
both learning ability and action initiation, or it has tested small samples. Here, using
computational modelling of a learning task collected from a large sample (N=742, 9-
18 years, 11 countries), we tested differences in reward and punishment learning
and action initiation from childhood to adolescence. Computational modelling
revealed that whilst punishment learning rates increased with age, reward learning
remained stable. In parallel, action initiation biases decreased with age. Results
were similar when considering pubertal stage instead of chronological age. We
conclude that heightened reward responsivity in adolescence can reflect differences
in action initiation rather than enhanced reward learning.
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15 Introduction

16 Adolescence is a time of great change, as young people navigate their way from the
17 dependency of childhood to the independence of adulthood. Theoretical accounts
18 suggest it is a period of risky, impulsive, and reward-seeking behaviour, which is
19 hypothesised to reflect neurobiological changes that lead to heightened reward
20 learning’™. Adolescence is also a high-risk period for the onset of mental disorders®,
21 including disruptive behaviour disorders’, which are strongly associated with
22 impulsive behaviour and difficulties with reinforcement learning®. Internalising
23  problems are likewise associated with difficulties in reinforcement learning®'°, and
24  social media use, which can become problematic for some adolescents™, and has
25 recently been linked to reward learning mechanisms™. However, reward- and
26  punishment-guided behaviour in adolescence is not well understood. This is because
27  distinct psychological processes can manifest in similar overt behaviour, and
28 traditional data analysis techniques are usually not well suited to capturing these
29 covert processes™. A myriad of terms have been developed to describe closely
30 related concepts, such as reward learning, risk-taking, and impulsivity'®, which,
31 though they might reflect similar behaviour, point to distinct psychological processes.
32 Furthermore, these concepts are typically operationalised using questionnaires or
33 summary performance measures from behavioural tasks, which cannot capture the
34 temporally dynamic nature of learning processes™. In consequence, our
35 understanding of adolescent behaviour has been impeded by our inability to
36  distinguish between learning processes and other mechanisms that might manifest
37 in similar behaviour, such as response biases. Here, we use computational
38 modelling to distinguish between learning processes (modifying future behaviour
39 Dbased on past experience of reward and punishment) and action initiation or ‘go’
40 Dbiases (initiating actions impulsively or ‘blindly’, without regard for consequences).
41  We test whether these different mechanisms are separable, and to what extent they
42  exhibit normative developmental differences across late childhood and adolescence

43 in alarge and internationally diverse sample.

44  Computational modelling of learning typically uses reinforcement learning models,
45 which assume that actions and their outcomes become associated through
46 experience, and the learned value of an action then influences the likelihood of

15,16

47 repeating that action in the future™ . There has been a relative paucity of
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48 computational modelling work focusing on learning in adolescence, and previous
49 studies were not designed to distinguish between learning processes and action
50 initiation biases. Probabilistic learning tasks have suggested an adolescent peak in
51 reward learning’’ and relatively better reward (versus punishment) learning in
52 adolescents compared to adults'®. Reversal learning tasks (with changeable
53 outcome probabilities) have pointed to increased punishment learning in adolescents
54 compared to adults'®, a trough in punishment learning rates in mid-adolescence
55 coupled with a sudden increase in reward learning rates in early adulthood®, or
56 peaks in both punishment and reward learning in late adolescence?®'. Together these
57 studies suggest that reward and punishment learning might differ across
58 adolescence, but they provide inconsistent evidence. Part of this variability could be
59 due to different task demands?, but it could also reflect the reliance on smaller and
60 non-diverse samples that are not fully representative of adolescents across different

61 countries.

62 To our knowledge, only one study to date has measured learning in a task design
63 that incorporates requirements both to learn and also to inhibit actions®. This study
64 compared reward and punishment learning as well as the tendency to ‘go’ (initiate an
65 action) vs. ‘no-go’ (withhold an action) in children (8-12, n = 20), adolescents (13-17,
66 n = 20), and adults (18-25 years, n = 21). Relative to both children and adults,
67 adolescents exhibited attenuated ‘go’ and Pavlovian (action-consistent-with-valence)
68 biases. Learning was best captured by a generic (not valence-specific) learning rate,
69 and learning rate was not associated with age in this sample. This study suggests
70 that, like learning rates in previous studies, action initiation biases might display

71 developmental differences across adolescence.

72 In summary, adolescence has been associated with an enhanced ability to learn
73  from reward and possible differences in learning from punishment, but evidence has
74  been inconsistent. The literature is made harder to interpret by small sample sizes,
75  two-group designs (which cannot detect quadratic relationships), and lack of learning
76  contexts designed to assess action biases. Therefore, despite evidence that learning
77 processes can undergo profound changes during adolescence, very little is known
78 about how learning mechanisms differ from action initiation biases during this crucial

79  developmental period or about the robustness of previous findings.
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80 Here, we examined differences in reward and punishment learning and action
81 initiation, using a large, diverse sample (N = 742) of youths aged 9-18 years
82 recruited from across Europe. Participants viewed a series of abstract 3D objects
83 and had to learn by trial-and-error whether to respond (‘go’, to win points) or withhold

84 responding (‘no-go’, to avoid losing points) for each object?*?°

(see Figure 1). We
85 built a set of reinforcement learning models that were fitted to the data using a
86 hierarchical expectation maximisation approach and compared using Bayesian

%6-28  These models varied in terms of whether

87 model comparison methods
88 parameters were included for separate reward and punishment learning rates, action
89 initiation biases (the tendency to respond regardless of expected outcome), and

90 sensitivity to the magnitude (number) of points gained or lost.

91 We find that a computational model including separate reward and punishment
92 learning rates, a constant action initiation bias (that measures the tendency to ‘go’
93 vs. ‘no go’ regardless of reward or punishment on each trial), and a single outcome
94 magnitude sensitivity parameter best explains behaviour. Strikingly, we show an
95 asymmetry in learning differences. While reward learning rates remain stable,
96 punishment learning rates increase from childhood to adolescence. In parallel,
97 despite stable reward learning, action initiation biases decrease with age. All results
98 remain the same when replacing chronological age with pubertal stage. These
99 findings point to normative developmental differences in punishment learning and
100 action initiation. They suggest that theoretical accounts positing heightened
101 responses to reward in adolescence should consider differences in impulsive action
102 initiation rather than reward sensitivity or learning. Such findings are critical for our
103 understanding of learning and decision-making in adolescence as well as how
104 learning and action initiation can go awry in the transition from childhood to

105 adolescence.
106
107
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109
110
111


https://doi.org/10.1101/2022.05.05.490578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.05.490578; this version posted May 17, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

112
113
114
da
No. Participants
0-19
20-39
Szeged 40-59
- : © 60-79
Bilbao : : . 80-99
" R ndliP YN M 180-199
orce ona | . 200+
ngr_ens_
b _
- /_YouhavewﬁN - e _
(™ el ‘ |
- 2107 s o
R L ot 1 00 0
pors = e fout®® ol
~ Cue pOintiJ'“t?_.,--- | s
Outcome
(go) - Outcome ’
(go) Cue Outcome
115 (no-go)

116 Figure 1. Recruitment sites and learning task. (a) Number of participants
117  recruited from each country. Countries are coloured according to the total number of
118 participants, with individual recruitment sites marked in yellow. (b) Details of the
119 learning task (shown here in the English language version). The aim of the task was
120 to learn whether to respond or withhold responses to stimuli in order to earn points.
121  Participants learnt by trial and error whether to make or withhold a button press to
122  obtain a reward (points) or avoid punishment (losing points). Eight unfamiliar stimuli
123  were presented individually for 2500ms or until a button press response was made.
124  Responses were followed by feedback on the outcome (1000ms) or a running total
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125 alone if the participant did not respond. Each stimulus had a fixed value of +/- 1,
126 700, 1400, or 2000 points and was shown once per ‘block’ for 10 blocks, with a
127 randomised order within blocks. Thus, four stimuli were associated with reward and
128 four with punishment. Participants started the task with 10,000 points and could
129 theoretically finish with a score between 51,010 and -31,010.

130 Results

131 We analysed behaviour of 742 participants (491 girls) aged 9-18 years (mean 13.99,
132 SD = 2.48, median pubertal stage ‘late pubertal’) (see Methods) who completed a
133 reward and punishment learning task (see Figure 1). All participants were free from
134  psychiatric disorders. Pubertal status was measured using the self-report Pubertal
135 Developmental Scale (PDS;* see Methods). After modelling the learning task data,
136 we tested associations between age, pubertal status, and participants’ model
137 parameters, as well as behavioural responses. Age was treated as a continuous
138 variable in all these analyses, although for presentation purposes, we divide age into
139 three discrete bins. To test for quadratic associations between age and model
140 parameters, we tested all models with age? included. We first examined whether
141 there were associations between age or pubertal status and sex or IQ. As there were
142 some associations between these measures (see Supplementary materials), we
143 included sex and 1Q as covariates of no interest in all analyses of participants’
144  behavioural responses and model parameters. For each of these analyses, we ran
145 two models to assess developmental changes: one with participant chronological
146 age and one with pubertal status. Six participants who were included in the
147  computational modelling were removed from subsequent analyses due to missing 1Q
148 data.

Computational modelling shows that a model with separate reward and

punishment learning rates and an action initiation bias best explain behaviour

149 Before fitting and comparing the computational models we analysed participants’
150 behavioural responses across the task to test whether participants were able to
151 learn. A generalised linear mixed model (GLMM) (predicting correct responses from
152 age, stimulus repetition number, outcome valence, and covariates; see Methods)
153 revealed a significant main effect of stimulus repetition on the number of correct
154  responses made, with performance improving throughout the task (Odds ratio (OR) =
155 1.19[1.17, 1.21], z=18.56, p < .001). Thus, participants exhibited learning.
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156 Next, we compared a range of computational models of reinforcement learning to
157 characterise participants’ choice behaviour. In particular, we compared models that
158 varied in terms of a single learning rate or separate learning rates for reward and
159 punishment (influence of recent outcomes on future responses), initial or constant
160 action initiation biases (bias to respond versus not respond on the first presentation
161 of an object, or bias to respond versus not respond across all trials, respectively) and
162 sensitivity to the magnitude of reward, punishment or both (sensitivity to points
163 gained or lost). Models were fitted using a hierarchical expectation maximisation
164 approach and compared using Bayesian model comparison methods®* %%, we
165 constructed seven different models using an iterative procedure to appropriately

166 constrain the model space (see Methods for full details):

167 1. af: single learning rate (a) and temperature parameter (p)

168 2. 2ap: reward a, punishment a, B

169 3. apb_i (1): single a, B, initial ‘go’ bias (b_i)

170 4. apb_c (2): single a, B, constant ‘go’ bias (b_c)

171 5. 2apb_i or 2apb_c: reward a, punishment a, B, b_i or b_c (depending on

172 winner from 3. & 4.)

173 6. 2aBb_ip or 2aBb_cp: reward a, punishment a, B, b_i or b_c, magnitude
174 sensitivity (p)
175 7. 2aBb_i2p or 2aBb_c2p: reward a, punishment o, B, b_i or b_c, reward p,
176 punishment p

Models were compared on exceedance probability, Log Model Evidence (LME), and
the integrated Bayesian Information Criterion (BICiy). We found that Model 6, which
included separate learning rates for reward and punishment, a constant action
initiation bias, and a single (valence-insensitive) magnitude sensitivity parameter,
best explained behaviour (see Figure 2). This model had the highest exceedance
probability (0.99) and the highest LME (-34066.81), and performed similarly to
model 5 on BICiy, which had the lowest absolute BICi. We further validated the
winning model using parameter recovery and model identifiability procedures (see
Methods for details) and showed good recovery and identifiability for the winning
model (see Figure 2 and Supplementary materials). We also examined observed

and modelled behavioural performance as predicted by the winning computational
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model and showed that our model was able to reproduce participant behaviour (see

Supplementary materials).
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178 Figure 2. Model performance and validation. (a) Exceedance probability for the
179 seven computational models that comprised the model space. The winning model
180 was the 2apbp model, with separate reward and punishment learning rates, a
181 constant action initiation bias, and a magnitude sensitivity parameter. (b) ABICiy,
182 relative to the winning model (2apb_c). (c) ALME, relative to the winning model
183 (2aBbp). Model 6 (2apb_cp) won on two of the three performance measures
184  (exceedance probability and ALME) and performed similarly to model 5, which had
185 the lowest absolute ABICi,.. We therefore selected Model 6 as the winning model (d)
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186 Parameter recovery. The confusion matrix represents Spearman correlations
187 between simulated and fitted (recovered) parameters. Each parameter exhibited a
188 significant positive correlation between its true and fitted values, with r values
189 ranging from 0.1 — 0.83 (shown on the lower diagonal) (e) Exceedance probability
190 from the model identifiability procedure. The diagonal represents the probability of
191 each model having the best fit to its own synthetic data. The winning model (2apb_c)
192  was highly identifiable from other models. (f) Number of runs where each model was
193 selected as the best fit for data generated by each model in the model identifiability
194  procedure. The diagonal represents the number of runs each model was selected as
195 the best fit for its own data. The winning model (2aBb_c) was the best fit to its own
196 data.

Punishment learning rates increase with age, while action initiation biases
decline

197 Next, we assessed whether the parameters from the winning computational model
198 varied as a function of age, using a GLMM predicting correct responses from age,
199 stimulus repetition number, outcome valence, and covariates. Strikingly, age was
200 strongly associated with increased punishment learning rates (8 = 0.10 [0.05, 0.15],
201 z =4.26, p <.001), and lower action initiation biases (8 = —0.20 [-0.28, -0.12], z =
202 -4.78, p < .001; see Figure 3). Importantly, reward learning rates did not differ
203 significantly with age (8 = 0.01 [-0.06, 0.07], z = 0.17, p = .86). To confirm the
204  strength of these associations, and obtain strength of evidence for any null effects,
205 we calculated Bayes factors using the BIC method® and linear mixed effects
206  regression models, with age removed from the null model. We observed very strong
207 evidence for the associations between age and punishment learning rate (BFio =
208 336.00, BFp; = 0.003) and between age and action initiation bias (BF0 = 6545.00,
209 BFo; =0.0002). In contrast, there was no evidence for associations between age and
210 reward learning rate (BFip = 0.07, BFo; = 14.30, substantial evidence in support of
211  the null).

212 We observed a weaker negative relationship between magnitude sensitivity and age
213 (B=-0.09 [-0.17, -0.01], z = -2.26, p = .02), and no relationship between age and
214  temperature parameter (8 = 0.002 [-0.07, 0.08], z = 0.06, p = 0.95). Bayes factors
215 showed anecdotal evidence in support of the null for magnitude sensitivity (BFio =
216 0.51, BFo; = 1.97) and substantial evidence for no difference in the temperature
217  parameter (BF0 = 0.04, BF; = 26.20).
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Figure 3. Age differences in action initiation bias and punishment learning, but
stable reward learning. (a) Punishment learning rate across three age groups.
Punishment learning rates increased linearly with age (8 = 0.1 [0.05, 0.15], z = 4.26,
p < .001, BF;o = 336.00, BFo; = 0.003). (b) Action initiation bias across three age
groups. Action initiation biases declined linearly with age (8 = -0.20 [-0.28, —-0.12], z
=-4.78, p < .001, BF;o = 6545.00, BFp; = 0.0002). (c) Reward learning rates across
three age groups. Reward learning rates remained stable with age (8 = 0.01 [-0.06,
0.07],z=0.17, p = .86, BF31p = 0.07, BFo; = 14.30), including no significant quadratic
effect (8 = -0.83 [-2.37, 0.70], z = -1.07, p = .29). Points and errors bars represent
means and 95% confidence intervals of the means for each group, with raw data
represented by smaller points. Division into age groups is for presentation purposes
only; age was treated as a continuous variable in all analyses.

Lack of associations between age and model parameters might also reflect non-
linear associations, especially for reward learning (See Figure 3c). We therefore
tested for quadratic effects of age by adding age® terms to the models. However,
none of the model parameters exhibited significant quadratic associations with age
(temperature parameter: 8 = 0.99 [-0.87, 2.85], z = 1.04, p = .30). Reward learning
rate: B =-0.83 [-2.37, 0.70], z = -1.07, p = .29). Punishment learning rate: 8 = 0.37
[-0.80, 1.54], z = 0.62, p = .54). Action initiation bias: 8 = -0.57 [-2.63, 1.49], z =
—-0.54, p = 0.59). Magnitude sensitivity: 8= -0.10 [-2.10, 1.90], z = -0.10, p = .92).
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227 Next, we assessed whether pubertal stage also predicted differences in punishment
228 learning and action initiation (Figure 4). We re-ran the same models with pubertal
229 stage rather than chronological age. These analyses revealed a similar positive
230 association with punishment learning rate (8 = 1.41x107* [6.20x107°, 2.20x107], z =
231 3.48, p <.001), a negative association with action initiation bias (8 = -0.001
232 [2.00x107°% 5.00x107%], z = -3.40, p = .001), and no significant association with
233 reward learning rate (8 = 5.4x107° [-5x107°, 1.6x107", z = 1.02, p = .31). There was
234  also a negative association with magnitude sensitivity (8 = -0.01 [-0.01, —-0.001], z =
235 -2.21, p = .03) and no significant association with temperature parameter (8 =
236 -2x10°[-5x10° 10x10°], z=-1.29, p = .20).
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238 Figure 4. Pubertal maturity differences in action initiation bias and punishment
239 learning, but stable reward learning. (a) Punishment learning rates across five
240 pubertal stages. Punishment learning rates increased with pubertal stage (8 =
241 1.41x107*[6.20x107°, 2.20x107%, z = 3.48, p <.001). (b) Action initiation bias across
242  five pubertal stages. Action initiation biases decreased with pubertal stage (8 =
243  -0.001[2.00x107°, 5.00x107"], z = -3.40, p = .001). (c) Reward learning rates across
244  five pubertal stages. Reward learning rates were stable across puberty (8 = 5.4x107°
245 [-5x107°, 1.6x107%, z = 1.02, p = .31). Points and errors bars represent means and
246  95% confidence intervals of the means for each group, with raw data represented by
247  smaller points.
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248 Model parameters predict task performance

We next assessed whether differences in model parameters across age were
associated with task performance. Overall task performance (proportion of correct
responses) was positively correlated with reward learning rate (Spearman’s ros) =
0.40 [0.33, 0.46], p <.001) and punishment learning rate (Spearman’s regs = 0.67
[0.63, 0.71], p <.001) and negatively correlated with action initiation bias
(Spearman’s reggz = —0.26 [-0.33, -0.18], p <.001). Temperature parameter values
and magnitude sensitivity were also negatively correlated with task performance
(Spearman’s regz = —0.39 [-0.45, —0.32], p <.001, and ree3 = —-0.19 [-0.26, —0.12],
p <.001, respectively). Correlations between model parameters and reward and

punishment task performance are shown in Supplementary materials.

249 Behavioural responses confirm age differences in reward and punishment

250 learning

251 To further confirm that our model accurately captured behaviour, we examined
252 whether age was associated with ‘model-free’ behavioural responses over stimuli
253 repetitions (Figure 5). Age was a significant positive predictor of overall learning
254  (GLMM: age by stimuli repetition interaction: OR = 1.02 [1.01, 1.04], z = 2.49, p =
255 .01) and older participants also made more correct responses in total (OR = 1.08
256 [1.04, 1.11], z = 4.58, p <.001). However, this age-related learning improvement was
257 specific to learning from punishment outcomes (age by repetition by valence
258 interaction: OR = 1.09 [1.05, 1.13], z = 4.65, p <.001). By contrast, learning from
259 reward outcomes remained stable with age. To quantify the strength of evidence for
260 this stable pattern, we calculated a Bayes factor using the BIC method®, by
261 repeating the GLMM model for reward trials only (and removing the valence term),
262 then repeating this reward-only regression with the age*repetition interaction
263 removed. This generated strong support for the stability of reward learning across

264  age (BFo1 = 57.80; very strong evidence in support of the null).

265 In line with our model parameter approach, we tested for quadratic effects of age on
266  behavioural responses. Although this slightly improved the model fit (ABIC = -27.79,
267 p = .003), the age? term was not a significant predictor of correct responses (OR =
268 0.99 [0.96, 1.02], z = -0.41, p = .68) or of overall learning (age® by repetition
269 interaction: OR = 0.99 [0.97, 1.01], z = -0.87, p = 0.39). However, we did observe a
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270  significant age” by repetition by valence interaction (OR = 1.08 [1.04, 1.12], z = 3.98,
271 p<.001) as well as the significant age by repetition by valence interaction (OR = 1.09
272 [1.05,1.13], z = 4.52, p <.001), suggesting that the punishment-specific improvement

273 inlearning was patrtially non-linear.

274  Since feedback during the task was given in the form of point scores, we also
275 checked for age-related improvements in point score. As expected, older participants
276 gained more points than younger participants overall (robust linear mixed effects
277  regression: §=0.16[0.09, 0.23], z = 4.27, p < .001).

278 Age-related improvement in punishment learning is not better explained by

279 pubertal development

280 We next examined whether these age-related improvements in punishment learning
281 were also observed for pubertal stage. Similar to age, pubertal stage was positively
282  associated with overall performance (OR = 1.06 [1.03, 1.10], z = 3.71, p <.001), and
283  with improved learning (OR = 1.03 [1.01, 1.05], z = 2.95, p = .003). However, we did
284 not observe a significant pubertal stage by repetition by valence interaction (OR =
285 1.04 [0.10, 1.07], z = 1.87, p = .06), suggesting that the punishment-specific
286 improvement in learning was better captured by age than by pubertal stage.
287  Furthermore, the model using age was a better fit to the data than the model using
288 pubertal stage (ABIC = -137.22).
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290 Figure 5. Reward and punishment responding across stimulus repetitions, by
291 age and pubertal stage. (a) Proportion of ‘go’ responses to reward stimuli across
292 repeated stimulus presentations, for three age groups. (b) Proportion of ‘go’
293 responses to punishment stimuli across repeated stimulus presentations, for three
294  age groups. (c) Proportion of ‘go’ responses to reward stimuli across repetitions, by
295 pubertal stage. (d) Proportion of ‘go’ responses to punishment stimuli across
296 repetitions, by pubertal stage. In all panels, points represent means and error bars
297 are 95% confidence intervals of the mean. Dashed lines indicate chance
298 performance. Note that ‘go’ responses are correct for reward and incorrect for
299 punishment stimuli; thus, learning is demonstrated by increasing responses to
300 reward and decreasing responses to punishment stimuli.
301
302 Discussion
303 Adolescence is often considered as a period of heightened sensitivity to reward*™.
304 Using a large, well-characterised, multi-country sample, we demonstrate that, in fact,
305 reward learning rates remain stable across adolescence whilst the tendency to
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306 initiate actions decreases. Moreover, punishment learning rates increase across
307 adolescence, with the oldest adolescents learning the most rapidly from punishment
308 feedback. These findings remained the same when we replaced chronological age
309 with pubertal status, and we found evidence that these differences in model
310 parameters reflected linear associations across adolescence rather than quadratic
311 effects. Together, our findings suggest that the tendency to initiate actions and learn
312 from punishment shifts from late childhood across adolescence and that future
313 research should account for changes in action initiation when evaluating differences
314 in valenced processing of reward and punishment. Our findings also demonstrate

315 these associations robustly by testing a large and geographically diverse sample.

316 These results highlight the importance of distinguishing between valenced learning
317 mechanisms and action initiation biases. While previous research has demonstrated

318 heightened reward learning in adolescence’®

, we demonstrate that apparent
319 reward-oriented behaviour can sometimes reflect action initiation biases, rather than
320 reward learning processes. Knowledge of these developmental differences is an
321 important prerequisite for understanding how adolescent development can go awry,
322 for example in behavioural disorders, where there appear to be disruptions in

323 reinforcement learning®*

. It is plausible that adolescent-onset psychopathologies
324  represent aberrant developmental pathways, in which these normative increases in
325 punishment learning and declines in action initiation biases are disrupted. These are

326  important directions for future research.

327 One consideration is whether action initiation biases are themselves influenced by
328 the prospect of a rewarding outcome, since there are forms of impulsivity that occur
329 specifically in situations where a possible reward is anticipated®3*. Since ‘go’
330 responses in the current study necessarily occur in the context of possible reward, it
331 is possible that the action initiation bias reflects a type of reward-related impulsivity.
332 However, we have two reasons to suspect that this is not the case. First, in contrast
333 to the classic go/no-go paradigm (where ‘go’ responses are required substantially
334 more often than no-go responses), our task used equal numbers of go-for-reward
335 and no-go-for-punishment trials. This means that ‘go’ responses were not particularly
336 associated with reward in this context. Second, we tested a model that captured
337 sensitivity to reward magnitude, but this model was outperformed by a model with a

338 generic magnitude sensitivity. This further suggests that there was no sensitivity to
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339 reward driving behaviour other than that captured by the learning rate. These
340 considerations do not support a role for reward in triggering the action initiation bias.
341 Future studies could include ‘go to avoid punishment’ and ‘no-go to gain reward’
342 conditions to capture the full influence of action biases on reward or punishment
343 responses in a large sample®. However, the action initiation bias we observed
344  appears to be a genuine action bias, rather than a deliberate strategy or an indirect

345 effect of reward facilitating action.

346 Previous research has painted a mixed picture of punishment learning in

20,35

347 adolescence, with different studies reporting decreases and increases in

348 punishment learning during the adolescent period™?.

It is likely that these
349 differences at least partially reflect variation in task design; in particular, having a
350 higher or lower learning rate can be more or less beneficial depending on the
351 task?>®. We observed a positive correlation between accuracy and punishment
352 learning rates across age, suggesting that higher punishment learning rates as seen
353 in older adolescents were more optimal for this task. Thus, the higher punishment
354 learning rates exhibited by older adolescents are indicative of better overall
355 performance. Importantly, however, we did not see increases in reward learning
356 rates across adolescence, although these too were correlated with overall
357 performance. Therefore, the higher punishment learning rates were not simply a
358 reflection of higher general ability on the task, but rather seem to reflect a more
359 specific ability to recall previous punishments and inhibit responses as a result.
360 Crucially, we observe these results in a large and diverse sample of adolescents,

361 providing substantive support for developmental differences in punishment learning.

362 Although there have been previous reports of heightened reward learning in

363 adolescence’!®

, the only other study to use a go/no-go design did not observe
364 separate learning rates for reward and punishment®®. By contrast, our winning model
365 did contain separate learning rates for reward and punishment, demonstrating an
366 asymmetry in learning. However, the lack of an age effect for reward learning in the
367 current study and the lack of a separate learning rate for reward in previous studies®
368 both suggest that reward learning rates are not related to age in a context where
369 action initiation biases can occur. It is theoretically possible that a strong action
370 initiation bias would remove the need for reward learning, since participants could

371 ‘default to go’ and then simply learn from punishment. Again, however, there was a
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372 clear association between the reward learning parameter and task performance, and
373 when action initiation biases were lowest in older participants, there was no increase
374 in reward learning rates. This suggests that reward learning was necessary for better
375 performance, even if it did not improve with age. Moreover, for all parameters where
376 we observed differences across development, we saw the same associations when
377 considering pubertal stage. This further suggests that these differences are part of

378 the developmental process, rather than only a reflection of chronological age.

379 Our study has several strengths. It is among the first to test how action initiation
380 biases and learning differ concurrently across the full spectrum of adolescence,
381 using a learning context that manipulates the requirement for learning and action
382 initiation, something that has often been neglected in computational modelling
383 studies of learning. We used a very large, mixed-sex sample (N = 742), which was
384 nationally and linguistically diverse, carefully screened to be typically developing in
385 terms of psychiatric functioning, and well characterised in terms of social
386 background. We built and tested several different plausible models of learning and
387 used multiple measures to validate them. We also used measures of pubertal stage
388 as well as chronological age to further elucidate developmental differences in
389 learning. However, we note some limitations to the study. First, our learning task did
390 not contain ‘no-go to gain reward’ and ‘go to avoid punishment’ conditions, meaning
391 that we were unable to assess Pavlovian action biases®. Second, outcomes were
392 deterministic, which has generally not been the case in previous studies (except
393 Master et al., 2020). It is possible that the relationship between learning rates and
394 performance in this context is different from that observed when using the more

395 common probabilistic and reversal learning studies®*3°.

396 In summary, we tested developmental differences in learning and action initiation
397 biases in a large, cross-sectional sample of typically developing adolescents aged 9-
398 18 years. Behaviour was best explained by a model with separate learning rates for
399 reward and punishment as well as a constant action initiation bias, and we observed
400 normative developmental differences in these parameters, associated with both
401 chronological age and (to a lesser extent) pubertal stage. Specifically, we observed
402 linear declines in action initiation biases and increases in punishment learning across
403 adolescence, combined with stable levels of reward learning. We conclude that

404 adolescents develop an increasing ability to inhibit actions, learn from negative
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405 outcomes, and make more selective behavioural responses as they transition
406 through adolescence and approach adulthood. These findings challenge theoretical
407 and empirical accounts that largely focus on enhanced reward processing and
408 suggest that action biases and punishment learning are crucial processes to

409 understand across adolescence.
410 Methods
411 Participants

412  Participants were selected from the FemNAT-CD consortium®. All participants
413 included in the present analyses had completed the reinforcement learning task,
414 were 9-18 years old, and were classed as typically developing, with no current
415 psychiatric diagnoses (including autism), learning disability, serious physical illness,
416 or histories of disruptive behavioural disorders or ADHD (see Questionnaire
417 measures below). Eight hundred and thirty-nine participants were eligible for
418 inclusion. We screened the data to exclude participants with poor task performance.
419 Five participants never responded, four responded to every trial, six scored below
420 zero points on the task (indicating deliberate punishment-seeking and reward-
421 avoidance), and 96 responded to fewer than half of the reward trials (i.e., trials where
422 responding was the correct behaviour). The final sample thus consisted of 742
423  youths (491 girls, 251 boys). These participants were recruited from 11 sites across
424  Europe (Aachen: 139, Frankfurt: 140, Birmingham: 103, Amsterdam: 90,
425  Southampton: 89, Bilbao: 55, Athens: 49, Szeged: 33, Basel: 28, Barcelona: 12,
426  Dublin: 4). For LMM and GLMM (i.e., non-modelling) analyses only, we excluded an
427 additional six participants who were missing 1Q data. For the analyses of model
428 parameters and age, we excluded 41 participants with values more than three

429 standard deviations from the mean on one or more model parameters.

430 All participants provided written informed consent (if over the age of consent in their
431 country) or written informed assent, with written informed consent provided by a
432 parent or guardian. Participants received a small monetary or voucher
433  reimbursement in line with local ethical approvals®. This payment was not linked to

434  task performance.

435 Questionnaire and interview measures
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436 Participants were assessed for current and past psychiatric and behavioural
437  disorders using the K-SADS-PL clinical interview*® (see Supplementary materials).
438 Participants were only eligible for the current study if they were assessed as typically
439 developing according to the K-SADS-PL. 1Q was assessed with the vocabulary and
440 matrix reasoning subscales of the Wechsler Abbreviated Scale of Intelligence* at
441  English-speaking sites, or with the vocabulary, block design, and matrix reasoning
442  subscales of the Wechsler Scale for Children (participants <17 years) or Wechsler
443  Adult Intelligence Scale (17-18 years:;*).

444  Pubertal stage was assessed using the self-report Pubertal Developmental Scale
445  (PDS;”®), which assesses growth of body and facial hair, change of voice, and
446  menstruation. Each item is rated on a scale from 1 (not yet started) to 4 (seems
447  complete). These subscales are then summed to yield an overall pubertal stage
448  score: pre-pubertal (1), early pubertal (2), mid-pubertal (3), late pubertal (4) or post-
449  pubertal (5).

450 Socioeconomic status (SES) was assessed based on parental income, education,
451 and occupation. Assessments were based on the International Standard
452  Classification of Occupations (International Labour Organization;
453  www.ilo.org/public/english/bureau/stat/isco/) and the International Classification of
454  Education (UNESCO; uis.unesco.org/en/topic/international-standard-classification-
455  education-isced). Human ratings and computer-based ratings were combined into a
456  factor score using principal component analysis. A clear one-dimensional structure

457 underlying the different measures could be corroborated using confirmatory factor

458 analysis (comparative fit index = 0.995; root mean square error of approximation

459 0.035). Reliability of the composite SES score was acceptable (Cronbach’s a
460 0.74). To account for economic variation between countries, the final SES score was
461 scaled and mean-centred within each country, providing a measure of relative SES.
462  Missing data were imputed by statisticians at the Institute of Medical Biometry and

463  Statistics (Freiburg, Germany), as described in Supplementary materials.
464  Learning task

465 Participants completed a ‘passive avoidance’ reinforcement learning task on a
466 computer in a quiet testing room. The task was adapted from two previous

467  studies®®** and presented in E-Prime*. The aim of the task was to gain points by
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468 pressing a button when presented with ‘good’ objects (to earn points) and
469  withholding responses when presented with ‘bad’ objects (to avoid losing points). In
470 order to maximise their point score, participants thus had to learn through trial-and-
471 error which objects were associated with reward and which with punishment. There
472 were eight different objects in total, four associated with rewards and four with
473  punishment, with values of +/-1, +/-700, +/-1400, or +/-2000 points. The point
474  value associated with each object was fixed and did not change throughout the task.
475 The eight objects were each presented 10 times in a random order (thus 80 trials in
476 total). Each response was followed by feedback on the number of points gained or
477 lost plus the running total; when participants did not respond, the value of the object
478 was not revealed (see Figure 1). Stimuli were displayed for 3000ms or until the
479  participant responded, and feedback (or the running total alone) was then displayed
480 for 1000ms. Participants started the task with 10,000 points and could theoretically
481 obtain final scores between 51,010 and -31,010, although the maximum score
482  obtainable through learning (rather than ‘lucky guesses’) was 46,909. Since scores
483 below zero could only be obtained by systematically responding to punishment
484 instead of reward, participants with scores below 0 points were excluded (see

485 Participants above).
486 Model fitting and comparison procedure

487  Seven different reinforcement learning models were constructed. For each model,
488 rewards were coded as 1, neutral outcomes (when no response was made) as 0,
489 and punishments as -1. First, we constructed a basic reinforcement learning model,
490 in which learning was captured by a single learning rate (a) parameter and a
491 temperature parameter 3, which captures noisiness in responding. In this model, the
492  expected value V of a response on trial t is updated with a reward prediction error PE
493 scaled by the learning rate a, where the prediction error is the discrepancy between

494  the outcome r (1, O, or —1) and the expected value:

495 If go: Vny = Viy + (@ * PE()
496 If no-go: V1) = Vg
497 where

498 PEw =ry— Vo
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499 Eq.1: basic model

500 The expected values are then converted to response probabilities using the Softmax

501 equation, where the temperature parameter 8 adds noise:
502 Probability of observed response = %W / (V9P 4 gVnogo/Fy
503 EQ.2: softmax

504  Using the model comparison procedure illustrated in Figure 6, we constructed six
505 further models with combinations of additional parameters. These parameters were
506 separate learning rates for reward versus punishment outcomes (Eg. 3), two
507 versions of an action initiation bias towards responding regardless of anticipated
508 outcome (Eq.4-5), and one or two magnitude sensitivity parameters, which

509 accounted for sensitivity to the actual point value obtained (Eg. 6-7).
510 For reward outcomes: V1) = Vi + (0 * PEg)
511 For punishment outcomes: V(1) = V(y + (ap * PE(y)
512 EQ.3: two learning rates

513 For models that included the initial ‘go’ bias, the starting value of responding to each
514  object was increased (or decreased) by an amount b on the first presentation of the

515 object only:
516 Viy=b_i
517 Eq.4:initial ‘go’ bias

518 For models that included the constant ‘go’ bias, the value of responding to each
519 object was increased (or decreased) by an amount on each presentation of the
520 object:

521 Vbiased(ty = V(yy + b_cC
522  EQ.5: constant ‘go’ bias

523  Vpiased Was used only to calculate the response probability for the current trial, so that

524  the bias did not accumulate over repeated presentations of the object.

525 For models that included a single magnitude sensitivity parameter, the absolute point

526  score obtained on each trial (re- scaled to be between 0 - 1) was multiplied by a
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magnitude sensitivity parameter p and added to the outcome (which was itself still
coded as 1, O, or -1):

Outcomey = ryy + magnitudegy * pe
Eq.6: magnitude sensitivity parameter

Finally, models that included two magnitude sensitivity parameters applied different
magnitude sensitivities to reward and punishment outcomes:

If reward: Outcome = r + magnitudeg * pr
If punishment: Outcome = ry + magnitudegw * ppey

Eq.7: two magnitude sensitivity parameters

1 5 1v . 'S / L 8%
Model 5: Uses winning action initiation bias from 1
2
3
where b is eitherb iorb ¢
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539 Figure 6. Steps in model construction procedure. In the first step (1), models with
540 one versus two learning rates were compared, and separately, models with an initial
541  versus constant action initiation bias were compared. A fifth model was then

542  constructed by combining all parameters from the winning models in step 1 (i.e., one
543  versus two learning rates and the winning action initiation bias). In step 2, we tested
544  whether model 5 was improved by adding a single magnitude sensitivity parameter
545 (model 6) or separate magnitude sensitivity parameters for reward versus

546  punishment outcomes (model 7). Finally, to confirm that the winning model from step
547 2 was the best overall model, we compared models 1-7 directly in step 3.

548

549 Model fitting and comparison were conducted in  MATLAB 2019b
550 (TheMathWorksiInc). We used an iterative maximum a posteriori (MAP) approach for
551  all model fitting, in line with previous work using reinforcement learning models®*™
552 239 First, we initialised Gaussian distributions as uninformative priors with a mean
553 of 0.1 (plus noise) and variance of 100. Next, during the expectation step, we
554  estimated the model parameters for each participant using maximum likelihood
555 estimation (MLE), calculating the log-likelihood of the participants’ set of responses
556 given the model being fitted. We then computed the maximum posterior probability
557 estimate, given the participants’ responses and the prior probability from the
558 Gaussian distribution, and recomputed the Gaussian distribution over parameters
559  during the maximisation step. These alternating expectation and maximisation steps
560 were repeated iteratively until convergence of the posterior likelihood, or for a
561 maximum of 800 iterations. Bounded free parameters were transformed from the
562  Gaussian space into native model space using link functions (e.g., a sigmoid function

563 for learning rates).

564 To compare models, we used Laplace approximation of log model evidence (more

t47

565 positive values indicating better fit*’) in a random-effects analysis using spm_bms*®

566 from SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/). This calculates the

567 exceedance probability, i.e., the posterior probability that each model is the most
568 likely. An exceedance probability over 0.95 provides strong evidence for the best-
569 fitting model. We also calculated the integrated BIC score (BICin) for each model,
570 which penalises more complex models. Lower BICj; scores indicate better
571 performance. MATLAB code for models and model fitting and comparison

572  procedures is available at https://osf.io/d2zp4/.

573 Parameter recovery and model identifiability
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574 We used a parameter recovery procedure to ensure that the parameters from the
575 winning model were dissociable from each other, and a model identifiability
576  procedure to ensure that the reinforcement learning models were dissociable from
577 each other®. For the parameter recovery procedure, we simulated participant
578 response data only for the winning model, using a range of parameter values
579 between the minimum and maximum possible values for that parameter. Data were
580 simulated for 243 synthetic participants. The winning model was then fitted again to
581 its simulated data using the MAP procedure, and correlations between the
582 parameters used to simulate the data and the recovered parameters (estimated from
583 the simulated data) were checked for correspondence. For the model identifiability
584  procedure, we simulated participant response data for each model in turn, using a
585 range of parameter values within the observed range from the real data. For each of
586 these models, the full set of seven models was then fitted to the simulated data from
587 that model, using the MAP procedure, and this was repeated 10 times. We then
588 created confusion matrices for mean exceedance probability and for the number of
589 times each model won, to check that for each model and its simulated data, the
590 winning model was the one that had been used to generate the data. This procedure
591 confirms that each model is reliably associated with a different pattern of responses

592  from the competing models.

593 We also generated synthetic behavioural responses using our winning model and its
594 ~mean parameter values, to check that the real and simulated responses were
595 broadly similar. Finally, as an additional test of the validity of our winning model, we
596 conducted correlations between task performance (number of overall correct
597 responses and correct responses for reward and punishment separately) and each
598 model parameter (Spearman’s correlations, R’s correlation package cor_test
599 function).

600 Statistical analysis

601 All statistical analyses were conducted in R (v. 4.1.1 and v. 4.1.2) through RStudio.
602 First, we investigated associations between age or pubertal stage and the model
603 parameters from the winning model. Since parameter values were not normally
604 distributed, we used robust linear mixed effects regression models using the rimer

605 function in R. We tested whether each parameter was predicted by age, with IQ and
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606 sex as covariates (fixed effects) and varying intercepts for different sites of data
607 collection (random effects). We then checked for quadratic associations with age by
608 adding an age® term to each model. Discrete variables were recoded so that

609 contrasts summed to zero, and continuous variables were z-scored.

610 To confirm these learning effects matched participants’ behavioural responses, we
611 next used nested linear mixed effects models to assess whether age was related to
612 participants’ changing responses to reward and punishment stimuli over the course
613 of the task. These analyses were conducted using R’s Ime4 package glmer
614 function®. Participants’ responses were coded as 1 (active response) or 0 (no
615 response) and were predicted from age, sex (0 = male, 1 = female), object repetition
616 number (1-10), and object valence (0 = reward, 1 = punishment) (fixed effects), with
617 varying intercepts allowed for responses grouped by participant nested within site
618 (random effects). All continuous variables were z-scored, and discrete variables
619 (participant response, sex) were recoded so that the two levels summed to zero
620 (e.g., 0 and 1 becomes -0.5 and 0.5). The same analysis was then repeated for
621 pubertal stage, using PDS score as the dependent variable instead of age. In all
622 analyses, IQ and sex were included as covariates. The strength of null effects was
623 interpreted using Bayes factors calculated with the BIC method® and the language

624  suggested by Jeffreys™.
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