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Abstract

Fish often change their habitat and trophic preferences during development. Dramatic
functional differences between embryos, larvae, juveniles and adults also concern sensory
systems, including vision. Here we focus on the photoreceptors (rod and cone cells) in the
retina and their gene expression profiles during the development. Using comparative
transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general
developmental patterns of opsin expression, mostly suggesting an increased importance of the
rod opsin (RHI) gene and the long-wavelength sensitive (LWS) cone opsin, and a decreasing
importance of the shorter wavelength sensitive cone opsin throughout development.
Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from
Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we
report examples of expanded cone opsin repertoires, cone opsin switches (mostly within RH2)

and increasing rod:cone ratio as evidenced by the opsin and phototransduction cascade genes.
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Our findings provide molecular support for developmental stage-specific visual palettes of ray-
finned fishes and shifts between, which most likely arose in response to ecological, behavioural

and physiological factors.

INTRODUCTION

Fish visual systems are very diverse, and they vary in morphology, physiology and spectral
sensitivity (Hunt et al. 2014, Carleton et al. 2020, Musilova et al. 2021). Vertebrate vision is
enabled by cone and rod photoreceptors in the retina, which carry light-sensitive molecules
composed of an opsin protein bound to a light absorbing, vitamin A-derived chromophore
(Lamb 2013). In fishes, there are usually four types of cone opsins (SWSI and SWS2;
commonly found in single cones, whereas RH2 and LWS in double cones) used for photopic
and colour vision, and one rod opsin (rthodopsin, RH/ or Rho) for scotopic vision in dim-light
conditions (Carleton et al. 2020). Through gene duplications followed by functional
diversifications, extant teleost fishes reached a median of seven cone opsin genes within their
genomes (Musilova et al. 2019a). Throughout the phylogeny, teleost genomes contain more
copies of double-cone genes (middle and longer-wavelength sensitive; RH2 and LWS) than that
of single-cones (shorter-wavelength SWS7 and SWS2). While the SWS! is often missing from
the genome or seen in one, at best two copies (Musilova et al, 2021) and SWS2 seen in up to
three copies (Cortesi et al., 2015), teleost genomes can contain up to eight copies of RH2
(Musilova & Cortesi, 2021) and up to five copies of LWS (Cortesi et al., 2021). Unlike cone
opsins, rod opsin duplicates are rarely found, most often in mesopelagic lineages (Pointer et al.
2007, Musilova et al. 2019a, LupSe et al. 2021). Higher copy number is considered beneficial
by providing more “substrate” for selection, as well as for alternative gene expression of the
variants within the opsin type.

The formation of the eye, and expression of opsin genes, starts already at the embryonic
stage (Hagedorn and Fernald 1992, Carleton et al. 2008). Still, eyes continue to grow, and new
photoreceptors are being added throughout life (Fernald 1985). Within the retina, cone
photoreceptors are first to develop, followed by temporally and spatially distinct rods
(Raymond 1995, Helvik et al. 2001, Shen & Raymond 2004). For example, in zebrafish,
photoreceptor progenitor cells start out by first differentiating into cones before rods are added
later during development (Sernagor et al. 2006). This cone-to-rod developmental sequence is
likely shared across vertebrates (Atlantic cod: Valen et al. 2016; zebrafish: Sernagor et al. 2006;
mice: Mears et al. 2001; rhesus monkey: La Vail et al. 1991) and appears to hold even for

teleost species with an all-rod retina in the adult stage (Lupse et al. 2021).
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68 Photic conditions can change spatially and temporally, resulting in a visually
69  heterogeneous environment in which visual systems of fishes are expected to be under natural
70  selection that favours those that match the local environment (Carleton et al. 2016). For
71  example, longer and shorter wavelengths are scattered and filtered out with increasing water
72 depth and consequently, fishes living in deep-water habitats such as sculpins of Lake Baikal
73 (Hunt 1997), cichlids of lakes Malawi and Tanganyika (Sugawara et al. 2005; Ricci et al. 2022),
74  and African crater lakes (Malinsky et al. 2015; Musilova et al. 2019b), as well as deep-sea
75  fishes (Douglas et al. 2003, Lupse et al. 2021) have visual systems sensitive to the blue-green
76  part of the visible spectrum. Adaptation can be achieved either through functional
77  diversifications of opsin genes when mutations at key-spectral tuning sites shift the peak
78  spectral sensitivity (Amax) of the photopigment (Yokoyama 2008, 2020), or by regulation of the
79  opsin gene expression. This can be achieved when a subset of opsin genes is expressed and
80 altered among or within species and even within the same individuals during ontogeny
81  (Carleton & Kocher 2001, Manousaki et al. 2013, Carleton 2016, Lupse et al. 2021).
82 Before reaching the juvenile or sexually mature adult stage, fish larvae undergo major
83  anatomical, physiological, behavioural and quite often, ecological changes (Evans & Browman
84 2004, Carleton et al. 2020). This developmental shift in habitat preference is often suggested
85  to drive ontogenetic changes in opsin expression (e.g. cichlids: Carleton et al. 2016; black
86  bream: Shand et al., 2002; eel: Cottrill et al. 2009; damselfishes: Stieb et al. 2016, bluefin
87  killifish: Chang et al. 2021; gambusia: Chang et al. 2020; rainbow trout: Allison et al. 2006;
88  dottybacks: Cortesi et al. 2016; deep-sea fishes: LupSe et al. 2021). However, changes of photic
89  conditions solely do not always result in different and stage-specific visual system
90 modifications, as seen in the Atlantic cod (Valen et al. 2016) or the spotted unicornfish
91  (Tettamanti et al. 2019). This suggests other factors, such as behaviour, developmental or
92  phylogenetic constraints also play a role in shaping the visual diversity of fishes and potential
93  age-related shifts of it.
94 Here we aim to investigate ontogenetic changes of the opsin and phototransduction
95  cascade gene expression across ray-finned fishes, to estimate presence and relative abundance
96  of opsin gene classes, and to elucidate general and/or taxon-specific patterns. For the purpose
97  of this study we have sequenced and analysed 1) retinal transcriptomes of different
98 developmental stages of 14 species, belonging to five major actinopterygian orders: Polypterus
99  senegalensis (Polypteriformes), Acipenser ruthenus (Acipenseriformes), Abramis brama and
100  Vimba vimba (both Cypriniformes), Scopelarchus spp. and Coccorella atlantica (both
101  Aulopiformes), Coptodon bemini, C. imbriferna, C. flava, C. snyderae, C. thysi, Sarotherodon
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102 linnellii, S. lohbergeri and Stomatepia pindu (all Cichliformes from the Bermin and Barombi
103 Mbo lakes). 2) We have complemented this data set by publicly available
104  embryonic/larval/juvenile/adult transcriptomes belonging to 49 species and 21 orders, some of
105  which have never been analysed for visual gene expression before. In total, the comprehensive
106  data set of 63 species from 23 ray-finned fish orders allows us to focus on development of the
107  opsin gene expression, and rod and cone cell identity throughout actinopterygian evolution.
108

109 RESULTS AND DISCUSSION

110  General developmental patterns of opsin gene expression across the actinopterygian
111  phylogeny — cone-to-rod developmental constraint. The analysis of the opsin gene
112 expression in 63 ray-finned fishes revealed that generally, the ratio of the rod opsin (RHI or
113 Rho, Amax: 447-525 nm) to cone opsin expression increases with age in analysed species (Figs
114 1 and 2, Supp Table). This is in accord with the cone-to-rod development of the retina which
115  starts with cone cells, and rods appearing only later (Sernagor et al. 2006, Valen et al. 2016,
116  LupSe et al. 2021). The increasing rod:cone cell ratio is further confirmed by the expression of
117  the phototransduction cascade gene GNAT (rod specific) vs. GNAT2 (cone specific), Fig. 3b.
118  Rod opsin and GNAT1/2 usage increases significantly already during the larval and juvenile
119  stage, before finally transforming retinae of sexually mature adults into predominantly rod-
120  over-cone-expressing tissues (Figs 1 and 2, Supp Table). It thus seems that larval vision is
121 mostly driven by cone vision, while the ability to perform well in low-light conditions appears
122 consequently, at later developmental stages (Evans and Browman 2004, Evans and Fernald
123 1990). Functionally, rods generally allow for an improvement in visual acuity and startle
124 responses in fishes (Fuiman 1993, Pankhurst et al. 1993, Fuiman and Delbos 1998) and are
125  also associated with motion sensitivity and the appearance of novel behaviours, such as
126  schooling (Hunter & Coyne 1982). More specifically, higher rod expression increases
127  individual performance of fishes living in the deep-sea (de Busserolles et al. 2020, Lupse et al.
128  2021). Additionally, laboratory experiments have shown that the ability to follow a rotating
129  stripe pattern (the optomotor drum) might be dependent on rod formation and retinal
130  development, as it is not seen in stages or specimens lacking rods (Blaxter 1986, Carvalho et
131  al. 2002, Magnuson et al. 2020).

132 In the selected taxa (Fig. 3), we have specifically focused on the rod vs. cone identity
133 by quantifying the expression of the phototransduction cascade gene GNATI or GNAT2,
134 respectively. We found correspondence between the expression of phototransduction cascade

135  gene type and the opsin type (i.e. cone SWSI, SWS2, RH2, LWS and rod RHI), and detected a
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136  clear increase of GNATI:GNAT?2 ratio with ageing, with the exception of the Aulopiformes
137  deep-sea fishes. In this group, a rare discordance between the dominating opsin type (rod-
138  specific) and phototransduction cascade genes (cone-specific) in adults suggests a presence of
139  possibly transmuted photoreceptors, and an overall intriguing visual system which needs to be
140  investigated further (Fig 3, Lupse et al. 2021).

141

142 Developmental switch of the short-wavelength sensitive opsin genes. A trend of age-related
143 shifts in expression also appears within cone opsins. Our data set shows a clear decrease in
144 proportional expression of the ultraviolet or UV-sensitive SWS/ (Amax: 347-383 nm) with age.
145  Although SWS1 expression usually remains in the lower quarter of the total cone opsin
146  expression, it seems to be expressed in early stages throughout the phylogeny (Fig 1, Supp
147  Table). On one hand, UV radiation can result in larval mortality; to mitigate negative effects
148  of exposure, UV avoidance through detection of ultraviolet light and adjustments of vertical
149  position is expected (Ylonen et al. 2004, Guggiana-Nilo and Engert 2016). On the other hand,
150  distinguishing wavelengths belonging to the UV part of the visual spectrum aids younger
151  individuals that feed on zooplankton (Browman et al. 1994, Flamarique et al. 2013, Fattah
152 Ibrahim et al. 2015). With ageing and a shift in diet, UV opsin expression probably becomes
153  irrelevant (Britt et al. 2001), thus potentially explaining why adults never (e.g. Naso
154 brevirostris, Oryzias latipes) or rarely (e.g. Danio rerio, Poecilia reticulata, cichlids) express
155  SWSI cone opsin (Fig 1, Supp Table). Adult expression of SWS/, when seen, seems to play a
156  role in species and/or colour discrimination and mate selection (guppies: Smith et al. 2002;
157  damselfishes: Siebeck et al. 2010; cichlids: Carleton et al. 2016), male aggression
158  (sticklebacks: Rick and Bakker 2008) or is associated with migration events (salmonids:
159  Allison et al., 2006). The blue sensitive SWS2 cone opsin (Amax: 397482 nm), shows a more
160  complex pattern (Figs 1 and 2, Supp Table). Interestingly, while some fish (e.g. sturgeons or
161  cyprinids) seem to ontogenetically decrease the proportion of both SWS/ and SWS2 opsins, in
162  other fish groups (e.g. cichlids) we observe a replacement of one type by another (Fig 3). This
163  switch in single cone opsin expression between SWSI and SWS2 has been shown before e.g.
164 by Spady et al. (2006) in Nile tilapia or by Cheng and Flamarique (2007) in rainbow trout, and
165 it keeps the total single cone opsin expression similar between different developmental stages
166  (Fig. 2).

167

168 Middle and long-wavelength sensitive opsins in double cones: The ontogenetic switch in

169  expression occurs also between the green-sensitive RH2 (Amax: 452-537 nm) and the red-
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170  sensitive LWS (Amax: 501-573 nm) cone opsin types; plus switching between different RH2
171  copies also commonly occurs (Fig 3). Values for these typically double-cone opsins vary
172 considerably across the fish phylogeny, but a general trend of a decrease in relative expression
173  of RH2, and an increase of LWS with age is detected (Figs 1 and 2, Supp Table), except for
174 groups that completely lost the LWS opsin gene. In general, medium-wavelength opsins appear
175  to be of use to all stages (Figs 1 and 2, Supp Table), perhaps due to general presence of
176  corresponding wavelengths in most habitats. Our overview data seem to show the trend of
177  freshwater species exhibiting the dominance of red-sensitive LWS opsin gene expression,
178  whereas in marine species, green-sensitive RH2 gets to be more dominant (with exceptions)
179  (Fig 1). Namely, for species inhabiting the spectrally narrower deep sea at least during certain
180  parts of their lives (Stomiiformes, Aulopiformes, Trachichthyiformes, Anguilliformes,
181  Gadiformes), RH2 seems to be the most important, if not the only cone opsin expressed (Fig 1,
182  Lupse et al. 2021). On the other hand, expression of LWS in adults might be a response to
183  inhabiting freshwater habitats, such as turbid rivers and murky, eutrophic lakes (e.g. Lake
184  Victoria where usually, longer wavelengths penetrate to greater depths and are the most
185  prevalent colour of the ambient light (Hofmann et al. 2009, Carleton et al. 2016). Expression
186  of LWS could also be beneficial for foraging in herbivorous reef fishes, providing them with
187  the visual ability to discriminate benthic algae from coral reef backgrounds (Marshall et al.
188 2003, Stieb et al. 2017). In some cases, increased LWS expression and expanded LWS
189  repertoires might also be explained by sexual selection (e.g. in Poeciliidae), where females
190  evolved mate preferences for red and orange male coloration (Watson et al. 2011).

191

192  Age-specific cone opsin gene copies in the selected taxa. We have specifically focused and
193  de-novo sequenced retina transcriptomes of larvae/juveniles and adults of 14 actinopterygian
194  species belonging to five orders spanning the ray-finned fish phylogeny. Apart from the
195  aforementioned rod vs. cone identity assessed by GNAT genes, we have additionally focused
196  on switches between copies of the same opsin type in the selected taxa (Fig 3, Supp Table).
197  Namely, we studied the visual opsin gene repertoire in two basal non-teleost fish groups,
198  bichirs (Polypteriformes) and sturgeons (Acipenseriformes), and in teleost riverine cyprinids
199  (Cypriniformes, Ostariophysi), crater-lake cichlids (Cichliformes, Euteleostei) and deep-sea
200 pearleyes and sabretooths (Aulopiformes, Euteleostei). The overall expression patterns are in
201  most cases in accord with the general patterns discussed above (Figure 3, Supp Table), with

202  exceptions seen in the deep-sea fishes (based on our earlier data from Lupse et al. 2021).
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203 In all species but the bichir, we found multiple copies within at least one opsin gene
204  type, namely within the rod RHI opsin, and cone SWS2 and RH2 opsins. In some species
205  (cyprinids, sturgeon, Scopelarchus spp.) we found simultaneous expression of two rod RH/
206  copies (Fig 1, Supp Table). All three groups possess the two RHI genes in their genome
207  resulting from three independent ancestral gene duplication events (Musilova et al. 2021, Lupse
208 et al. 2021). The RHI gene duplicates were lost in the later evolution of the euteleost crown
209  group, and hence most teleost species carry only one RHI copy, a phenomenon similar to that
210  seen in “non-fish” vertebrates. RH/ copies do not show any sign of ontogenetic switch in
211  studied species, as is the case for e.g. eels (Hope et al., 1998). On the other hand, we detected
212 several cases of stage-specific copies within cone opsin genes. While Acipenser ruthenus and
213 Abramis brama + Vimba vimba express only one SWS2 copy, cichlids express two different
214 SWS2 genes (Fig 3, Supp Table); this corresponds to multiple copies found in their genome
215  due to the neoteleost- and percomorph-specific SWS2 gene duplications (Cortesi et al. 2015).
216  Most examined species show an expanded RH2 repertoire (Fig 3, Supp Table) and the existence
217  of clearly larval and adult-specific copies has been observed in cyprinids, cichlids and in the
218  deep-sea aulopiforms (Fig. 3). Expression of multiple copies might enhance colour vision by
219  increased spectral resolution useful in a particular environment, however reasons for these
220  opsin switches are not yet completely understood. The presence of such stage-specific copies
221  means that species adjust their vision to differing light environments not only through a change
222 in opsin class expression, but also through preferential expression of opsin copies within a
223 single class. In cichlids, a group for which the development of visual system is probably best
224 understood, a shift to longer-wavelength copies is generally observed within a single opsin type
225  (RHZ2A copies replacing RH2B with age) or among single-cone opsins (SWS2 replacing SWS/)
226  and has been reported before for different groups of cichlids (e.g., Malawi, Carleton et al. 2008;
227  Nile tilapia, Spady et al., 2006).

228 Mesopelagic deep-sea aulopiform species have a limited repertoire of cone opsin
229  classes that reflects living in photon-depleted depths (Musilova et al. 2019, LupSe et al. 2021).
230  Scopelarchus spp. and Coccorella atlantica express only one cone opsin class, namely RH2
231  (Fig 3, Supp Table). However, both expanded their RH2 repertoires and express larval- and
232 adult-specific copies that are thought to be functionally different and most likely best respond
233 to different wavelengths shallow-water epipelagic larvae and mesopelagic deep-water adults
234 encounter (Fig 3, Supp Table) (LupsSe et al. 2021). Genomic analyses by Lupse et al. (2021)
235  reveal a total of three, and seven RH2 cone opsin copies within the genomes of Coccorella

236  atlantica and Scopelarchus michaelsarsi, respectively. Mesopelagic fish lineages in some cases
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237  expand rod opsin repertoires, which are better suited for dim-light conditions (Musilova et al.
238 2019, Lupse et al. 2021). Coccorella and Scopelarchus, however, seem to inhabit relatively
239  shallower and photon-richer depths than some other deep-sea fishes, such as Stomiiformes, and
240  might thus benefit also from having extra copies of cone opsins (Lupse et al. 2021).

241 We have collected a robust data set combining not only our own, but also publicly
242  available genetic data, deposited in databases. This allowed us to detect shared vs. specific
243  expression patterns among different fish groups. We are aware that the collected data set has
244  certain limitations, and many factors could not be controlled in this study. We also do not
245  present any developmental time series but rather snapshots of embryos, larvae, juveniles and
246  adults. As not all stages are available for all species, more subtle or time-restricted expression
247  patterns could not be detected here. Despite this, our combined data provides robust evidence
248  for expression patterns shared across distantly related fish groups, as it highlights general
249  trends, and more detailed conclusions achieved through in-detail analyses of species
250  specifically sequenced within this study.

251

252 Conclusions

253  To conclude, this study aims to identify general patterns of the visual opsin gene expression
254  shared among ray-finned fishes, and to detect similarities in the ontogenetic changes between
255  opsin gene types. We found that the rod:cone opsins ratio increased with age in fish species,
256  supporting the conserved cone-to-rod developmental pathway. We also noted the increased
257  importance of the long-wavelength sensitive LWS opsin genes, and the decreased importance
258  of the short-wavelength sensitive SWS/ opsin gene, observed across ray-finned fish phylogeny
259  (e.g. in sturgeons, cyprinids and cichlids). We have further detected the existence of different
260  stage-specific RH2 copies, which are switched during development. To conclude, fish visual
261  systems are evolutionary and developmentally very dynamic and future studies focused on
262  particular fish groups promise to throw further light on exact mechanisms, patterns and reasons

263  for this extreme sensory system diversity.
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264 METHODS AND MATERIALS

265 Data and sample collection Transcriptomes belonging to taxa deemed as focal groups, which
266  were inspected for age-specific copies and presented in detail in Figure 3, were obtained from
267  specimens (N=72) caught solely for the purpose of this study. In detail, 16 specimens were
268  classified as larvae, 4 as juveniles, 3 as subadults and 49 as adults (Figure 3, Supp Table).
269  Polypterus senegalensis larvae were collected in the rearing facility of the Department of
270  Zoology, Charles University, and the adults were purchased from the aquarium trade.
271  Acipenser ruthenus and Abramis brama were collected at the rearing facility in Vodiany, and
272 1in local water bodies (adults: Velky Tisy pond, Klicava dam, Lipno dam; larvae: Vltava and
273  Elbe rivers), Czech Republic, respectively. Both mesopelagic taxa, Scopelarchus spp. and
274 Coccorella atlantica, were collected in the Sargasso Sea and originate from Lupse et al. (2021).
275  Crater lake cichlids were collected in lakes Barombi Mbo and Bermin (Cameroon, West
276  Africa) between 2013 and 2018 (research permit numbers:
277 0000047,49/MINRESI/B00/C00/C10/nye,  0000116,117/MINRESI/  B00/C00/C10/C14,
278  000002-3/MINRESI/B00/C00/C10/C11, 0000032,48-50/MINRESI/B00/C00/C10/C12).
279  Larvae were caught by fine-meshed nets and fixed in RNAlaterTM immediately. Adults were
280  collected using gill nets and selective capturing by snorkelling in the shallow-water zone. For
281  all species, fin clips were taken from specimens and stored in 96% EtOH for sub-sequent
282  molecular analyses. Larval samples were fixed in RNAlaterTM (ThermoFisher) and stored at
283  -80 °C until further use. Adults of all species were euthanised on site with eyes or retinae
284  extracted, fixed in RNAlaterTM and stored at -80 °C upon arrival to the laboratory.

285 To obtain publicly available transcriptomes used in this study (Fig 1, Supp Table), we
286  searched the largest publicly available repository of high throughput sequencing data, the
287  Sequence Read Archive (SRA), using the following topic search term: ‘(embryo* OR larva*
288  OR juvenile* OR adult*) AND (retina* OR eye* OR head* OR whole*) AND (taxon name *
289  OR fish*)’. Whenever possible, we have analysed up to three specimens per stage per species
290  (Fig 1, Supp Table). In case of embryos, specimens closest to hatching were analysed (for
291 reasons, see Results and Discussion). The entire dataset analysed, including de-novo
292  transcriptomes described below, includes 215 samples of which, based on morphology, 56 were
293  classified as embryos, 40 as larvae, 25 as juveniles, 3 as subadults and 91 as adults (Figs1 and
294 3, Supp Table). Sample IDs, number of raw reads, individual accession numbers for BioProject

295 XX and further parameters are listed in the Supplementary Table.
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296 Transcriptome sequencing and analyses Total RNA was extracted from the whole eyes or
297  retinal tissue using either the RNeasy micro or mini kit (Qiagen). The extracted RNA
298  concentration and integrity were verified on a 2100 Bioanalyzer (Agilent) and Qubit
299  Fluorometer (Thermofisher Scientific). RNAseq libraries were constructed in-house from
300 unfragmented total RNA using Illumina’s NEBNext Ultra II Directional RNA library
301  preparation kit, NEBNext Multiplex Oligos and the NEBNext Poly(A) mRNA Magnetic
302  Isolation Module (New England Biolabs). Multiplexed libraries were sequenced on the
303  Illumina HiSeq 2500 platform as 150 bp paired-end (PE) reads. The sequence data was quality-
304  checked using FastQC (Andrews 2017). Opsin gene expression was then quantified using
305  Geneious software version 11.0.3 (Kearse et al. 2012). In case of each sample, we mapped the
306 reads against a genomic reference dataset for all opsin genes, obtained from the NCBI,
307  belonging to the exact or a closely related species, using the Medium-sensitivity settings in
308  Geneious. This enabled us to identify cone and rod opsin specific reads. If needed, paralogous
309  genes were subsequently disentangled following the methods in Musilova et al. 2019a and de
310 Busserolles et al. 2017. Created species-specific opsin references were re-mapped to the
311  transcriptome reads with Medium-Low sensitivity to obtain copy-specific expression levels.
312  Wereport opsin gene proportional expression in relation to the total opsin gene expression, and
313  to the total cone opsin gene expression (Supp Table). The abovementioned quantification of
314  opsin gene expression was also used on transcriptomes obtained from SRA. Identical pipeline
315  was used for quantification of GNAT1/2 genes in selected taxa (Fig 3).
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335 depth obtained from https://obis.org/. (C) Proportional opsin gene expression (horizontal bars) at different
336 developmental stages. First (shorter) bar represents mean proportional expression of rod and cone opsins. Cone
337 opsin expression (grey) is depicted as the sum of the expression of all four classes of cone opsin genes (SWSI,
338 SWS2, RH2, and LWS). If several rod opsin genes (black) were expressed, the different proportions of their
339 expression are distinguished with white vertical bars. Second (longer) bar represents mean proportional
340 expression of different cone opsins. Black vertical bars within gene classes separate different copies, if co-

341 expressed. For details, see Supplementary Table.
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345 Fig. 2: General patterns of age-related opsin expression changes. (A) Interquartile ranges (25" and 75"
346  percentiles) and whiskers show data dispersion (relative expression) across different opsins for the youngest and
347 oldest analysed stage. Data medians are presented as solid vertical lines. To avoid over-representation of certain
348 taxa (e.g. five Coptodon species), data points represent mean genus values, comprised only of species that had at
349 least two developmental stages analysed (N=31). (B) Change of opsin expression (positive/negative) with
350 development, calculated as a difference between the mean opsin expression in the oldest and the youngest stage
351 of a certain genus. Resulting values are represented by rectangles (N=31), centred at the mean. Lower half of the
352  plot (values below 0.0) shows a decrease, and the upper half (values above 0.0) an increase in relative expression

353 with age.
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