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Abstract: Cognitive acts take place over a large range of temporal scales. Numerous 15 

corresponding gradients in neurodynamic timescales and long-range cortical interactions are 

believed to provide organizational constraints to the brain and influence neural populations’ roles 

in cognition. However, it is unclear if gradients in various types of neural timescales and 

functional connectivity arise from related or distinct neurophysiological processes and if they 

influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals 20 

were used to systematically map gradients of multiple aspects of neurodynamics, neural 

timescales, and functional connectivity, and assess their interactions along category-selective 

ventral temporal cortex. Opposing functional connectivity gradients, with decreasing 
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connectivity to visually responsive regions and increasing connectivity to regions that were not 

visually responsive, were observed along the ventral visual hierarchy. Endogenous neural 

timescales were correlated with functional connectivity to visually responsive regions after 

removing the effects of shared anatomical gradients, suggesting that these properties influence 

one another. Different stimulus evoked and endogenous timescales exhibited gradients with 5 

longer dynamics along the ventral visual hierarchy, but none of these timescales were 

significantly correlated with one another. This suggests that local neural timescales depend on 

neural and cognitive context and different timescales may arise through distinct 

neurophysiological processes. Furthermore, activity from neural populations with faster 

endogenous timescales and stronger functional connectivity to visually responsive regions was 10 

more predictive of perceptual behavior during a visual repeat detection task. These results reveal 

interrelationships and key distinctions among neural timescale and functional connectivity 

gradients that together can influence behavior.   
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Introduction:  

A neural population’s functional properties, including its dynamics and its functional 

connectivity to other brain regions, are ultimately linked to that population’s role in cognition 

and perception. Several gradients in functional properties have been shown to exist along the 

cortical axis spanning from primary sensory/motor areas to association cortices (1, 2, 6–9). These 5 

gradients are thought to be related to key organizing principles of the cortex, guiding how 

different regions contribute to cognition and perception  (2, 7, 10, 11). For example, there are 

gradients in the timescales over which neural populations process information and endogenously 

fluctuate along this axis, with longer timescales further along cortical hierarchies (5, 8–10, 12–

15), though it remains unclear if stimulus processing and endogenous timescales are related to 10 

one another. Gradients of functional connectivity are also seen along this axis, with decreasing 

unimodal connectivity and increasing transmodal connectivity along cortical hierarchies (2, 16). 

These network-level neural properties likely influence local timescales, other computational 

characteristics of neural populations, and these populations’ relationship to behavior (2, 6, 7, 17).  

However, empirical evidence linking functional gradients in local dynamics with gradients in the 15 

long-range connectivity of neural populations is limited. Additionally, it is uncertain to what 

degree these gradients relate to a neural population’s role in behavior. 

One prevalent functional gradient in cortex is the increasing timescales over which neural 

populations integrate information when moving from primary sensory/motor to association 

cortices (5, 8, 9, 12, 13, 18–20). For example, rapidly varying acoustic inputs represented in low-20 

level auditory cortex are combined into more complex representations in higher order auditory 

cortex, which operates over longer timescales (14). These neural timescales, or temporal 

receptive windows, are related to the rate of decay of representations within neural populations 

(5, 12, 13, 18), because longer decay rates allow for more pieces of information to be integrated 
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into a single representation. Stimulus-unrelated, endogenous timescales also lengthen along this 

axis, measured through the temporal autocorrelation of neural activity  (5, 7, 8, 10, 21). It is 

unclear the extent to which stimulus-related and endogenous timescales relate to one another. 

Another key aspect of neural dynamics, which is less well understood, is information 

processing dynamics, including the initial rate at which neural populations discriminate between 5 

stimuli (i.e., the rise time of discriminant information in neural activity). These information 

processing dynamics relate to the speed of cortical computation and thus, ultimately limit the 

speed of decision and action processes (3). Despite the importance of a neural population’s 

information processing dynamics in cognition and perception, the functional characteristics that 

are associated with neural populations that processes information more quickly or slowly remain 10 

unclear (12, 13, 19). 

In addition to anatomical gradients in local neural dynamics, opposing anatomical 

gradients in long-distance connectivity to association versus primary sensory/motor cortices have 

also been demonstrated in human cortex. Unimodal connectivity, primarily within sensorimotor 

regions, decreases when moving up cortical processing hierarchies while transmodal 15 

connectivity linking multiple sensory domains increases (1, 2). However, it is unclear how 

gradients in local dynamics interact with gradients in long-range functional connectivity. In 

silica, circuit models of cortical processing suggest that inter- and intra-areal connectivity 

patterns help constrain a neural population’s timescale (6, 11, 22), which has received some 

support from low temporal resolution measures of brain activity (17, 23). 20 

Finally, the functional properties that constrain a neural population’s dynamics and long-

range cortical connectivity ultimately constrain how that population contributes to cognition and 

perception. However, open questions remain regarding which aspects of a neural population’s 
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anatomical position, neurodynamics, or functional connectivity is related to its ability to predict 

behavior. 

In the current study, category-selective neural populations in ventral temporal cortex 

(VTC) were used as a model to examine the relationship between anatomical gradients in local 

cortical processing and long-range cortical interactions. We also explored how information 5 

processing dynamics, endogenous timescales (i.e., neural dynamics not directly linked to the 

exogenous, stimulus-evoked response; which we operationalize using the prestimulus period 

when no stimulus was being presented), and long-range cortical connectivity interact with each 

other beyond any shared anatomical gradients, and which of these gradients were associated with 

the ability of a population’s activity to predict response time during single trials of a visual 1-10 

back task. 

Results: 

Activity was recorded from 1,955 VTC electrode contacts (out of a total of 4,090 intracranial 

electrode contacts distributed throughout the brain) in 35 patients with pharmacologically 

intractable epilepsy (Fig. S1) as they viewed images of objects (face, body, word, hammer, 15 

house, or phase scrambled image) during a 1-back task. Multivariate Naïve Bayes classifiers 

were used to predict the category of object participants were viewing during individual trials of 

the task using sliding 100 ms windows of single trial potentials (stP) and single trial high 

frequency broadband activity (stHFBB) recorded from individual electrode contacts. At this 

stage of the analysis, these signal components were combined since previous studies have 20 

suggested that they contain complementary information (24), though in further analyses they 

were examined separately. Out of the 1,955 VTC electrode contacts, activity recorded from 390 

electrode contacts (mean = 11; SD = 14 electrode contacts per patient) could reliably predict (p < 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.05.490070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490070
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

0.001, corrected via permutation testing) which category participants were viewing during single 

trials of the task (Fig. 1). Information processing dynamics were estimated from the activity of 

the neural populations recorded by these contacts. Specifically, the time-course of category-

discriminant information processing in these category-discriminant neural populations was 

calculated by computing the mutual information (in bits) between the classifier outputs and the 5 

true category labels. The functional properties of these populations were computed to examine 

the relationship between these variables and anatomical axes of VTC (see Methods). 

Specifically, we examined gradients of, and interactions between, nine factors: two stimulus 

response timescales (factors 1 and 2): initial rise duration and maintanence of category-

discriminant information (see Fig 2A for illustration); category-discriminant information onset 10 

time and peak magnitude (factors 3 and 4; see Fig 2A for illustration); two endogenous 

(prestimulus) timescales (factors 5 and 6): the timescale of decay, <tau=, for the prestimulus stP 

and stHFBB autocorrelation functions (see Fig 4A for illustration); functional connectivity to 

visually responsive populations and to populations that were not significantly visually responsive 

(factors 7 and 8); and the accuracy of a neural population’s activity for predicting behavioral 15 

response time (RT; factor 9). 

Gradients of Information Processing Dynamics 

The cortical distance from the occipital pole, which roughly corresponds to the fovea in 

primary visual cortex, was used to approximate the position of neural populations along the 

hierarchical axis of the ventral visual stream (25). Distance along this axis was correlated with 20 

several aspects of information processing in these category-discriminant neural populations (Fig. 

2; see Fig S2 for an example from a single subject). Along this axis, neural populations 

demonstrated increasing onset latencies and increasing durations of their initial rises in category-
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discriminant information. Additionally, neural populations maintained category-discriminant 

information longer after peaking, despite reaching smaller peak magnitudes, when moving along 

the visual hierarchy. See Fig S6 for simulations demonstrating the independence of peak 

magnitude and rise duration metrics.   

In addition to examining discriminant information, we also examined the dynamics of the 5 

non-discriminant neural responses. Specifically, gradients in category-indiscriminant visual 

responses (discriminating all categories from baseline rather than categories from one another as 

in Fig. 2) in the same neural populations were examined (Fig. 3). Populations demonstrated 

increasing onset latencies and decreasing peak magnitudes of visual responsiveness when 

moving along the ventral visual hierarchy, like the gradients observed for category-discriminant 10 

information. However, there was no comparable increase in the duration of the initial rise in 

visual responsiveness along this axis and visual responsiveness was maintained for shorter 

durations in populations further along the visual hierarchy, which was opposite of the gradient 

observed for category-discriminant information. The contrast between visual response dynamics 

and category-discriminant information processing dynamics highlight differences in the neural 15 

encoding of these two levels of stimulus information (26, 27).  

Gradients of Endogenous Neural Timescales 

Next, the endogenous neural timescales of VTC populations were quantified by 

computing the autocorrelation of prestimulus activity at multiple temporal lags and modelling the 

resulting autocorrelation function with an exponential decay function (5, 22; Fig. 4). When 20 

moving along the visual hierarchy, neural populations demonstrated increasing time-constants of 

decay (tau) in the autocorrelation function of their prestimulus stP, indicating that their activity 

exhibited longer timescales/slower dynamics along this axis. This is consistent with previous 
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studies observing slower endogenous timescales when moving up sensory processing hierarchies 

(2, 5, 7, 18, 19, 28). Conversely, neural populations demonstrated shorter timescales in their 

prestimulus stHFBB activity when moving along the ventral visual hierarchy. Time-constants 

across stP and stHFBB signal components were not significantly correlated with one another 

across electrode contacts (ρ(390) = -0.05, p = 0.33), highlighting the differentiability of these 5 

two aspects of the neural signal (29–31). These results show that these components of the 

endogenous neural activity demonstrate distinct timescales that have opposite gradients along the 

ventral visual hierarchy.  

Gradients in both information processing dynamics and neural timescales were present in 

individual patients (Fig. S2) and several generalized across patients (linear mixed-effects models 10 

Fig. 2 & 3 captions). The gradient of information processing onset was stronger in the left 

compared to the right hemisphere (Supplementary Text). Notably, neural populations selective 

for individual categories demonstrated different gradients in neural dynamics relative to those 

selective for other categories along the ventral visual hierarchy, with face selective populations 

generally displaying shallower posterior-anterior gradients (Supplementary Text, Fig. S3, Table 15 

S1). Given the differences in prestimulus neural timescales exhibited in stP and stHFBB, we 

recomputed gradients in information processing dynamics from these signal components 

separately. With a few notable exceptions, stimulus related information processing dynamics 

demonstrated similar gradients for stP and stHFBB across these components when moving along 

the visual hierarchy (Supplementary Text and Fig. S4). 20 

Gradients of Functional Connectivity 

After examining gradients in information processing and endogenous timescales, we 

examined gradients in functional connectivity along the ventral visual hierarchy. Specifically, a 
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measure of functional connectedness to the rest of the brain, the average prestimulus phase-

locking value (PLV), was calculated between the 390 category-discriminant VTC electrode 

contacts and all other electrode contacts implanted within the same patient (on average 115 

electrode contacts, SD = 41; note that none of the results reported below change substantially 

whether functional connectivity was calculated during the prestimulus or the poststimulus period 5 

as the Spearman correlation between the prestimulus and poststimulus connectivity metrics was 

> 0.95). These <other= electrode contacts were located across the entire brain, not only in VTC 

(Fig. S1). Previous fMRI studies suggest opposite gradients in functional connectivity to 

unimodal sensory vs. association and transmodal areas when moving along sensory processing 

streams (1, 2). Therefore, we separately computed the functional connectivity of VTC category-10 

selective contacts to visually responsive contacts (p<0.001, for visual response vs. baseline, 

corrected for multiple temporal comparisons) and to those that were not visually responsive. 

Also, given the wide variability of electrode coverage across patients, pooling connectivity 

across visually responsive and not visually responsive contacts allowed us to partially overcome 

this cross-patient anatomical heterogeneity.  15 

Connectivity between VTC electrode contacts and visually responsive contacts decreased 

when moving up the visual hierarchy. In contrast, the connectivity between VTC contacts and 

contacts that were not significantly visually responsive increased when moving up the visual 

hierarchy (Fig. 5). Decreasing functional connectivity to visually responsive regions and 

increasing functional connectivity to regions that do not demonstrate strong visual responses is 20 

generally consistent with previous fMRI studies showing opposing anatomical gradients along 

VTC for functional connectivity to unimodal versus transmodal regions (2). 

Gradients of Ability to Predict Behavior 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.05.490070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490070
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Additionally, we examined whether a neural population’s role in visual perceptual 

behavior exhibited an anatomical gradient. This was done by predicting the RT of patients, using 

sliding windows of neural activity recorded at each category-selective VTC electrode contact, 

during trials of the 1-back task where patients correctly responded that an object was presented 

twice in a row. How predictive the activity in an electrode contact was of RT was used as a 5 

measure of how much the activity from that neural population contributed to perceptual 

behavior. When considering stP and stHFBB together, the ability of a VTC neural population’s 

activity to predict RT was not significantly correlated with distance along the visual hierarchy 

(ρ(390) = 0.02, p = 0.75). However, when considering them separately, a neural population’s 

ability to predict RT decreased along the visual hierarchy when looking at stHFBB but increased 10 

when looking at stP. These differences highlight nuances in large-scale neuroanatomical 

gradients when considering different aspects of the neural signal (29–31). 

Relationships between and among neurodynamics, functional connectivity, and behavior 

Given corresponding anatomical gradients in local dynamics and long-range cortical 

interactions, a key question is, to what degree these gradients are interrelated beyond shared 15 

anatomical axes. To explore this question, the partial correlations between these functional 

properties of category-selective VTC populations were calculated after removing the effects of 

distance along the visual hierarchy (Fig. 6). Note that Spearman’s partial correlation was used to 

remove any monotonic relationship to distance along the visual hierarchy, not only linear 

relationships (see Fig. S5 for the non-partialed correlations).  20 

The negative partial correlation between a neural population’s stP timescale and its 

functional connectivity to visually responsive populations throughout the brain was significant. 

This suggest that parts of VTC that communicate strongly with other visually responsive regions 
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have shorter timescales. Furthermore, the negative partial correlations were significant between 

the magnitude of a neural population’s peak category-discriminant information and both its 

connectivity to visually responsive regions and those that were not. This shows that neural 

populations with stronger connectivity, especially to non-visual areas have less category-

discriminant activity.  5 

None of the measures of endogenous or stimulus-response timescale (prestimulus stP and 

stHFBB tau, initial rise duration, and maintenance) were significantly correlated with one 

another, with or without removing the effects of distance along the visual hierarchy (Fig 6 and 

Fig S5). Thus, though there are gradients in neural timescales across VTC using each of these 

measures, neither these timescales nor their gradients are significantly correlated to one another 10 

even though they were measured from the same neural populations. This indicates that neural 

timescales are context dependent (prestimulus vs stimulus response, initial rise duration vs. 

maintenance, stP vs. stHFBB, etc. are all not significantly correlated) and measuring one type of 

timescale cannot be used to infer the general timescale of a neural population. 

Partial correlations between nearly all the stimulus response variables (peak information, 15 

onset time, initial rise duration, and maintenance duration), other than the two timescales 

discussed in the previous paragraph (initial rise duration vs. maintenance duration), were 

significantly correlated with one another. This suggests that there are interactive factors driving 

these different aspects of the stimulus response.  

The partial correlation between the ability of a neural population to predict RT and that 20 

neural population’s connectivity to visually responsive brain regions and the partial correlation 

between a neural population’s ability to predict RT and that neural population’s prestimulus stP 

timescale after removing the effect of distance along the visual hierarchy were both significant 
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(Fig. 6). Thus, neural populations which integrate information over visual brain regions with 

short stP timescales were more predictive of behavior during the 1-back task observed here. This 

demonstrates that aspects of both local neural dynamics and long-range cortical interactions are 

intimately linked to a neural population’s role in visual perceptual behavior. 

Discussion: 5 

Taken together, these results illustrate interrelationships between a neural population’s 

anatomical location, its local dynamics, and its long-range functional connectivity, which 

ultimately influence that population’s role in perception. In the current study, progressing along 

the ventral visual hierarchy was associated with decreases in peak category-discriminant 

information, longer information onsets, longer durations of initial information processing, longer 10 

periods of information maintenance, longer prestimulus stP timescales but shorter prestimulus 

stHFBB timescales, and opposing changes in connectivity to visual and non-visual brain regions. 

These results suggest that the anatomical and physiological gradients that exist along the visual 

hierarchy influence almost all aspects of prestimulus and information processing dynamics, 

which may constrain how these neural populations process information and their computational 15 

role in cognition. Indeed, a subset of these functional gradients were correlated with the ability of 

a neural population’s activity to predict the speed of behavioral responses during a visual 1-back 

task. Furthermore, many aspects of stimulus response dynamics shared significant 

interrelationships with one another beyond any shared relationship with anatomical location. 

Functional connectivity was correlated to aspects of both the stimulus response and prestimulus 20 

timescales, demonstrating how long-distance interactions can influence local neurodynamics. 

However, prestimulus and poststimulus information processing timescales were not strongly 

correlated to one another, nor were the initial rise and maintenance of the visual response, 
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suggesting that different aspects of neural dynamics arise through different processes and 

mechanisms.  

Previous studies have observed that neural populations demonstrate longer timescales 

when moving from primary sensory and motor regions to association cortices (5, 8, 9, 12, 13, 18, 

19). The increasing endogenous timescales of stP activity along the ventral visual hierarchy 5 

observed here further support this organizing principle of cortex. Notably though, the 

endogenous stHFBB timescales demonstrated the opposite relationship along VTC, with shorter 

timescales in more anterior parts of VTC. Furthermore, the timescale of the stP and stHFBB 

were uncorrelated, demonstrating a dissociation between the dynamics of these two signal 

components recorded from the same neural population. This highlights a need to better 10 

understand the differences in the physiological origins of stP and stHFBB signal components 

(29–31).  

The duration that category-discriminant neural populations initially process category-

selective information increased along the ventral visual hierarchy, which may be the result of 

increased computational demands involved in forming more complex and individuated 15 

representations in more anterior category-selective neural populations (32–35). However, in 

traditional models of perception, neural units are passive visual feature detectors, that either fire 

or not depending on the presence or absence of their preferred features (36). In these models, 

little difference should be seen in the speed that neural populations process information further 

downstream because these passive feature detectors, even if they are sensitive to complex 20 

features, should respond rapidly and automatically to the presence of that feature (36). In this 

study, the duration of the initial rise in visual responsiveness did not change along the hierarchy, 

which fits with these traditional models. However, the divergence in the duration of category-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.05.490070doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490070
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

discriminant versus visual response dynamics does not fit with these models. Instead, these 

results support a model of ventral visual representations that evolve through time, with 

information processing dynamics governed by interactions between the information being 

processed locally and globally through long-range connections, which reflect top-down and 

recurrent interactions (27, 37–39).  5 

Long-range functional connectivity demonstrated a crossover effect along the ventral 

visual hierarchy, with decreasing connectivity to visually responsive regions and increasing 

connectivity to those that were not, consistent with previous fMRI studies (1, 2). Some of these 

gradients in functional connectivity were also associated with gradients in neural timescales even 

after controlling for effects of distance along the visual hierarchy. Specifically, neural 10 

populations that were more strongly connected to visually responsive regions demonstrated 

shorter endogenous stP timescales. One potential explanation for this result is that neural 

populations which integrate primarily visual inputs have faster timescales compared to neural 

populations that have more diverse inputs so that they are prepared to rapidly process incoming 

visual information (2, 13, 25). Notably, the partial correlation between connectivity to regions 15 

that did not demonstrate strong visual responses and poststimulus stP timescale was not 

significant. Previous models have not investigated differential effects of long-range cortical 

interactions with visual versus non-visual regions on the timescale of neural populations (11). 

This may be an important consideration for future models. Given the variable coverage of brain 

regions across patients in the current study, future studies are necessary to tease apart the impact 20 

that connectivity with specific brain regions has on local cortical dynamics.  

Neural populations that demonstrated higher peak category-discriminant neural activity 

had earlier onsets, shorter durations of initial rise, and maintained that information longer. Our 
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simulations demonstrated that our measures of peak and duration are independent, confirming 

that this correlation is physiological and not an artifact of the analysis (Fig. S6). Longer initial 

rises in category-discriminant information with smaller peak information may reflect evidence 

accumulation over longer timescales in these neural populations (13). Whereas partial 

correlations between local neural dynamics and long-range cortical interactions demonstrates 5 

that, in addition to sharing strong gradients along the primary axis of sensory processing systems, 

these properties of neural populations are closely linked to each other. These links between local 

dynamics and long-range cortical interactions are likely conferred in part by shared biochemical, 

microstructural, and macrostructural connectivity gradients that exist along the ventral visual 

axis beginning early in cortical development (1, 2, 6, 40, 41).   10 

Functional gradients in VTC were also correlated with the degree to which a neural 

population’s activity could predict perceptual behavior. In the current study, increased functional 

connectivity to visually responsive regions and shorter prestimulus stP timescales were 

associated with a greater ability for a neural population’s activity to predict RT in a 1-back task 

after removing the effect of distance along VTC. This suggests that these neural populations may 15 

play a larger role in the basic visual discrimination task studied here, though it is notable that 

these results cannot address relationships between neurodynamics and perception or behavior in 

other tasks. Behaviors involving more complex perceptual representations and/or more complex 

behavioral decisions may rely more heavily on neural populations with longer timescales and on 

higher order cortical regions  (37, 38, 42–45). Future studies are required to determine if finer 20 

level of visual discrimination involving longer response times (46) reflect contributions from 

neural populations with different information processing timescales and functional connectivity 

patterns compared to those involved in the 1-back task studied here. 
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There were not significant correlations between stimulus response timescales and 

endogenous timescales, or between onset dynamics and maintenance dynamics. Different aspects 

of task-evoked timescales were not closely linked to one another, suggesting the physiological 

drivers of initial information processing and maintenance may be independent. Additionally, 

endogenous neurodynamic timescales did not generalize to stimulus related information 5 

processing timescales. Notably, this is unlike functional connectivity patterns, which were highly 

correlated across the stimulus response and prestimulus periods. The lack of significant 

correlation across the different measures of local neurodynamics highlights that endogenous 

neural timescales are not necessarily tightly related to task-evoked information processing 

dynamics (15, 47–49). Thus, inferences about a region’s computational role in cognition, 10 

including its temporal integration and segregation (10) or temporal response windows (18, 28), 

cannot be inferred from endogenous dynamics alone, as stimulus response and endogenous 

timescales are not necessarily strongly correlated. There is no single principle or process that 

governs a neural population's timescales, e.g. timescales are not a static and inherent property of 

a neural population (10, 50). Rather, these results suggest that different kinds of timescales are 15 

governed by different combinations of factors that can depend on cognitive and neural context. 

The current study highlights how large-scale anatomical and functional gradients interact 

to constrain local neural processing dynamics and computation. The anatomical gradients of 

dynamics and connectivity demonstrated here impose important constraints for future 

neurobiological models of visual perception. This architecture may help the brain achieve 20 

abstract and conceptual representations seen in more anterior VTC neural populations (32, 34, 

35). While the present study examined these effects in visual processing, it is likely that similar 

principles apply to other hierarchically organized sensory and cognitive systems (2, 12, 14, 50). 
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Indeed, gradients in physiological, and thus functional, organization are likely in part conferred 

by corresponding gradients in growth factors and, in turn, gene expression during and persisting 

after cortical development (2, 7, 40, 41). Interactions among response properties and functional 

connectivity patterns of neural populations suggest that shared neurophysiological mechanisms 

tie large-scale and local processing dynamics together. Distinctions among and between 5 

endogenous and stimulus response timescales suggest that these neurodynamics are caused by 

distinct neurobiological mechanisms and play different roles in the brain. These results highlight 

the mutual interrelationships between a neural population’s position in the processing hierarchy, 

its functional connectivity, and its local dynamics, constraining its role in cognition. 
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Figures: 

 
Fig. 1. Spatial topography of electrode contacts recording from neural populations that achieved 
peak category-discriminant information greater than chance at the p < 0.001 level corrected for 
multiple temporal comparisons. Colors represent the electrode contact’s cortical distance from the 5 

occipital pole calculated using subject-specific anatomy. Depth electrode contacts are plotted 
below the cortical surface for clarity. Contacts that appeared to be outside of the MNI standard 
brain due to differences in individual brain sizes were projected to the nearest MNI cortical vertex 
in this figure solely for illustrative purposes. The proportion of left vs. right hemisphere category-
discriminant contacts was comparable to the proportion of total left vs. right hemisphere VTC 10 

implants (see Supplementary Text). 
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Fig. 2. Category-discriminant information processing gradients along the ventral visual hierarchy. 
A) The time-course of category-discriminant information processing was computed for each neural 
population. The average time-course across category-discriminant VTC populations is illustrated 
here. From each neural population’s information processing time-course, the information onset 5 

time (panel B), processing duration (C), peak magnitude (D), and maintenance duration (E) were 
computed. Simulations confirmed that decreases in information amplitude and information 

processing duration are independent using our methods (Fig. S6). B) The onset of category-
discriminant information, defined as the timepoint the information reached 10% of the maximum 
before peaking, was significantly correlated with the position of that neural population along the 10 

ventral visual hierarchy. The black line indicates the least-squares regression fit. Spearman’s ρ and 
associated p-value shown on top right (n = 390). Spearman correlation was used because it is both 

more robust to outliers relative to Pearson’s and is sensitive to non-linear monotonic relationships 

between variables, though this also means that the line drawn is not representative of the ρ. Slope 
of the least-squares regression line (m) indicated a 13 ms per centimeter increase in onset latency 15 

moving along VTC. Information onset was significantly associated with distance along the visual 

hierarchy even after correcting for cross-patient differences in onset latency (T(388) = 7.20, p < 

0.001, tied-rank mixed-effects model). C) The duration of the initial rise in category-discriminant 

information, defined as the time between the onset of information and the time it took the 

population to reach 90% of its peak information, was negatively correlated with distance along the 20 

visual hierarchy. The 90% threshold is used for the peak time because it better captures the initial 

rise in cases where there is a shallow peak among an extended plateau in the discriminant 

information time-course. Note: All correlations remain significant across a substantial range of the 
heuristic thresholds chosen to define them (Fig. S7), thus the selection of 10% and 90% as 
thresholds for onset and peak time do not drive these effects. The slope of the least-squares 25 

regression line indicated a 6 ms increase in the duration of the initial rise of information per cm of 

VTC. This relationship did not reach p < 0.05 when correcting for random cross-patient effects 

(T(388) = -1.55, p = 0.12, tied-rank mixed-effects model). D) Peak category-discriminant 

information was negatively correlated with distance along the visual hierarchy, with a decrease of 
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-0.0035 bits/cm. This relationship did not reach p < 0.05 when correcting for random cross-patient 

effects (T(388) = -1.62, p = 0.11, tied-rank mixed-effects model). E) Information maintenance 

duration, defined as the time between when the information first reached 90% and the time when 

it first decayed to 50% of the peak, was positively correlated with distance along the visual 

hierarchy. The slope of the least-squares regression line indicated a 7 ms increase in the duration 5 

of maintenance of information per cm of VTC. This relationship trended to p < 0.05 significance 

when correcting for random cross-patient effects (T(388) = 1.87, p = 0.063, tied-rank mixed-effects 

model).  
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Fig. 3. Visual response dynamics along the ventral visual hierarchy. Visual response dynamics 
were extracted by classifying all stimulus categories versus baseline with similar classifiers used 
to extract category-discriminant information (Fig. 2), making this a measure of the effect size 
between visual response versus baseline. A) Onset of the visual response was positively correlated 5 

with a neural population’s distance along the visual hierarchy. This effect held when correcting for 
random cross-patient effects (T(388) = 6.23, p < 0.001, tied-rank mixed-effects model). Onset 
latency of the visual response was not significantly different than the onset of category-
discriminant information (T(389) = 0.11, p = 0.91, paired T-test). B) Duration of the initial increase 

in visual responsiveness was not significantly correlated with distance along the visual hierarchy, 10 

unlike the significant positive correlation observed for category-discriminant information (Fig. 

2C). C) Peak magnitude of visual responsiveness was negatively correlated with distance along 

the visual hierarchy. This effect held when correcting for random cross-patient effects (T(388) = -

2.26, p < 0.001, tied-rank mixed-effects model). D) Visual response maintenance duration was 

also negatively correlated with distance along the visual hierarchy, which held when correcting for 15 

random cross-patient effects (T(388) = 5.45, p < 0.001, tied-rank mixed-effects model). This was 

opposite of the relationship between information maintenance duration and distance along the 

visual hierarchy observed for category-discriminant information (Fig. 2E).  
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Fig. 4. Prestimulus neural timescales along the ventral visual hierarchy. A) For each neural 
population, the autocorrelation function during the -500 to 0 ms prestimulus period was computed 
for temporal lags ranging from 1 to 250 ms, averaged across trials (black line is the average across 
populations), and fit with a single exponential decay function (gray line). The timescale (tau) 5 

indicates how fast the fitted exponential function decays (red dashed line; computed like those in 
(5)) and was correlated with other functional properties of the category-discriminant neural 
populations’ activity. B) The autocorrelation function of single trial potentials (stP) decayed more 
slowly when moving up the visual hierarchy, indicating that stP in more anterior VTC had higher 

autocorrelations at greater lags (longer timescales) relative to more posterior neural populations. 10 

This relationship held when correcting for random cross-patient effects (T(388) = 8.03, p < 0.001, 

tied-rank mixed-effects model). C) The autocorrelation function of single trial high frequency 
broadband (stHFBB) decayed more quickly when moving up the visual hierarchy, indicating that 

stHFBB in more anterior VTC had lower autocorrelations at greater lags (shorter timescales) 

relative to more posterior neural populations. This relationship also held when correcting for 15 

random cross-patient effects (T(388) = -5.32, p < 0.001, tied-rank mixed-effects model). 
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Fig. 5. Gradients in long-range cortical interactions along the ventral visual hierarchy. The 

change in connectivity to visually responsive regions moving along VTC was opposite of the 

change in connectivity to populations that were not visually responsive. Connectivity to 

significantly visually responsive regions decreased along this axis, even when accounting for 5 

random cross-patient effects (T(388) = -4.42, p < 0.001, tied-rank mixed-effects model). On the 

other hand, connectivity to regions that were not significantly visually responsive increased 

along this axis, even when accounting for random cross-patient effects (T(388) = 3.98, p < 0.001, 

tied-rank mixed-effects model). 

  10 
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Fig. 6. Interactions between local dynamics, long-range cortical interactions, and behavioral 

correlations. Partial correlation matrix between local dynamic properties and long-range cortical 

interactions after removing the effect of cortical distance along the visual hierarchy (see Fig. S5 

for non-partialed correlations). Colored squares are significant at the p < 0.05 level 5 

(uncorrected). The false-discovery rate adjusted critical value corresponds to ρ = ±0.146. Within 
each square is the partial Spearman correlation coefficient for the variables in the corresponding 

row and column. The matrix is symmetric across the diagonal. Several properties of the local 

information processing dynamics, including information onset, peak magnitude, duration of the 

initial rise, and the amount of time the information was maintained, were significantly correlated 10 

to one another besides sharing a common anatomical gradient. The partial correlation between 

peak information and functional connectivity was also significant after removing the effect of 

distance along the visual hierarchy. The partial correlation between neural timescale (stP tau) and 

connectivity to visually responsive regions (PLVv) was also significant as was the partial 

correlation between both connectivity to visual regions and stP timescale and a neural 15 

populations ability to predict patient response time (RT) during the 1-back task. 
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Methods and Protocols 

Intracranial electroencephalography (iEEG) patients 

Stereotactic depth and surface electrocorticography (ECoG) electrodes were implanted in ventral 

temporal cortex (VTC) of 41 patients (15 males, ages 19-65) for the localization of 

pharmacologically intractable epileptiform activity. Different aspects of these recordings from 38 5 

of these patients were previously reported in (31). All patients gave written informed consent 

under protocols approved by the University of Pittsburgh’s Institutional Review Board.  

Electrode contacts that were identified as belonging to the seizure onset zone were not included 

in the analysis.  

Electrodes were localized via postoperative CT scans or postoperative magnetic 10 

resonance images (MRI). Postoperative CT scans were co-registered to preoperative MRIs using 

Brainstorm (51). Surface electrode contacts were projected to the nearest reconstructed cortical 

voxel of the preoperative MRI scan to correct for brain-shift (52, 53). These electrode locations 

were then registered to the Montreal Neurological Institute (MNI) common space via patient-

specific linear interpolations (54). VTC was defined as grey matter below the inferior temporal 15 

gyrus spanning from the posterior edge of the fusiform gyrus to the anterior temporal lobe in 

MNI common space.  

Cortical distance between each electrode contact and the patient’s occipital pole was 

computed using the patient’s native neural anatomy. The occipital pole was defined as the 

intersection of the calcarine sulcus, inferior occipital gyrus, and superior occipital gyrus. The 20 

geodesic (cortical) distance between this point and the cortical surface coordinate nearest to each 

VTC electrode contact was computed using custom MATLAB scripts (55). 

 

Experimental Paradigm 
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All patients underwent a category localizer task containing images occupying approximately 6° x 

6° of visual angle at the center of a stimulus display monitor positioned 2 meters from the 

patient’s eyes. Each stimulus was presented for 900 ms on a black background. Inter-stimulus 

intervals were 1500 ms with a random 0-400 ms jitter during which the patient saw a white 

fixation cross.  Patients were instructed to press a button every time an image was presented 5 

twice in a row (1/6 of all trials). Repeat trials were excluded from further analysis. This left 70 

trials per category to train and test the classifiers described in Multivariate temporal pattern 

analysis. Several patients underwent more than one run of this experiment and therefore had 140 

or 210 trials per category. All experimental paradigms were presented via custom MATLAB 

scripts running the Psychophysics toolbox (56). 10 

35 patients underwent a category localizer task consisting of pictures of bodies, faces, 

hammers, houses, words, and non-objects. Six patients underwent category localizer tasks with 

slightly different object categories but with identical stimulus parameters. One of these patients 

viewed pictures of bodies, faces, shoes, hammers, houses, and phase-scrambled objects. One 

viewed pictures of bodies, faces, consonant-strings, pseudowords, real words, houses and phase-15 

scrambled objects. One patient viewed pictures of faces, bodies, consonant-strings, words, 

hammers, and phase-scrambled objects. One viewed pictures of faces, bodies, words, 

pseudowords, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words, 

tools, animals, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, 

words, tools, animals, numbers, houses, and phase-scrambled objects.  20 

 

Intracranial recordings 
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Local field potentials were collected from iEEG electrodes via a GrapeVine Neural Interface 

(Ripple, LLC) sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online. Stimulus 

presentation was synchronized to the neural recordings via parallel port triggers sent from the 

stimulus displaying computer to the neural data acquisition computer. The signal was off-line 

filtered from 0.2-115 Hz using two-pass fourth order butter-worth filters via the FieldTrip 5 

toolbox (57). In addition to analyzing these single trial potentials (stP), we also extracted and 

analyzed the single trial high frequency broadband (stHFBB) activity of these electrodes, since 

these two components of the local field potential have been shown to contain complimentary 

information (24).  

StHFBB activity was extracted via Morlet wavelet decompositions from 70-150 Hz over 10 

200 ms Hanning windows with 10 ms spacing. The resulting power spectral densities were then 

averaged over these frequency components and normalized to a baseline period from 500 ms to 

50 ms prior to stimulus onset to yield the stHFBB activity. Data was then epoched from -500 to 

1500 ms around stimulus presentation. Trials during which the stP amplitude changed more than 

25 microvolts across a 1 ms sample, or during which stPs exceeded an absolute value greater 15 

than 350 microvolts, or during which either the stHFBB or stPs deviated more than 3 standard 

deviations from the mean were all assumed to contain noise and were therefore excluded.  

 

Multivariate temporal pattern analysis (Fig. 1, 2, & 3) 

Sliding, leave-one-out cross-validated, Gaussian Naïve Bayes classifiers were applied to 100 ms 20 

time windows with 10 ms stride to determine if stHFBB or stP recorded from individual VTC 

contacts contained category-discriminant information. The input to these classifiers was 100 ms 

(100 samples) of stP and 100 ms (10 samples) of stHFBB from a single electrode contact. The 
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output of the classifier was the category of object presented during the corresponding trial. This 

procedure was repeated for all VTC contacts from time windows beginning at 100 ms prior to 

stimulus onset to 1000 ms after stimulus onset. 

The category-discriminant information content within each neural population was 

estimated by computing the mutual information (I(S’,S)) between the output of the Gaussian 5 

Naïve Bayes classifiers (predicted category labels, S’) for a given 100 ms time window of neural 

activity and the actual presented stimulus (S): �(�′, �) =  �(�) ���2( �(�′,�)�(�′)�(�)), 

where P(S’,S) is the joint probability of the classifier correctly predicting the stimulus category S 

when the category was S, P(S’) is the proportion of times the classifier guessed a trial was of 10 

stimulus S, and P(S) is the proportion of trials which the stimulus presented was S. This allowed 

us to estimate the category-discriminant information contained within 100 ms time windows 

without estimating a joint probability table of neural responses that was intractable (58, 59). It 

has been shown that this estimate of information, which relies on a P(S’,S) derived by an external 

classifier and not the actual neural code, is an underestimate of the neural information content 15 

(60). Therefore, our calculated information is a lower bound for the actual neural information 

content.  

Information content was averaged across all stimulus categories presented to the patient 

so as not to preclude electrode contacts as being selective for only one object category (61). A 

threshold for significant category-discriminant information was determined by randomly 20 

shuffling stimulus labels for a subset of VTC electrode contacts and repeating the same 

classification analysis 1,000 times for each electrode contact (62). Electrode contacts with the 

same number of runs of the category-localizer task demonstrated very similar null distributions 
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and therefore we applied the result of this permutation test to all VTC electrode contacts. The 

threshold was chosen such that none of the random permutations for any electrode contacts in the 

subset reached the threshold, which corresponds to p < 0.001, corrected for multiple temporal 

comparisons.  Electrode contacts with peak category-discriminant neural information exceeding 

this threshold were defined as category-discriminant.  5 

We performed a similar decoding analysis to determine the time-course of visual 

responses in individual VTC contacts. This was done by classifying single trial baseline periods 

(100 ms to 0 ms prestimulus presentation) of neural activity from these neural populations 

against sliding 100 ms time-windows from -90 to 1000 ms post-stimulus presentation for all 

object categories treated as one class. This yielded a time-course of visual responses in each 10 

sampled neural population.  By randomly permuting the label of the baseline versus evoked data 

and repeating the analysis in a subset of electrode contacts 1,000 times, we defined a threshold of 

visual information that no random permutation of the data achieved, corresponding to the p < 

0.001, chance level, corrected for multiple temporal comparisons. We used this threshold to 

define visually responsive brain regions and those that were not, which were separated to 15 

calculate their differential contributions of functional connectivity to VTC electrode contacts 

with significant category-discriminant information. 

 

Estimating the dynamic properties of neural information processing (Fig. 2 and 3) 

To estimate properties of the information processing dynamics of neural populations across 20 

VTC, the information time-courses derived from the Naïve-Bayes classifiers were first smoothed 

with a running average filter (width 50 ms). Next, onset latency of category-discriminant 

information was defined as the last time point that an electrode contact was below 10 % of the 
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maximum information prior to the peak information. The initial rise in category-discriminant 

information was defined as the time between the onset and the point where the information time-

course first exceeded 90 % of the peak information. These cutoffs were chosen to ensure that 

small deviations from chance-level information and peak information did not affect the estimated 

quantities. Our main findings were robust to specific choices in threshold (Fig. S7). Finally, we 5 

estimated the duration of information maintenance as the time between when the neural 

population first reached 90% of its peak information to when the neural population’s information 

first fell below 50% of this maximum after peaking. Similar dynamic properties were also 

estimated for visual response time-courses (Fig. 3) and information processing time-courses for 

specific object categories (Fig. S3 & Table S1). 10 

 

Defining category-selective VTC electrode contacts (Fig. S3) 

To determine if neural populations with sensitivity to different object categories demonstrated 

differences in the gradients of their local dynamics or long-range functional connectivity, we 

isolated category-discriminant VTC neural populations that responded primarily to one object 15 

category. To do this we computed the event related potential and event related broadband 

responses to each category during the 1-back task. Next, any of the previously defined category-

discriminant neural populations that contained maximum information to the same category that 

evoked the maximum response across either of these averages was classified as selective to that 

object category. We then characterized the information onset latency, slope, and connectivity of 20 

these neural populations using the procedures described above. For these analyses we used the 

category-specific information processing time-course derived from the Naïve Bayes classifiers 

prior to averaging over all categories in the main analysis.  
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Information processing simulations (Fig. S6) 

Simulations were used to test if increases in information processing duration exhibited along the 

ventral visual hierarchy could be explained by differences in peak information magnitude. 

Specifically, information time-courses were approximated as normal probability density 5 

functions (PDFs) parameterized by a mean, standard deviation, and magnitude (constant scaling). 

Normally distributed noise with the same standard deviation as prestimulus (-400 to 0 ms) 

information in category-selective VTC electrode contacts was then added to these curves. 1000 

simulated signals were computed for each different PDF magnitude and standard deviation. 

Information processing duration was calculated using the same procedure described for 10 

the actual signal, by calculating the time between when the signal first reached 90 % of its 

maximum amplitude and the last time it was below 10 % of its maximum before that. We then 

calculated the Spearman correlation between information processing duration when varying the 

PDF’s standard deviation (to mimic changes in slope of the information processing time-course) 

and when varying the information’s peak amplitude. Peak amplitude was varied from the 15 

minimum to maximum peak information in category-selective VTC electrode contacts. During 

the simulation investigating the effect of slope on information processing duration, signal 

amplitude was fixed at the average peak information in category-selective VTC electrode 

contacts. 

 20 

Characterizing endogenous neural timescales (Fig. 4) 

The endogenous timescales of VTC populations were characterized by computing the 

autocorrelation of prestimulus (-500 ms to stimulus onset) stPs and stHFBB activity from 1-250 
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ms lags during each clean trial of the 1-back task. These prestimulus autocorrelation functions 

were then averaged over all trials. The average autocorrelation function for each electrode 

contact was then fit with a single exponential decay function: ���(�) = �0 +  �0�−�/� 

The neural timescale (tau), which measures the rate at which the autocorrelation function decays, 5 

was then correlated with several other functional properties of the neural population. This 

estimation of neural autocorrelations and computation of tau is similar to the procedure described 

in (5). 

 

Functional Connectivity (Fig. 5) 10 

To determine the connectedness of VTC neural populations to the rest of the brain, phase-

locking values (PLVs) were calculated between neural populations with above chance levels of 

category-discriminant information and all other electrodes within the same patient (regardless of 

category-discriminant information content). Electrode contacts within 1 cm of the category-

discriminant electrode were not included in the analysis to rule out effects caused purely by 15 

volume conduction. PLVs measure instantaneous phase-coupling across different brain regions 

independent of differences in amplitude, unlike coherence metrics (63). This makes PLVs more 

sensitive to detecting weakly coupled oscillators despite differences in amplitude (64). This 

coupling of oscillations is thought to indicate event-related communication between electrode 

contacts. 20 

The instantaneous phase of each electrode contact during all category-localizer trials was 

computed via convolution of the filtered neural activity (from 1-115 Hz) with Morlet wavelets of 

frequencies ranging from 1-60 Hz (width = 5). This convolution allowed the separation of signal 
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phase from envelope at each frequency (65). Next, the PLV was computed by taking the vector 

average of the phase difference between two electrode contacts at each time point. PLVs close to 

1 indicate two electrode contacts have similar phase differences at this frequency and time point 

across all trials. Conversely, if this number is close to 0, the phase difference between these 

electrode contacts is random at this given frequency and time point.  5 

A spectral window of interest was defined to capture the part of the PLV spectrogram 

that showed increased functional connectivity across all category-discriminant VTC neural 

populations. We chose to focus on the time windows from -450 to 0 ms before stimulus onset to 

capture prestimulus functional connectivity of the neural populations. Next, we determined 

which frequency components demonstrated increased stimulus-evoked functional connectivity 10 

across VTC. To do this we averaged the PLVs from 50 to 500 ms and performed a paired t-test 

against the average PLV from -450 ms to 0 ms before stimulus presentation between the 

category-selective VTC electrode contacts and the rest of the electrode contacts in the same 

patient. This analysis revealed that frequency components between 1 and 22 Hz all had 

significantly greater phase-locking across all category-discriminant VTC electrode contacts 15 

relative to baseline on average from 50 to 500 ms after stimulus presentation (p < 0.001, 

corrected).  

Therefore, we averaged the PLVs across electrode contacts from 2 to 22 Hz (discarding 1 

Hz frequency band to increase the temporal precision of our estimated phase-locking), and -450 

to 0 ms before stimulus onset to calculate the functional connectedness of these same regions. 20 

We separately averaged the connectivity of category-discriminant VTC neural populations with 

visually responsive regions (defined above) and those that were not to determine if there were 

connectivity differences across these neural populations. Average functional connectivity from -
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450 to 0 ms prestimulus and 50-500 ms after stimulus presentation were strongly correlated with 

one another (ρ = 0.96, p < 0.001). Thus, results do not substantially change if either the 

prestimulus or post stimulus PLV is used. 

 

Predicting patient response time from category-selective VTC (Fig. 6) 5 

To test for differences in the correlation between category-selective VTC population activity and 

behavior, patient RT was predicted using the neural activity from each category-selective 

contact. Specifically, a sliding window L2-regularized multiple regression (100 ms window, 10 

ms stride) was used to predict patient RT from stP and stHFBB activity using a leave-one-trial-

out cross-validation procedure. Only trials when the patient correctly reported that an object was 10 

repeated twice in a row were included in the analysis. The maximum Spearman correlation 

between the patient’s RTs and the sliding-window RT predictions from 0-1000 ms after stimulus 

presentation was considered as the neural population’s correlation with behavior. This 

correlation was then correlated with that population’s dynamics, connectivity, and anatomical 

location. 15 

 

Statistics 

Spearman rank-order correlations were used to calculate the correlations between anatomical 

position and aspects of the neural information time-courses calculated above. Spearman rank-

order partial correlations were used to calculate the correlation between variables while 20 

correcting for correlations shared with other variables. Benjamini-Hochberg False Discovery 

Rate estimation which is valid for dependent hypothesis tests was used where noted (66). Paired 
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T-tests were used to determine if there were differences in the dynamics of processing different 

levels of information (visual vs. category-discriminant) in the same electrode contacts.  

Rank-order mixed-effects models were used to control for random effects of cross-patient 

variability while examining the main effects of connectivity and anatomical position on 

information processing dynamics. We chose to fit these mixed-effects models with equal slopes 5 

but random intercepts across patients to ensure the models converged. Because observations in 

mixed-effects models are not independent, it is difficult to determine the appropriate degrees of 

freedom. This makes estimation of p-values impossible without appropriate approximation. 

Therefore, to derive p-values for the main effects of the mixed-effects models, we use the 

Satterthwaite approximation, which has been shown to produce acceptable Type 1 error rates 10 

with relatively few samples (67).  

Linear multiple regression models were used to compare gradients of information 

processing in VTC neural populations that were selective for different object categories. We only 

included the categories that most patients saw (bodies, words, faces, hammers, houses, and 

phase-scrambled objects). Specifically, linear models were used to predict information onset 15 

latency, peak, processing duration, maintenance duration, and connectedness as a function of the 

category-selective neural populations’ distance from the occipital pole with an added factor 

indicating which category the neural population was selective for (Fig. S3). Linear mixed-effects 

models were initially used for this analysis to simultaneously control for random effects across 

patients. However, these models failed to converge, likely indicating an insufficient number of 20 

data points per category and patient to estimate these random effects. Because face-selective 

electrode contacts were most prevalent in our population we used this as our baseline and 

compared all other categories to face-selective electrode contacts (Table S1). Analysis of 
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covariance was also used to determine if there was a significant difference in information 

processing gradients or connectedness across hemispheres (Supplementary Text).  
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