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Abstract: Cognitive acts take place over a large range of temporal scales. Numerous
corresponding gradients in neurodynamic timescales and long-range cortical interactions are
believed to provide organizational constraints to the brain and influence neural populations’ roles
in cognition. However, it is unclear if gradients in various types of neural timescales and
functional connectivity arise from related or distinct neurophysiological processes and if they
influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals
were used to systematically map gradients of multiple aspects of neurodynamics, neural
timescales, and functional connectivity, and assess their interactions along category-selective

ventral temporal cortex. Opposing functional connectivity gradients, with decreasing
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connectivity to visually responsive regions and increasing connectivity to regions that were not
visually responsive, were observed along the ventral visual hierarchy. Endogenous neural
timescales were correlated with functional connectivity to visually responsive regions after
removing the effects of shared anatomical gradients, suggesting that these properties influence
one another. Different stimulus evoked and endogenous timescales exhibited gradients with
longer dynamics along the ventral visual hierarchy, but none of these timescales were
significantly correlated with one another. This suggests that local neural timescales depend on
neural and cognitive context and different timescales may arise through distinct
neurophysiological processes. Furthermore, activity from neural populations with faster
endogenous timescales and stronger functional connectivity to visually responsive regions was
more predictive of perceptual behavior during a visual repeat detection task. These results reveal
interrelationships and key distinctions among neural timescale and functional connectivity

gradients that together can influence behavior.
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Introduction:
A neural population’s functional properties, including its dynamics and its functional

connectivity to other brain regions, are ultimately linked to that population’s role in cognition
and perception. Several gradients in functional properties have been shown to exist along the
cortical axis spanning from primary sensory/motor areas to association cortices (1, 2, 6-9). These
gradients are thought to be related to key organizing principles of the cortex, guiding how
different regions contribute to cognition and perception (2, 7, 10, 11). For example, there are
gradients in the timescales over which neural populations process information and endogenously
fluctuate along this axis, with longer timescales further along cortical hierarchies (5, 8—-10, 12—
15), though it remains unclear if stimulus processing and endogenous timescales are related to
one another. Gradients of functional connectivity are also seen along this axis, with decreasing
unimodal connectivity and increasing transmodal connectivity along cortical hierarchies (2, 16).
These network-level neural properties likely influence local timescales, other computational
characteristics of neural populations, and these populations’ relationship to behavior (2, 6, 7, 17).
However, empirical evidence linking functional gradients in local dynamics with gradients in the
long-range connectivity of neural populations is limited. Additionally, it is uncertain to what
degree these gradients relate to a neural population’s role in behavior.

One prevalent functional gradient in cortex is the increasing timescales over which neural
populations integrate information when moving from primary sensory/motor to association
cortices (5, 8,9, 12, 13, 18-20). For example, rapidly varying acoustic inputs represented in low-
level auditory cortex are combined into more complex representations in higher order auditory
cortex, which operates over longer timescales (14). These neural timescales, or temporal
receptive windows, are related to the rate of decay of representations within neural populations

(5, 12, 13, 18), because longer decay rates allow for more pieces of information to be integrated
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into a single representation. Stimulus-unrelated, endogenous timescales also lengthen along this
axis, measured through the temporal autocorrelation of neural activity (5,7, 8, 10, 21). Itis
unclear the extent to which stimulus-related and endogenous timescales relate to one another.

Another key aspect of neural dynamics, which is less well understood, is information
processing dynamics, including the initial rate at which neural populations discriminate between
stimuli (i.e., the rise time of discriminant information in neural activity). These information
processing dynamics relate to the speed of cortical computation and thus, ultimately limit the
speed of decision and action processes (3). Despite the importance of a neural population’s
information processing dynamics in cognition and perception, the functional characteristics that
are associated with neural populations that processes information more quickly or slowly remain
unclear (12, 13, 19).

In addition to anatomical gradients in local neural dynamics, opposing anatomical
gradients in long-distance connectivity to association versus primary sensory/motor cortices have
also been demonstrated in human cortex. Unimodal connectivity, primarily within sensorimotor
regions, decreases when moving up cortical processing hierarchies while transmodal
connectivity linking multiple sensory domains increases (1, 2). However, it is unclear how
gradients in local dynamics interact with gradients in long-range functional connectivity. In
silica, circuit models of cortical processing suggest that inter- and intra-areal connectivity
patterns help constrain a neural population’s timescale (6, 11, 22), which has received some
support from low temporal resolution measures of brain activity (17, 23).

Finally, the functional properties that constrain a neural population’s dynamics and long-
range cortical connectivity ultimately constrain how that population contributes to cognition and

perception. However, open questions remain regarding which aspects of a neural population’s
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anatomical position, neurodynamics, or functional connectivity is related to its ability to predict
behavior.

In the current study, category-selective neural populations in ventral temporal cortex
(VTC) were used as a model to examine the relationship between anatomical gradients in local
cortical processing and long-range cortical interactions. We also explored how information
processing dynamics, endogenous timescales (i.e., neural dynamics not directly linked to the
exogenous, stimulus-evoked response; which we operationalize using the prestimulus period
when no stimulus was being presented), and long-range cortical connectivity interact with each
other beyond any shared anatomical gradients, and which of these gradients were associated with
the ability of a population’s activity to predict response time during single trials of a visual 1-
back task.
Results:
Activity was recorded from 1,955 VTC electrode contacts (out of a total of 4,090 intracranial
electrode contacts distributed throughout the brain) in 35 patients with pharmacologically
intractable epilepsy (Fig. S1) as they viewed images of objects (face, body, word, hammer,
house, or phase scrambled image) during a 1-back task. Multivariate Naive Bayes classifiers
were used to predict the category of object participants were viewing during individual trials of
the task using sliding 100 ms windows of single trial potentials (stP) and single trial high
frequency broadband activity (stHFBB) recorded from individual electrode contacts. At this
stage of the analysis, these signal components were combined since previous studies have
suggested that they contain complementary information (24), though in further analyses they
were examined separately. Out of the 1,955 VTC electrode contacts, activity recorded from 390

electrode contacts (mean = 11; SD = 14 electrode contacts per patient) could reliably predict (p <
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0.001, corrected via permutation testing) which category participants were viewing during single
trials of the task (Fig. 1). Information processing dynamics were estimated from the activity of
the neural populations recorded by these contacts. Specifically, the time-course of category-
discriminant information processing in these category-discriminant neural populations was
calculated by computing the mutual information (in bits) between the classifier outputs and the
true category labels. The functional properties of these populations were computed to examine
the relationship between these variables and anatomical axes of VTC (see Methods).
Specifically, we examined gradients of, and interactions between, nine factors: two stimulus
response timescales (factors 1 and 2): initial rise duration and maintanence of category-
discriminant information (see Fig 2A for illustration); category-discriminant information onset
time and peak magnitude (factors 3 and 4; see Fig 2A for illustration); two endogenous
(prestimulus) timescales (factors 5 and 6): the timescale of decay, “tau”, for the prestimulus stP
and stHFBB autocorrelation functions (see Fig 4A for illustration); functional connectivity to
visually responsive populations and to populations that were not significantly visually responsive
(factors 7 and 8); and the accuracy of a neural population’s activity for predicting behavioral

response time (RT; factor 9).

Gradients of Information Processing Dynamics

The cortical distance from the occipital pole, which roughly corresponds to the fovea in
primary visual cortex, was used to approximate the position of neural populations along the
hierarchical axis of the ventral visual stream (25). Distance along this axis was correlated with
several aspects of information processing in these category-discriminant neural populations (Fig.
2; see Fig S2 for an example from a single subject). Along this axis, neural populations

demonstrated increasing onset latencies and increasing durations of their initial rises in category-
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discriminant information. Additionally, neural populations maintained category-discriminant
information longer after peaking, despite reaching smaller peak magnitudes, when moving along
the visual hierarchy. See Fig S6 for simulations demonstrating the independence of peak

magnitude and rise duration metrics.

In addition to examining discriminant information, we also examined the dynamics of the
non-discriminant neural responses. Specifically, gradients in category-indiscriminant visual
responses (discriminating all categories from baseline rather than categories from one another as
in Fig. 2) in the same neural populations were examined (Fig. 3). Populations demonstrated
increasing onset latencies and decreasing peak magnitudes of visual responsiveness when
moving along the ventral visual hierarchy, like the gradients observed for category-discriminant
information. However, there was no comparable increase in the duration of the initial rise in
visual responsiveness along this axis and visual responsiveness was maintained for shorter
durations in populations further along the visual hierarchy, which was opposite of the gradient
observed for category-discriminant information. The contrast between visual response dynamics
and category-discriminant information processing dynamics highlight differences in the neural

encoding of these two levels of stimulus information (26, 27).

Gradients of Endogenous Neural Timescales

Next, the endogenous neural timescales of VTC populations were quantified by
computing the autocorrelation of prestimulus activity at multiple temporal lags and modelling the
resulting autocorrelation function with an exponential decay function (5, 22; Fig. 4). When
moving along the visual hierarchy, neural populations demonstrated increasing time-constants of
decay (tau) in the autocorrelation function of their prestimulus stP, indicating that their activity

exhibited longer timescales/slower dynamics along this axis. This is consistent with previous
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studies observing slower endogenous timescales when moving up sensory processing hierarchies
(2,5,7, 18, 19, 28). Conversely, neural populations demonstrated shorter timescales in their
prestimulus stHFBB activity when moving along the ventral visual hierarchy. Time-constants
across stP and stHFBB signal components were not significantly correlated with one another
across electrode contacts (p(390) = -0.05, p = 0.33), highlighting the differentiability of these
two aspects of the neural signal (29-31). These results show that these components of the
endogenous neural activity demonstrate distinct timescales that have opposite gradients along the

ventral visual hierarchy.

Gradients in both information processing dynamics and neural timescales were present in
individual patients (Fig. S2) and several generalized across patients (linear mixed-effects models
Fig. 2 & 3 captions). The gradient of information processing onset was stronger in the left
compared to the right hemisphere (Supplementary Text). Notably, neural populations selective
for individual categories demonstrated different gradients in neural dynamics relative to those
selective for other categories along the ventral visual hierarchy, with face selective populations
generally displaying shallower posterior-anterior gradients (Supplementary Text, Fig. S3, Table
S1). Given the differences in prestimulus neural timescales exhibited in stP and stHFBB, we
recomputed gradients in information processing dynamics from these signal components
separately. With a few notable exceptions, stimulus related information processing dynamics
demonstrated similar gradients for stP and stHFBB across these components when moving along

the visual hierarchy (Supplementary Text and Fig. S4).

Gradients of Functional Connectivity

After examining gradients in information processing and endogenous timescales, we

examined gradients in functional connectivity along the ventral visual hierarchy. Specifically, a
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measure of functional connectedness to the rest of the brain, the average prestimulus phase-
locking value (PLV), was calculated between the 390 category-discriminant VTC electrode
contacts and all other electrode contacts implanted within the same patient (on average 115
electrode contacts, SD = 41; note that none of the results reported below change substantially
whether functional connectivity was calculated during the prestimulus or the poststimulus period
as the Spearman correlation between the prestimulus and poststimulus connectivity metrics was
> 0.95). These “other” electrode contacts were located across the entire brain, not only in VTC
(Fig. S1). Previous fMRI studies suggest opposite gradients in functional connectivity to
unimodal sensory vs. association and transmodal areas when moving along sensory processing
streams (1, 2). Therefore, we separately computed the functional connectivity of VTC category-
selective contacts to visually responsive contacts (p<0.001, for visual response vs. baseline,
corrected for multiple temporal comparisons) and to those that were not visually responsive.
Also, given the wide variability of electrode coverage across patients, pooling connectivity
across visually responsive and not visually responsive contacts allowed us to partially overcome
this cross-patient anatomical heterogeneity.

Connectivity between VTC electrode contacts and visually responsive contacts decreased
when moving up the visual hierarchy. In contrast, the connectivity between VTC contacts and
contacts that were not significantly visually responsive increased when moving up the visual
hierarchy (Fig. 5). Decreasing functional connectivity to visually responsive regions and
increasing functional connectivity to regions that do not demonstrate strong visual responses is
generally consistent with previous fMRI studies showing opposing anatomical gradients along

VTC for functional connectivity to unimodal versus transmodal regions (2).

Gradients of Ability to Predict Behavior
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Additionally, we examined whether a neural population’s role in visual perceptual
behavior exhibited an anatomical gradient. This was done by predicting the RT of patients, using
sliding windows of neural activity recorded at each category-selective VTC electrode contact,
during trials of the 1-back task where patients correctly responded that an object was presented
twice in a row. How predictive the activity in an electrode contact was of RT was used as a
measure of how much the activity from that neural population contributed to perceptual
behavior. When considering stP and stHFBB together, the ability of a VTC neural population’s
activity to predict RT was not significantly correlated with distance along the visual hierarchy
(p(390) = 0.02, p = 0.75). However, when considering them separately, a neural population’s
ability to predict RT decreased along the visual hierarchy when looking at stHFBB but increased
when looking at stP. These differences highlight nuances in large-scale neuroanatomical

gradients when considering different aspects of the neural signal (29-31).

Relationships between and among neurodynamics, functional connectivity, and behavior

Given corresponding anatomical gradients in local dynamics and long-range cortical
interactions, a key question is, to what degree these gradients are interrelated beyond shared
anatomical axes. To explore this question, the partial correlations between these functional
properties of category-selective VTC populations were calculated after removing the effects of
distance along the visual hierarchy (Fig. 6). Note that Spearman’s partial correlation was used to
remove any monotonic relationship to distance along the visual hierarchy, not only linear
relationships (see Fig. S5 for the non-partialed correlations).

The negative partial correlation between a neural population’s stP timescale and its
functional connectivity to visually responsive populations throughout the brain was significant.

This suggest that parts of VTC that communicate strongly with other visually responsive regions
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have shorter timescales. Furthermore, the negative partial correlations were significant between
the magnitude of a neural population’s peak category-discriminant information and both its
connectivity to visually responsive regions and those that were not. This shows that neural
populations with stronger connectivity, especially to non-visual areas have less category-
discriminant activity.

None of the measures of endogenous or stimulus-response timescale (prestimulus stP and
stHFBB tau, initial rise duration, and maintenance) were significantly correlated with one
another, with or without removing the effects of distance along the visual hierarchy (Fig 6 and
Fig S5). Thus, though there are gradients in neural timescales across VTC using each of these
measures, neither these timescales nor their gradients are significantly correlated to one another
even though they were measured from the same neural populations. This indicates that neural
timescales are context dependent (prestimulus vs stimulus response, initial rise duration vs.
maintenance, stP vs. stHFBB, etc. are all not significantly correlated) and measuring one type of
timescale cannot be used to infer the general timescale of a neural population.

Partial correlations between nearly all the stimulus response variables (peak information,
onset time, initial rise duration, and maintenance duration), other than the two timescales
discussed in the previous paragraph (initial rise duration vs. maintenance duration), were
significantly correlated with one another. This suggests that there are interactive factors driving
these different aspects of the stimulus response.

The partial correlation between the ability of a neural population to predict RT and that
neural population’s connectivity to visually responsive brain regions and the partial correlation
between a neural population’s ability to predict RT and that neural population’s prestimulus stP

timescale after removing the effect of distance along the visual hierarchy were both significant
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(Fig. 6). Thus, neural populations which integrate information over visual brain regions with
short stP timescales were more predictive of behavior during the 1-back task observed here. This
demonstrates that aspects of both local neural dynamics and long-range cortical interactions are

intimately linked to a neural population’s role in visual perceptual behavior.

Discussion:

Taken together, these results illustrate interrelationships between a neural population’s
anatomical location, its local dynamics, and its long-range functional connectivity, which
ultimately influence that population’s role in perception. In the current study, progressing along
the ventral visual hierarchy was associated with decreases in peak category-discriminant
information, longer information onsets, longer durations of initial information processing, longer
periods of information maintenance, longer prestimulus stP timescales but shorter prestimulus
stHFBB timescales, and opposing changes in connectivity to visual and non-visual brain regions.
These results suggest that the anatomical and physiological gradients that exist along the visual
hierarchy influence almost all aspects of prestimulus and information processing dynamics,
which may constrain how these neural populations process information and their computational
role in cognition. Indeed, a subset of these functional gradients were correlated with the ability of
a neural population’s activity to predict the speed of behavioral responses during a visual 1-back
task. Furthermore, many aspects of stimulus response dynamics shared significant
interrelationships with one another beyond any shared relationship with anatomical location.
Functional connectivity was correlated to aspects of both the stimulus response and prestimulus
timescales, demonstrating how long-distance interactions can influence local neurodynamics.
However, prestimulus and poststimulus information processing timescales were not strongly

correlated to one another, nor were the initial rise and maintenance of the visual response,
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suggesting that different aspects of neural dynamics arise through different processes and
mechanisms.

Previous studies have observed that neural populations demonstrate longer timescales
when moving from primary sensory and motor regions to association cortices (5, 8,9, 12, 13, 18,
19). The increasing endogenous timescales of stP activity along the ventral visual hierarchy
observed here further support this organizing principle of cortex. Notably though, the
endogenous stHFBB timescales demonstrated the opposite relationship along VTC, with shorter
timescales in more anterior parts of VTC. Furthermore, the timescale of the stP and stHFBB
were uncorrelated, demonstrating a dissociation between the dynamics of these two signal
components recorded from the same neural population. This highlights a need to better
understand the differences in the physiological origins of stP and stHFBB signal components
(29-31).

The duration that category-discriminant neural populations initially process category-
selective information increased along the ventral visual hierarchy, which may be the result of
increased computational demands involved in forming more complex and individuated
representations in more anterior category-selective neural populations (32-35). However, in
traditional models of perception, neural units are passive visual feature detectors, that either fire
or not depending on the presence or absence of their preferred features (36). In these models,
little difference should be seen in the speed that neural populations process information further
downstream because these passive feature detectors, even if they are sensitive to complex
features, should respond rapidly and automatically to the presence of that feature (36). In this
study, the duration of the initial rise in visual responsiveness did not change along the hierarchy,

which fits with these traditional models. However, the divergence in the duration of category-
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discriminant versus visual response dynamics does not fit with these models. Instead, these
results support a model of ventral visual representations that evolve through time, with
information processing dynamics governed by interactions between the information being
processed locally and globally through long-range connections, which reflect top-down and
recurrent interactions (27, 37-39).

Long-range functional connectivity demonstrated a crossover effect along the ventral
visual hierarchy, with decreasing connectivity to visually responsive regions and increasing
connectivity to those that were not, consistent with previous fMRI studies (1, 2). Some of these
gradients in functional connectivity were also associated with gradients in neural timescales even
after controlling for effects of distance along the visual hierarchy. Specifically, neural
populations that were more strongly connected to visually responsive regions demonstrated
shorter endogenous stP timescales. One potential explanation for this result is that neural
populations which integrate primarily visual inputs have faster timescales compared to neural
populations that have more diverse inputs so that they are prepared to rapidly process incoming
visual information (2, 13, 25). Notably, the partial correlation between connectivity to regions
that did not demonstrate strong visual responses and poststimulus stP timescale was not
significant. Previous models have not investigated differential effects of long-range cortical
interactions with visual versus non-visual regions on the timescale of neural populations (11).
This may be an important consideration for future models. Given the variable coverage of brain
regions across patients in the current study, future studies are necessary to tease apart the impact
that connectivity with specific brain regions has on local cortical dynamics.

Neural populations that demonstrated higher peak category-discriminant neural activity

had earlier onsets, shorter durations of initial rise, and maintained that information longer. Our
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simulations demonstrated that our measures of peak and duration are independent, confirming
that this correlation is physiological and not an artifact of the analysis (Fig. S6). Longer initial
rises in category-discriminant information with smaller peak information may reflect evidence
accumulation over longer timescales in these neural populations (13). Whereas partial
correlations between local neural dynamics and long-range cortical interactions demonstrates
that, in addition to sharing strong gradients along the primary axis of sensory processing systems,
these properties of neural populations are closely linked to each other. These links between local
dynamics and long-range cortical interactions are likely conferred in part by shared biochemical,
microstructural, and macrostructural connectivity gradients that exist along the ventral visual
axis beginning early in cortical development (1, 2, 6, 40, 41).

Functional gradients in VTC were also correlated with the degree to which a neural
population’s activity could predict perceptual behavior. In the current study, increased functional
connectivity to visually responsive regions and shorter prestimulus stP timescales were
associated with a greater ability for a neural population’s activity to predict RT in a 1-back task
after removing the effect of distance along VTC. This suggests that these neural populations may
play a larger role in the basic visual discrimination task studied here, though it is notable that
these results cannot address relationships between neurodynamics and perception or behavior in
other tasks. Behaviors involving more complex perceptual representations and/or more complex
behavioral decisions may rely more heavily on neural populations with longer timescales and on
higher order cortical regions (37, 38, 42—45). Future studies are required to determine if finer
level of visual discrimination involving longer response times (46) reflect contributions from
neural populations with different information processing timescales and functional connectivity

patterns compared to those involved in the 1-back task studied here.
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There were not significant correlations between stimulus response timescales and
endogenous timescales, or between onset dynamics and maintenance dynamics. Different aspects
of task-evoked timescales were not closely linked to one another, suggesting the physiological
drivers of initial information processing and maintenance may be independent. Additionally,
endogenous neurodynamic timescales did not generalize to stimulus related information
processing timescales. Notably, this is unlike functional connectivity patterns, which were highly
correlated across the stimulus response and prestimulus periods. The lack of significant
correlation across the different measures of local neurodynamics highlights that endogenous
neural timescales are not necessarily tightly related to task-evoked information processing
dynamics (15, 47-49). Thus, inferences about a region’s computational role in cognition,
including its temporal integration and segregation (10) or temporal response windows (18, 28),
cannot be inferred from endogenous dynamics alone, as stimulus response and endogenous
timescales are not necessarily strongly correlated. There is no single principle or process that
governs a neural population's timescales, e.g. timescales are not a static and inherent property of
a neural population (10, 50). Rather, these results suggest that different kinds of timescales are
governed by different combinations of factors that can depend on cognitive and neural context.

The current study highlights how large-scale anatomical and functional gradients interact
to constrain local neural processing dynamics and computation. The anatomical gradients of
dynamics and connectivity demonstrated here impose important constraints for future
neurobiological models of visual perception. This architecture may help the brain achieve
abstract and conceptual representations seen in more anterior VTC neural populations (32, 34,
35). While the present study examined these effects in visual processing, it is likely that similar

principles apply to other hierarchically organized sensory and cognitive systems (2, 12, 14, 50).


https://doi.org/10.1101/2022.05.05.490070
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

20

25

30

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.05.490070; this version posted May 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Indeed, gradients in physiological, and thus functional, organization are likely in part conferred

by corresponding gradients in growth factors and, in turn, gene expression during and persisting

after cortical development (2, 7, 40, 41). Interactions among response properties and functional

connectivity patterns of neural populations suggest that shared neurophysiological mechanisms

tie large-scale and local processing dynamics together. Distinctions among and between

endogenous and stimulus response timescales suggest that these neurodynamics are caused by

distinct neurobiological mechanisms and play different roles in the brain. These results highlight

the mutual interrelationships between a neural population’s position in the processing hierarchy,

its functional connectivity, and its local dynamics, constraining its role in cognition.
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Figures:
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cortical distance from occipital pole (cm)

5

Fig. 1. Spatial topography of electrode contacts recording from neural populations that achieved
peak category-discriminant information greater than chance at the p < 0.001 level corrected for
multiple temporal comparisons. Colors represent the electrode contact’s cortical distance from the
occipital pole calculated using subject-specific anatomy. Depth electrode contacts are plotted
below the cortical surface for clarity. Contacts that appeared to be outside of the MNI standard
brain due to differences in individual brain sizes were projected to the nearest MNI cortical vertex
in this figure solely for illustrative purposes. The proportion of left vs. right hemisphere category-
discriminant contacts was comparable to the proportion of total left vs. right hemisphere VTC
implants (see Supplementary Text).
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Fig. 2. Category-discriminant information processing gradients along the ventral visual hierarchy.
A) The time-course of category-discriminant information processing was computed for each neural
population. The average time-course across category-discriminant VTC populations is illustrated
here. From each neural population’s information processing time-course, the information onset
time (panel B), processing duration (C), peak magnitude (D), and maintenance duration (E) were
computed. Simulations confirmed that decreases in information amplitude and information
processing duration are independent using our methods (Fig. $6). B) The onset of category-
discriminant information, defined as the timepoint the information reached 10% of the maximum
before peaking, was significantly correlated with the position of that neural population along the
ventral visual hierarchy. The black line indicates the least-squares regression fit. Spearman’s p and
associated p-value shown on top right (n = 390). Spearman correlation was used because it is both
more robust to outliers relative to Pearson’s and is sensitive to non-linear monotonic relationships
between variables, though this also means that the line drawn is not representative of the p. Slope
of the least-squares regression line (m) indicated a 13 ms per centimeter increase in onset latency
moving along VTC. Information onset was significantly associated with distance along the visual
hierarchy even after correcting for cross-patient differences in onset latency (T(388) = 7.20, p <
0.001, tied-rank mixed-effects model). C) The duration of the initial rise in category-discriminant
information, defined as the time between the onset of information and the time it took the
population to reach 90% of its peak information, was negatively correlated with distance along the
visual hierarchy. The 90% threshold is used for the peak time because it better captures the initial
rise in cases where there is a shallow peak among an extended plateau in the discriminant
information time-course. Note: All correlations remain significant across a substantial range of the
heuristic thresholds chosen to define them (Fig. S7), thus the selection of 10% and 90% as
thresholds for onset and peak time do not drive these effects. The slope of the least-squares
regression line indicated a 6 ms increase in the duration of the initial rise of information per cm of
VTC. This relationship did not reach p < 0.05 when correcting for random cross-patient effects
(T(388) = -1.55, p = 0.12, tied-rank mixed-effects model). D) Peak category-discriminant
information was negatively correlated with distance along the visual hierarchy, with a decrease of
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-0.0035 bits/cm. This relationship did not reach p < 0.05 when correcting for random cross-patient
effects (T(388) = -1.62, p = 0.11, tied-rank mixed-effects model). E) Information maintenance
duration, defined as the time between when the information first reached 90% and the time when
it first decayed to 50% of the peak, was positively correlated with distance along the visual
hierarchy. The slope of the least-squares regression line indicated a 7 ms increase in the duration
of maintenance of information per cm of VTC. This relationship trended to p < 0.05 significance
when correcting for random cross-patient effects (T(388) = 1.87, p =0.063, tied-rank mixed-effects
model).
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Fig. 3. Visual response dynamics along the ventral visual hierarchy. Visual response dynamics
were extracted by classifying all stimulus categories versus baseline with similar classifiers used
to extract category-discriminant information (Fig. 2), making this a measure of the effect size
between visual response versus baseline. A) Onset of the visual response was positively correlated
with a neural population’s distance along the visual hierarchy. This effect held when correcting for
random cross-patient effects (T(388) = 6.23, p < 0.001, tied-rank mixed-effects model). Onset
latency of the visual response was not significantly different than the onset of category-
discriminant information (T(389) =0.11, p=0.91, paired T-test). B) Duration of the initial increase
in visual responsiveness was not significantly correlated with distance along the visual hierarchy,
unlike the significant positive correlation observed for category-discriminant information (Fig.
2C). C) Peak magnitude of visual responsiveness was negatively correlated with distance along
the visual hierarchy. This effect held when correcting for random cross-patient effects (T(388) = -
2.26, p < 0.001, tied-rank mixed-effects model). D) Visual response maintenance duration was
also negatively correlated with distance along the visual hierarchy, which held when correcting for
random cross-patient effects (T(388) = 5.45, p < 0.001, tied-rank mixed-effects model). This was
opposite of the relationship between information maintenance duration and distance along the
visual hierarchy observed for category-discriminant information (Fig. 2E).
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Fig. 4. Prestimulus neural timescales along the ventral visual hierarchy. A) For each neural
population, the autocorrelation function during the -500 to 0 ms prestimulus period was computed
for temporal lags ranging from 1 to 250 ms, averaged across trials (black line is the average across
populations), and fit with a single exponential decay function (gray line). The timescale (tau)
indicates how fast the fitted exponential function decays (red dashed line; computed like those in
(5)) and was correlated with other functional properties of the category-discriminant neural
populations’ activity. B) The autocorrelation function of single trial potentials (stP) decayed more
slowly when moving up the visual hierarchy, indicating that stP in more anterior VTC had higher
autocorrelations at greater lags (longer timescales) relative to more posterior neural populations.
This relationship held when correcting for random cross-patient effects (T(388) = 8.03, p < 0.001,
tied-rank mixed-effects model). C) The autocorrelation function of single trial high frequency
broadband (stHFBB) decayed more quickly when moving up the visual hierarchy, indicating that
stHFBB in more anterior VTC had lower autocorrelations at greater lags (shorter timescales)
relative to more posterior neural populations. This relationship also held when correcting for
random cross-patient effects (T(388) =-5.32, p < 0.001, tied-rank mixed-effects model).
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Fig. 5. Gradients in long-range cortical interactions along the ventral visual hierarchy. The
change in connectivity to visually responsive regions moving along VTC was opposite of the
change in connectivity to populations that were not visually responsive. Connectivity to
significantly visually responsive regions decreased along this axis, even when accounting for
random cross-patient effects (T(388) =-4.42, p < 0.001, tied-rank mixed-effects model). On the
other hand, connectivity to regions that were not significantly visually responsive increased
along this axis, even when accounting for random cross-patient effects (T(388) = 3.98, p < 0.001,
tied-rank mixed-effects model).
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Fig. 6. Interactions between local dynamics, long-range cortical interactions, and behavioral
correlations. Partial correlation matrix between local dynamic properties and long-range cortical
interactions after removing the effect of cortical distance along the visual hierarchy (see Fig. S5
for non-partialed correlations). Colored squares are significant at the p < 0.05 level
(uncorrected). The false-discovery rate adjusted critical value corresponds to p = +0.146. Within
each square is the partial Spearman correlation coefficient for the variables in the corresponding
row and column. The matrix is symmetric across the diagonal. Several properties of the local
information processing dynamics, including information onset, peak magnitude, duration of the
10  1initial rise, and the amount of time the information was maintained, were significantly correlated
to one another besides sharing a common anatomical gradient. The partial correlation between
peak information and functional connectivity was also significant after removing the effect of
distance along the visual hierarchy. The partial correlation between neural timescale (stP tau) and
connectivity to visually responsive regions (PLVy) was also significant as was the partial

15  correlation between both connectivity to visual regions and stP timescale and a neural
populations ability to predict patient response time (RT) during the 1-back task.
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Methods and Protocols
Intracranial electroencephalography GEEG) patients

Stereotactic depth and surface electrocorticography (ECoG) electrodes were implanted in ventral
temporal cortex (VTC) of 41 patients (15 males, ages 19-65) for the localization of
pharmacologically intractable epileptiform activity. Different aspects of these recordings from 38
of these patients were previously reported in (31). All patients gave written informed consent
under protocols approved by the University of Pittsburgh’s Institutional Review Board.
Electrode contacts that were identified as belonging to the seizure onset zone were not included
in the analysis.

Electrodes were localized via postoperative CT scans or postoperative magnetic
resonance images (MRI). Postoperative CT scans were co-registered to preoperative MRIs using
Brainstorm (51). Surface electrode contacts were projected to the nearest reconstructed cortical
voxel of the preoperative MRI scan to correct for brain-shift (52, 53). These electrode locations
were then registered to the Montreal Neurological Institute (MNI) common space via patient-
specific linear interpolations (54). VTC was defined as grey matter below the inferior temporal
gyrus spanning from the posterior edge of the fusiform gyrus to the anterior temporal lobe in
MNI common space.

Cortical distance between each electrode contact and the patient’s occipital pole was
computed using the patient’s native neural anatomy. The occipital pole was defined as the
intersection of the calcarine sulcus, inferior occipital gyrus, and superior occipital gyrus. The
geodesic (cortical) distance between this point and the cortical surface coordinate nearest to each

VTC electrode contact was computed using custom MATLAB scripts (55).

Experimental Paradigm
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All patients underwent a category localizer task containing images occupying approximately 6° x
6° of visual angle at the center of a stimulus display monitor positioned 2 meters from the
patient’s eyes. Each stimulus was presented for 900 ms on a black background. Inter-stimulus
intervals were 1500 ms with a random 0-400 ms jitter during which the patient saw a white
fixation cross. Patients were instructed to press a button every time an image was presented
twice in a row (1/6 of all trials). Repeat trials were excluded from further analysis. This left 70
trials per category to train and test the classifiers described in Multivariate temporal pattern
analysis. Several patients underwent more than one run of this experiment and therefore had 140
or 210 trials per category. All experimental paradigms were presented via custom MATLAB
scripts running the Psychophysics toolbox (56).

35 patients underwent a category localizer task consisting of pictures of bodies, faces,
hammers, houses, words, and non-objects. Six patients underwent category localizer tasks with
slightly different object categories but with identical stimulus parameters. One of these patients
viewed pictures of bodies, faces, shoes, hammers, houses, and phase-scrambled objects. One
viewed pictures of bodies, faces, consonant-strings, pseudowords, real words, houses and phase-
scrambled objects. One patient viewed pictures of faces, bodies, consonant-strings, words,
hammers, and phase-scrambled objects. One viewed pictures of faces, bodies, words,
pseudowords, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words,
tools, animals, houses, and phase-scrambled objects. One viewed pictures of faces, bodies,

words, fools, animals, numbers, houses, and phase-scrambled objects.

Intracranial recordings
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Local field potentials were collected from iEEG electrodes via a GrapeVine Neural Interface
(Ripple, LLC) sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online. Stimulus
presentation was synchronized to the neural recordings via parallel port triggers sent from the
stimulus displaying computer to the neural data acquisition computer. The signal was off-line
filtered from 0.2-115 Hz using two-pass fourth order butter-worth filters via the FieldTrip
toolbox (57). In addition to analyzing these single trial potentials (stP), we also extracted and
analyzed the single trial high frequency broadband (stHFBB) activity of these electrodes, since
these two components of the local field potential have been shown to contain complimentary
information (24).

StHFBB activity was extracted via Morlet wavelet decompositions from 70-150 Hz over
200 ms Hanning windows with 10 ms spacing. The resulting power spectral densities were then
averaged over these frequency components and normalized to a baseline period from 500 ms to
50 ms prior to stimulus onset to yield the stHFBB activity. Data was then epoched from -500 to
1500 ms around stimulus presentation. Trials during which the stP amplitude changed more than
25 microvolts across a 1 ms sample, or during which stPs exceeded an absolute value greater
than 350 microvolts, or during which either the stHFBB or stPs deviated more than 3 standard

deviations from the mean were all assumed to contain noise and were therefore excluded.

Multivariate temporal pattern analysis (Fig. I, 2, & 3)

Sliding, leave-one-out cross-validated, Gaussian Naive Bayes classifiers were applied to 100 ms
time windows with 10 ms stride to determine if stHFBB or stP recorded from individual VTC
contacts contained category-discriminant information. The input to these classifiers was 100 ms

(100 samples) of stP and 100 ms (10 samples) of stHFBB from a single electrode contact. The
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output of the classifier was the category of object presented during the corresponding trial. This
procedure was repeated for all VTC contacts from time windows beginning at 100 ms prior to
stimulus onset to 1000 ms after stimulus onset.

The category-discriminant information content within each neural population was
estimated by computing the mutual information (/(S’,S)) between the output of the Gaussian
Naive Bayes classifiers (predicted category labels, S”) for a given 100 ms time window of neural

activity and the actual presented stimulus (S):

' p(s's
1(5',5) = P(S) loga(mn=l).

where P(S’,S) is the joint probability of the classifier correctly predicting the stimulus category S
when the category was S, P(S’) is the proportion of times the classifier guessed a trial was of
stimulus S, and P(S) is the proportion of trials which the stimulus presented was S. This allowed
us to estimate the category-discriminant information contained within 100 ms time windows
without estimating a joint probability table of neural responses that was intractable (58, 59). It
has been shown that this estimate of information, which relies on a P(S”,S) derived by an external
classifier and not the actual neural code, is an underestimate of the neural information content
(60). Therefore, our calculated information is a lower bound for the actual neural information
content.

Information content was averaged across all stimulus categories presented to the patient
so as not to preclude electrode contacts as being selective for only one object category (61). A
threshold for significant category-discriminant information was determined by randomly
shuffling stimulus labels for a subset of VTC electrode contacts and repeating the same
classification analysis 1,000 times for each electrode contact (62). Electrode contacts with the

same number of runs of the category-localizer task demonstrated very similar null distributions
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and therefore we applied the result of this permutation test to all VTC electrode contacts. The
threshold was chosen such that none of the random permutations for any electrode contacts in the
subset reached the threshold, which corresponds to p < 0.001, corrected for multiple temporal
comparisons. Electrode contacts with peak category-discriminant neural information exceeding
this threshold were defined as category-discriminant.

We performed a similar decoding analysis to determine the time-course of visual
responses in individual VTC contacts. This was done by classifying single trial baseline periods
(100 ms to 0 ms prestimulus presentation) of neural activity from these neural populations
against sliding 100 ms time-windows from -90 to 1000 ms post-stimulus presentation for all
object categories treated as one class. This yielded a time-course of visual responses in each
sampled neural population. By randomly permuting the label of the baseline versus evoked data
and repeating the analysis in a subset of electrode contacts 1,000 times, we defined a threshold of
visual information that no random permutation of the data achieved, corresponding to the p <
0.001, chance level, corrected for multiple temporal comparisons. We used this threshold to
define visually responsive brain regions and those that were not, which were separated to
calculate their differential contributions of functional connectivity to VTC electrode contacts

with significant category-discriminant information.

Estimating the dynamic properties of neural information processing (Fig. 2 and 3)

To estimate properties of the information processing dynamics of neural populations across
VTC, the information time-courses derived from the Naive-Bayes classifiers were first smoothed
with a running average filter (width 50 ms). Next, onset latency of category-discriminant

information was defined as the last time point that an electrode contact was below 10 % of the
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maximum information prior to the peak information. The initial rise in category-discriminant
information was defined as the time between the onset and the point where the information time-
course first exceeded 90 % of the peak information. These cutoffs were chosen to ensure that
small deviations from chance-level information and peak information did not affect the estimated
quantities. Our main findings were robust to specific choices in threshold (Fig. S7). Finally, we
estimated the duration of information maintenance as the time between when the neural
population first reached 90% of its peak information to when the neural population’s information
first fell below 50% of this maximum after peaking. Similar dynamic properties were also
estimated for visual response time-courses (Fig. 3) and information processing time-courses for

specific object categories (Fig. S3 & Table S1).

Defining category-selective VTC electrode contacts (Fig. S3)

To determine if neural populations with sensitivity to different object categories demonstrated
differences in the gradients of their local dynamics or long-range functional connectivity, we
1solated category-discriminant VTC neural populations that responded primarily to one object
category. To do this we computed the event related potential and event related broadband
responses to each category during the 1-back task. Next, any of the previously defined category-
discriminant neural populations that contained maximum information to the same category that
evoked the maximum response across either of these averages was classified as selective to that
object category. We then characterized the information onset latency, slope, and connectivity of
these neural populations using the procedures described above. For these analyses we used the
category-specific information processing time-course derived from the Naive Bayes classifiers

prior to averaging over all categories in the main analysis.
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Information processing simulations (Fig. S6)

Simulations were used to test if increases in information processing duration exhibited along the
ventral visual hierarchy could be explained by differences in peak information magnitude.
Specifically, information time-courses were approximated as normal probability density
functions (PDFs) parameterized by a mean, standard deviation, and magnitude (constant scaling).
Normally distributed noise with the same standard deviation as prestimulus (-400 to 0 ms)
information in category-selective VTC electrode contacts was then added to these curves. 1000
simulated signals were computed for each different PDF magnitude and standard deviation.
Information processing duration was calculated using the same procedure described for
the actual signal, by calculating the time between when the signal first reached 90 % of its
maximum amplitude and the last time it was below 10 % of its maximum before that. We then
calculated the Spearman correlation between information processing duration when varying the
PDF’s standard deviation (to mimic changes in slope of the information processing time-course)
and when varying the information’s peak amplitude. Peak amplitude was varied from the
minimum to maximum peak information in category-selective VTC electrode contacts. During
the simulation investigating the effect of slope on information processing duration, signal
amplitude was fixed at the average peak information in category-selective VTC electrode

contacts.

Characterizing endogenous neural timescales (Fig. 4)

The endogenous timescales of VTC populations were characterized by computing the

autocorrelation of prestimulus (-500 ms to stimulus onset) stPs and stHFBB activity from 1-250

36


https://doi.org/10.1101/2022.05.05.490070
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.05.490070; this version posted May 9, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ms lags during each clean trial of the 1-back task. These prestimulus autocorrelation functions
were then averaged over all trials. The average autocorrelation function for each electrode
contact was then fit with a single exponential decay function:

ACF(t) =ty + Nye U/*
The neural timescale (tau), which measures the rate at which the autocorrelation function decays,
was then correlated with several other functional properties of the neural population. This
estimation of neural autocorrelations and computation of tau is similar to the procedure described

in (5).

Functional Connectivity (Fig. 5)

To determine the connectedness of VTC neural populations to the rest of the brain, phase-
locking values (PLVs) were calculated between neural populations with above chance levels of
category-discriminant information and all other electrodes within the same patient (regardless of
category-discriminant information content). Electrode contacts within 1 cm of the category-
discriminant electrode were not included in the analysis to rule out effects caused purely by
volume conduction. PLV's measure instantaneous phase-coupling across different brain regions
independent of differences in amplitude, unlike coherence metrics (63). This makes PLVs more
sensitive to detecting weakly coupled oscillators despite differences in amplitude (64). This
coupling of oscillations is thought to indicate event-related communication between electrode
contacts.

The instantaneous phase of each electrode contact during all category-localizer trials was
computed via convolution of the filtered neural activity (from 1-115 Hz) with Morlet wavelets of

frequencies ranging from 1-60 Hz (width = 5). This convolution allowed the separation of signal
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phase from envelope at each frequency (65). Next, the PLV was computed by taking the vector
average of the phase difference between two electrode contacts at each time point. PLVs close to
1 indicate two electrode contacts have similar phase differences at this frequency and time point
across all trials. Conversely, if this number is close to 0, the phase difference between these
electrode contacts is random at this given frequency and time point.

A spectral window of interest was defined to capture the part of the PLV spectrogram
that showed increased functional connectivity across all category-discriminant VTC neural
populations. We chose to focus on the time windows from -450 to 0 ms before stimulus onset to
capture prestimulus functional connectivity of the neural populations. Next, we determined
which frequency components demonstrated increased stimulus-evoked functional connectivity
across VTC. To do this we averaged the PLVs from 50 to 500 ms and performed a paired t-test
against the average PLV from -450 ms to O ms before stimulus presentation between the
category-selective VTC electrode contacts and the rest of the electrode contacts in the same
patient. This analysis revealed that frequency components between 1 and 22 Hz all had
significantly greater phase-locking across all category-discriminant VTC electrode contacts
relative to baseline on average from 50 to 500 ms after stimulus presentation (p < 0.001,
corrected).

Therefore, we averaged the PLVs across electrode contacts from 2 to 22 Hz (discarding 1
Hz frequency band to increase the temporal precision of our estimated phase-locking), and -450
to 0 ms before stimulus onset to calculate the functional connectedness of these same regions.
We separately averaged the connectivity of category-discriminant VTC neural populations with
visually responsive regions (defined above) and those that were not to determine if there were

connectivity differences across these neural populations. Average functional connectivity from -
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450 to 0 ms prestimulus and 50-500 ms after stimulus presentation were strongly correlated with

one another (p =0.96, p <0.001). Thus, results do not substantially change if either the

prestimulus or post stimulus PLV is used.

Predicting patient response time from category-selective VITC (Fig. 6)

To test for differences in the correlation between category-selective VTC population activity and
behavior, patient RT was predicted using the neural activity from each category-selective
contact. Specifically, a sliding window L2-regularized multiple regression (100 ms window, 10
ms stride) was used to predict patient RT from stP and stHFBB activity using a leave-one-trial-
out cross-validation procedure. Only trials when the patient correctly reported that an object was
repeated twice in a row were included in the analysis. The maximum Spearman correlation
between the patient’s RTs and the sliding-window RT predictions from 0-1000 ms after stimulus
presentation was considered as the neural population’s correlation with behavior. This
correlation was then correlated with that population’s dynamics, connectivity, and anatomical

location.

Statistics

Spearman rank-order correlations were used to calculate the correlations between anatomical
position and aspects of the neural information time-courses calculated above. Spearman rank-
order partial correlations were used to calculate the correlation between variables while
correcting for correlations shared with other variables. Benjamini-Hochberg False Discovery

Rate estimation which is valid for dependent hypothesis tests was used where noted (66). Paired
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T-tests were used to determine if there were differences in the dynamics of processing different
levels of information (visual vs. category-discriminant) in the same electrode contacts.

Rank-order mixed-effects models were used to control for random effects of cross-patient
variability while examining the main effects of connectivity and anatomical position on
information processing dynamics. We chose to fit these mixed-effects models with equal slopes
but random intercepts across patients to ensure the models converged. Because observations in
mixed-effects models are not independent, it is difficult to determine the appropriate degrees of
freedom. This makes estimation of p-values impossible without appropriate approximation.
Therefore, to derive p-values for the main effects of the mixed-effects models, we use the
Satterthwaite approximation, which has been shown to produce acceptable Type 1 error rates
with relatively few samples (67).

Linear multiple regression models were used to compare gradients of information
processing in VTC neural populations that were selective for different object categories. We only
included the categories that most patients saw (bodies, words, faces, hammers, houses, and
phase-scrambled objects). Specifically, linear models were used to predict information onset
latency, peak, processing duration, maintenance duration, and connectedness as a function of the
category-selective neural populations’ distance from the occipital pole with an added factor
indicating which category the neural population was selective for (Fig. $3). Linear mixed-effects
models were initially used for this analysis to simultaneously control for random effects across
patients. However, these models failed to converge, likely indicating an insufficient number of
data points per category and patient to estimate these random effects. Because face-selective
electrode contacts were most prevalent in our population we used this as our baseline and

compared all other categories to face-selective electrode contacts (Table SI). Analysis of
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covariance was also used to determine if there was a significant difference in information

processing gradients or connectedness across hemispheres (Supplementary Text).
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