

Extreme tolerable winds for seabirds are determined by morphology

Elham Nourani^{*1,2}, Kamran Safi^{1,2}, Sophie de Grissac^{3,4}, David J. Anderson⁵, Nik C. Cole^{6,15}, Adam Fell⁷, David Grémillet^{8,9}, Miriam Lerma¹⁰, Jennifer L. McKee⁵, Lorien Pichegru¹¹, Pascal Provost¹², Niels C. Rattenborg¹³, Peter G. Ryan⁹, Carlos D. Santos^{14,1}, Stefan Schoombie⁹, Vikash Tatayah¹⁵, Henri Weimerskirch⁸, Martin Wikelski^{1,2,16}, Emily L. C. Shepard^{17,1}.

¹ Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.

² Department of Biology, University of Konstanz, Konstanz, Germany.

³ Diomedea Science – Research & Scientific communication, Quaix-en-Chartreuse, France.

⁴ France Energies Marines, Antenne Méditerranée, Marseille, France.

⁵ Department of Biology, Wake Forest University, Winston-Salem, NC, USA.

⁶ Durrell Wildlife Conservation Trust, Jersey, Channel Islands.

⁷ Biological and Environmental Sciences, University of Stirling, Stirling, UK.

⁸ Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS/La Rochelle Univ, France.

⁹ FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, South Africa.

¹⁰ Research and Technology Centre (FTZ), University of Kiel, Kiel, Germany.

¹¹ Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa.

¹² Ligue pour la Protection des Oiseaux, Réserve Naturelle Nationale des Sept-Îles, Pleumeur Bodou, France.

¹³ Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany.

¹⁴ Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil.

¹⁵ Mauritian Wildlife Foundation, Vacoas, Mauritius.

¹⁶ Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.

¹⁷ Department of Biosciences, Swansea University, Swansea, UK.

*** Correspondence:** enourani@ab.mpg.de, mahle68@gmail.com, @elham_nourani

1 **Summary**

2 Flying seabirds are adapted for windy environments^{1,2}. Despite this, storms can cause widespread
3 strandings and wrecks, demonstrating that these seabirds are not always able to avoid or compensate
4 for extreme conditions^{3,4,5,6,7}. The maximum wind speeds that birds can operate in should vary with
5 morphology and flight style⁸, but this has been hard to quantify due to the challenges of collecting
6 data during infrequent events⁹. Yet this information is crucial for predicting how seabirds are im-
7 pacted by and respond to extreme events, which are expected to increase in intensity and frequency
8 under climate change^{10,11}. We analyzed > 300,000 hours of tracking data from 18 seabird species,
9 representing all major seabird guilds in terms of flight style. We quantified the range of wind speeds
10 that seabirds use during their foraging trips in relation to the wind speeds available, and assessed
11 evidence for avoidance of particular wind conditions. The maximum wind speeds that birds flew in
12 increased with wing loading, in line with general aeronautical predictions. Two species of albatross
13 flew in extreme winds > 23 m s⁻¹. Within the 18 species studied, we found no general preference or
14 avoidance of specific wind speeds. Nonetheless, in a very small number of instances, albatrosses
15 avoided speeds below their operable maxima, demonstrating that even the most wind-adapted birds
16 avoid extreme speeds in particular scenarios. The Atlantic yellow-nosed albatross and the wandering
17 albatross avoided the maximum wind speeds by flying towards and tracking the eye of the storm. Ex-
18 treme winds therefore might pose context-dependent risks to seabirds, and there is a need for more
19 information on the factors that determine the hierarchy of risk, given the impact of global change on
20 storm intensity.

21 **Keywords:** Extreme weather events, storms, flight, wing loading, bio-logging

22 **Results**

23 To quantify the wind speeds that seabirds are able to fly in and those they avoid, we analyzed
24 1,663 foraging trips from 18 species of seabirds, presenting 326,960 hours of flight time. We followed
25 a step-selection approach (Fig. 1), where every two consecutive points along each track (at an hourly
26 scale) were considered as one observed step. Each observed step was matched with a set of 30
27 alternative steps that shared their start point with the corresponding observed step, but ended in a
28 different location in space within the same time period as the observed step. As such, our dataset
29 had a stratified structure, where 30 alternative steps were matched to one observed step per stratum.
30 We then estimated wind speeds along all observed and alternative steps.

31 The birds experienced a wide range of wind speeds overall (Fig. 2). However, the variation in wind
32 strength available to them at any one point in time was generally low, with 90% of the strata showing
33 variation lower than 11% (Fig. S1). We found that the wind speeds that the birds used were not
34 significantly different from the strongest speeds available to them (Fig. S2). Maximum wind speeds

were avoided in only nine of the 93,104 strata, involving four species: Atlantic yellow-nosed albatross, Wandering albatross, Sooty albatross and Red-footed booby (Fig. S3). In six of the nine cases where birds avoided the wind speed maxima (all but the three involving an Atlantic yellow-nosed albatross), birds avoided wind speeds that were within their population-specific flyable range of wind speeds (Fig. 2). The trips containing avoidance behavior indicated that the Atlantic yellow-nosed albatross and the Wandering albatrosses were responding to storms by selecting the region of lower wind speeds, i.e. by flying towards and tracking the eye of the storm (Fig. 3; Supplementary video).

We tested whether morphological characteristics, which largely define flight style, explain species-specific variation in the use of the windscape. Wing loading explained 30-35% of variation in the strength and variation in wind speed (Tables S2 & S3). This result was not influenced by temporal or spatial auto-correlation. Data quantity did not show any correlation with maximum ($r = 0.15, p = 0.53$) and variation ($r = 0.33, p = 0.17$) of wind speed experienced by different species. We also found no effect of phylogenetic relatedness of the species (Fig. S4) on the distribution of maximum wind speed (*Moran's I* = -0.0006; $p = 0.65$) and wind variability (*Moran's I* = 0.04; $p = 0.43$) that they experienced.

Discussion

Understanding the responses of animals to global change requires analysis of environmental maxima and rare events. Although temperature maxima and minima are commonly used, e.g. in species distribution modeling¹², extreme wind conditions have not received the same attention. We show that the maximum flyable wind speeds are predicted by wing loading across different flight styles. This demonstrates the importance of airspeed in wind selectivity, as birds must be able to fly faster than the wind to operate independently of it, and airspeed increases with wing loading. Indeed, the slope of our relationship between wing loading and maximum flyable wind was consistent with the specific prediction that airspeeds vary in proportion to the square root of a bird's wing loading¹³. This highlights two key points, first, that the definition of "extreme" wind speeds varies among species, and second, that aeronautical frameworks for predicting normal operational airspeeds can also provide insight into maximum tolerable wind speeds. It is somewhat surprising that this held across different flight styles, because the maximum airspeeds in flapping fliers are likely limited by the required rates of muscle work¹³, whereas the need to maintain force development over the wing within tolerable limits may be critical for dynamic soaring birds¹⁴.

Flight style, which largely determines cost of transport, is also important in determining the upper limits of wind speeds that birds can fly in, as this explained much of the residual variation in maximum flyable wind speed in relation to wing loading. Consequently, while the albatrosses with the highest wing loading flew in the fastest wind speeds ($\leq 24 \text{ m s}^{-1}, 86 \text{ km h}^{-1}$), the Soft-plumaged petrel, which has low body mass (276 g) and wing loading, flew in winds of 20 m s^{-1} . It is likely that dynamic

69 soaring birds differ in the precise strategies they use to operate in (and extract energy from) the
70 strongest winds according to their body size. For instance, smaller birds appear to use greater roll
71 angles which may elicit substantial forces, producing unsustainable torque for the largest albatrosses
72 with their long wings. However, such differences have yet to be investigated.

73 Quantifying the maximum reference speeds that birds can fly in can provide insight into the conditions
74 that are likely to be costly or risky. This is particularly pertinent for birds at lower latitudes, where
75 fewer tracking data exist¹⁵ and where tropical cyclones form. Our maximum flyable wind speeds for
76 species in higher latitudes are higher than those reported in other bio-logging studies. For instance,
77 in our study, wind speed maxima for albatrosses ranged from 18.9–23.6 m s⁻¹, whereas the previous
78 upper limit reported for Grey-headed (*Thalassarche chrysostoma*), Black-browed (*T. melanophris*)
79 and Wandering albatrosses flying in the Southern Ocean was 20.6 m s⁻¹¹⁶. Richardson et al. report a maximum wind speed of 18 m s⁻¹ for Wandering albatrosses¹⁴. Catry et al. also describe a
80 Grey-headed albatross flying with a tailwind of 19–22 m s⁻¹ in an Antarctic storm¹⁷. Although, interestingly,
81 Spear and Ainley report observations of small albatrosses flying in 19 and 24 m s⁻¹ in normal
82 conditions¹⁸.

83 Contrary to our expectations, we found almost no evidence that birds avoid the maximum wind
84 speeds that were available to them during the breeding season. Furthermore, the variation in the
85 wind speeds that were available to each species on an hourly basis was low. On the one hand
86 this is intuitive, as birds must breed in areas where they can fly faster than most frequent wind
87 speeds to enable them to return to the nest in almost all conditions, and do so without excessive
88 energetic costs. Nonetheless, while it has been suggested that flight style (which is linked to wind
89 tolerance) represents an important aspect of seabird niche space¹⁹, the role of the windscape in
90 shaping species distributions and diversity has only been investigated for procellariiformes²⁰. Our
91 data summarizing the wind speeds selected across species therefore provides a starting point for a
92 wider consideration of the role of wind on species with different flight morphologies.

93 The few instances of avoidance of strong winds in this study may also reflect the fine scale at
94 which we examined wind speed selectivity (using step lengths of one hour). Given that airspeeds
95 typically range from 10 to 18 m s⁻¹¹⁸, birds would need to select winds that were significantly different
96 to those available within a radius of some 40 – 65 km, for our approach to categorize behavior as
97 avoidance. Yet adult Great frigatebirds responded to extreme cyclones when the storm eye was 250
98 km away²¹, and Black-naped terns (*Sterna sumatrana*) departed the colony when cyclones were 399
100 to > 2000 km away²². The use of hourly step lengths may therefore select for cases where birds are
101 able to operate very close to storm fronts, which could explain why we found the clearest cases of
102 wind avoidance in albatrosses – the most wind adapted group. This highlights the difficulty of using a
103 single step length to identify responses across species, as birds with lower flight speed may respond

104 to cyclones when they are further away.

105 Nonetheless, the instances where albatrosses did avoid extreme winds provide insight into the
106 speeds and scenarios when wind becomes costly or risky. We show that two species of albatross,
107 including the Wandering albatross, avoided gale force winds of 22 m s^{-1} by flying into and tracking the
108 eye of the storm (Fig. 3). Another instance, where an Atlantic yellow-nosed albatross briefly flew into
109 the eye of a weaker storm (around 2014-11-18 21:00, see Supplementary video), was not identified
110 as wind-avoidance, suggesting that this behavior may be more common than our analyses suggest.
111 Indeed, the same response has been identified in Streaked shearwaters (*Calonectris leucomelas*)²³,
112 and is therefore used by species ranging in body mass from 0.5 to 12 kg. Flying towards and re-
113 maining within the eye of a storm could therefore be an important part of the behavioral repertoire of
114 fast-flying, wind-adapted species, enabling them to modulate their exposure to unfavorable winds.

115 Wandering albatrosses also sometimes avoided wind speeds that were well within their normal
116 operational range (14, 15, and 16 m s^{-1} ; Fig. S3). This could either be because individual trajec-
117 tories were driven by factors other than the wind field in these instances, or because birds chose to
118 select/avoid wind conditions based on the direction rather than speed alone, for instance to enable
119 the efficient exploitation of cross winds¹. Nonetheless, such instances were identified in a minuscule
120 proportion of the movement steps (nine of 93,104).

121 Overall, our results provide valuable information on the maximum wind speeds that seabirds with
122 variable size and morphology are able to fly in and demonstrate unexpected cases of avoidance in
123 the fastest flying seabirds. Nonetheless, understanding response to global change requires rigorous
124 investigation of outliers and unusual events, and the tools available to the ecological community
125 to study extreme and rare events are limited. We followed a step-selection approach to compare
126 used and available wind speed conditions, but we chose not to proceed with the conditional logistic
127 regressions commonly used to estimate step-selection functions²⁴, as this disregards the outliers
128 encountered by the birds in flight. Instead, we used null modeling to compare the used and the
129 maximum available wind speed for each step, and thereby identify the rare wind-avoidance events.
130 Yet, in something of a catch-22 situation, our approach was limited by the lack of information about
131 the likely distances over which birds respond to storms. There would likely be benefit in co-opting
132 tools from other fields. For instance, the Extreme Value Theory, commonly used in the field of finance
133 to determine the probability of the occurrence of extreme events²⁵, could be a promising method to
134 develop a framework uniting susceptibility to extreme weather events with the likelihood that birds will
135 be exposed to them under global change.

136 **Acknowledgments**

137 We thank L. Pearmain and B. Clark for assistance with searching and extraction of data from
138 BirdLife International's Seabird Tracking Database and S. Davidson for assistance with locating rel-
139 evant Movebank studies. We also thank E. Lempidakis and B. Garde for their input throughout the
140 project. ELCS was supported by a European Research Council starter grant (715874), under the Eu-
141 ropean Union's Horizon 2020 research and innovation program. EN was supported by the German
142 Academic Exchange Service (DAAD) Postdoctoral Researchers International Mobility Experience
143 (PRIME) fellowship and a Max Planck sabbatical fellowship to ELCS. Data collection from Nazca
144 boobies was supported by the U.S. National Science Foundation under Grant No. DEB 1354473 to
145 DJA. Data collection from Masked boobies was supported by Consejo Nacional de Ciencia y Tec-
146 nologia (INAPI-CONACyT) Grant. No. 411876 to ML, the Chilean Millennium Initiative through the
147 Millennium Nucleus Ecology and Sustainable Management of Oceanic Islands (ESMOI), and the Re-
148 search and Technology Centre (FTZ), University of Kiel. This is a contribution to the Excellence Chair
149 Nouvelle Aquitaine ECOMM led by DG.

150 **Author contributions**

151 ELCS conceived the study. EN designed the analyses with input from KS, ELCS, and SdG. DJA,
152 NCC, AF, DG, ML, JLM, LP, PP, NCR, PGR, CDS, SS, VT, HW, and MW contributed data. EN and
153 SdG prepared the data for analysis. EN analysed the data. EN and ELCS wrote the first draft of the
154 manuscript. All authors commented on and edited the manuscript drafts.

155 **Declaration of interests**

156 The authors declare no competing interests.

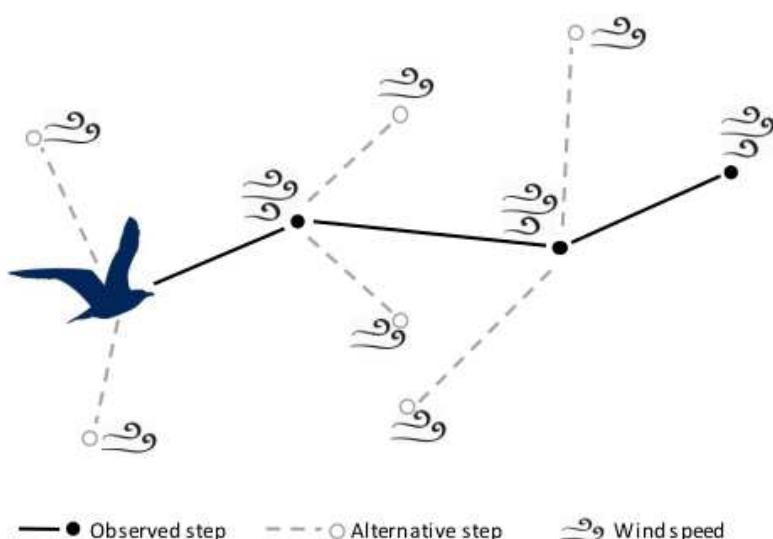


Figure 1: Schematic example of the step-selection approach used in this study. Each pair of consecutive locations is considered as one observed step. Each observed step is associated with a number of alternative steps (2 in this example), creating one stratum. The location of alternative steps is determined by randomly selecting a step length and a turn angle from the gamma distribution of step lengths and the von Mises distribution of turn angles observed for each species. The favored wind speed within each stratum is then compared to the maximum available wind speed within the stratum. In this example the bird favored the strongest available wind in all the strata.

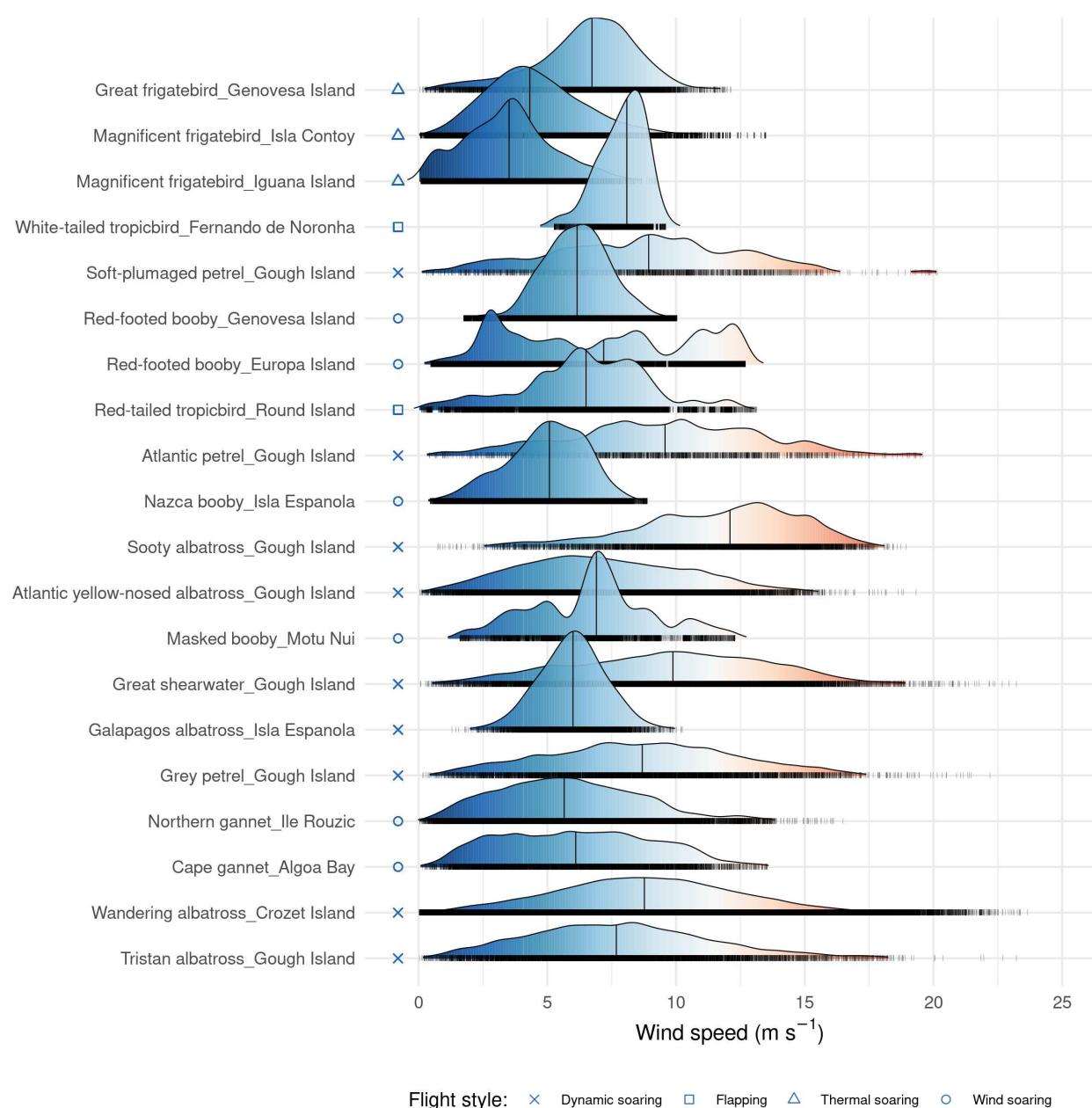


Figure 2: Distribution of wind speeds experienced by each species during foraging trips. Species are ordered by their wing loading (Table S1), with the lowest wing loading at the top. Vertical lines indicate the median.

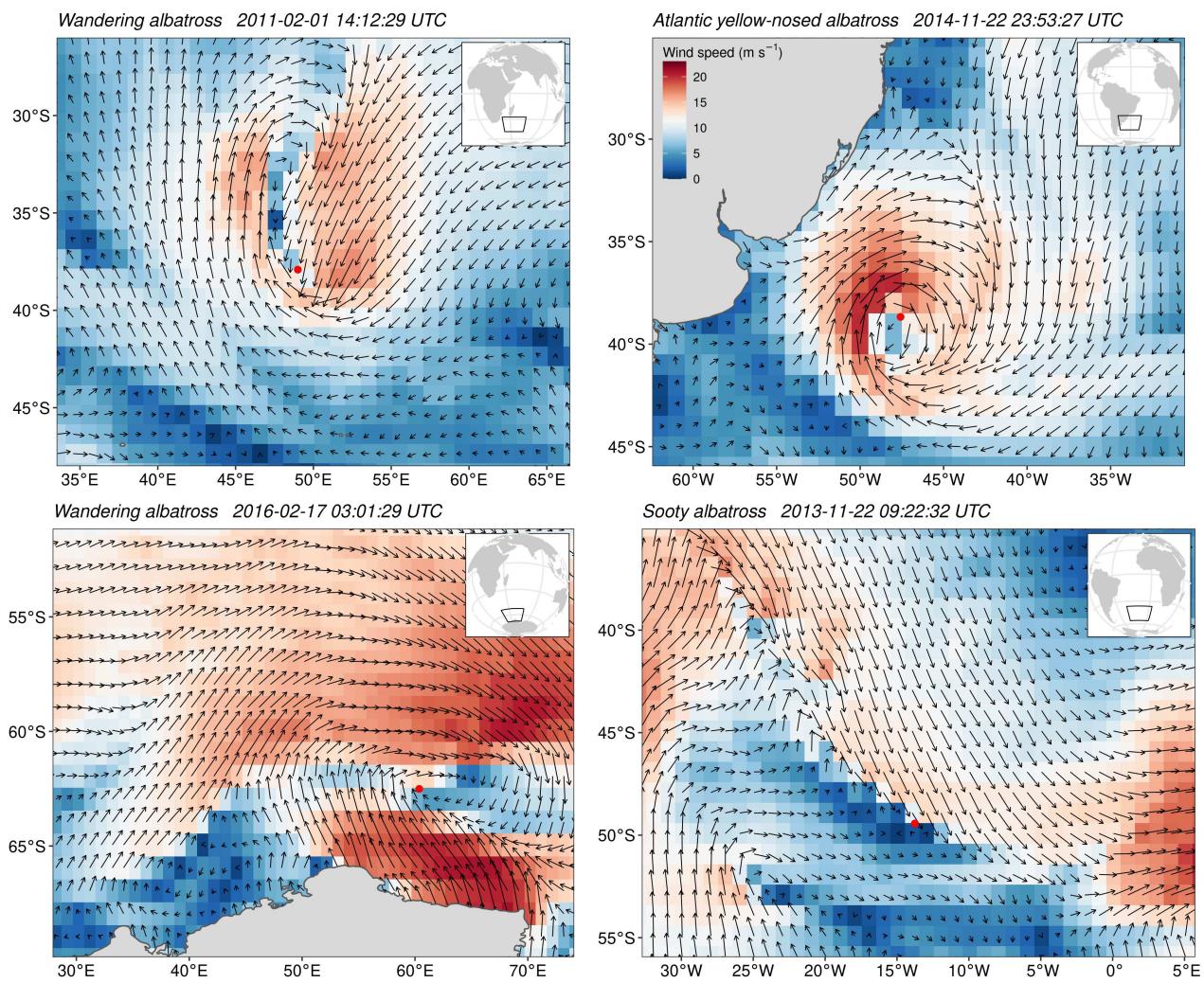


Figure 3: Wind fields at four selected instances where birds (indicated by red dots) avoided the strongest winds. In the top two panels birds appear to avoid the strongest winds associated with cyclonic systems by tracking the low wind region in the eye of the storm. In the bottom two panels birds operated along the edge of strong frontal systems, again selecting the region of lower wind speeds.

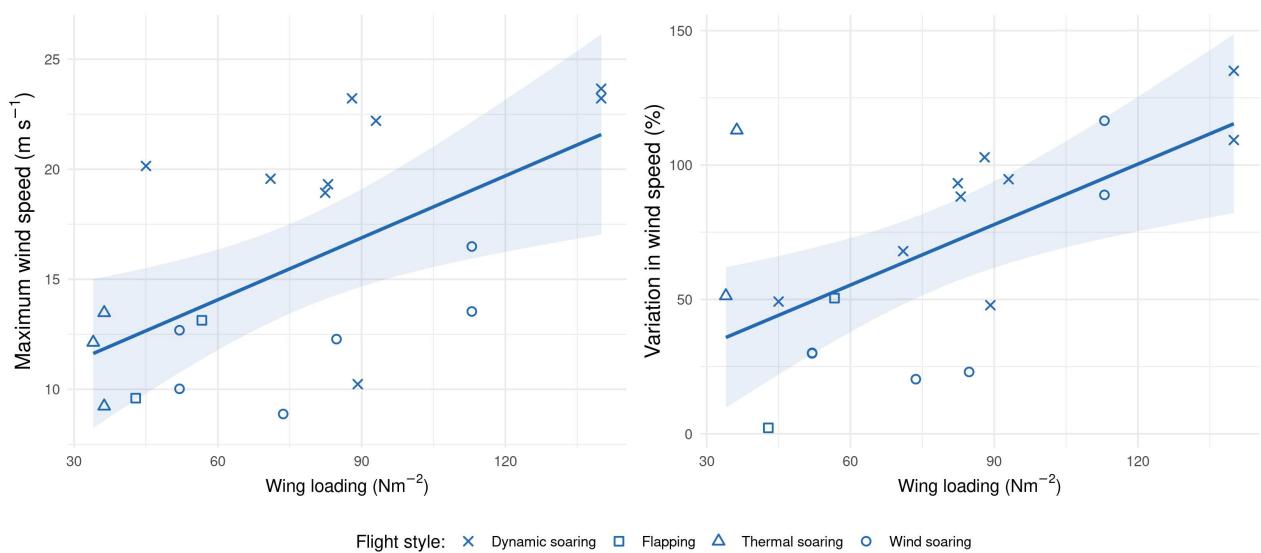


Figure 4: The relationship between wing loading and the maximum strength (left) and variation (right) of wind experienced by the seabirds. Shaded areas show the 95% Confidence Intervals of the regression lines.

157 **Methods**

158 *Data and code availability*

159 Annotated data necessary for replicating the results of the study will be available via an Edmond
160 repository (<https://edmond.mpdl.mpg.de/>) upon acceptance of the manuscript. Raw datasets are
161 available on Movebank or the Seabird Tracking Database (as listed in Table S1). R scripts are avail-
162 able on https://github.com/mahle68/seabirds_storms_public. The corresponding DOIs for Edmond
163 and Github repositories will be generated and reported here once the manuscript is accepted for
164 publication.

165 **Experimental model and subject details**

166 All analysis was done on already-existing data collected for free-flying seabirds of the following
167 species:

- 168 1. Atlantic yellow-nosed albatross (*Thalassarche chlororhynchos*)
- 169 2. Galapagos albatross (aka. Waved albatross; *Phoebastria irrorata*)
- 170 3. Sooty albatross (*Phoebetria fusca*)
- 171 4. Tristan albatross (*Diomedea dabbenena*)
- 172 5. Wandering albatross (*Diomedea exulans*)
- 173 6. Atlantic petrel (*Pterodroma incerta*)
- 174 7. Grey petrel (*Procellaria cinerea*)
- 175 8. Soft-plumaged petrel (*Pterodroma mollis*)
- 176 9. Great shearwater (*Ardenna gravis*)
- 177 10. Cape gannet (*Morus capensis*)
- 178 11. Northern gannet (*Morus bassanus*)
- 179 12. Masked booby (*Sula dactylatra*)
- 180 13. Nazca booby (*Sula granti*)
- 181 14. Red-footed booby (*Sula sula*)
- 182 15. Great frigatebird (*Fregata minor*)
- 183 16. Magnificent frigatebird (*Fregata magnificens*)

184 17. Red-tailed tropicbird (*Phaethon rubricauda*)

185 18. White-tailed tropicbird (*Phaethon lepturus*)

186 **Method details**

187 **Bio-logging data**

188 We collected bio-logging data recorded using Platform Transmitter Terminals (PTTs) or GPS
189 loggers of 18 seabird species (Table S1). These datasets were identified by searching Movebank
190 (www.movebank.org) and the Seabird Tracking Database (www.seabirdtracking.org). The species
191 included in this study represent all major seabird guilds in terms of flight style (Table S1), includ-
192 ing dynamic soaring (nine species of albatross, petrel, and shearwater), wind soaring (five species
193 of gannet and booby), thermal soaring (two species of frigatebird), and obligate flapping fliers (two
194 species of tropicbird), although notably data from alcids were not included. We focused on foraging
195 tracks of adult birds during the breeding season due to the availability of relatively high frequency
196 tracking data, which is scarce for outside the breeding season.

197 All data were filtered by speed to ensure that the position information represented periods of flight
198 (threshold of 2-3 km h⁻¹). To reduce auto-correlation and allow for comparisons between species,
199 we sub-sampled all data to a uniform temporal resolution of at least 1 hour (with tolerance of 15
200 minutes²⁶). In the case of the Galapagos albatross (also known as Waved albatross), we used a 90
201 minute resolution, which matched the original data frequency. Two species (Red-footed booby and
202 Magnificent frigatebird) were represented from two breeding colonies. The Magnificent frigatebird
203 dataset from Isla Contoy had a low temporal resolution (mode of 180 minutes) and was excluded
204 from the random step generation procedure (see below). We still report the strongest wind speed
205 encountered by this population and include it in the model for determining exposure to strong wind.

206 **Data processing**

207 We used a step-selection approach to prepare the data for analysis. This method allowed us to
208 compare the birds' use of the windscape while traveling between foraging sites to conditions that were
209 available, but not used. We considered every two consecutive points along a track as one step, each
210 of them starting at point A and ending at point B. For each of these observed steps, we randomly
211 generated 30 alternative steps, each of which originated in the same place, point A of the observed
212 step, but went to a different location in space within the same time period as the observed step
213 did. Thus, for each step, we randomly drew 30 values from the distribution of step lengths (Gamma
214 distribution) and turning angles (von Mises distribution) fitted to the empirical data for each species
215 to construct the steps originating in each of the observed location A, but going to 30 alternative B

216 locations. As such, our dataset had a stratified structure, where 30 alternative steps were matched
217 to one observed step per stratum.

218 For each point in the dataset, we extracted eastward (u) and northward (v) components of wind
219 (at 10 m above surface) from the European Center for Medium-Range Weather Forecast (ECMWF;
220 www.ecmwf.int) ERA5 re-analysis database (temporal and spatial resolution of 1 hour and 30 km,
221 respectively). Annotations were done using the ENV-Data track annotation service²⁷ provided by
222 Movebank. We selected bi-linear interpolation for all variables and calculated wind speed using the
223 u and v components of the wind. For each species, we obtained wing loading and aspect ratio from
224 the literature (Table S1).

225 Preliminary inspection of the largest dataset (Wandering albatross) revealed that the response to
226 extreme winds appeared similar for this species irrespective of whether the step length was set to 1,
227 2, 4, or 6 hours (Fig. S5).

228 Previous studies have reported that some species increase their flight height in response to the
229 arrival of cyclones, enabling them to potentially fly above them²¹. Altitude data was available for only
230 three species in our dataset. Inspection of the raw altitude data showed no relationship with wind
231 speed (Pearson correlation test for Red-footed booby: $r = 0.002, p = 0.26$; Magnificent frigatebird: r
232 = $-0.043, p < 0.05$; Galapagos albatross: $r = -0.050, p < 0.05$).

233 Testing for avoidance of strong wind

234 We used randomization techniques to test whether seabirds avoided strong winds when foraging
235 at sea. We did not make any assumptions about what wind speeds were considered strong. Instead,
236 for each set of used and 30 alternative steps (i.e., a stratum), we compared the strongest available
237 wind speed to the wind speed that the individual used. Each stratum was therefore considered to
238 be one sampling unit. Our null hypothesis was that, within each stratum, there was no avoidance of
239 the strongest available wind. Our alternative hypothesis was that the strongest wind available in the
240 stratum was avoided. We calculated a test statistic within each stratum: the difference between the
241 maximum wind speed available and the wind speed at the observed point. To create a null dataset,
242 we grouped the data by species, year, and stratum, and shuffled the wind speed values associated
243 with each row of data within each of these groups. We then calculated the same test statistic within
244 the randomized strata. We repeated the randomization 1,000 times. Given our one-sided alternative
245 hypothesis, we calculated significance as the fraction of random test statistics that were greater than
246 or equal to the observed test statistic.

247 **Determinants of exposure to strong and variable wind**

248 We used linear models to investigate whether morphology determined the exposure of seabird
249 species to strong and variable wind conditions. Due to the positive correlation between wing loading
250 and aspect ratio ($r = 0.60$, $p < 0.05$), we included wing loading as the sole predictor in our linear
251 models.

252 We extracted the maximum wind speed experienced by each species population from the anno-
253 tated bio-logging dataset (one-hourly resolution). Each population (i.e., species-colony combination)
254 was considered as one sampling unit. We predicted maximum wind as a function of wing loading and
255 checked the model residuals for spatial and temporal auto-correlation that could be related to colony
256 location and timing of breeding (estimated as the median month of the breeding season).

257 We then explored whether variability in wind conditions experienced by each species depended on
258 wing loading. To do this, we calculated the coefficient of variation (CoV) for wind speed values within
259 each stratum. We then modeled the maximum CoV experienced by each population as a function of
260 wing loading. As before, we checked the residuals for spatial and temporal auto-correlation.

261 The amount of data varied for each species. To test whether the strength and variation in wind
262 speed experienced by different species were affected by the amount of flight data in our dataset, we
263 estimated the correlation between these. We also checked whether phylogenetic distance affected
264 the observed patterns in wind strength and variability by estimating Moran's auto-correlation coeffi-
265 cient²⁸. Phylogenetic relationships were extracted from the BirdTree database (<http://birdtree.org>²⁹).

266 **References**

267 [1] Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S.A., and Costa, D. (2000). Fast and fuel
268 efficient? Optimal use of wind by flying albatrosses. *Proceedings of the Royal Society of London.*
269 *Series B: Biological Sciences* 267, 1869–1874. doi 10.1098/rspb.2000.1223.

270 [2] Felicísimo, Á.M., Muñoz, J., and González-Solis, J. (2008). Ocean surface winds drive dynamics
271 of transoceanic aerial movements. *PLoS One* 3, e2928. doi 10.1371/journal.pone.0002928.

272 [3] Kawaguchi, K. and Marumo, R. (1964). Mass mortality of Slender-billed Shearwater, *Puffinus*
273 *tenuirostris*, in Suruga Bay. *Journal of the Yamashina Institute for Ornithology* 4, 106–113.

274 [4] Ryan, P. and Avery, G. (1987). Wreck of juvenile Blackbrowed Albatrosses on the west-coast
275 of South Africa during storm weather. *Ostrich* 58, 139–140.

276 [5] Hume, R. and Christie, D. (1989). Sabine's Gulls and other seabirds after the October 1987
277 storm. *British Birds* 82, 191–208.

278 [6] Ryan, P., Avery, G., Rose, B., ROSS, G.B., Sinclair, J., and Vernon, C. (1989). The Southern
279 Ocean seabird irruption to South African waters during winter 1984. *Marine Ornithology* 17,
280 41–55.

281 [7] Camphuysen, C., Wright, P., Leopold, M., Hüppop, O., and Reid, J. (1999). A review of the
282 causes, and consequences at the population level, of mass mortalities of seabirds. *Ices coop*
283 *res report no 232 edition (International Council for the Exploration of the Sea, Copenhagen)*.

284 [8] Suryan, R.M., Anderson, D.J., Shaffer, S.A., Roby, D.D., Tremblay, Y., Costa, D.P., Sievert, P.R.,
285 Sato, F., Ozaki, K., Balogh, G.R., et al. (2008). Wind, waves, and wing loading: morphological
286 specialization may limit range expansion of endangered albatrosses. *PLoS One* 3, e4016. doi
287 10.1371/journal.pone.0004016.

288 [9] Clairbaux, M., Mathewson, P., Porter, W., Fort, J., Strøm, H., Moe, B., Fauchald, P., Descamps,
289 S., Helgason, H.H., Bråthen, V.S., et al. (2021). North Atlantic winter cyclones starve seabirds.
290 *Current Biology* 31, 3964–3971. doi 10.1016/j.cub.2021.06.059.

291 [10] Hass, T., Hyman, J., and Semmens, B. (2012). Climate change, heightened hurricane activ-
292 ity, and extinction risk for an endangered tropical seabird, the black-capped petrel *Pterodroma*
293 *hasitata*. *Marine Ecology Progress Series* 454, 251–261.

294 [11] Young, I.R. and Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and
295 wave height. *Science* 364, 548–552. doi 10.1126/science.aav9527.

296 [12] Fick, S.E. and Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces
297 for global land areas. *International journal of climatology* 37, 4302–4315.

298 [13] Pennycuick, C.J. (2008). *Modelling the flying bird* (Elsevier).

299 [14] Richardson, P.L., Wakefield, E.D., and Phillips, R.A. (2018). Flight speed and perfor-
300 mance of the wandering albatross with respect to wind. *Movement ecology* 6, 1–15. doi
301 10.1186/s40462-018-0121-9.

302 [15] Bernard, A., Rodrigues, A.S., Cazalis, V., and Grémillet, D. (2021). Toward a global strategy for
303 seabird tracking. *Conservation Letters* 14, e12804. doi 10.1111/conl.12804.

304 [16] Wakefield, E.D., Phillips, R.A., Matthiopoulos, J., Fukuda, A., Higuchi, H., Marshall, G.J., and
305 Trathan, P.N. (2009). Wind field and sex constrain the flight speeds of central-place foraging
306 albatrosses. *Ecological Monographs* 79, 663–679. doi 10.1890/07-2111.1.

307 [17] Catry, P., Phillips, R.A., and Croxall, J.P. (2004). Sustained fast travel by a gray-headed alba-
308 tross (*Thalassarche chrysostoma*) riding an Antarctic storm. *The Auk* 121, 1208–1213. doi
309 10.1093/auk/121.4.1208.

310 [18] Spear, L.B. and Ainley, D.G. (1997). Flight behaviour of seabirds in relation to wind direction and
311 wing morphology. *Ibis* *139*, 221–233.

312 [19] Spear, L.B. and Ainley, D.G. (1998). Morphological differences relative to ecological segregation
313 in petrels (Family: Procellariidae) of the Southern Ocean and tropical Pacific. *The Auk* *115*,
314 1017–1033.

315 [20] Davies, R.G., Irlich, U.M., Chown, S.L., and Gaston, K.J. (2010). Ambient, productive and wind
316 energy, and ocean extent predict global species richness of procellariiform seabirds. *Global
317 Ecology and Biogeography* *19*, 98–110. doi [10.1111/j.1466-8238.2009.00498.x](https://doi.org/10.1111/j.1466-8238.2009.00498.x).

318 [21] Weimerskirch, H. and Prudor, A. (2019). Cyclone avoidance behaviour by foraging seabirds.
319 *Scientific reports* *9*, 1–9. doi [10.1038/s41598-019-41481-x](https://doi.org/10.1038/s41598-019-41481-x).

320 [22] Thiebot, J.B., Nakamura, N., Toguchi, Y., Tomita, N., and Ozaki, K. (2020). Migration
321 of black-naped terns in contrasted cyclonic conditions. *Marine Biology* *167*, 1–12. doi
322 [10.1007/s00227-020-03691-0](https://doi.org/10.1007/s00227-020-03691-0).

323 [23] Lempidakis, E., Shepard, E.L., Ross, A.N., Matsumoto, S., Koyama, S., Takeuchi, I., and
324 Yoda, K. (2022). Pelagic seabirds reduce risk by flying into the eye of the storm. *bioRxiv* doi
325 [10.1101/2022.04.07.487409](https://doi.org/10.1101/2022.04.07.487409).

326 [24] Thurfjell, H., Ciuti, S., and Boyce, M.S. (2014). Applications of step-selection functions in ecology
327 and conservation. *Movement ecology* *2*, 1–12. doi [10.1186/2051-3933-2-4](https://doi.org/10.1186/2051-3933-2-4).

328 [25] e Silva, W. and do Nascimento, F. (2019). MCMC4Extremes: an R package for Bayesian infer-
329 ence for extremes and its extensions. *Communications in Statistics-Simulation and Computation*
330 , 1–11doi [10.1080/03610918.2019.1653914](https://doi.org/10.1080/03610918.2019.1653914).

331 [26] Kranstauber, B., Smolla, M., and Scharf, A.K. (2020). Package ‘move’ .

332 [27] Dodge, S., Bohrer, G., Weinzierl, R., Davidson, S.C., Kays, R., Douglas, D., Cruz, S., Han,
333 J., Brandes, D., and Wikelski, M. (2013). The environmental-data automated track annotation
334 (Env-DATA) system: linking animal tracks with environmental data. *Movement Ecology* *1*, 3. doi
335 [10.1186/2051-3933-1-3](https://doi.org/10.1186/2051-3933-1-3).

336 [28] Paradis, E. and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and
337 evolutionary analyses in R. *Bioinformatics* *35*, 526–528. doi [10.1093/bioinformatics/bty633](https://doi.org/10.1093/bioinformatics/bty633).

338 [29] Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., and Mooers, A.O. (2012). The global diversity
339 of birds in space and time. *Nature* *491*, 444–448. doi [10.1038/nature11631](https://doi.org/10.1038/nature11631).

340 **Supplementary Video**

341 Supplementary video: An Atlantic yellow-nosed albatross flies into the eye of the storm. The bird
342 (indicated by a red dot) was identified to be avoiding strong winds at 2014-11-22 23:53:27 UTC.
343 However, it also briefly flew into the eye of a weaker storm around 2014-11-18 21:00 UTC. This
344 instance was not identified as wind-avoidance in our study, suggesting that this behavior may be
345 more common than our analysis suggests. Flying towards and remaining within the eye of a storm
346 could be an important part of the behavioral repertoire of fast-flying, wind-adapted species, enabling
347 them to modulate their exposure to unfavorable winds.

348 **Supplementary Figures**

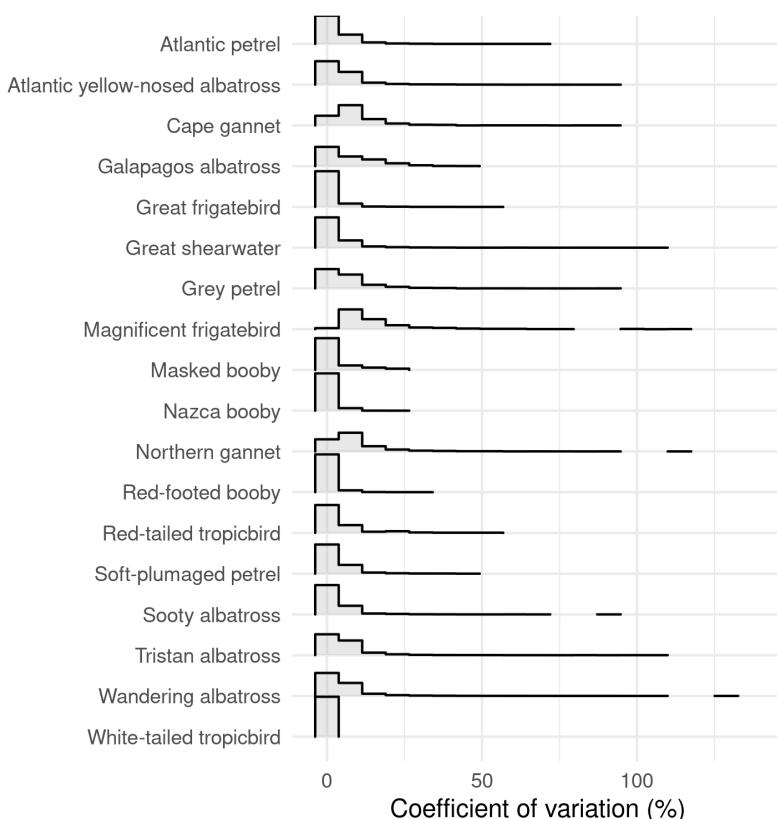


Figure S1: Distribution of coefficient of variation estimated for wind speed within each stratum for each species. Values exceeding 100% indicate higher standard deviation than the mean.

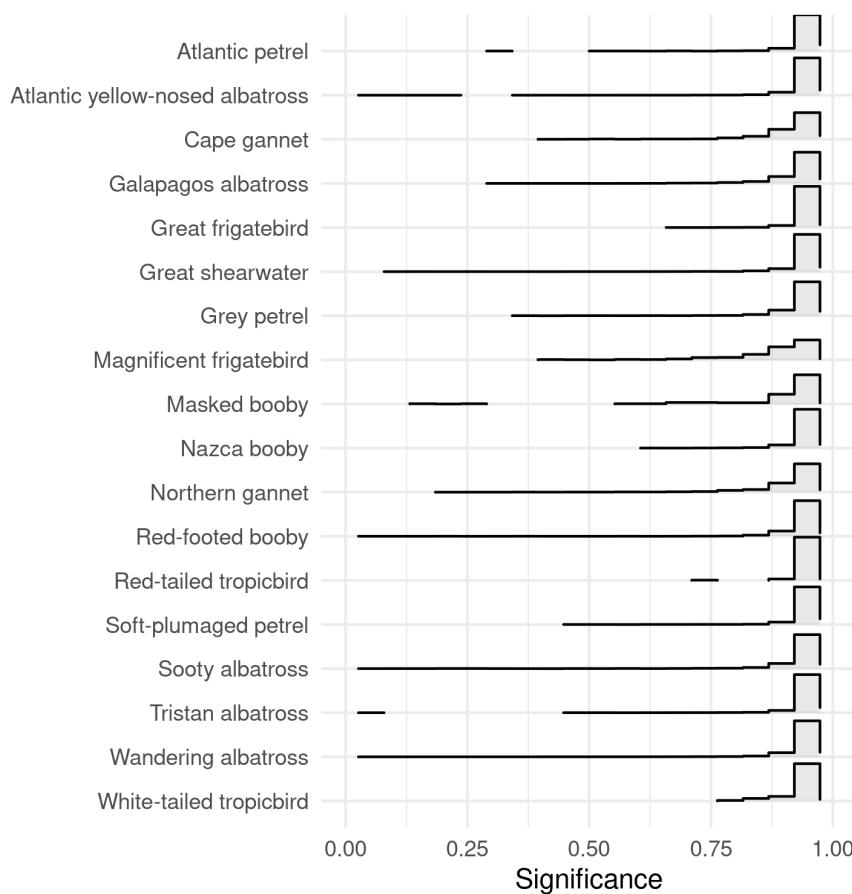


Figure S2: Significance values for randomization tests performed on the stratified dataset to test for avoidance of strong wind. The null hypothesis was accepted in the majority of strata: seabirds did not avoid strong winds. In fact, significant values of 1 indicate that the bird used the maximum wind speed available.

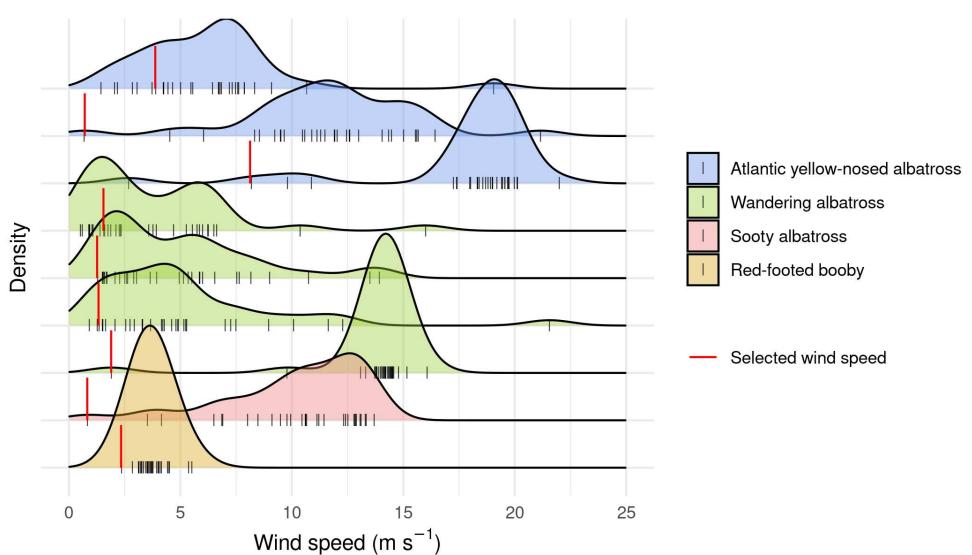


Figure S3: Distribution of available wind speed at the strata where strong wind was avoided.

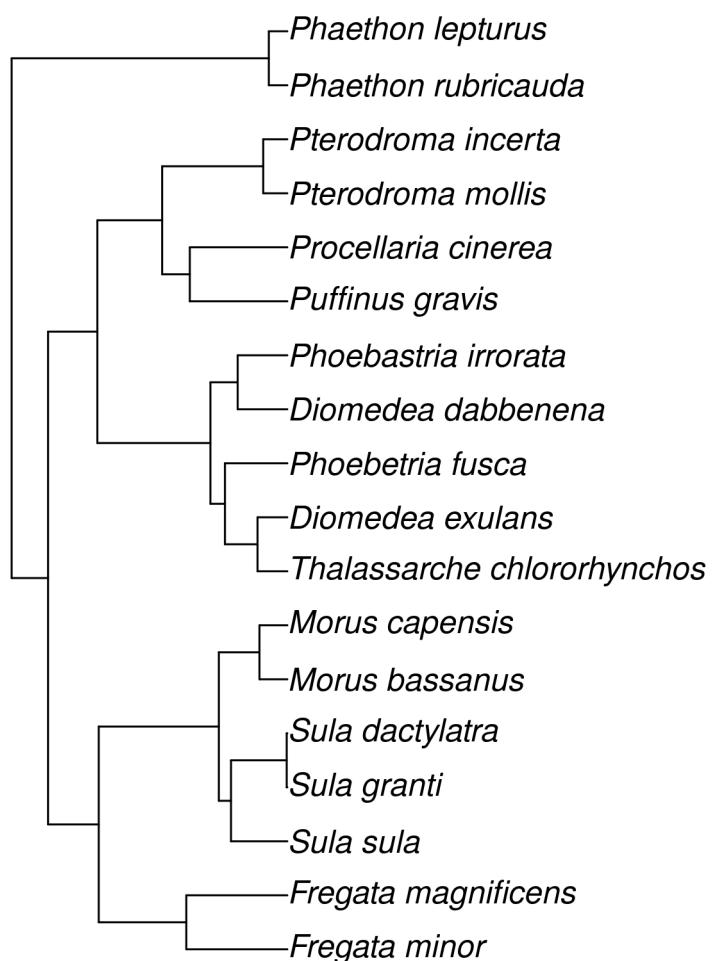


Figure S4: Phylogenetic relationship between the 18 study species, extracted from the BirdTree database (<http://birdtree.org>).

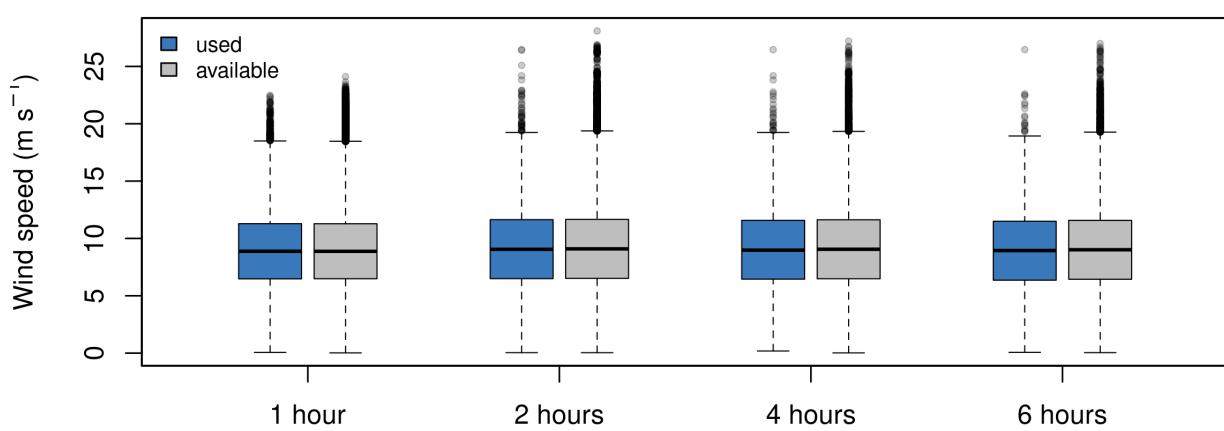


Figure S5: Distribution of wind speed (m s⁻¹) at used and available locations along the wandering albatross foraging tracks for step lengths set to 1, 2, 4, and 6 hours.