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Abstract 029

Reconstructing dense 3D anatomical coordinates from 2D projective 030
measurements has become a central problem in digital pathology for 031
both animal models and human studies. We describe a new family of 032
diffeomorphic mapping technologies called Projective LDDMM which 033

generate diffeomorphic mappings of dense human MRI atlases at tis- 034
sue scales onto sparse measurements at micron scales associated with 035
histological and more general optical imaging modalities. We solve the 036

problem of dense mapping surjectively onto histological sections by 037
incorporating new technologies for crossing modalities that use non- 038
linear scattering transforms to represent multiple radiomic-like textures 039
at micron scales and incorporating a Gaussian mixture-model frame- 4
work for modelling tears and distortions associated to each section. We 040
highlight the significance of our method through incorporation of neu- 041
ropathological measures and MRI, as relevant to the development of 042
biomarkers for Alzheimer’s disease and one instance of the integration of 043

imaging data across the scales of clinical imaging and digital pathology. 044
045

046
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2 Projective LDDMM

Keywords: Projective LDDMM, Multimodal and Multiscale Image
Registration, Digital Pathology

1 Introduction

The past decade has ushered an “omics” revolution into biomedical research,
with high yields of data ranging from microscopic to macroscopic scales. Mod-
ern machine learning methods coupled with image processing have enabled the
integration of “pathomics” data extracted from digital pathology technologies
with “radiomics” data extracted from lower resolution imaging technologies
such as magnetic resonance imaging (MRI) in a number of niche applica-
tions, such as those within the domain of cancer diagnostics and prognostics
[1, 2]. However, approaches remain widely varied across applications and often
require particularities in image acquisition and image type, such as block face
imaging [3], to facilitate alignment between imaging modalities [4]. The obsta-
cle of registering spatially incomplete sets of 2D (or 3D) images to a dense 3D
atlas remains a particular challenge in both animal and human settings, with
no approach yet amenable to synthesizing the imaging data from the spectrum
of technologies within this domain.

This paper introduces a new class of image-based diffeomorphometry meth-
ods which we term Projective LDDMM for aligning sparse sets of image
captures to 3D coordinate systems across micron and millimeter scales. We
focus particularly on the registration of 3D MRI with 2D digital histology, as
representative of the class of multi-scale, multi-modality mapping in biomedi-
cal research including traditional light microscopy mapping to dense reference
atlases [5, 6, 7, 8], light sheet methods [9, 10], deep tissue imaging [11], and
spatial transcriptomics [12, 13, 14, 15]. We formulate the mapping of dense
atlases to sparse images problem using the random orbit model of computa-
tional anatomy [16, 17, 18, 19] in which the space of dense anatomies I € T
is modeled as an orbit of a 3D template under the group of diffeomorphisms.
Projective LDDMM models the sparse 2D observables not as an element of the
orbit Z but rather a random deformation in dense 3D coordinates composed
with a measurement projection to sparse coordinates. This implies that the
random orbit model encompasses the composition of two observation chan-
nels: one for projection and one for post-projection processing, such as the
steps involved with histological staining and slide preparation. While LDDMM
provides the geodesic metric [20, 21] on the orbit of 3D anatomies, there is
no symmetry between the observable and the template, in general, and there
should not be. This departs significantly from the symmetric methods [22, 23].

Alignment specifically of modes of histology to MRI warrants two exten-
sions of the basic model of Projective LDDMM. First, cross-modality similarity
modelling is essential. Several strategies for representing image similarity
have emerged including cross-correlation [24], mutual information [25], and
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local textural characteristics [26]. Our approach extends previous work [3, 27]
modelling a photometric transformation of histology to MRI by expanding
histology image space to a span of discriminative “filtered images” via Mal-
lat’s Scattering Transform [28, 29]. These “filtered images” represent local
radiomic textures at histological scales and are used to predict MRI contrast.
Second, histological images carry large numbers of imperfections with tears,
image stitching, and lighting variations. Extending previous work [6, 27|, we
introduce Gaussian mixtures models in the image plane of each histological
slice to interpret image locations as matching tissue, background, or artifact.
We proceed by way of the Expectation-Maximization (EM) algorithm [30] in
estimating deformations that prioritize image matching at locations that are,
in turn, estimated more likely to be matching tissue.

Here, we use Projective LDDMM to reconstruct the 3D geometry of 2D
histological sections taken from the medial temporal lobe (MTL) of a brain
with advanced Alzheimer’s disease (AD). Efforts to diagnose and manage AD
earlier in its disease course have centered on the identification of biomarkers
[31]-measures shown to correlate with disease course, but without establish-
ment in AD’s pathological underpinnings of misfolded proteins (tau tangles
and amyloid-beta (Af) plaques [32, 33, 34]. As one application of our method,
the reconstruction of a complete spatial profile of tau pathology at the micron
level is necessary for validating such biomarkers as entorhinal cortex thin-
ning [35]. Following registration, we extract quantities of tau pathology using
a machine learning-based approach that are then mapped to 3D via the cor-
respondences yielded by Projective LDDMM. We demonstrate the efficacy
of modeling these quantities using a measure-based framework [36] as befits
resampling the quantities at different scales and within both 2D manifolds and
3D volumes for correlation with biomarkers of interest.

2 Results
2.1 Projective LDDMM

In the random orbit model of computational anatomy [16], the unobserved
space of human anatomical images, I : R?> — R", is modeled as an orbit under
diffeomorphisms of a template

el .= {SD . Itempasp € Gdiff}?

Gaig the group of diffeomorphisms ¢ : R?* — R3, which act on images as
@-I=10p ! The observables .J : R — R? are modelled as a random field
with mean due to the randomness of diffeomorphic deformation and measure-
ment process. For different problems of interest, the atlas image is R"-valued
with, for instance, r = 1 corresponding to single contrast MRI or » = 6 for
diffusion tensor images (DTT) [37]. Likewise, observables are RZ-valued with
q = 3 for traditional histological stains corresponding to the red, green, and
blue channels, or ¢ >> 6 for alternative representations, such as that given by
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the Scattering Transform [28] encoding meso-scale radiomic textures in his-
tology images (see Section 4.2). In general, the range space of 3D templates
versus targets do not have the same dimension, so g # 7.

Projective LDDMM is characterized by the fact that the observable is
not dense in the 3D metric of the brain. Rather, the observable(s) result
from either optical or physical sectioning, as in histological slice preparation,
taking LDDMM into the projective setting akin to classical tomography
[38, 39]. This sectioning lends itself to extending the random orbit model
of computational anatomy involving a single channel of Shannon theory to
include a second channel, which represents the projective geometry. As shown
in Figure 1, this projection channel precedes a second channel associated
to the parameters of processing post sectioning, such as rigid motions and
diffeomorphic deformations.

SOURCE OUTPUT

Projection
Channel

Channel

I=¢p-1

temp

P, I P, I + noise

n=1,...,N

Fig. 1 The random orbit model, ¢:Itemp, extended with projection operator Py, to generate
a set of noisy observables P, I+noise, n = 1,..., N, representative of histological processing
of tissue post slicing.

The sample measured observables J,(-),n = 1,2,... are a series of (trans-
formed) projections P, of I(-) on the source space X C R? to measurement
space Y C R? (or Z C R') defined through the class of point-spread functions
associating source to target:

PoI(y) = /X paly,de)I(z) y € Y, (1a)

with  J, = P,I + noise . (1b)

We adopt measure theoretic notation, p, (y, dz) for describing point-spreads
to accommodate those taking the form of generalized functions, such as the
delta Dirac. Density notation §(x —xq)dx corresponds to the measure notation
8z, (dx). Each evaluated against a test function f(x) € C° yields f(zo).

The diffeomorphism ¢ is generated as the solution to the flow

Yt = vi(pt), wo=1d, (2)

where Id is the identity map and with velocity field v, ¢ € [0, 1] controlling the
flow constrained to be an element of a smooth reproducing kernel Hilbert space
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(RKHS) (V,| - ||?,) with the entire path square integrable fol loe||3-dt < oo
ensuring smoothness and existence of the inverse [40].
This gives us the first variational problem of Projective LDDMM, with

I - |2 defined to be the L2 norm.
Variational Problem 1 (Projective LDDMM)
bt =vtopt, po=1d, I = Itemp ‘Pfl (3a)
Pn:IHPnI(y):/ pn(y,dx)I(z), n=1,...,N (3Db)
vellvdt+ Y [Jn — Pull3 3¢
onint ol Z I = Parl3 (30)

The model specific to our histology images projects the volume I(-), defined
as a function with domain X C R3, to parallel sections J,,(-) on Y C R?, along
the third (z) dimension, with coordinates, z,,n = 1,---, N. This represents
a surjection from source space X to target space Y, where regions of the 3D
volume remain unmapped to the set of target sections. For this, we define
‘Dirac’ point-spreads from ¢, applying to infinitesimal volumes in space (dx)
with 0, (dx) equal to 1 if € dx, and 0, otherwise. Our Dirac point-spreads
pu(y,dz) = 6., (dz) with (y,2,) = (¥, y?),2,) € R3 concentrate on the
planes:

Pn:IHPnI(y):/ Sy (do)I(z), y€ Y CR* n=1,2,... .
X

In the case that source and target space are of the same dimensionality and
our projection operator P, is the identity, (3c) reduces to the classic variational
problem associated to the random orbit model [16]. In the following section, we
introduce an additional complexity of expanding images in a basis for crossing
modalities of histology and MRI. While we choose to expand our target images,
a similar expansion of the template image yields a span of possible templates,
achieving the setting of multi-atlas models popularly used [41, 42, 43].

2.2 Projective LDDMM with Scattering Transforms for
Crossing Modality and Contrasts in Digital Pathology

In digital pathology, different imaging contrasts emerge from the variety of
stains used to elucidate different molecules, such as myelin (LFB), amyloid
(6E10), and tau (PHF-1). For crossing from the range space of any of these
histology contrasts to MRI, we define a predictive basis, (¢} (), %2 (-), ..., 1(-)),
using PCA on a set of nonlinear basis images generated from our observables,
Jn(:)y m = 1,...,N. This process is summarized in Figure 2. We expand
each histology image to a basis of “filtered images”, each a different scale
and texture determined by Mallat’s Scattering Transform [28, 29] through
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alternating wavelet convolutions and nonlinear modulus operators across scales
(see Supplementary Note S.3), followed by PCA reduction:

S Ju(t) = 8(Ju) = (55,(),85,(),--) (4a)
P S(Jn) = (n, ¥, -, 00 (4b)

From the nonlinear filtered images of (4a), we generate the predictive func-
tions, {¥]},e(1,...,m}, using PCA and adding a constant image, 9§ (-) = 1(-).
From this basis, we then predict the MRI contrast of our transformed
and projected observable as a least squares minimization, written as

T () =35 ann ().

Llnear
Predlctor

Fig. 2 Initial histology image J,, at 2 um resolution (left). Scattering images generated via a
Scattering Transform (middle). Output of linear predictor, J2, predicting MRI contrast from
Scattering images (right). Scattering images projected onto first 4 elements of 6-dimensional
PCA basis (bottom).

For digital pathology and other surjective measurements, there are addi-
tional parameters associated with deformation of tissue section geometry
independently in each imaging plane. We denote the associated rigid and/or
affine motion in each imaging plane, ¢,, € ® : R? — R?. Estimation of «,, and
¢n, together with ¢ gives Variational Problem 2.

Variational Problem 2

Gt =vt0p1, 9o =1d, I = Lempopy (5a)
P,:I—1I(,zn),n=1,...,N (5b)
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= Z anyh () (5¢)

i / ||Ut||vdt+ZHJ b Pal|} (54)
(Uf)o<f<1€L ([o,1], V),
an€R™ pped n=1,....N

For rigid and/or affine motions, as used in modeling block sectioning in
[5], we apply ¢, to the histology images and estimate these deformations
alternately with deformations of the template (see Algorithm 1). Herein, we
expand our dimensions to non-rigid deformations ¢,, € ® the group of diffeo-
morphisms on R%. A penalty term is introduced fol lwn.t||%dt to (5d), with
Q'Sn,t = Unpt O P ¢, Pn,0 = Id. For estimating the cross-modality dimensions o,
we treat them in a maximum-likelihood setting, optimizing them with initial
conditions of deformation and image plane dimensions fixed, then solve the
variational problem over all of the other dimensions with the «, estimates
fixed (see Section 4.2). This avoids collapse of the variational problem in these
high dimensional settings.

The independent processing of sections requires introduction of additional
models for interpreting the measurements in each histology tissue section mod-
elling the tissue as foreground, artifacts of tears and distortion, and background
(see Tward et. al [27]). The histology is modelled as a conditionally Gaussian
mixture model with means J, p1a, 1t g representing foreground tissue, artifacts,

and background:
JX(y) ifk=1
pi(y) = Ha ifk=2, (6a)
B if k=3
with norm-square term in (5d) replaced by
3 1
Z 7Tnlc E _Qj)nPnI)”g (Gb)

k=

Weighted least-squares interprets the images weighing each model 7, 5 (-) with
Zizl m, = 1 and I = Tiemp © <pf1 as above. The weights are estimated itera-
tively, arising from the E-step of an Expectation-Maximization (EM) algorithm
[30] selecting at each point in the image the appropriate model for giving the
spatial field of weights. This iteration corresponds to a Generalized EM (GEM)
algorithm [30] (see Section 4.4 for proof). The results highlighted in Section
2.4 were generated following the approach of this section.
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2.3 Optical Sectioning, PET, and Parallel Beam
Tomography

Additional modes of imaging introduce settings of ideal and non-ideal planar
and linear projections fitting the framework for Projective LDDMM. Con-
focal optical sectioning reconstruct volumes X C R?® with models that are
fundamentally 3-D point-spreads p,(y,dz),y € R?,dr C R3 with uncertainty
supported over the volumes [44, 45], with imaging focused to n = 1,..., N
measurement planes with significant blur out of plane. The mean field of the
measurement volume .J,,(-) on R? are given by the projections P,I(-) on R of
(3b).

Two-dimensional (2D) positron emission tomography (PET) introduces
point-spreads p,(y,dz),y € R% dx C R? for reconstruction which are sup-
ported over planes Y C R? with uncertainty perpendicular to the line of
flight but as well a second measurement the time-of-flight of the annihilat-
ing protons to the detectors [46]. Generally the point-spreads are modelled
as cigar shaped two-dimensional Gaussians in the plane oriented by N angles
Onp,m = 1,...,N, with high fidelity systems having N > 96, with stan-
dard deviation of uncertainty significantly larger along the lines of flight than
perpendicular to them.

Classical parallel beam projection tomography reconstructs image planes
Y C R? via the Radon transform generated from sinograms indexed over a
single space dimension Z C R! arising from idealized line integrals [47]. Define
the set of oriented lines in R? parametetrized by their angles (6) and offsets
from the origin (2), Lo(2) = {(y",y?)} C R? with

y = Zsin(#) + z cos ()
y® = —zcos(d) + zsin(9)

for indexing variable z € R'. To satisfy the basic sampling theorems for tomo-
graphic reconstruction [48], N sampling angles 6,,,n = 1,..., N, akin to the
sections in histology, are selected determined by the resolution required for
the reconstruction. The point-spreads corresponding to the line integrals are
Pn(y,dz) = fLen(y) dsds(dr),y € R',dx C R? for n = 1,..., N. This gives
the projections P,I(-) on R' (see Supplementary Note S.1) with mean field of
J () the line integrals fLen () 1(s)ds indexed over RL.

2.4 Integration of Tau Imaging Data into Multi-scale 3D
Maps

We demonstrate, in this section, the efficacy of Projective LDDMM for aligning
sets of 2D histology images to corresponding high field 3D MRI of MTL tissue
taken postmortem from a brain sample with advanced AD (see Section 4.8 for
details on specimen preparation). Additionally, we illustrate the benefits in
using a measure-based framework to model microscopic data in this setting as
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it enables the estimation of distributions at varying scales and within particular
volumes or 2D manifolds of interest.

We quantified relevant pathological measures in digital pathology images
as counts of neurofibrillary tangles of hyperphosphorylated tau (NFTs) per
cross-sectional area of tissue. NFTs were detected using a machine learning-
based algorithm (see Section 4.5). Per pixel accuracy of identifying tau was
evaluated with 10-fold cross validation, yielding an average AUC of 0.9860 and
accuracy of 0.9729 (see Section 4.5 for individual fold metrics), and final counts
of NFTs were validated against a reserved set of regions manually annotated
for NFTs and totaling 25 million pixels.

Solutions to Variational Problem 2 (5d) yielded geometric reconstructions
of histologically stained tissue in 3D. Figure 3 illustrates individual digitized
sections on which NFT's were detected and the resulting positions of these slices
following transformation via the geometric mappings to 3D were estimated.
Coordination of both MRI and mapped histology with the Mai Paxinos Atlas
[49] facilitated comparison of geometry between brain samples and is demon-
strated in Figure 4, with coronal Mai views shown for an example intersecting
histological slice.

DG_granular
Subiculum

k
3
8
<
£
@
(=]
N

@ DGLhilus

Fig. 3 Complete set of PHF-1 stained histology sections for one of three blocks of MRI.
3D MRI shown with manual segmentations of MTL subregions (left). Boundary of each
histological section on right outlined in white in position following transformation to 3D
space (left). Detected tau tangles plotted as black dots over each histology slice (right).
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Original Histology Slice

M s
. CA2
B c~

|
|
|
|
Subiculum 1
|
|
|
|
\

34

8

Mai Slice 31 Mai Slice 34

2

24

— = - - o 12.0 mm 16.0 mm 19.9 mm
Lateral : X Axis - * Medial

Fig. 4 3D Reconstruction (left) of 4 MTL subregions for an advanced AD brain in the
coordinate space of the Mai Paxinos Atlas. Corresponding section of histology and MRI (top
right) shown and intersecting coronal planes taken from the pages of the Mai Atlas (bottom
right).

Alignment accuracy was evaluated by comparison of manual segmentations
on all histological images of one brain sample to those deformed from 3D MRI
via estimated transformations. Figure 5 illustrates 4 representative compar-
isons. We quantified accuracy from these comparisons with Dice overlap and
95th percentile Hausdorff distance for MTL subregions of interest (see Supple-
mentary Note S.2). The latter measure ranged from 1.2 mm to 1.8 mm across
hippocampal subfields.

Fig. 5 Selected histology slices with 2D segmentations (top row) ordered left to right
as rostral to caudal. Corresponding MRI slices with 3D segmentations mapped to 2D via
transformations ¢, ¢, (bottom row).

Counts of detected NFTs, cross-sectional tissue area, and MTL subregion
(from MRI deformed to 2D) were computed in the space of histology slices.
NFT densities (counts of NFTs per cross-sectional tissue area) were modeled as
discrete particle measures and transported to the 3D space of the Mai Paxinos
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atlas via estimated transformations, ¢,,¢ (see Section 4.6). The flexibility
afforded by a measure-based framework as in [36] is reflected in the diverse
modes of resampling shown in Figure 6 both within volumes and over the
surface of MTL subregions (see details in Supplementary Note S.4).

Medial®® 30 o W 'Bateral

Tau Tangles / mm?

Fig. 6 Distributions of NFT density within dense metric of hippocampus and over surface
of hippocampal subregions (CA1, CA2, CA3, Subiculum).

Resampling via Gaussian kernels yields smoothed NFT densities computed
within the dense metric (volume) of the brain at approximate resolutions of
MRI. In contrast, spatial variations in NFT density within MTL subregions
are visualized as smooth functions over the surface (2D manifold) of each
corresponding region (see Section 4.7).

3 Discussion

The major contribution of this work is to extend the random orbit model
of computational anatomy with added observation channels, representative of
modern light sheet and optical imaging systems. In contrast to traditional 3D
imaging modes (e.g. MRI), in these systems, observed measurements are not
typically taken on the full domain of anatomy, putting them outside the tra-
ditional orbit of images generated by anatomical transformations. Here, we
have focused on transferring digital pathology measures associated to neu-
rodegenerative diseases to dense MR atlases, in which the observed histology
are surjective measurements of the original 3D objects captured in MRI. We
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attempt to reconstruct the deformation of the template in 3D from the collec-
tion of 2D sections by way of a projection channel. The solving of this problem
we call Projective LDDMM.

Simultaneously, we present a new way of expanding an orbit of images via
the non-linear Scattering Transform of Mallat [28]. At the micro-scale, histol-
ogy supports many multi-scale filtrations, each exhibiting textures of the tissue
architecture. These filtrations form the basis of the expanded orbit imagery.
We specifically describe a class of linear predictor models that generate a
reduced dimension span from this basis to predict the MRI from the histology
measurement. These predictors with the expanded orbit become the crucial
link for estimating deformation of 3D MRI objects to match its conjectured
2D surjective measurements as manifest in the histology images. The power of
the Scattering Transform is in its generation of filtrations across many scales,
which are appropriate given the micro-scale histology which supports them.

Finally, we demonstrate a new class of Gaussian mixture models for mod-
elling the random effects of tears and histological processing, each occurring
independently in the histology coordinates per section. The mixtures are built
to expand the orbit of images generated by the Scattering Transform by includ-
ing non-foreground tissue as manifest by the smooth deformation of the MR
template.

Appealing to the area of biomarker development in AD [31], we use the
technologies of Projective LDDMM to reconstruct 3D maps of tau tangle
density. Reconstruction within the dense 3D metric of the brain enables resam-
pling of these measures at micron and millimeter resolution and within 3D
volumes and 2D manifolds of interest. To visualize the tau densities in coordi-
nates familiar to neuroscientists, we transfer the densities to the space of the
Mai Paxinos atlas, which will enable comparison across brain samples in the
future. We generate smoothed densities on the surface of hippocampal subre-
gions by expanding tau measures in a respective basis for each surface. These
bases are generated via the Laplace-Beltrami operator, moving from the clas-
sical Euclidean sines and cosines to complete ortho-normal bases for smooth
curvilinear manifolds, such as these surfaces.

Similar to Yushkevich et. al [3], we found a strong spatial predominance of
tau in the rostral third of the hippocampus we examined here. Together with
variations in tau tangle density between hippocampal subregions, this predom-
inance supports Braak’s initial observations [32, 33] and further underscores
the spatial locality of AD. We are currently using our Projective LDDMM
technologies to reconstruct tau profiles of an extended set of MTL regions
including the entorhinal cortex and amygdala. By applying our methods to
brain samples with intermediate and advanced AD, we plan to examine the
specificity of such locality to AD and its temporal changes as compares to
published trends in other imaging biomarkers.
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4 Methods

4.1 Projective LDDMM Algorithm with In-Plane
Transformation

To solve the Variational Problem 2 for a single 3D atlas, Jiemp, and a set of
2D targets (J,, for n = 1,..., N) we formulate an algorithm that alternately
optimizes for the deformation in 3D space and the geometric transformation in
2D space, while holding the other fixed. The algorithm can be implemented to
incorporate increasing complexity as needed first for crossing modalities and
second for crossing resolutions, for instance, to map 3D MRI to 2D histological
slices, as is presented here. In its simplest form, Iiemp and J are of the same
modality, yielding targets J,, without expansion, and ¢, modeled as a rigid
motion in plane, as in Lee et. al [5], mapping histological sections to an atlas
of the mouse brain. Transformations ¢, ¢, for n = 1,--- | N are estimated
following Algorithm 1.

Algorithm 1
Initialize: ¢o =1d, ¢, n=1,..., N

A: Solve for ¢:

1. Update and fix ¢,s.

2. Solve Projective LDDMM, optimizing (5d) with respect to vector field
Ut,t € [0, 1]

3. Solve for ¢, integrating O.D.E ¢1 = fol Vg © @ydt.

B: Solve for ¢,’s:

1. Update and fix ;.
2. Optimize (5d) with respect to ¢,,n=1,...,N.

Return to A

When ¢,,s are broadened to non-rigid diffeomorphisms, as in [6], each ¢,
is estimated in step B via a separate iteration of LDDMM for each target J,.
Here, ¢,,s encapsulate both rigid and non-rigid components. Separate gradient
based methods are used to update each component in step B with velocity
fields updated using Hilbert gradient descent as in [50] and linear transform
parameters updated by Gauss-Newton [51].

4.2 Linear Prediction Algorithm for Crossing Modalities
with Scattering Transform
Crossing modalities at similar resolution (e.g. 3D MRI and downsampled 2D

histology slices) requires a mapping between range spaces of template and tar-
get, giving a similar formulation to that used in Tward et. al [6]. In this work,
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we introduce the Scattering Transform [28] for crossing modalities at differing
resolution whereby we build a predictive basis of images from our targets. We
model contrast variations between histology and MRI by expanding the color
space of our observed set of histology images {J,, n =1,--- N} from three
RGB dimensions to 48 feature dimensions reflecting local radiomic textures of
histological scales.

Histology images are each resampled at the resolution of MRI to 48 “fil-
tered images”, (S}n, ceey Sf}f) via Mallat’s Scattering Transform [28, 29] (see
Supplementary Note S.3). We select a common 6-dimensional subspace of
these 48 feature dimensions using PCA, yielding a basis of 6 discriminative
“filtered images”, (},...,98) for each histology slice, n = 1,..., N, plus a
constant image 0. We predict the MRI contrast of our transformed projection
as a linear combination of these basis elements {w%}je{opwﬁ} for each section
n=1,..., N with linear predictor:

J20) = 3 0t () = aTn(), m=1,. N (ra)
o0 400

withan = | - |, wn()=| - |. (7h)
o 98 ()

Figure 2 shows a mean field section using the scattering transform. These
linear weights v, are estimated from initialized ¢,s and ¢ following Algorithm
2. Initializations of ¢,, and ¢ are estimated following the approach in Tward
et. al [27] in which cubic polynomials are used to match MRI range space to
histology range space, generating solutions for «,, via the pseudo-inverse:

an(p, o) = arg maX7_||Jg _¢n'PnI||% (83‘)
an€R
Where K = 2 ({lpn(y)) (wn(y))Tdyv I = Itcmp Ospfl
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Algorithm 2

1. Imitialize @1, ¢p, n=1,..., V.

2. Compute Scattering transform (S5 (-),...,85%(:)) for each target n =
1,...,N.

3. Compute 6-dimensional PCA basis and projections, (¢1,...,4%) of each
scattered image onto corresponding subspace.

4. Compute ay,, n = 1,..., N using the pseudo-inverse (8b) with 1% = 1 for
all n.

4.3 Projective LDDMM Algorithm with Crossing
Modalities

The steps described in Algorithm 2 can be naturally incorporated into the
framework of Projective LDDMM following Algorithm 3. Here, the linear pre-
diction problem is solved using initial conditions for ¢,, and ¢, and optimization
of these geometric transformations then follows from a fixed set of estimated
U S.

Algorithm 3

A: Solve for a,s using Algorithm 2
B: Solve for ¢:

1. Update and fix ¢,s and calculate mean-field predictors (7b) of MRI projec-
tion from histology-based PCA basis, J3 = 22:0 akyk n=1,...,N.

2. Solve Projective LDDMM, optimizing (5d) with respect to vector field
v, t €[0,1].

3. Solve for 1, integrating O.D.E ¢; = fol vy 0 ydt.

C: Solve for ¢,s:

1. Update and fix ;.
2. Optimize (5d) with respect to ¢,,n=1,...,N.

Return to B

4.4 Projective LDDMM Algorithm with Multiple Models

Introduction of multiple models, as described in Section 2.2, replaces the
matching cost in (5d) with that of (10a). As a result, the iteration in steps
B-C of Algorithm 3 are replaced with an iterative algorithm based on the EM
algorithm, implying it is monotonic in the cost. The complete-data likelihood
for each histology plane n = 1,2,... N as a function of parameters, 8 = ¢,
with I = Tiemp © @7 and L(-) mapping each location y € Y to the set of labels
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{1,2,3} denoting foreground tissue, artifact, and background, is

H ﬁ 1 < ( 1 2) 15 (L(y))
L (e (— L) - b0 PG ) (9)
s S (2mo2)r/? 203 k
Jo(y) ifk=1
with pg(y) = Qua ifk=2 ) (9b)

where r denotes the dimension of the range space of I(-) and ps and pp
represent the means for artifact and background Gaussian distributions. The
E-step takes the conditional expectation of the complete data log-likelihood
with respect to the incomplete data, and the previous parameters 6°/¢. The
M-step generates our sequence of parameters:

3
1 1 "
E-step Q(0; 0°) == > o5 |Im2 i (dn - Pul — )3 (100)
k

k=1
with (1) = B(L(L(DIPT(),6°7)
_ new _ . pold
M-step 0 argrgleaécQ(G, 0%y . (10Db)

The spatial field of weights 7, 1(-) is the conditional expectation of the
indicator 15 (L(-)). The Generalized EM (GEM) algorithm (see [30]) solves the
maximization step: generating a sequence with increasing log-likelihood:

Q(e’ aold) < Q(enew; eold) .

4.5 Tau Pathology Detection

Patterns of tau pathology are summarized as total counts of NFTs per mm
of cross-sectioned tissue. NF'T counts were computed using a 2-step algorithm:
(1) prediction of per pixel probabilities of tau and (2) segmentation of these
probability maps into discrete NFTs.

As described previously [52, 27], we used a convolutional neural network
to model and predict probabilities of being part of a tau tangle for each pixel
in a digital histology image. To capture larger contextual features as well as
local information for producing per pixel probabilities at high resolutions, we
trained UNETSs [53] with the architecture described in Table 1. Training data
was generated on every third slice of histology. Between 8 and 24 sample zones,
sized 200-by-200 pixels were selected at random until 8 zones covered tissue
(not background). Every pixel in each zone was manually annotated, 1 or 0, as
part of a tau tangle or not. Estimates of accuracy in per pixel tau probabilities
were computed using 10-fold cross validation on the entire training dataset.
Table 2 shows accuracy metrics for each fold, with mean AUC and of 0.9860
and accuracy of 0.9729.

2
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Table 1 Structure of UNET trained to detect tau tangles. Contraction layers are shown
in the left 3 columns, and expansion layers in the right 3 columns. Number of parameters
listed correspond to linear filters + bias vector. Conv: 3 X 3 convolution with stride 1, MP:
2 x 2 max pool, ReLU: Rectified Linear Unit, ConvT: 2 X 2 transposed convolution with
stride 2. Note number of features doubles in the expansion layers due to concatenation
with the contraction layers (skip connections).

No. | Contract Parameters No. | Expand Parameters
1 Conv 8x3x3x3+8 18 ConvT 32xX64x2x2+432
2 Conv 8x8x3x3+8 19 Conv 32 x64x3x3+432
3 MP 0 20 ReLU 0
4 Conv 16 x 8 x 3 x 3416 21 Conv 32x32x3x3+432
5 ReLU 0 22 ReLU 0
6 Conv 16 x 16 x 3 x 3+ 16 23 ConvT 16 x32x2x2+16
7 ReLU 0 24 Conv 16 X 32 x 3 x 3+ 16
8 MP 0 25 ReLU 0
9 Conv 32 x 16 x3 x 3432 26 Conv 16 x 16 x 3 x 3+ 16
10 ReLU 0 27 ReLU 0
11 Conv 32x32x3x3+432 28 ConvT 8Xx 16 x2x2+8
12 ReLU 0 29 Conv 8x16x3x3+8
13 MP 0 30 ReLU 0
14 Conv 64 X 32 x3x34+64 31 Conv 8x8x3x3+8
15 ReLU 0 32 ReLU 0
16 Conv 64 X 64 x 3 X 3464 33 Linear 2x8+2
17 ReLU 0

Total 120,834

Table 2 10-fold cross validation accuracy statistics for training data of brain sample.

Trial AUC Precision | Recall | Accuracy
1 0.9997 | 0.0455 1.0000 | 0.9928
2 0.9983 | 0.0938 0.9917 | 0.9829
3 0.9963 | 0.1148 0.9846 | 0.9706
4 0.9984 | 0.2079 0.9971 | 0.9877
5 0.9796 | 0.3010 0.9242 | 0.9543
6 0.9915 | 0.0500 0.9620 | 0.9597
7 0.9865 | 0.2462 0.9031 | 0.9899
8 0.9239 | 0.0081 0.7079 | 0.9520
9 0.9989 | 0.1714 1.000 0.9939
10 0.9867 | 0.0255 0.9406 | 0.9454
Average | 0.9860 | 0.1264 0.9411 | 0.9729

Counts of NFTs in each histology slice were generated by segmenting the
probability maps output from the trained UNET. Segmentations were com-
puted using an opensource implementation of the watershed algorithm [54] to
extract connected components with “high probability” of tau. Each component
was defined as an individual NFT, with center, area, and roundness computed

as features.
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4.6 Particle Representation of Histological Data

In the following two sections, we detail our means of representing histological
data with a measure-based framework over physical space and feature space
as introduced in [36]. We denote these measures, p, borrowing the notation
from [36] and describe the action of transformations on these measures to
bring them to the 3D space of the Mai Paxinos Atlas and consequently our
multiresolution resampling of them with a spatial kernel and feature map.

Here, we model histology data at the microscopic scale specifically following
the discrete measure framework described in [36], where each particle of tissue,
indexed by i € I, carries a weighted Dirac measure over histology image space
and a Dirac measure over the feature space w;d,, ®dy,, y; € Y C R? and F =
R?'. Weights reflect sampled tissue area captured in each particle measure.
At the finest scale (u°), this is defined as cross-sectional area in the histology
plane w; € {4um?, 0}, computed with thresholding using Otsu’s method [55].
The first ¢ dimensions of f; € F denote the number of tau tangles in the area
of each of £ MTL subregions captured by the particle. The second ¢ dimensions
denote the fraction of the particle’s total sampled tissue area (w;) within each
of £ MTL subregions. At the finest scale, each particle captures one pixel of
information, so the values of these features are 0 or 1, with

14 20
fi € {{0’1}%‘2]0; <1, Z fz] < 1}"

j=1 j=t+1

We transfer measures puf) (dy, df) = >,.; widy, (dy)dy, (df) via diffeomor-
phisms ¢,, and ¢ and rigid transformation to the space of template I and the
Mai Paxinos Atlas. Discrete weights w; adjust according to in plane expan-
sion/contraction of cross-sectional tissue area, with adjustment at the fine scale
by ¢, given by the varifold action:

n - 1 (dy, df) =Y wildpulds, () (dy) © 35, (df)- (11a)

il
To cross scales we use the decomposition of the particle measures

u(da, df) = plda)pa(df) | (12)

with p being the density of the model and p, the field of conditional proba-
bilities on the features. Our tranformation across scales non-linearly rescales
space and smooths the empirical feature distributions on the features. Spatial
resampling is determined by the function 7(z, '), which we define here to be
the fraction the particle at = has assigned to it from the particle at z’, with
Jpam(z,2")de’ = 1. The smoothing on the field of conditional probabilities
gives the remapped measure p! .

Spatial resamplings at MRI resolutions (0.125 mm) and over surface bound-
aries of MTL subregions were achieved through isotropic Gaussian resampling
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and nearest neighbor resampling, respectively, through choice of 7 (see Sup-
plementary Note S.4). Feature reduction occurs via maps 3 — ~(8) € F' for
probabilites :

y)0ydy

Mlz/ w' (y), ® py, dy with { = Jpaw'( (13)
R4 My

= Oy(ay)

Here, 7(-) reduces feature dimension by taking empirical distributions «,
over each of 2¢ dimensions to expected first moments for each corresponding
dimension, giving 7' = R?** with:

)= (L/;j}ﬁ(df)>lgjg2z

Total NFT density is computed from the sum of the first ¢ features while NF'T
density per region is computed from the ratio of feature value j to £ + j for
any of j =1,--- ,¢ MTL subregions.

4.7 Surface Smoothing with Laplace Beltrami Operator

Spatial variations in NFT density within MTL subregions are visualized as
smooth functions over the surface of each corresponding region. Particle mass
belonging to a given subregion volume is “projected” to the surface boundary
using a nearest neighbor kernel for 7 (-, -), as defined in Section 4.6:

(2,2) 1 if 2’ = argminy ||z — 2'||3
m(x, ') =
’ 0 otherwise

We construct functions, g-(z) and g,(x), to represent the total number of
NFTs and cross-sectional area of tissue from discrete particle measures of
particles projected to the surface vertices xz; € V. To generate smooth rep-

resentations of NFT density ( 8), we build a complete orthonormal basis

on each curved manifold using the Laplace-Beltrami operator [56], expanding
each of the functions g, () and g,(-) in this basis:

g = argmin |9 — g3 + k| Va3 (14)

Z< ,Bz>vﬁz . with (g, Bi)v = Y Br (W)a(y)w(y)

i=1 yeVv

for both g = g, () and g = g,(-), where B := {51, - ,8n} is a basis for the
Laplace-Beltrami operator, and & the smoothing constant (see Supplementary
Note S.5). We use these bases for smoothing over each corresponding surface in
lieu of the standard Euclidean basis for R3, for which the Laplacian operator
yields a basis of sines and cosines.
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4.8 Specimen Preparation and Imaging

The brain tissue sample was prepared by the Johns Hopkins Brain Resource
Center. From the formalin immersion fixed brain, a portion of the MTL includ-
ing entorhinal cortex, amygdala, and hippocampus, was excised in 3 contiguous
blocks of tissue, sized 20-30 mm in height and width, and 15 mm rostral-caudal
(see reconstructed MRI of tissue blocks, Figure 3).

Each block was imaged with an 11T MR scanner at 0.125 mm isotropic
resolution and then cut into two or three sets of 10 micron thick sections,
spaced 1 mm apart. Each block yielded between 7 and 15 sections per set.
Sets of sections were stained with PHF-1 for tau tangle detection, 6E10 for
A plaque detection, or Nissl, and digitized at 2 micron resolution.

4.9 Segmentations of MTL Subregions

MTL subregions within the hippocampus were manually delineated using
Seg3D [57]. Individual block MRIs were rigidly aligned using an in-house man-
ual alignment tool, and per voxel labels were saved for the composite MRI
for each brain. Delineations were deduced from patterns of intensity differ-
ences, combined with previously published MR segmentations [58, 59, 60]
and expert knowledge on the anatomy of the MTL. The established borders
were applied in three other brains, showing consistent results (in prepara-
tion, EX, CC, SM, DT, JT, Alesha Seifert, Tilak Ratnanather, MA, MW,
and MM). In the brain sample examined here, corresponding regional delin-
eations were drawn on all histology sections stained with PHF-1 (see Figure
5). Delineations were based on visible anatomical markers and were afterwards
confirmed with a corresponding Nissl-stained set of sections. In each of these
sections, cytoarchitectonic borders between areas of the hippocampus were
indicated, independently from the other datasets, using previously published
cytoarchitectonic accounts of the MTL [61, 62, 63, 64, 65, 66]. Labels were
assigned per pixel to 4x-downsampled histology images at a resolution of 32
microns and used to evaluate accuracy of registration (see Section 2.4). Par-
ticular regions of interest include cornu ammonis fields (CA1, CA2, CA3), and
subiculum (see Figure 3).

Supplementary information. This manuscript is accompanied by a set of
Supplementary Notes (referenced S.1-S.8 in the main text).
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Supplementary Notes

S.1 Classical Tomography

The Radon Transform is used in classical tomography [47] to describe the
generation of sinograms as projected images at different angles. The transform
is typically written in functional notation as an integral along one dimension,
with Lebesgue measure as:

Rol(z) = /RI(Z sin() + z cos(6), —z cos(6) + zsin(6))dz.

It can also be modeled as the integral over the line parametrized by two
dimensions, an angle 6 and affine offset z from the origin:

Rol(2) = [ RO (s1)

with the line defined by the paired angle and affine offset (6, z) given explicitly
by all y € R? such that:

—{(y M 4@y O = zsin(0) + z cos(h),
y(Q) = _z cos(@) + Zsin(a), for z € R}.
In the notation introduced in Section 2.1, we extend this to an integral

over all of R?, using Dirac delta measures that assign nonzero measure only
to lines in this same set:

Ryl(z) :/ I(y)dr, - (dy), y€ R
R2

The line integral indexed by (6, z) is modeled as a single projection P, I(z),z €
R indexed by a set of n = 1,..., N and is given as in (3b), with point spread,
pn(z,dy) = fLe ) dsds(dy), as defined in Section 2.3. We show below its

equivalence to the line integral as defined in above (S1).

PI(z) = /Y pn(2, dy)1(y)

= / /L o dsds(dy)yl(y)

/ / (dy)I(y)ds, by Fubini’s Theorem
Lo, (2)

:/ I(s)ds, s€ R?
Lgn(z)
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S.2 Registration Accuracy

Similar to other groups [3], we evaluated accuracy of alignment between 2D
histology and 3D MRI by looking at sets of discrete points (pixels) labeled in
2D versus corresponding voxels labeled in 3D and subsequently deformed to 2D
(see Figure 5). Here, our sets of points were the sets of pixels (voxels) within a
particular MTL subregion as delineated on 2D histology images and 3D MRI
(see Section 4.9). We restricted our attention to particular subregions of inter-
est (CA fields, dentate gyrus, and subiculum), and measured accuracy by Dice
Score and 95th Percentile Hausdorff distance for each region on each slice of
one brain. Average overlap scores were 0.65, 0.75, 0.72, 0.84 for subiculum, CA
fields, dentate gyrus and whole hippocampus, respectively while average 95th
percentile Hausdorff distance was 1.76 mm, 1.43 mm, 1.21 mm, and 1.69 mm
for subiculum, CA fields, dentate gyrus, and whole hippocampus, respectively.

S.3 Scattering Transform

The Scattering Transform, by Mallat and Bruna [28, 29], defines a cascade
of alternating non-linear and non-commuting operators that generate from
an image, J,(-) € L2(R?), a set of “filtered images” (S} (), S7 (-),...) that
capture textural information in the original image. Each “filtered image” is
generated by a scattering propagator, U that takes the original image J,, down
a particular path, p, of alternating convolutions with wavelets (localized wave-
forms) and modulus operations. The path, p, is defined by a set of parameters
A € 27 that scale a mother wavelet, ¢, so as to capture lower and lower
frequency information.

b= ()\17)\27"' 7)‘2)
Ulp]Jn = ([0 * Gl % Crg - [ % G (52)

In our setting, we compute a subsampled Scattering Transform, S, of each
of our histology images, using an algorithm similar to the “Filterbank” algo-
rithm [67, 68] in which images are downsampled in parallel with scattering.
The path dependent propagator corresponding to S is Ug[]:

Us[P] = Ju () = (S5, () ST () (S3)
Jo:R* =R, S5 ‘R*—> R, s=1,...,48
P= (p17p27' o 7p16>7£ S {172}7)\i S {20721722723724725} .

We use 16 paths, p; € P of length 1 or 2 and a high pass Gaussian filter, with
width dilated according to A;, in place of a traditional wavelet to achieve a
representation both translation and rotation invariant in addition to Lipschitz
continuous to small deformations. Each of the R,G,B channels of histology
images are propagated independently along the same paths. Histology images
are downsampled by a factor of 32 to reach the approximate resolution of MRI.
Together, the subsampling and scattering of each channel yield a total of 48
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1059 scattering coefficients for each pixel in the downsampled histology image, or
1060 48 “filtered images” per target histology image.
1061

1062 S.4 Resampling in Mai Atlas Space

1063
1064 To compute and compare NFT density measures across brain samples, we

1065 rigidly aligned all samples to the reference brain in the Mai Paxinos Atlas
1066 [49]. We used a manual alignment tool, created in-house, to select optimal
1067 alignments between surface renderings of the Hippocampus, Amygdala, and
1068 ERC of our brain samples and that of the Mai brain.

1069 Distributions of NFT density were computed in the coordinates of the Mai
1070 atlas, according to choice of 7(z, z’) governing physical spatial spread, and ~(:)
1071 governing smoothing over conditional feature distributions (13). In all cases,
1072 total mass (2D cross-sectional tissue area of histological images) and total
1073 number of NFTs were conserved. To achieve this, initial NFT feature values
1074 (counts per MTL subregion) were reformulated following physical transforma-
1075 tlon (11a) as counts of NFTs per MTL subregion per weight of particle (i.e.
1076 total cross-sectional area):

1077 p _
1078 s W for1 <j</¢
1079 ’ fl fort+1<j<20

1080 We highlight three different modes of resampling. Volumetric resampling
1081 (e.g. at mm resolution) was computed with a 3D isotropic Gaussian kernel

1082 with width, o, and with new particles in a regular lattice, 2’ € X'.
1083

1084 1 — 22

1085 m(x,2') == Eexp ( - 7”102 f ”2) (S4)
o

1086

1087 (=) wxa)=1

1088 v eX!

1089 . .

1090 Resampling over 2D manifolds (e.g. the surface of ERC, Amygdala, CA1,

1091 °F Subiculum) was computed using a nearest neighbor kernel, assigning all

1092 weight (tissue area) and NFTs from a particle at the fine scale to a single

1093 particle on the 2D manifold (e.g. vertex of a triangular mesh).

1094

1095 e . 2

1096 (o a) = L T2 = argminy lz =l (S5)

1097 0 otherwise

1098

1099 Finally, resampling to a regular 1D lattice (e.g. the rostral-caudal axis
1100 of the human brain) was computed using an anisotropic Gaussian kernel to
1101 spread particle mass widely in two dimensions and narrowly in the third, with
1102 dimensions treated independently.

1103
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NTy—1 !
7(z,2") —1exp<(x_x) > (x—x)) (S6)

¢ 2

(:ZW(w,m’)zl
reX’
a2 0 0

=10 O‘Z 0], 04>>0
0 0 of

In each case, feature reduction occurred via computation of expected first
moments, as described in section 4.6.

S.5 Laplace Beltrami Smoothing Solution

The variational solution to (14) is given by:
(1d-kA)j =g (s7)

where A is a Laplacian operator. Here, we take A as the Laplace Beltrami
operator and compute an eigenbasis (B = {f1,---,8n}) and eigenvalues
({A1,---, An}) via the Finite Elements Method (FEM) [56]. Expansion of (S7)
in this eigenbasis yields smoothed g,(-), g-(+) for choice of parameter k:

N

9(y) = Z % (88)
with (g, Bi)v == Y B (1)g(y)w(y)
yev

Both §,(-) and §,(-) are normalized independently so total cross sectional
area and numbers of NFTs projected to the surface are conserved before and
after smoothing. NFT densities are computed as the ratio of the normal-

ized, smoothed functions: 278 and plotted over the surfaces of given MTL

subregions (see Figure 6).
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