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Abstract 

Theoretical and empirical accounts suggest that adolescence is associated with 1 
heightened reward learning and impulsivity. Experimental tasks and computational 2 
models that can dissociate reward learning from the tendency to initiate actions 3 
impulsively (action initiation bias) are thus critical to characterise the mechanisms 4 
that drive developmental differences. However, existing work has rarely quantified 5 
both learning ability and action initiation, or it has tested small samples. Here, using 6 
computational modelling of a learning task collected from a large sample (N=742, 9-7 
18 years, 11 countries), we tested differences in reward and punishment learning 8 
and action initiation from childhood to adolescence. Computational modelling 9 
revealed that whilst punishment learning rates increased with age, reward learning 10 
remained stable. In parallel, action initiation biases decreased with age. Results 11 
were similar when considering pubertal stage instead of chronological age. We 12 
conclude that heightened reward responsivity in adolescence can reflect differences 13 
in action initiation rather than enhanced reward learning.     14 
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Introduction 15 

Adolescence is a time of great change, as young people navigate their way from the 16 

dependency of childhood to the independence of adulthood. Theoretical accounts 17 

suggest it is a period of risky, impulsive, and reward-seeking behaviour, which is 18 

hypothesised to reflect neurobiological changes that lead to heightened reward 19 

learning1–5. Adolescence is also a high-risk period for the onset of mental disorders6, 20 

including disruptive behaviour disorders7, which are strongly associated with 21 

impulsive behaviour and difficulties with reinforcement learning8. Internalising 22 

problems are likewise associated with difficulties in reinforcement learning9,10, and 23 

social media use, which can become problematic for some adolescents11, and has 24 

recently been linked to reward learning mechanisms12. However, reward- and 25 

punishment-guided behaviour in adolescence is not well understood. This is because 26 

distinct psychological processes can manifest in similar overt behaviour, and 27 

traditional data analysis techniques are usually not well suited to capturing these 28 

covert processes13. A myriad of terms have been developed to describe closely 29 

related concepts, such as reward learning, risk-taking, and impulsivity14, which, 30 

though they might reflect similar behaviour, point to distinct psychological processes. 31 

Furthermore, these concepts are typically operationalised using questionnaires or 32 

summary performance measures from behavioural tasks, which cannot capture the 33 

temporally dynamic nature of learning processes13. In consequence, our 34 

understanding of adolescent behaviour has been impeded by our inability to 35 

distinguish between learning processes and other mechanisms that might manifest 36 

in similar behaviour, such as response biases. Here, we use computational 37 

modelling to distinguish between learning processes (modifying future behaviour 38 

based on past experience of reward and punishment) and action initiation or ‘go’ 39 

biases (initiating actions impulsively or ‘blindly’, without regard for consequences). 40 

We test whether these different mechanisms are separable, and to what extent they 41 

exhibit normative developmental differences across late childhood and adolescence 42 

in a large and internationally diverse sample.  43 

Computational modelling of learning typically uses reinforcement learning models, 44 

which assume that actions and their outcomes become associated through 45 

experience, and the learned value of an action then influences the likelihood of 46 

repeating that action in the future15,16. There has been a relative paucity of 47 
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computational modelling work focusing on learning in adolescence, and previous 48 

studies were not designed to distinguish between learning processes and action 49 

initiation biases. Probabilistic learning tasks have suggested an adolescent peak in 50 

reward learning17 and relatively better reward (versus punishment) learning in 51 

adolescents compared to adults18. Reversal learning tasks (with changeable 52 

outcome probabilities) have pointed to increased punishment learning in adolescents 53 

compared to adults19, a trough in punishment learning rates in mid-adolescence 54 

coupled with a sudden increase in reward learning rates in early adulthood20, or 55 

peaks in both punishment and reward learning in late adolescence21. Together these 56 

studies suggest that reward and punishment learning might differ across 57 

adolescence, but they provide inconsistent evidence. Part of this variability could be 58 

due to different task demands22, but it could also reflect the reliance on smaller and 59 

non-diverse samples that are not fully representative of adolescents across different 60 

countries. 61 

To our knowledge, only one study to date has measured learning in a task design 62 

that incorporates requirements both to learn and also to inhibit actions23. This study 63 

compared reward and punishment learning as well as the tendency to ‘go’ (initiate an 64 

action) vs. ‘no-go’ (withhold an action) in children (8-12, n = 20), adolescents (13-17, 65 

n = 20), and adults (18-25 years, n = 21). Relative to both children and adults, 66 

adolescents exhibited attenuated ‘go’ and Pavlovian (action-consistent-with-valence) 67 

biases. Learning was best captured by a generic (not valence-specific) learning rate, 68 

and learning rate was not associated with age in this sample. This study suggests 69 

that, like learning rates in previous studies, action initiation biases might display 70 

developmental differences across adolescence.  71 

In summary, adolescence has been associated with an enhanced ability to learn 72 

from reward and possible differences in learning from punishment, but evidence has 73 

been inconsistent. The literature is made harder to interpret by small sample sizes, 74 

two-group designs (which cannot detect quadratic relationships), and lack of learning 75 

contexts designed to assess action biases. Therefore, despite evidence that learning 76 

processes can undergo profound changes during adolescence, very little is known 77 

about how learning mechanisms differ from action initiation biases during this crucial 78 

developmental period or about the robustness of previous findings.  79 
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Here, we examined differences in reward and punishment learning and action 80 

initiation, using a large, diverse sample (N = 742) of youths aged 9-18 years 81 

recruited from across Europe. Participants viewed a series of abstract 3D objects 82 

and had to learn by trial-and-error whether to respond (‘go’, to win points) or withhold 83 

responding (‘no-go’, to avoid losing points) for each object24,25 (see Figure 1). We 84 

built a set of reinforcement learning models that were fitted to the data using a 85 

hierarchical expectation maximisation approach and compared using Bayesian 86 

model comparison methods26–28. These models varied in terms of whether 87 

parameters were included for separate reward and punishment learning rates, action 88 

initiation biases (the tendency to respond regardless of expected outcome), and 89 

sensitivity to the magnitude (number) of points gained or lost. 90 

We find that a computational model including separate reward and punishment 91 

learning rates, a constant action initiation bias (that measures the tendency to ‘go’ 92 

vs. ‘no go’ regardless of reward or punishment on each trial), and a single outcome 93 

magnitude sensitivity parameter best explains behaviour. Strikingly, we show an 94 

asymmetry in learning differences. While reward learning rates remain stable, 95 

punishment learning rates increase from childhood to adolescence. In parallel, 96 

despite stable reward learning, action initiation biases decrease with age. All results 97 

remain the same when replacing chronological age with pubertal stage. These 98 

findings point to normative developmental differences in punishment learning and 99 

action initiation. They suggest that theoretical accounts positing heightened 100 

responses to reward in adolescence should consider differences in impulsive action 101 

initiation rather than reward sensitivity or learning. Such findings are critical for our 102 

understanding of learning and decision-making in adolescence as well as how 103 

learning and action initiation can go awry in the transition from childhood to 104 

adolescence. 105 

 106 

 107 

 108 

 109 

 110 

 111 
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 113 

 114 

 115 

Figure 1. Recruitment sites and learning task. (a) Number of participants 116 
recruited from each country. Countries are coloured according to the total number of 117 
participants, with individual recruitment sites marked in yellow. (b) Details of the 118 
learning task (shown here in the English language version). The aim of the task was 119 
to learn whether to respond or withhold responses to stimuli in order to earn points. 120 
Participants learnt by trial and error whether to make or withhold a button press to 121 
obtain a reward (points) or avoid punishment (losing points). Eight unfamiliar stimuli 122 
were presented individually for 2500ms or until a button press response was made. 123 
Responses were followed by feedback on the outcome (1000ms) or a running total 124 
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alone if the participant did not respond. Each stimulus had a fixed value of +/− 1, 125 
700, 1400, or 2000 points and was shown once per ‘block’ for 10 blocks, with a 126 
randomised order within blocks. Thus, four stimuli were associated with reward and 127 
four with punishment. Participants started the task with 10,000 points and could 128 
theoretically finish with a score between 51,010 and −31,010. 129 

Results  130 

We analysed behaviour of 742 participants (491 girls) aged 9-18 years (mean 13.99, 131 

SD = 2.48, median pubertal stage ‘late pubertal’) (see Methods) who completed a 132 

reward and punishment learning task (see Figure 1). All participants were free from 133 

psychiatric disorders. Pubertal status was measured using the self-report Pubertal 134 

Developmental Scale (PDS;29 see Methods). After modelling the learning task data, 135 

we tested associations between age, pubertal status, and participants’ model 136 

parameters, as well as behavioural responses. Age was treated as a continuous 137 

variable in all these analyses, although for presentation purposes, we divide age into 138 

three discrete bins. To test for quadratic associations between age and model 139 

parameters, we tested all models with age2 included. We first examined whether 140 

there were associations between age or pubertal status and sex or IQ. As there were 141 

some associations between these measures (see Supplementary materials), we 142 

included sex and IQ as covariates of no interest in all analyses of participants’ 143 

behavioural responses and model parameters. For each of these analyses, we ran 144 

two models to assess developmental changes: one with participant chronological 145 

age and one with pubertal status. Six participants who were included in the 146 

computational modelling were removed from subsequent analyses due to missing IQ 147 

data.  148 

Computational modelling shows that a model with separate reward and 

punishment learning rates and an action initiation bias best explain behaviour 

Before fitting and comparing the computational models we analysed participants’ 149 

behavioural responses across the task to test whether participants were able to 150 

learn. A generalised linear mixed model (GLMM) (predicting correct responses from 151 

age, stimulus repetition number, outcome valence, and covariates; see Methods) 152 

revealed a significant main effect of stimulus repetition on the number of correct 153 

responses made, with performance improving throughout the task (Odds ratio (OR) = 154 

1.19 [1.17, 1.21], z = 18.56, p < .001). Thus, participants exhibited learning. 155 
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Next, we compared a range of computational models of reinforcement learning to 156 

characterise participants’ choice behaviour. In particular, we compared models that 157 

varied in terms of a single learning rate or separate learning rates for reward and 158 

punishment (influence of recent outcomes on future responses), initial or constant 159 

action initiation biases (bias to respond versus not respond on the first presentation 160 

of an object, or bias to respond versus not respond across all trials, respectively) and 161 

sensitivity to the magnitude of reward, punishment or both (sensitivity to points 162 

gained or lost). Models were fitted using a hierarchical expectation maximisation 163 

approach and compared using Bayesian model comparison methods26–28,30. We 164 

constructed seven different models using an iterative procedure to appropriately 165 

constrain the model space (see Methods for full details):  166 

1. αβ: single learning rate (α) and temperature parameter (β) 167 

2. 2αβ: reward α, punishment α, β  168 

3. αβb_i (1): single α, β, initial ‘go’ bias (b_i) 169 

4. αβb_c (2): single α, β, constant ‘go’ bias (b_c) 170 

5. 2αβb_i or 2αβb_c: reward α, punishment α, β, b_i or b_c (depending on 171 

winner from 3. & 4.) 172 

6. 2αβb_iρ or 2αβb_cρ: reward α, punishment α, β, b_i or b_c, magnitude 173 

sensitivity (ρ) 174 

7. 2αβb_i2ρ or 2αβb_c2ρ: reward α, punishment α, β, b_i or b_c, reward ρ, 175 

punishment ρ 176 

Models were compared on exceedance probability, Log Model Evidence (LME), and 

the integrated Bayesian Information Criterion (BICint). We found that Model 6, which 

included separate learning rates for reward and punishment, a constant action 

initiation bias, and a single (valence-insensitive) magnitude sensitivity parameter, 

best explained behaviour (see Figure 2). This model had the highest exceedance 

probability (0.99) and the highest LME (−34066.81), and performed similarly to 

model 5 on BICint, which had the lowest absolute BICint. We further validated the 

winning model using parameter recovery and model identifiability procedures (see 

Methods for details) and showed good recovery and identifiability for the winning 

model (see Figure 2 and Supplementary materials). We also examined observed 

and modelled behavioural performance as predicted by the winning computational 
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model and showed that our model was able to reproduce participant behaviour (see 

Supplementary materials).   

177 

Figure 2. Model performance and validation. (a) Exceedance probability for the 178 
seven computational models that comprised the model space. The winning model 179 
was the 2αβbρ model, with separate reward and punishment learning rates, a 180 
constant action initiation bias, and a magnitude sensitivity parameter. (b) ΔBICint, 181 
relative to the winning model (2αβb_c). (c) ΔLME, relative to the winning model 182 
(2αβbρ). Model 6 (2αβb_cρ) won on two of the three performance measures 183 
(exceedance probability and ΔLME) and performed similarly to model 5, which had 184 
the lowest absolute ΔBICint. We therefore selected Model 6 as the winning model (d) 185 
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Parameter recovery. The confusion matrix represents Spearman correlations 186 
between simulated and fitted (recovered) parameters. Each parameter exhibited a 187 
significant positive correlation between its true and fitted values, with r values 188 
ranging from 0.1 – 0.83 (shown on the lower diagonal) (e) Exceedance probability 189 
from the model identifiability procedure. The diagonal represents the probability of 190 
each model having the best fit to its own synthetic data. The winning model (2αβb_c) 191 
was highly identifiable from other models. (f) Number of runs where each model was 192 
selected as the best fit for data generated by each model in the model identifiability 193 
procedure. The diagonal represents the number of runs each model was selected as 194 
the best fit for its own data. The winning model (2αβb_c) was the best fit to its own 195 
data.  196 

 

Punishment learning rates increase with age, while action initiation biases 
decline 

Next, we assessed whether the parameters from the winning computational model 197 

varied as a function of age, using a GLMM predicting correct responses from age, 198 

stimulus repetition number, outcome valence, and covariates. Strikingly, age was 199 

strongly associated with increased punishment learning rates (β = 0.10 [0.05, 0.15], 200 

z = 4.26, p < .001), and lower action initiation biases (β = −0.20 [−0.28, −0.12], z = 201 

−4.78, p < .001; see Figure 3). Importantly, reward learning rates did not differ 202 

significantly with age (β = 0.01 [−0.06, 0.07], z = 0.17, p = .86). To confirm the 203 

strength of these associations, and obtain strength of evidence for any null effects, 204 

we calculated Bayes factors using the BIC method31 and linear mixed effects 205 

regression models, with age removed from the null model. We observed very strong 206 

evidence for the associations between age and punishment learning rate (BF10 = 207 

336.00, BF01 = 0.003) and between age and action initiation bias (BF10 = 6545.00, 208 

BF01 = 0.0002). In contrast, there was no evidence for associations between age and 209 

reward learning rate (BF10 = 0.07, BF01 = 14.30, substantial evidence in support of 210 

the null). 211 

We observed a weaker negative relationship between magnitude sensitivity and age 212 

(β = −0.09 [−0.17, −0.01], z = −2.26, p = .02), and no relationship between age and 213 

temperature parameter (β = 0.002 [−0.07, 0.08], z = 0.06, p = 0.95). Bayes factors 214 

showed anecdotal evidence in support of the null for magnitude sensitivity (BF10 = 215 

0.51, BF01 = 1.97) and substantial evidence for no difference in the temperature 216 

parameter (BF10 = 0.04, BF1 = 26.20). 217 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.05.490578doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490578
http://creativecommons.org/licenses/by/4.0/


12 

218 

Figure 3. Age differences in action initiation bias and punishment learning, but 
stable reward learning. (a) Punishment learning rate across three age groups. 
Punishment learning rates increased linearly with age (β = 0.1 [0.05, 0.15], z = 4.26, 
p < .001, BF10 = 336.00, BF01 = 0.003). (b) Action initiation bias across three age 
groups. Action initiation biases declined linearly with age (β = −0.20 [−0.28, −0.12], z 
= −4.78, p < .001, BF10 = 6545.00, BF01 = 0.0002). (c) Reward learning rates across 
three age groups. Reward learning rates remained stable with age (β = 0.01 [−0.06, 
0.07], z = 0.17, p = .86, BF10 = 0.07, BF01 = 14.30), including no significant quadratic 
effect (β = -0.83 [−2.37, 0.70], z = −1.07, p = .29). Points and errors bars represent 
means and 95% confidence intervals of the means for each group, with raw data 
represented by smaller points. Division into age groups is for presentation purposes 
only; age was treated as a continuous variable in all analyses. 

Lack of associations between age and model parameters might also reflect non-219 

linear associations, especially for reward learning (See Figure 3c). We therefore 220 

tested for quadratic effects of age by adding age2 terms to the models. However, 221 

none of the model parameters exhibited significant quadratic associations with age 222 

(temperature parameter: β = 0.99 [−0.87, 2.85], z = 1.04, p = .30). Reward learning 223 

rate: β = -0.83 [−2.37, 0.70], z = −1.07, p = .29). Punishment learning rate: β = 0.37 224 

[−0.80, 1.54], z = 0.62, p = .54). Action initiation bias: β = −0.57 [−2.63, 1.49], z = 225 

−0.54, p = 0.59). Magnitude sensitivity: β = −0.10 [−2.10, 1.90], z = −0.10, p = .92).  226 
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Next, we assessed whether pubertal stage also predicted differences in punishment 227 

learning and action initiation (Figure 4). We re-ran the same models with pubertal 228 

stage rather than chronological age. These analyses revealed a similar positive 229 

association with punishment learning rate (β = 1.41×10−4 [6.20×10−5, 2.20×10−4], z = 230 

3.48, p <.001), a negative association with action initiation bias (β = −0.001 231 

[2.00×10−3, 5.00×10−4], z = −3.40, p = .001), and no significant association with 232 

reward learning rate (β = 5.4×10−5 [−5×10−5, 1.6×10−4], z = 1.02, p = .31). There was 233 

also a negative association with magnitude sensitivity (β = −0.01 [−0.01, −0.001], z = 234 

−2.21, p = .03) and no significant association with temperature parameter (β = 235 

−2×10-6 [−5×10-6 10×10-6], z = −1.29, p = .20).  236 

237 

Figure 4. Pubertal maturity differences in action initiation bias and punishment 238 
learning, but stable reward learning. (a) Punishment learning rates across five 239 
pubertal stages. Punishment learning rates increased with pubertal stage (β = 240 
1.41×10−4 [6.20×10−5, 2.20×10−4], z = 3.48, p <.001). (b) Action initiation bias across 241 
five pubertal stages. Action initiation biases decreased with pubertal stage (β = 242 
−0.001 [2.00×10−3, 5.00×10−4], z = −3.40, p = .001). (c) Reward learning rates across 243 
five pubertal stages. Reward learning rates were stable across puberty (β = 5.4×10−5 244 
[−5×10−5, 1.6×10−4], z = 1.02, p = .31). Points and errors bars represent means and 245 
95% confidence intervals of the means for each group, with raw data represented by 246 
smaller points. 247 
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Model parameters predict task performance 248 

We next assessed whether differences in model parameters across age were 

associated with task performance. Overall task performance (proportion of correct 

responses) was positively correlated with reward learning rate (Spearman’s r(693) = 

0.40 [0.33, 0.46], p <.001) and punishment learning rate (Spearman’s r(693) = 0.67 

[0.63, 0.71], p <.001) and negatively correlated with action initiation bias 

(Spearman’s r(693) = −0.26 [−0.33, −0.18], p <.001). Temperature parameter values 

and magnitude sensitivity were also negatively correlated with task performance 

(Spearman’s r(693) = −0.39 [−0.45, −0.32], p <.001, and r(693)  = −0.19 [−0.26, −0.12], 

p <.001, respectively). Correlations between model parameters and reward and 

punishment task performance are shown in Supplementary materials. 

Behavioural responses confirm age differences in reward and punishment 249 

learning 250 

To further confirm that our model accurately captured behaviour, we examined 251 

whether age was associated with ‘model-free’ behavioural responses over stimuli 252 

repetitions (Figure 5). Age was a significant positive predictor of overall learning 253 

(GLMM: age by stimuli repetition interaction: OR = 1.02 [1.01, 1.04], z = 2.49, p = 254 

.01) and older participants also made more correct responses in total (OR = 1.08 255 

[1.04, 1.11], z = 4.58, p <.001). However, this age-related learning improvement was 256 

specific to learning from punishment outcomes (age by repetition by valence 257 

interaction: OR = 1.09 [1.05, 1.13], z = 4.65, p <.001). By contrast, learning from 258 

reward outcomes remained stable with age. To quantify the strength of evidence for 259 

this stable pattern, we calculated a Bayes factor using the BIC method31, by 260 

repeating the GLMM model for reward trials only (and removing the valence term), 261 

then repeating this reward-only regression with the age*repetition interaction 262 

removed. This generated strong support for the stability of reward learning across 263 

age (BF01 = 57.80; very strong evidence in support of the null).  264 

In line with our model parameter approach, we tested for quadratic effects of age on 265 

behavioural responses. Although this slightly improved the model fit (ΔBIC = −27.79, 266 

p = .003), the age2 term was not a significant predictor of correct responses (OR = 267 

0.99 [0.96, 1.02], z = −0.41, p = .68) or of overall learning (age2 by repetition 268 

interaction: OR = 0.99 [0.97, 1.01], z = −0.87, p = 0.39). However, we did observe a 269 
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significant age2 by repetition by valence interaction (OR = 1.08 [1.04, 1.12], z = 3.98, 270 

p <.001) as well as the significant age by repetition by valence interaction (OR = 1.09 271 

[1.05,1.13], z = 4.52, p <.001), suggesting that the punishment-specific improvement 272 

in learning was partially non-linear. 273 

Since feedback during the task was given in the form of point scores, we also 274 

checked for age-related improvements in point score. As expected, older participants 275 

gained more points than younger participants overall (robust linear mixed effects 276 

regression: β = 0.16 [0.09, 0.23], z = 4.27, p < .001).  277 

Age-related improvement in punishment learning is not better explained by 278 

pubertal development 279 

We next examined whether these age-related improvements in punishment learning 280 

were also observed for pubertal stage. Similar to age, pubertal stage was positively 281 

associated with overall performance (OR = 1.06 [1.03, 1.10], z = 3.71, p <.001), and 282 

with improved learning (OR = 1.03 [1.01, 1.05], z = 2.95, p = .003). However, we did 283 

not observe a significant pubertal stage by repetition by valence interaction (OR = 284 

1.04 [0.10, 1.07], z = 1.87, p = .06), suggesting that the punishment-specific 285 

improvement in learning was better captured by age than by pubertal stage. 286 

Furthermore, the model using age was a better fit to the data than the model using 287 

pubertal stage (ΔBIC = −137.22). 288 
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289 

Figure 5. Reward and punishment responding across stimulus repetitions, by 290 
age and pubertal stage. (a) Proportion of ‘go’ responses to reward stimuli across 291 
repeated stimulus presentations, for three age groups. (b) Proportion of ‘go’ 292 
responses to punishment stimuli across repeated stimulus presentations, for three 293 
age groups. (c) Proportion of ‘go’ responses to reward stimuli across repetitions, by 294 
pubertal stage. (d) Proportion of ‘go’ responses to punishment stimuli across 295 
repetitions, by pubertal stage. In all panels, points represent means and error bars 296 
are 95% confidence intervals of the mean. Dashed lines indicate chance 297 
performance. Note that ‘go’ responses are correct for reward and incorrect for 298 
punishment stimuli; thus, learning is demonstrated by increasing responses to 299 
reward and decreasing responses to punishment stimuli. 300 

 301 

Discussion 302 

Adolescence is often considered as a period of heightened sensitivity to reward1–5. 303 

Using a large, well-characterised, multi-country sample, we demonstrate that, in fact, 304 

reward learning rates remain stable across adolescence whilst the tendency to 305 
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initiate actions decreases. Moreover, punishment learning rates increase across 306 

adolescence, with the oldest adolescents learning the most rapidly from punishment 307 

feedback. These findings remained the same when we replaced chronological age 308 

with pubertal status, and we found evidence that these differences in model 309 

parameters reflected linear associations across adolescence rather than quadratic 310 

effects. Together, our findings suggest that the tendency to initiate actions and learn 311 

from punishment shifts from late childhood across adolescence and that future 312 

research should account for changes in action initiation when evaluating differences 313 

in valenced processing of reward and punishment. Our findings also demonstrate 314 

these associations robustly by testing a large and geographically diverse sample. 315 

These results highlight the importance of distinguishing between valenced learning 316 

mechanisms and action initiation biases. While previous research has demonstrated 317 

heightened reward learning in adolescence17,18, we demonstrate that apparent 318 

reward-oriented behaviour can sometimes reflect action initiation biases, rather than 319 

reward learning processes. Knowledge of these developmental differences is an 320 

important prerequisite for understanding how adolescent development can go awry, 321 

for example in behavioural disorders, where there appear to be disruptions in 322 

reinforcement learning8,32. It is plausible that adolescent-onset psychopathologies 323 

represent aberrant developmental pathways, in which these normative increases in 324 

punishment learning and declines in action initiation biases are disrupted. These are 325 

important directions for future research.   326 

One consideration is whether action initiation biases are themselves influenced by 327 

the prospect of a rewarding outcome, since there are forms of impulsivity that occur 328 

specifically in situations where a possible reward is anticipated33,34. Since ‘go’ 329 

responses in the current study necessarily occur in the context of possible reward, it 330 

is possible that the action initiation bias reflects a type of reward-related impulsivity. 331 

However, we have two reasons to suspect that this is not the case. First, in contrast 332 

to the classic go/no-go paradigm (where ‘go’ responses are required substantially 333 

more often than no-go responses), our task used equal numbers of go-for-reward 334 

and no-go-for-punishment trials. This means that ‘go’ responses were not particularly 335 

associated with reward in this context. Second, we tested a model that captured 336 

sensitivity to reward magnitude, but this model was outperformed by a model with a 337 

generic magnitude sensitivity. This further suggests that there was no sensitivity to 338 
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reward driving behaviour other than that captured by the learning rate. These 339 

considerations do not support a role for reward in triggering the action initiation bias. 340 

Future studies could include ‘go to avoid punishment’ and ‘no-go to gain reward’ 341 

conditions to capture the full influence of action biases on reward or punishment 342 

responses in a large sample23. However, the action initiation bias we observed 343 

appears to be a genuine action bias, rather than a deliberate strategy or an indirect 344 

effect of reward facilitating action.  345 

Previous research has painted a mixed picture of punishment learning in 346 

adolescence, with different studies reporting decreases20,35 and increases in 347 

punishment learning during the adolescent period19,21. It is likely that these 348 

differences at least partially reflect variation in task design; in particular, having a 349 

higher or lower learning rate can be more or less beneficial depending on the 350 

task22,36. We observed a positive correlation between accuracy and punishment 351 

learning rates across age, suggesting that higher punishment learning rates as seen 352 

in older adolescents were more optimal for this task. Thus, the higher punishment 353 

learning rates exhibited by older adolescents are indicative of better overall 354 

performance. Importantly, however, we did not see increases in reward learning 355 

rates across adolescence, although these too were correlated with overall 356 

performance. Therefore, the higher punishment learning rates were not simply a 357 

reflection of higher general ability on the task, but rather seem to reflect a more 358 

specific ability to recall previous punishments and inhibit responses as a result. 359 

Crucially, we observe these results in a large and diverse sample of adolescents, 360 

providing substantive support for developmental differences in punishment learning.  361 

Although there have been previous reports of heightened reward learning in 362 

adolescence17,18, the only other study to use a go/no-go design did not observe 363 

separate learning rates for reward and punishment23. By contrast, our winning model 364 

did contain separate learning rates for reward and punishment, demonstrating an 365 

asymmetry in learning. However, the lack of an age effect for reward learning in the 366 

current study and the lack of a separate learning rate for reward in previous studies23 367 

both suggest that reward learning rates are not related to age in a context where 368 

action initiation biases can occur. It is theoretically possible that a strong action 369 

initiation bias would remove the need for reward learning, since participants could 370 

‘default to go’ and then simply learn from punishment. Again, however, there was a 371 
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clear association between the reward learning parameter and task performance, and 372 

when action initiation biases were lowest in older participants, there was no increase 373 

in reward learning rates. This suggests that reward learning was necessary for better 374 

performance, even if it did not improve with age. Moreover, for all parameters where 375 

we observed differences across development, we saw the same associations when 376 

considering pubertal stage. This further suggests that these differences are part of 377 

the developmental process, rather than only a reflection of chronological age.  378 

Our study has several strengths. It is among the first to test how action initiation 379 

biases and learning differ concurrently across the full spectrum of adolescence, 380 

using a learning context that manipulates the requirement for learning and action 381 

initiation, something that has often been neglected in computational modelling 382 

studies of learning. We used a very large, mixed-sex sample (N = 742), which was 383 

nationally and linguistically diverse, carefully screened to be typically developing in 384 

terms of psychiatric functioning, and well characterised in terms of social 385 

background. We built and tested several different plausible models of learning and 386 

used multiple measures to validate them. We also used measures of pubertal stage 387 

as well as chronological age to further elucidate developmental differences in 388 

learning. However, we note some limitations to the study. First, our learning task did 389 

not contain ‘no-go to gain reward’ and ‘go to avoid punishment’ conditions, meaning 390 

that we were unable to assess Pavlovian action biases23. Second, outcomes were 391 

deterministic, which has generally not been the case in previous studies (except 392 

Master et al., 2020). It is possible that the relationship between learning rates and 393 

performance in this context is different from that observed when using the more 394 

common probabilistic and reversal learning studies22,36.  395 

In summary, we tested developmental differences in learning and action initiation 396 

biases in a large, cross-sectional sample of typically developing adolescents aged 9-397 

18 years. Behaviour was best explained by a model with separate learning rates for 398 

reward and punishment as well as a constant action initiation bias, and we observed 399 

normative developmental differences in these parameters, associated with both 400 

chronological age and (to a lesser extent) pubertal stage. Specifically, we observed 401 

linear declines in action initiation biases and increases in punishment learning across 402 

adolescence, combined with stable levels of reward learning. We conclude that 403 

adolescents develop an increasing ability to inhibit actions, learn from negative 404 
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outcomes, and make more selective behavioural responses as they transition 405 

through adolescence and approach adulthood. These findings challenge theoretical 406 

and empirical accounts that largely focus on enhanced reward processing and 407 

suggest that action biases and punishment learning are crucial processes to 408 

understand across adolescence. 409 

Methods 410 

Participants 411 

Participants were selected from the FemNAT-CD consortium38. All participants 412 

included in the present analyses had completed the reinforcement learning task, 413 

were 9-18 years old, and were classed as typically developing, with no current 414 

psychiatric diagnoses (including autism), learning disability, serious physical illness, 415 

or histories of disruptive behavioural disorders or ADHD (see Questionnaire 416 

measures below). Eight hundred and thirty-nine participants were eligible for 417 

inclusion. We screened the data to exclude participants with poor task performance. 418 

Five participants never responded, four responded to every trial, six scored below 419 

zero points on the task (indicating deliberate punishment-seeking and reward-420 

avoidance), and 96 responded to fewer than half of the reward trials (i.e., trials where 421 

responding was the correct behaviour). The final sample thus consisted of 742 422 

youths (491 girls, 251 boys). These participants were recruited from 11 sites across 423 

Europe (Aachen: 139, Frankfurt: 140, Birmingham: 103, Amsterdam: 90, 424 

Southampton: 89, Bilbao: 55, Athens: 49, Szeged: 33, Basel: 28, Barcelona: 12, 425 

Dublin: 4). For LMM and GLMM (i.e., non-modelling) analyses only, we excluded an 426 

additional six participants who were missing IQ data. For the analyses of model 427 

parameters and age, we excluded 41 participants with values more than three 428 

standard deviations from the mean on one or more model parameters. 429 

All participants provided written informed consent (if over the age of consent in their 430 

country) or written informed assent, with written informed consent provided by a 431 

parent or guardian. Participants received a small monetary or voucher 432 

reimbursement in line with local ethical approvals39. This payment was not linked to 433 

task performance.  434 

Questionnaire and interview measures 435 
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Participants were assessed for current and past psychiatric and behavioural 436 

disorders using the K-SADS-PL clinical interview40 (see Supplementary materials). 437 

Participants were only eligible for the current study if they were assessed as typically 438 

developing according to the K-SADS-PL. IQ was assessed with the vocabulary and 439 

matrix reasoning subscales of the Wechsler Abbreviated Scale of Intelligence41 at 440 

English-speaking sites, or with the vocabulary, block design, and matrix reasoning 441 

subscales of the Wechsler Scale for Children (participants <17 years) or Wechsler 442 

Adult Intelligence Scale (17-18 years;42).  443 

Pubertal stage was assessed using the self-report Pubertal Developmental Scale 444 

(PDS;29), which assesses growth of body and facial hair, change of voice, and 445 

menstruation. Each item is rated on a scale from 1 (not yet started) to 4 (seems 446 

complete). These subscales are then summed to yield an overall pubertal stage 447 

score: pre-pubertal (1), early pubertal (2), mid-pubertal (3), late pubertal (4) or post-448 

pubertal (5).  449 

Socioeconomic status (SES) was assessed based on parental income, education, 450 

and occupation. Assessments were based on the International Standard 451 

Classification of Occupations (International Labour Organization; 452 

www.ilo.org/public/english/bureau/stat/isco/) and the International Classification of 453 

Education (UNESCO; uis.unesco.org/en/topic/international-standard-classification-454 

education-isced). Human ratings and computer-based ratings were combined into a 455 

factor score using principal component analysis. A clear one-dimensional structure 456 

underlying the different measures could be corroborated using confirmatory factor 457 

analysis (comparative fit index = 0.995; root mean square error of approximation = 458 

0.035). Reliability of the composite SES score was acceptable (Cronbach’s α = 459 

0.74). To account for economic variation between countries, the final SES score was 460 

scaled and mean-centred within each country, providing a measure of relative SES. 461 

Missing data were imputed by statisticians at the Institute of Medical Biometry and 462 

Statistics (Freiburg, Germany), as described in Supplementary materials.   463 

Learning task 464 

Participants completed a ‘passive avoidance’ reinforcement learning task on a 465 

computer in a quiet testing room. The task was adapted from two previous 466 

studies43,44 and presented in E-Prime45. The aim of the task was to gain points by 467 
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pressing a button when presented with ‘good’ objects (to earn points) and 468 

withholding responses when presented with ‘bad’ objects (to avoid losing points). In 469 

order to maximise their point score, participants thus had to learn through trial-and-470 

error which objects were associated with reward and which with punishment. There 471 

were eight different objects in total, four associated with rewards and four with 472 

punishment, with values of +/−1, +/−700, +/−1400, or +/−2000 points. The point 473 

value associated with each object was fixed and did not change throughout the task. 474 

The eight objects were each presented 10 times in a random order (thus 80 trials in 475 

total). Each response was followed by feedback on the number of points gained or 476 

lost plus the running total; when participants did not respond, the value of the object 477 

was not revealed (see Figure 1). Stimuli were displayed for 3000ms or until the 478 

participant responded, and feedback (or the running total alone) was then displayed 479 

for 1000ms. Participants started the task with 10,000 points and could theoretically 480 

obtain final scores between 51,010 and −31,010, although the maximum score 481 

obtainable through learning (rather than ‘lucky guesses’) was 46,909. Since scores 482 

below zero could only be obtained by systematically responding to punishment 483 

instead of reward, participants with scores below 0 points were excluded (see 484 

Participants above).  485 

Model fitting and comparison procedure 486 

Seven different reinforcement learning models were constructed. For each model, 487 

rewards were coded as 1, neutral outcomes (when no response was made) as 0, 488 

and punishments as −1. First, we constructed a basic reinforcement learning model, 489 

in which learning was captured by a single learning rate (α) parameter and a 490 

temperature parameter β, which captures noisiness in responding. In this model, the 491 

expected value V of a response on trial t is updated with a reward prediction error PE 492 

scaled by the learning rate α, where the prediction error is the discrepancy between 493 

the outcome r (1, 0, or −1) and the expected value: 494 

If go: V(t+1) = V(t) + (α * PE(t)) 495 

If no-go: V(t+1) = V(t) 496 

where 497 

PE(t) = r(t) – V(t) 498 
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Eq.1: basic model 499 

The expected values are then converted to response probabilities using the Softmax 500 

equation, where the temperature parameter β adds noise: 501 

Probability of observed response = eVgo(t)/β / (eVgo(t)/β + eVnogo(t)/β) 502 

Eq.2: softmax 503 

Using the model comparison procedure illustrated in Figure 6, we constructed six 504 

further models with combinations of additional parameters. These parameters were 505 

separate learning rates for reward versus punishment outcomes (Eq. 3), two 506 

versions of an action initiation bias towards responding regardless of anticipated 507 

outcome (Eq.4-5), and one or two magnitude sensitivity parameters, which 508 

accounted for sensitivity to the actual point value obtained (Eq. 6-7).  509 

For reward outcomes: V(t+1) = V(t) + (αr * PE(t)) 510 

For punishment outcomes: V(t+1) = V(t) + (αp * PE(t)) 511 

Eq.3: two learning rates 512 

For models that included the initial ‘go’ bias, the starting value of responding to each 513 

object was increased (or decreased) by an amount b on the first presentation of the 514 

object only: 515 

V(1) = b_i 516 

Eq.4: initial ‘go’ bias 517 

For models that included the constant ‘go’ bias, the value of responding to each 518 

object was increased (or decreased) by an amount on each presentation of the 519 

object: 520 

Vbiased(t) = V(t) + b_c 521 

Eq.5: constant ‘go’ bias 522 

Vbiased was used only to calculate the response probability for the current trial, so that 523 

the bias did not accumulate over repeated presentations of the object. 524 

For models that included a single magnitude sensitivity parameter, the absolute point 525 

score obtained on each trial (re- scaled to be between 0 - 1) was multiplied by a 526 
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magnitude sensitivity parameter ρ and added to the outcome (which was itself still 527 

coded as 1, 0, or −1): 528 

Outcome(t) = r(t) + magnitude(t) * ρ(t) 529 

Eq.6: magnitude sensitivity parameter 530 

Finally, models that included two magnitude sensitivity parameters applied different 531 

magnitude sensitivities to reward and punishment outcomes:  532 

If reward: Outcome(t) = r(t) + magnitude(t) * ρr(t) 533 

If punishment: Outcome(t) = r(t) + magnitude(t) * ρp(t) 534 

Eq.7: two magnitude sensitivity parameters 535 

 536 

 537 

538  
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Figure 6. Steps in model construction procedure. In the first step (1), models with 539 
one versus two learning rates were compared, and separately, models with an initial 540 
versus constant action initiation bias were compared. A fifth model was then 541 
constructed by combining all parameters from the winning models in step 1 (i.e., one 542 
versus two learning rates and the winning action initiation bias). In step 2, we tested 543 
whether model 5 was improved by adding a single magnitude sensitivity parameter 544 
(model 6) or separate magnitude sensitivity parameters for reward versus 545 
punishment outcomes (model 7). Finally, to confirm that the winning model from step 546 
2 was the best overall model, we compared models 1-7 directly in step 3. 547 

 548 

Model fitting and comparison were conducted in MATLAB 2019b 549 

(TheMathWorksInc). We used an iterative maximum a posteriori (MAP) approach for 550 

all model fitting, in line with previous work using reinforcement learning models26–551 
28,30. First, we initialised Gaussian distributions as uninformative priors with a mean 552 

of 0.1 (plus noise) and variance of 100. Next, during the expectation step, we 553 

estimated the model parameters for each participant using maximum likelihood 554 

estimation (MLE), calculating the log-likelihood of the participants’ set of responses 555 

given the model being fitted. We then computed the maximum posterior probability 556 

estimate, given the participants’ responses and the prior probability from the 557 

Gaussian distribution, and recomputed the Gaussian distribution over parameters 558 

during the maximisation step. These alternating expectation and maximisation steps 559 

were repeated iteratively until convergence of the posterior likelihood, or for a 560 

maximum of 800 iterations. Bounded free parameters were transformed from the 561 

Gaussian space into native model space using link functions (e.g., a sigmoid function 562 

for learning rates).  563 

To compare models, we used Laplace approximation of log model evidence (more 564 

positive values indicating better fit47) in a random-effects analysis using spm_bms48 565 

from SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/). This calculates the 566 

exceedance probability, i.e., the posterior probability that each model is the most 567 

likely. An exceedance probability over 0.95 provides strong evidence for the best-568 

fitting model. We also calculated the integrated BIC score (BICint) for each model, 569 

which penalises more complex models. Lower BICint scores indicate better 570 

performance. MATLAB code for models and model fitting and comparison 571 

procedures is available at https://osf.io/d2zp4/.  572 

Parameter recovery and model identifiability 573 
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We used a parameter recovery procedure to ensure that the parameters from the 574 

winning model were dissociable from each other, and a model identifiability 575 

procedure to ensure that the reinforcement learning models were dissociable from 576 

each other26. For the parameter recovery procedure, we simulated participant 577 

response data only for the winning model, using a range of parameter values 578 

between the minimum and maximum possible values for that parameter. Data were 579 

simulated for 243 synthetic participants. The winning model was then fitted again to 580 

its simulated data using the MAP procedure, and correlations between the 581 

parameters used to simulate the data and the recovered parameters (estimated from 582 

the simulated data) were checked for correspondence. For the model identifiability 583 

procedure, we simulated participant response data for each model in turn, using a 584 

range of parameter values within the observed range from the real data. For each of 585 

these models, the full set of seven models was then fitted to the simulated data from 586 

that model, using the MAP procedure, and this was repeated 10 times. We then 587 

created confusion matrices for mean exceedance probability and for the number of 588 

times each model won, to check that for each model and its simulated data, the 589 

winning model was the one that had been used to generate the data. This procedure 590 

confirms that each model is reliably associated with a different pattern of responses 591 

from the competing models.  592 

We also generated synthetic behavioural responses using our winning model and its 593 

mean parameter values, to check that the real and simulated responses were 594 

broadly similar. Finally, as an additional test of the validity of our winning model, we 595 

conducted correlations between task performance (number of overall correct 596 

responses and correct responses for reward and punishment separately) and each 597 

model parameter (Spearman’s correlations, R’s correlation package cor_test 598 

function).   599 

Statistical analysis 600 

All statistical analyses were conducted in R (v. 4.1.1 and v. 4.1.2) through RStudio. 601 

First, we investigated associations between age or pubertal stage and the model 602 

parameters from the winning model. Since parameter values were not normally 603 

distributed, we used robust linear mixed effects regression models using the rlmer 604 

function in R. We tested whether each parameter was predicted by age, with IQ and 605 
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sex as covariates (fixed effects) and varying intercepts for different sites of data 606 

collection (random effects). We then checked for quadratic associations with age by 607 

adding an age2 term to each model. Discrete variables were recoded so that 608 

contrasts summed to zero, and continuous variables were z-scored.   609 

To confirm these learning effects matched participants’ behavioural responses, we 610 

next used nested linear mixed effects models to assess whether age was related to 611 

participants’ changing responses to reward and punishment stimuli over the course 612 

of the task. These analyses were conducted using R’s lme4 package glmer 613 

function49. Participants’ responses were coded as 1 (active response) or 0 (no 614 

response) and were predicted from age, sex (0 = male, 1 = female), object repetition 615 

number (1-10), and object valence (0 = reward, 1 = punishment) (fixed effects), with 616 

varying intercepts allowed for responses grouped by participant nested within site 617 

(random effects). All continuous variables were z-scored, and discrete variables 618 

(participant response, sex) were recoded so that the two levels summed to zero 619 

(e.g., 0 and 1 becomes −0.5 and 0.5). The same analysis was then repeated for 620 

pubertal stage, using PDS score as the dependent variable instead of age. In all 621 

analyses, IQ and sex were included as covariates.  The strength of null effects was 622 

interpreted using Bayes factors calculated with the BIC method31 and the language 623 

suggested by Jeffreys50. 624 
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