

1

2 **HIV-linked gut dysbiosis associates with cytokine production** 3 **capacity in viral-suppressed people living with HIV**

4

5

6 **Authors**

7 Yue Zhang^{1,2}, Sergio Andreu-Sánchez^{1,2}, Nadira Vadaq^{3,4}, Daoming Wang^{1,2}, Vasiliki
8 Matzaraki³, Wouter van der Heijden³, Ranko Gacesa^{1,5}, Rinse K Weersma⁵, Alexandra
9 Zhernakova¹, Linos Vandekerckhove⁶, Quirijn de Mast³, Leo A. B. Joosten^{3,7}, Mihai G.
10 Netea^{3,8}, Andre van der Ven^{3*}, Jingyuan Fu^{1,2*} (*co-corresponding authors)

11

12 **Affiliations**

13 ¹ Department of Genetics, University of Groningen, University Medical Center
14 Groningen, Groningen 9713GZ, the Netherlands

15 ² Department of Pediatrics, University of Groningen, University Medical Center
16 Groningen, Groningen 9713GZ, the Netherlands

17 ³ Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud
18 university medical center, Nijmegen, the Netherlands

19 ⁴ Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine,
20 Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia

21 ⁵ Department of Gastroenterology and Hepatology, University Medical Center
22 Groningen, Groningen 9713GZ, the Netherlands

23 ⁶ HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty
24 of Medicine and Health Sciences, Ghent University and Ghent University Hospital,
25 Ghent, Belgium

26 ⁷ Department of Medical Genetics, Iuliu Hațieganu University of Medicine and
27 Pharmacy, Cluj-Napoca, Romania

28 ⁸ Department of Immunology and Metabolism, Life and Medical Sciences Institute,
29 University of Bonn, Bonn, Germany

30 * Lead contact

31

32 * Correspondence should be addressed to

33 **J.F. (j.fu@umcg.nl) and A.v.d.V. (andre.vanderven@radboudumc.nl).**

34

35

36 **Abstract**

37 People living with HIV (PLHIV) are exposed to chronic immune dysregulation, even
38 when virus replication is suppressed by antiretroviral therapy (ART). Given the
39 emerging role of the gut microbiome in immunity, we hypothesized that the gut
40 microbiome may be related to the cytokine production capacity of PLHIV. To test this
41 hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed
42 the *ex vivo* production capacity of eight different cytokines (IL-1 β , IL-6, IL-1Ra, IL-10,
43 IL17, IL22, TNF and IFN- γ) in response to different stimuli. We also characterized
44 CD4 $^{+}$ T cell–counts, HIV reservoir and other clinical parameters. Compared to 190 age-
45 and sex-matched controls and a second independent control cohort, PLHIV showed
46 microbial dysbiosis that was correlated with viral reservoir levels, cytokine production
47 capacity and sexual behavior. Notably, we identified two genetically different *P. copri*
48 strains that were enriched in either PLHIV or healthy controls. The control-enriched
49 strain was negatively associated with IL-10, IL-6 and TNF production, independent of
50 age, sex and sexual behavior, and positively associated with CD4 $^{+}$ T cell–level, whereas
51 the PLHIV-enriched strain showed no associations. Our findings suggest that
52 modulating the gut microbiome may be a strategy to modulate immune response in
53 PLHIV.

54

55 **Novel Points**

- 56 1. We identified compositional and functional changes in the gut microbiome of
57 PLHIV that were strongly related to sexual behavior.
- 58 2. HIV-associated bacterial changes are negatively associated with HIV reservoir. The
59 relative abundance of *Firmicutes bacterium CAG 95* and *Prevotella sp CAG 5226*
60 both show a negative association with CD4 $^{+}$ T cell–associated HIV-1 DNA.
- 61 3. *Prevotella copri* and *Bacteroides vulgatus* show association with PBMC production
62 capacity of IL-1 β and IL-10 that is independent of age, sex, BMI and sexual
63 behavior.
- 64 4. We observed two genetically different *P. copri* strains that are enriched in PLHIV
65 and healthy individuals, respectively.
- 66 5. The control-related *P. copri* strain specifically shows a negative association with
67 IL-10, IL-6 and TNF production and a positive association with CD4 $^{+}$ T cell–level.
68 This suggests it plays a potential protective role in chronic inflammation, which
69 may be related to enrichment of a specific epitope peptide.

70

71 **Introduction**

72

73 Human Immunodeficiency Virus (HIV) infection induces chronic activation of the
74 innate and adaptive immune systems, leading to a chronic inflammatory state ¹.
75 Combination antiretroviral treatment (ART) significantly decreases immune activation
76 and systemic inflammation but does not restore the homeostasis in the immune system
77 to that seen in healthy populations ². The persistent inflammation, due in part to a
78 dysbalanced cytokine network, contributes to a higher risk of non-AIDS-related
79 morbidity in PLHIV, including cardiovascular disease, neurocognitive disease and
80 certain HIV-related cancers ^{2,3}. Previous studies have shown that HIV triggers
81 the production of proinflammatory cytokines (tumor necrosis factor (TNF), interleukin
82 (IL)-6, and IL-1) and anti-inflammatory cytokines (IL-10) ^{4,5}. Starting ART has been
83 shown to decrease plasma concentrations of IL-10 and IL-6, but the concentrations of
84 TNF and other proinflammatory cytokines remain elevated ⁴. There are multiple
85 potential causes for this dysregulated cytokine system, such as the effect of HIV,
86 lymphoid tissue damage ⁶ and, in particular, gut dysbiosis ⁷.

87 HIV infection induces significant changes in gut microbial composition and metabolic
88 function ^{8,9}. ART can partially restore the HIV-associated gut dysbiosis, but it cannot
89 normalize the gut microbiome to a pattern resembling that of a healthy control
90 population ^{10,11}. Compared with healthy controls, long-term treated PLHIV still exhibit
91 decreased alpha diversity, increased abundances of Enterobacteriaceae and decreased
92 abundances of *Bacteroidetes*, *Alistipes* ⁷ and butyrate-producing bacteria that help
93 maintain healthy gut homeostasis ¹². However, no consistent pattern of gut dysbiosis
94 has been defined in long-term treated PLHIV ¹³. One major reason for this is that sexual
95 behavior may have a strong influence on gut microbiota, and most previous studies
96 were not able to control for this factor ¹³. For example, an over-representation of
97 *Prevotella* accompanied with a decrease in *Bacteroides* in PLHIV was recently found
98 to be due to men who have sex with men (MSM) status rather than HIV infection ¹⁴⁻¹⁶.
99 Considering that a major part of the HIV-infected population in Europe and North
100 America is composed of MSM, the biological importance of this feature needs to be
101 explored.

102 In long-term treated PLHIV, a link between gut dysbiosis and host cytokine levels has
103 been reported. For instance, in PLHIV with atherosclerosis, class Clostridia was
104 positively correlated with plasma levels of IL-1 β and IFN- γ ¹⁷, while coproic acid, a gut
105 bacteria-derived short-chain fatty acid (SCFA), was linked with decreased expression
106 of IL-32 ¹⁸. Mechanistically, the bacteria-cytokine association is potentially based on

107 bacterial components and products ^{9,19–21}. For example, heat-killed *Escherichia coli*
108 induced higher production of IL-17 and IFN- γ in HIV-exposed mononuclear cells *ex*
109 *vivo* ¹⁹. In addition, lipopolysaccharide (LPS), a Gram-negative bacterial cell wall
110 component, induced a depletion of CD4 $^{+}$ cells by increasing expression of HIV
111 coreceptor C-C chemokine receptor type 5 on CD4 $^{+}$ cells ²⁰. In addition, butyrate, a
112 product of saccharolytic fermentation of dietary fibers by gut microbiota, decreased gut
113 T cell activation in an *ex vivo* human intestinal cell culture model ²¹. The
114 downregulation of anti-inflammatory bacterial pathways, such as SCFA biosynthesis
115 or indole production, also contributes to gut inflammation in long-term treated PLHIV
116 ⁹.

117 The present study documents a detailed profile of gut microbial composition and
118 function at both species- and strain-level using metagenomic sequencing. We then
119 characterize the role of gut dysbiosis in relation to HIV clinical phenotypes and PBMC
120 cytokine production capacity. Notably, the association between cytokine production
121 capacity and gut microbiome has only been studied in healthy populations ²² and in a
122 limited number of PLHIV ¹⁰. In addition, we control for sexual behavior-related factors
123 in the association analysis. Finally, we identify two *P. copri* strains with different
124 genetic repertoires that exhibit enrichment in PLHIV and HCs, respectively. One of
125 these two *P. copri* strains showed associations with the PBMC production capacity of
126 IL-10, IL-6 and TNF, as well as CD4 $^{+}$ T cell-level.

127

128 **Results**

129

130 **Microbial dysbiosis in PLHIV**

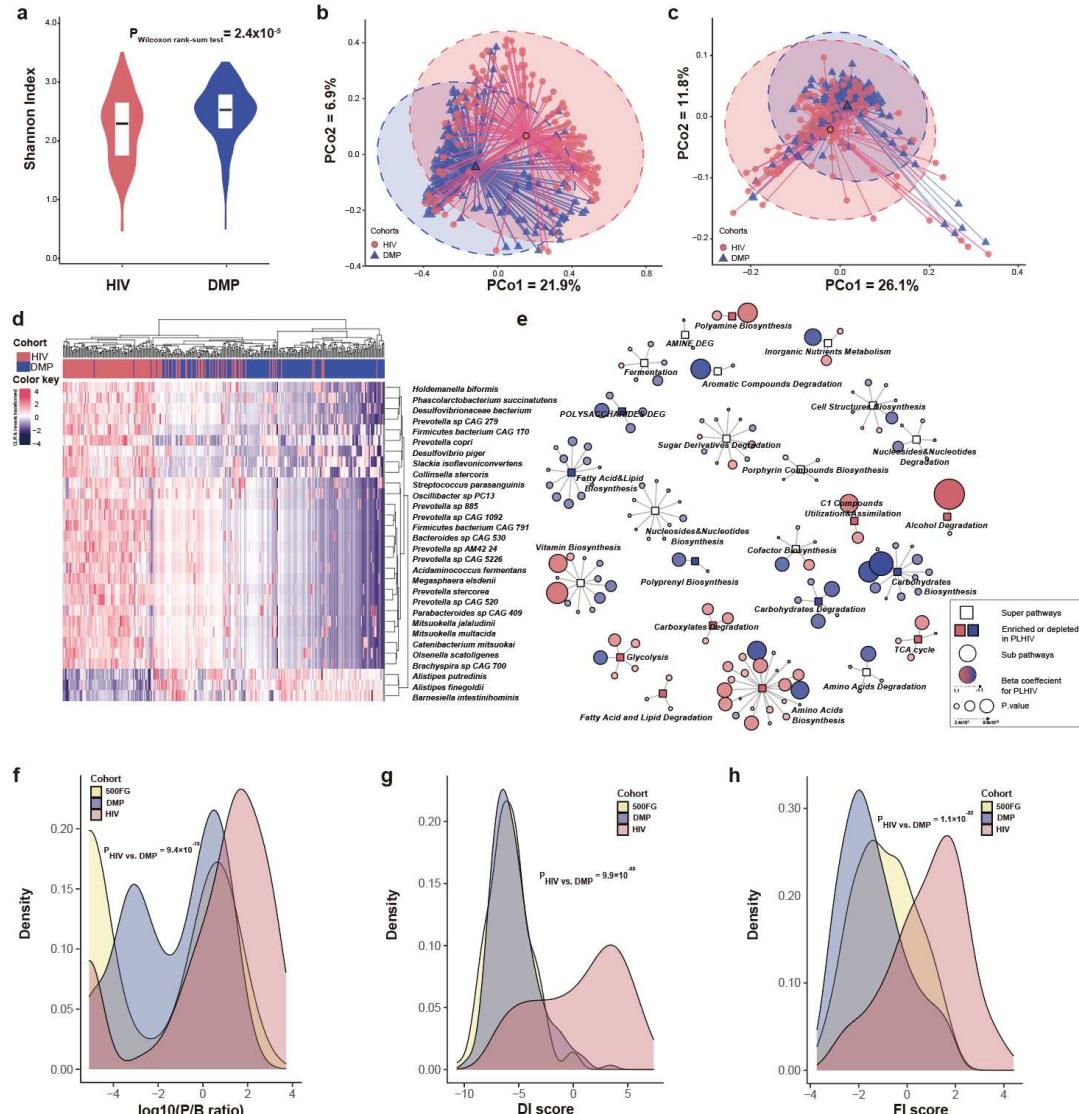
131 **Differences in microbial composition and function.** The present study included 143
132 PLHIV and 190 healthy individuals with matched age and sex from the Dutch
133 Microbiome Project (DMP) cohort (hereafter referred to as matched healthy controls
134 (HCs)). Participants' baseline characteristics are shown in Supplementary Table 1.
135 Included PLHIV were on long-term ART (median 6.35 years) and were virally
136 suppressed (plasma HIV-RNA < 200 copies/mL). However, when compared to the
137 matched HCs, the gut microbial composition of the PLHIV still showed a significant
138 decrease in alpha diversity (species-level Shannon index, Wilcoxon rank-sum test, $P =$
139 2.4×10^{-5} , Fig. 1a) and a distinct composition that was reflected by a significant
140 difference in beta diversity (PERMANOVA, $P < 1.0 \times 10^{-3}$, $R^2 = 0.07$, Fig. 1b), even
141 when adjusting for body mass index (BMI) and read counts. These observations are
142 consistent with findings of previous studies ^{23–25}. With the aid of metagenomics data,
143 we also observed that PLHIV showed a lower diversity of bacterial metabolic pathways

144 (pathway-level Shannon index, Wilcoxon rank-sum test $P = 4.0 \times 10^{-4}$, Supplementary
145 Fig. 1) and different functional profiles (PERMANOVA, $P < 1.0 \times 10^{-3}$, $R^2 = 0.04$, Fig.
146 1c). To explore the bacterial taxa and pathways that showed significantly different
147 abundance in PLHIV, we confined the differential abundance analysis to the 123
148 common species and 331 metabolic pathways present in $\geq 20\%$ of samples in at least
149 one cohort. A linear regression model with correction for read counts, BMI and
150 smoking status revealed 76 (62.6%) species and 163 pathways (49.2%) with differential
151 abundances between PLHIV and HCs (False Discovery Rate (FDR) < 0.05 ,
152 Supplementary Tables 2–3).

153 **Differentially abundant species.** 57 of the 76 differentially abundant species showed
154 enrichment in PLHIV. Increased abundances of *Prevotella* and *Prevotellaceae* in
155 PLHIV were widely observed by previous studies using 16S rRNA sequencing⁸. Our
156 metagenomics-based analysis further identified eight *Prevotella* species enriched in
157 PLHIV (Supplementary Table 2). The most significant was *Prevotella sp 885*, which
158 showed a 3.8-fold increase in relative abundance (Linear regression, $P = 2.1 \times 10^{-27}$),
159 followed by *Prevotella sp CAG 520* with an 8.0-fold increase ($P = 5.4 \times 10^{-24}$) and
160 *Prevotella sp CAG 1092* with a 4.2-fold increase ($P = 3.4 \times 10^{-23}$, Fig. 1d, Supplementary
161 Fig. 2). Also consistent with other studies^{10,26}, we found an increase of
162 *Desulfovibrionaceae bacterium* ($P = 7.8 \times 10^{-24}$) and *Megasphaera elsdenii* ($P = 3.9 \times 10^{-23}$).
163 *Megasphaera* species, as members of the vaginal microbiome, were associated with
164 a higher risk of acquiring HIV in a prospective study of HIV-infected South African
165 women²⁷. The abundances of 19 species were decreased in PLHIV, including species
166 from the previously reported species *Bacteroides* and *Alistipes*^{7,8}: *B. ovatus*, *B.*
167 *uniformis*, *B. vulgatus*, *A. finegoldii* and *A. putredinis*. We also identified several novel
168 HIV-associated species, including *Barnesiella intestinihominis*, which was mostly
169 depleted in PLHIV ($P = 7.5 \times 10^{-15}$). This bacterium was previously identified as an
170 “oncomicrobiotic” due to its capacity to promote the infiltration of IFN- γ -producing
171 $\gamma\delta$ T cells in cancer lesions, which can ameliorate the efficacy of the anti-cancer
172 immunomodulatory agent cyclophosphamide²⁸.

173 **Differentially abundant pathways.** At metabolic pathway-level, we observed
174 differential abundances in several amino acid biosynthesis pathways, including
175 enriched L-tryptophan biosynthesis (PWY-6629) and depleted L-ornithine and L-
176 citrulline biosynthesis pathways (ARGININE-SYN4-PWY, CITRULBIO-PWY) in
177 PLHIV (Supplementary Table 3). Importantly, tryptophan and citrulline both play
178 critical roles in inflammation^{29,30}, while ornithine can later be turned into Nitric Oxide
179 (NO), which is important for vascular function^{31,32}. In addition, the reductive

180 tricarboxylic acid (TCA) cycle I (P23-PWY) was enriched in PLHIV. The reductive
181 TCA cycle is a carbon dioxide–fixation pathway significant for the production of
182 organic molecules for the biosynthesis of sugars, lipids, amino acids and pyrimidines
183 ³³. Moreover, PLHIV showed lower abundances of bacterial pathways involved in fatty
184 acid, lipid and carbohydrate biosynthesis (Fig. 1e), suggesting a reduced capacity of the
185 microbiome to digest certain nutritional elements.


186 **Dysbiosis index.** Altogether, our data show dysbiosis in both gut microbial composition
187 and metabolic function in PLHIV. Previous studies have suggested the *Prevotella*-to-
188 *Bacteroides* ratio (P/B ratio) as a landmark parameter for PLHIV ^{34,35}, and our finding
189 of a significantly higher P/B ratio in PLHIV compared to HCs confirms these
190 observations (Dunn's test, $P = 9.4 \times 10^{-13}$, Fig. 1f, Supplementary Table 4,
191 Supplementary Fig. 3a). We also constructed a Dysbiosis Index (DI) based on the
192 differentially abundant species by calculating the log2-ratio of the geometric mean of
193 PLHIV-enriched species (57 species) to PLHIV-depleted species (19 species). This DI
194 score was significantly higher in PLHIV than in HCs ($P = 9.9 \times 10^{-33}$, Fig. 1g,
195 Supplementary Table 4). We then sought to validate the DI score in an independent
196 cohort with similar metagenomic data and the same DNA isolation method. While no
197 such data were available for an independent cohort of PLHIV, data was available for a
198 separate healthy cohort: 500FG (500 Functional Genomics) (Supplementary Table 1).
199 We found that the DI score of 500FG was not different from the DMP controls ($P =$
200 0.29, Supplementary Fig. 3b), but was significantly lower than that of our cohort of
201 PLHIV ($P = 9.6 \times 10^{-37}$). We also constructed a Function Imbalance (FI) score using the
202 log2-ratio of the geometric mean of PLHIV-enriched bacterial pathways (87 pathways)
203 to PLHIV-depleted bacterial pathways (76 pathways) (Fig. 1h). This FI score was also
204 significantly higher in PLHIV than in DMP HCs ($P = 1.1 \times 10^{-32}$, Supplementary Table
205 4, Supplementary Fig. 3c), and this was supported by the observation that the 500FG
206 FI was also significantly lower than that of PLHIV ($P = 6.7 \times 10^{-18}$).

207

208 **Fig. 1. PLHIV show a distinct gut microbiome composition and function compared
209 to HCs.**

210 **a.** Comparison of microbial alpha diversity between the PLHIV cohort and HCs from
211 the DMP cohort. Y-axis refers to the Shannon index at the species level. **b–c.** Beta
212 diversity based on Bray-Curtis distance of species and pathway abundance is shown in
213 a principal coordinates analysis (PCoA) plot with centroids for PLHIV and HCs. The
214 coordinates of the centroids are set as the mean value of the principal components for
215 each cohort. **d.** Heatmap depicting the relative abundance of the top 30 species that
216 differed significantly between PLHIV and HCs. Data is centered log-ratio (CLR)-

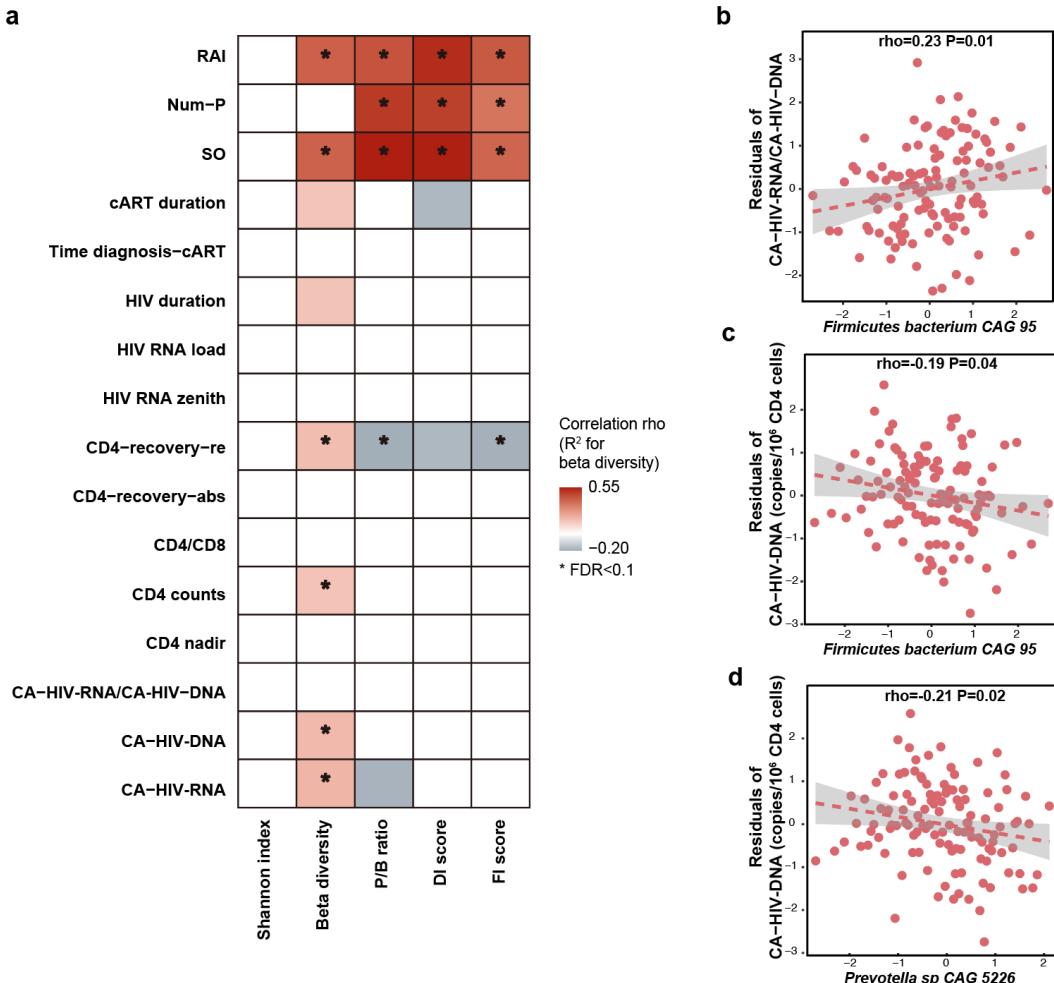
217 transformed and then inverse-rank transformed to follow a normal distribution.
218 Differentially abundant species were selected using a linear regression model with
219 correction for BMI, read counts and smoking status. **e.** Network of bacterial pathways
220 that were significantly different between PLHIV and HCs. Rectangular nodes represent
221 super-pathways, with the colors showing enrichment (pink) or depletion (blue) in
222 PLHIV. Circular nodes show sub-pathways belonging to the super-pathways. The color
223 of circles shows the log₂ value of fold change between the relative abundance of
224 pathway in PLHIV and HCs, where a gradient is applied depending on foldchange.
225 Circle size indicates p-value. Lines connect each pathway to its respective super-
226 pathway. Only super-pathways including two or more pathways and sub-pathways with
227 FDR < 0.05 are shown. Differentially abundant pathways were selected using a linear
228 regression model with correction for BMI, read counts and smoking status. **f-h.** Density
229 curves of the P/B ratio, DI score and FI score for the three cohorts depicting the different
230 distribution of these bacterial signatures in these cohorts. Significance was tested using
231 Dunn's test.

232

233

234 **HIV-associated gut dysbiosis associates with clinical phenotypes**

235 We conducted a systematic association between HIV-related parameters and microbial
236 alpha diversity, beta diversity, P/B ratio, DI score and FI score, correcting for sex, age
237 and read counts (Supplementary Fig. 4 and 5, Supplementary Table 5). HIV clinical
238 parameters were also taken into account, including the time between HIV diagnosis and
239 inclusion in the study or cART initiation, CD4⁺ T cell counts (nadir and latest, recovery
240 after cART), plasma viral loads and HIV-1 reservoir measurements in circulating CD4⁺
241 T cells, including CD4⁺ T cell-associated HIV-1 DNA (CA-HIV-DNA) and CD4⁺ T
242 cell-associated HIV-1 RNA (CA-HIV-RNA) levels. Sexual behavior was also
243 considered part of the HIV clinical phenotype, including the number of sexual partners
244 in the previous year (Num-P) and sexual orientation (SO), e.g. MSM and men who have
245 sex with women, including receptive anal intercourse (RAI).


246 We did not observe any significant association between the Shannon index of bacterial
247 species and any HIV clinical phenotypes (Supplementary Table 6). However, six
248 parameters were associated with bacterial beta diversity, four with P/B ratio, three with
249 DI score and four with FI score at FDR < 0.1 level (Fig. 2a, Supplementary Table 6).
250 Notably, sexual behavior was among the strongest-associated factors. For example, SO
251 was the top factor positively associated with the P/B ratio (Spearman correlation, $P =$
252 5.7×10^{-12}) and DI score ($P = 6.4 \times 10^{-12}$), followed by Num-P and RAI (Supplementary
253 Table 6). Moreover, MSM and RAI, as well as larger Num-P, were associated with
254 increased P/B ratio, DI and FI score. We also observed associations for other HIV
255 clinical phenotypes, such as an association between beta diversity and the HIV reservoir
256 parameters CA-HIV-DNA and CA-HIV-RNA levels ($P = 6.0 \times 10^{-3}$ and 8.0×10^{-3} ,
257 respectively) and an association between P/B ratio and CD4 recovery relative rate ($P =$
258 0.02). However, these associations were largely dependent on sexual behavior, as none
259 remained significant after correcting for SO and Num-P (Supplementary Table 6,
260 Supplementary Fig. 6). We further assessed whether HIV clinical parameters were
261 associated with individual species and metabolic pathways. After correcting for age,
262 sex, read counts and sexual behavior, no significant associations were detected for
263 species or pathways, although we did observe suggestive associations for *Firmicutes*
264 *bacterium* CAG 95 and *Prevotella* sp CAG 5226 with HIV reservoir measurements at a
265 normal significance level (Fig. 2b-d, Supplementary Table 7). At metabolic pathway
266 level, HIV duration and cART duration tended to be the strongest factors besides sexual
267 behavior factors linked with metabolic pathways (Supplementary Table 8). For
268 example, the pathways of stearate, octanoyl and oleate biosynthesis showed positive
269 correlation with HIV duration, while the top result for cART duration was a negative
270 association with the polyamine biosynthesis pathway (Supplementary Table 8).

271

272 **Fig. 2. Association between HIV-associated gut dysbiosis and HIV-related**
273 **phenotypes.**

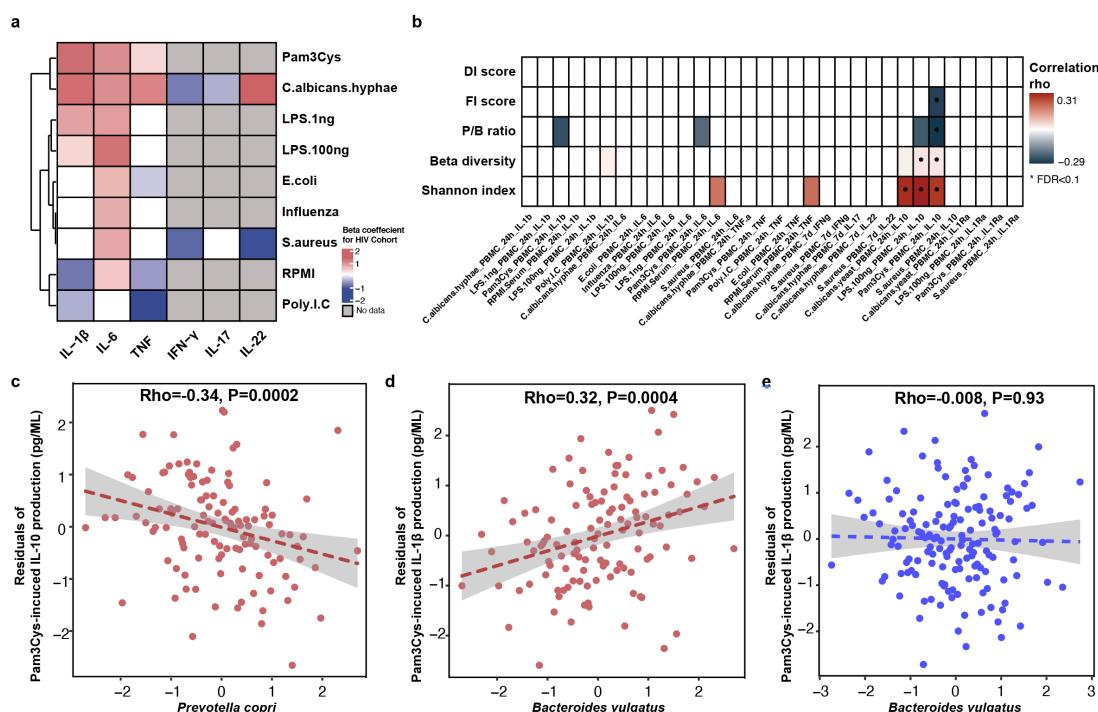
274 **a.** Heatmap depicting the associations between HIV-associated bacterial signature
275 (Shannon index, beta diversity, P/B ratio, DI and FI score) and HIV-related phenotypes,
276 using the Spearman correlation test, with HIV-related phenotypes corrected for age, sex
277 and read counts. Box color indicates Spearman correlation rho. A white box indicates
278 $P > 0.05$. R^2 is calculated using PERMANOVA based on Bray-Curtis distance of
279 species and then multiplied by ten to rescale. **b-d.** Associations between individual
280 species and HIV reservoir level, with the HIV reservoir level corrected for age, sex and
281 read counts and sexual behavior.

282

283

284 **Prevotella copri and Bacteroides vulgatus associate with cytokine production**
285 **capacity**

286 Despite long-term cART, the immune responses of PLHIV are known to be different
287 than those of healthy controls³⁶. In a previous study from our group¹, PBMCs of
288 PLHIV and healthy controls were stimulated *ex vivo* with 12 different microbial stimuli
289 and the cytokine production capacity assessed, including monocyte-derived (IL-1 β , IL-
290 6 and TNF), lymphocyte-derived proinflammatory cytokines (IL-17, IL-22 and IFN- γ)
291 and anti-inflammatory cytokines (IL-10 and IL-1 receptor antagonist, IL-1Ra)
292 (Supplementary Table 9). This identified a significant increase in the production of
293 proinflammatory cytokines (e.g. IL-1 β and IL-6 and TNF) in PLHIV.¹ By comparing
294 the cytokine production data of our HIV cohort to 173 samples from the 500FG cohort
295 (different samples from our previous studies^{1,36}), we identified 24 cytokine abundances
296 that were significantly different (Fig. 3a, Supplementary Table 10). PLHIV showed a
297 significant increase of IL-1 β , IL-6 and TNF production upon stimulation with Pam3Cys
298 (TLR2 ligand), LPS (TLR4 ligand) and *C. albicans* hyphae, but decreased IFN- γ
299 production upon stimulation with *S. aureus* and *C. albicans* hyphae. Differing cytokine
300 production capacities were also related to some HIV clinical phenotypes. MSM status
301 was associated with increased proinflammatory cytokine responses (e.g. Pam3Cys-
302 induced TNF and *S. aureus*-induced IL-22 production), whereas higher Num-P was
303 linked with decreased anti-inflammatory cytokine responses (e.g. Pam3Cys and LPS-
304 induced IL-10 production, Supplementary Fig. 7, Supplementary Table 11).


305 Interestingly, we observed significant associations of cytokine production capacity with
306 microbial alpha and beta diversity and P/B ratio, as well as four associations with DI,
307 FI score and individual species (Supplementary Tables 12 and 13). No associations
308 were observed with metabolic pathway abundance (Supplementary Table 14). In
309 particular, IL-10 production upon stimulation with Pam3Cys or LPS was negatively
310 associated with P/B ratio and FI score but positively associated with bacterial Shannon
311 index (Linear regression, $P < 0.05$, Fig. 3b, Supplementary Table 12), after correction
312 for age, sex and sexual behavior. At individual species-level, the top association was
313 between Pam3Cys-induced IL-10 production and the relative abundance of *P. copri*
314 ($\rho = -0.37$, $P = 9.1 \times 10^{-6}$, Supplementary Table 13), after correcting for age, sex and
315 read counts. After further adjustment for SO and Num-P, the association between
316 *P. copri* and IL-10 production remained significant ($\rho = -0.34$, $P = 1.9 \times 10^{-4}$, Fig. 3c,
317 Supplementary Table 13). In addition, we also detected a positive significant
318 association between *B. vulgatus* and Pam3Cys-induced IL-1 β production ($\rho = 0.33$,
319 $P = 7.4 \times 10^{-5}$), and this remained significant after controlling for age, sex, read counts
320 and sexual behavior ($\rho = 0.32$, $P = 3.7 \times 10^{-4}$, Fig. 3d). Strikingly, this association was

321 not significant in 500FG ($\rho = -7.8 \times 10^{-3}$, $P = 0.93$, Fig. 3e), showing a significant
322 heterogeneity effect (Cochran-Q test, $P = 0.003$, Supplementary Table 13).

323

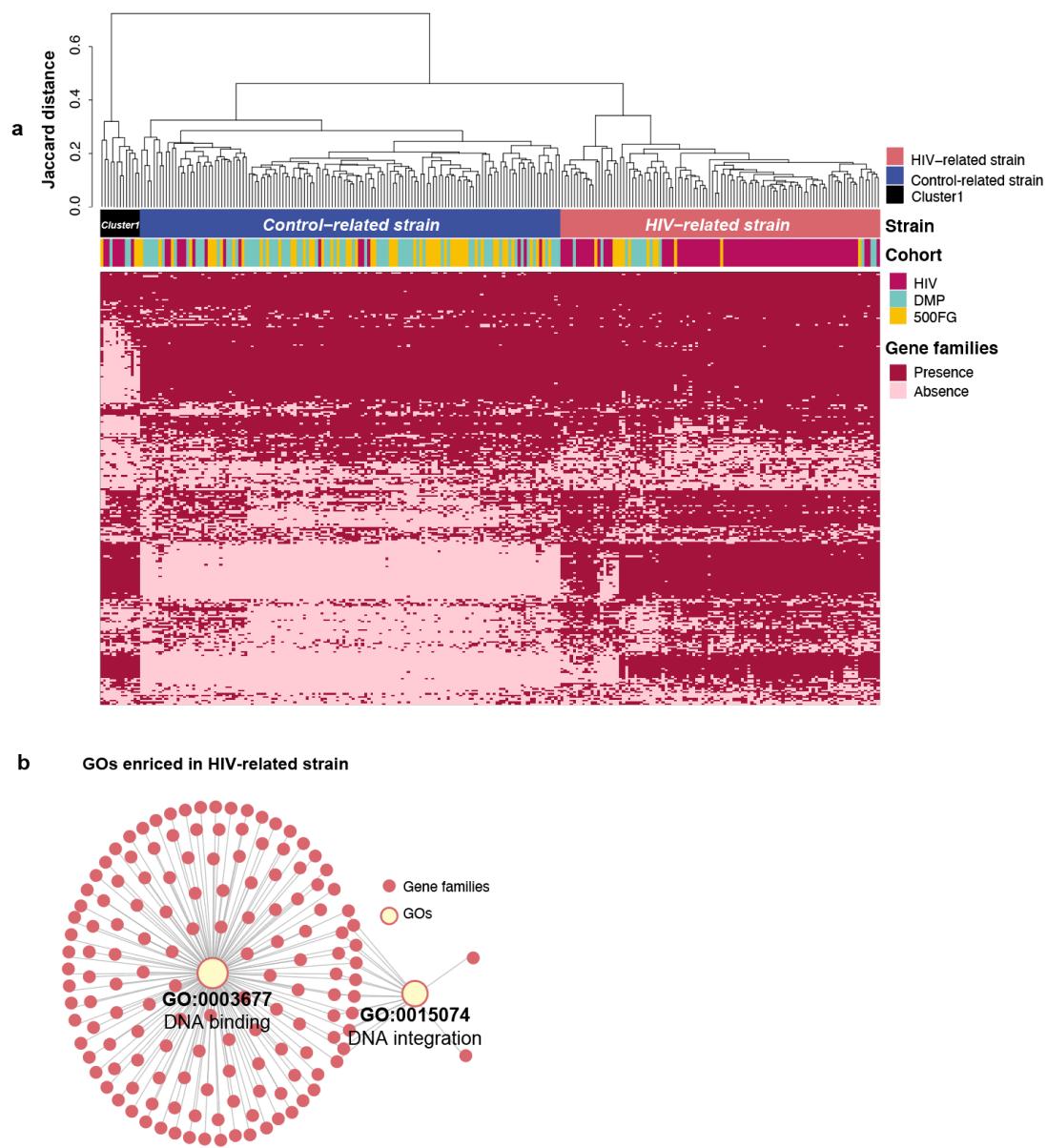
324 **Fig. 3. Association between gut microbiome and inflammatory cytokine
325 production.**

326 **a.** Heatmap showing *ex vivo* cytokine production enriched (red) and depleted (blue) in
327 PLHIV as compared with HCs from 500FG. A linear regression model (age and sex
328 included as covariates) was used to calculate the P values. Box color indicates the
329 Spearman correlation rho. White box indicates $P > 0.05$. Gray box indicates no
330 measurement. **b.** Heatmap showing Spearman correlation rho between cytokine
331 production and HIV-associated bacterial signature (Shannon index, beta diversity, P/B
332 ratio, DI and FI scores), with cytokine production corrected for age, sex, read counts
333 and sexual behavior. White box indicates $P > 0.05$. **c-d.** Association between relative
334 abundance of species and cytokine production in PLHIV: **(c)** *Prevotella copri* with
335 Pam3Cys-induced IL-10 production and **(d)** *Bacteroides vulgatus* with Pam3Cys-
336 induced IL-1 β production. The relative abundance of the species is CLR- and inverse-
337 rank transformed. Cytokine production is corrected for age, sex, read counts and sexual
338 behavior. **e.** Association between relative abundance of *Bacteroides vulgatus* and
339 Pam3Cys-induced IL-1 β production in HCs from 500FG.

340

341

342 ***Prevotella copri* strains in PLHIV are genetically different**


343 In microbial species, strain-level genomic makeup is critical in determining their
344 functional properties within human bodies³⁷. We therefore wondered whether PLHIV
345 harbor different strains of *P. copri* and *B. vulgatus*, thereby affecting cytokine
346 production capacity. To examine this, we performed an analysis based on the presence
347 or absence of their gene repertoire using PanPhlan3³⁸. As *B. vulgatus* did not show any
348 distinct clusters according to genetic content, we did not study it further. We generated
349 *P. copri* genetic repertoire profiles for 254 samples from the PLHIV cohort (n = 102),
350 DMP cohort (n = 83) and 500FG cohort (n = 69). Hierarchical clustering analysis based
351 on the Jaccard distance of presence or absence of gene families revealed three distinct
352 clusters at a distance cutoff of 0.4 (Fig. 4a). Cluster 1 was relatively small (n = 13) and
353 was therefore excluded in the following analysis. In contrast, clusters 2 and 3 were
354 larger (n = 137 and 104, respectively). Interestingly, cluster 2 was significantly enriched
355 in healthy individuals and cluster 3 was enriched in PLHIV (Fisher exact test, P =
356 3.2x10⁻²⁵, Supplementary Table 15), suggesting that the *P. copri* strains are genetically
357 different in PLHIV compared to healthy individuals. We hereafter refer to these *P. copri*
358 strains as the “control-related strain” and “HIV-related strains”. In particular, the HIV-
359 related strain was enriched in MSM of the PLHIV cohort but did not show enrichment
360 in PLHIV with RAI as a sexual behavior (Fisher exact test, P = 0.01 and 0.17,
361 respectively, Supplementary Table 15).

362 When comparing the gene profiles of the two strains, 2,629 out of 4,260 gene families
363 were differentially abundant after correcting for age, sex and read counts (Logistic
364 regression, P < 0.05, FDR < 0.05, Fig. 4a, Supplementary Table 16). We then conducted
365 Gene Ontology (GO) enrichment analysis based on these differential gene families.
366 Two GOs showed enrichment in the HIV-related strain (hypergeometric test, P < 0.05,
367 FDR < 0.05, Fig. 4b, Supplementary Table 17): the molecular function of DNA binding
368 (GO:0003677) and the biological process of DNA integration (GO:0015074). In
369 contrast, no GOs showed enrichment in the control-related strain (Supplementary Table
370 18).

371

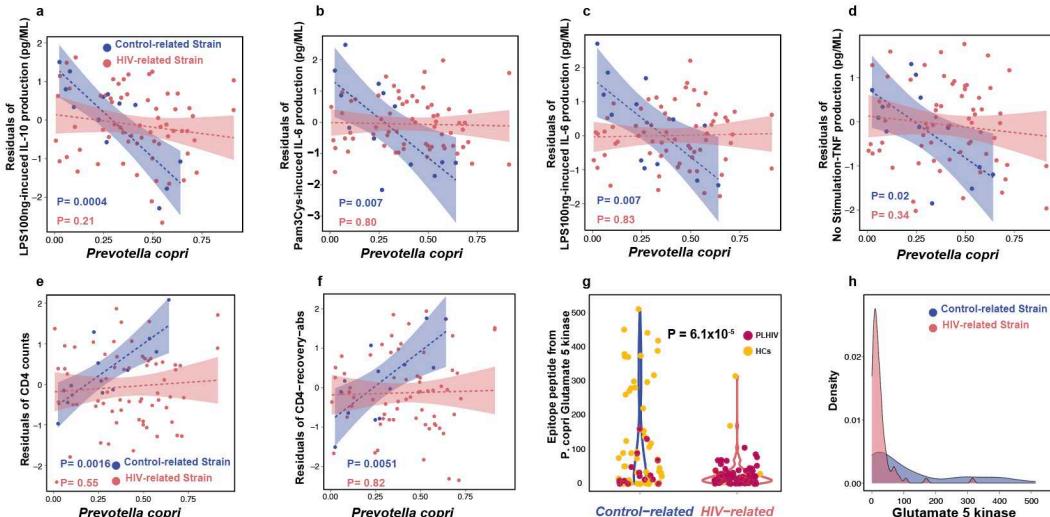
372 **Fig. 4. *Prevotella copri* strains with different genetic content.**

373 **a.** Heatmap showing the gene family profiles of *P. copri* strains in samples from the
374 three cohorts (254 samples total: 102 PLHIV, 83 DMP and 69 500FG). Each column
375 represents a sample. Each row represents the presence of absence of a gene family. The
376 clustered tree above the heatmap shows the three clusters of *P. copri* strains. Most
377 samples from PLHIV were binned together into the HIV-related strain (right), but 16
378 samples (middle) showed different profiles and were binned into the HC-related strain.
379 **b.** Network figure showing the two GOs enriched in the HIV-related strain. Pink dots
380 represent different gene families. Yellow dots represent GOs. Lines indicate that the
381 gene families are annotated to the corresponding GO.

382

383 **Prevotella copri** strains exhibit distinct immune impacts between PLHIV and
384 **HCs**

385 As shown above, the control-related strain and HIV-related strain exhibited distinct
386 genetic content. Likewise, these two strains also showed different associations with
387 cytokine production, and importantly, these associations tended to be influenced by
388 host immune state. The control-related strain showed negative associations with IL-10,
389 IL-6 and TNF production in PLHIV, after correcting for age, sex, read counts and
390 sexual behavior (Linear regression, $\beta_{100\text{ngLPS-induced IL-10}} = -4.7$, $\beta_{\text{Pam3Cys-induced IL-6}} =$
391 -5.1 , $\beta_{100\text{ngLPS-induced IL-6}} = -4.6$, $\beta_{\text{No stimulation TNF}} = -3.2$; $P_{100\text{ngLPS-induced IL-10}} = 4.0 \times 10^{-4}$,
392 $P_{\text{Pam3Cys-induced IL-6}} = 7.0 \times 10^{-3}$, $P_{100\text{ngLPS-induced IL-6}} = 7.2 \times 10^{-3}$, $P_{\text{No stimulation TNF}} = 1.7 \times 10^{-2}$,
393 Fig. 5a–d, Supplementary Table 19). However, in the 500FG cohort, the control-related
394 strain showed less strong and even opposite associations with cytokine production
395 (Linear regression, $\beta_{\text{Pam3Cys-induced IL-6}} = 1.4$, $\beta_{100\text{ngLPS-induced IL-6}} = 0.69$, β_{No}
396 $\text{stimulation TNF}} = 0.46$; $P_{\text{Pam3Cys-induced IL-6}} = 3.1 \times 10^{-3}$, $P_{100\text{ngLPS-induced IL-6}} = 0.12$, P_{No}
397 $\text{stimulation TNF}} = 0.17$, Supplementary Fig. 8, Supplementary Table 20). By contrast, no significant
398 association was found for the HIV-related strain in PLHIV and HCs (Supplementary
399 Tables 19 and 20). In summary, we observed a heterogeneity effect in the cytokine
400 association with the control-related and HIV-related strain in PLHIV (Cochran-Q test,
401 Supplementary Table 19), as well as a heterogeneity effect in the cytokine association
402 with the control-related strain between PLHIV and HCs (Supplementary Table 21).


403 We also checked the association between *P. copri* strains and HIV-related parameters.
404 The control-related strain showed positive association with CD4⁺ T cell counts (CD4
405 counts) and CD4⁺ T cell absolute recovery level after cART (CD4-recovery-abs)
406 ($\beta_{\text{CD4 counts}} = 3.2$, $\beta_{\text{CD4-recovery-abs}} = 3.5$, $P_{\text{CD4 counts}} = 1.6 \times 10^{-3}$, $P_{\text{CD4-recovery-abs}} = 5.1 \times 10^{-3}$,
407 Fig. 5e-f, Supplementary Table 22). These strain–CD4 associations also showed
408 heterogeneity between the control- and HIV-related strains ($P = 1.9 \times 10^{-3}$ and 3.0×10^{-3} ,
409 respectively, Supplementary Table 22).

410 To explore the potential mechanism behind the distinct immune functions of the two *P.*
411 *copri* strains, we searched the Immune Epitope Database and Analysis Resource (IEDB)
412 and found five epitope peptides derived from different *P. copri* proteins
413 (Supplementary Table 23). These peptides can be presented by antigen-presenting cells
414 and induce IFN- γ production by T cells and antibody secretion by B cells. We then
415 compared the abundances of these five peptides between the two *P. copri* strains from
416 PLHIV and 500FG cohort (methods). Interestingly, only one peptide from *P. copri*,
417 glutamate 5-kinase protein, was found to be significantly enriched in the samples with
418 the control-related strain as compared with the samples with the HIV-related strain

419 (Linear regression, $P = 6.1 \times 10^{-5}$, Fig. 5g-h, Supplementary Table 24), suggesting that it
420 is potentially contributing to the immune function of the control-related strain.

421

422 **Fig. 5. *Prevotella copri* strains with different immune functions. a–d.** Distinct
423 associations between relative abundance of control-related strain and HIV-related strain
424 with IL-10, IL-6 and TNF production capacity in PLHIV, using linear regression.
425 Cytokine production is corrected for age, sex, read counts and sexual behavior. Blue
426 dots represent the PLHIV with the control-related strain. Dark pink indicates PLHIV
427 with the HIV-related strain. **e–f.** Distinct associations between relative abundance of
428 control-related strain and HIV-related strain with CD4 counts (**e**) and CD4-recovery-
429 abs level (**f**). **g–h.** Violin plot (**g**) and density distribution plot (**h**) of the *P. copri* epitope
430 peptide (from Glutamate 5 kinase) level between the two kinds of strains in PLHIV and
431 HCs from the 500FG cohort. Linear regression was used to test significance, controlling
432 for age, sex and read counts.

433

434

435 **Discussion**

436

437 We investigated the role of the gut microbiome in functional immune responses during
438 HIV infection using metagenomic sequencing and the cytokine responses of PBMCs
439 upon stimulation, which can profile bacterial composition and functionality and exhibit
440 the functional changes in immunity¹. Consistent with the literature, we observed a lower
441 alpha diversity and higher P/B ratio in PLHIV, as well as a depletion of *Alistipes* species
442 ^{7,8}. In contrast to previous studies, we found some SCFA-producing species and
443 beneficial species to be enriched in PLHIV in our study, including *Acidaminococcus*
444 *fermentans*³⁹ and *Faecalibacterium prausnitzii*⁴⁰, as well as the equol-forming species
445 *Slackia isoflavoniconvertens*⁴¹ and the anti-tumorigenic species
446 *Holdemanella biformis*⁴². This inconsistency may be due to the fact that the PLHIV in
447 our cohort had a longer duration of ART intake (median years = 6.4) compared to
448 previous studies, which is supported by earlier evidence that ART can partially restore
449 the gut microbial composition¹⁰. Functionally, PLHIV in our study showed increased
450 microbial capacity of L-tryptophan biosynthesis and decreased de novo biosynthesis of
451 ornithine from 2-oxoglutarate, functions that have been related to inflammation and
452 vascular function^{29,32}, respectively. This observation supports the idea that those
453 functional changes in the gut microbiome in PLHIV using ART contribute to the
454 persistent inflammation seen in these individuals.

455 Infected long-lived memory CD4⁺ T cells make up the majority of cell types
456 constituting the HIV reservoir⁴³. To the best of our knowledge, no other studies have
457 ever reported associations between the microbiome and the HIV reservoir. We analyzed
458 HIV-1 DNA and RNA levels in isolated circulating CD4⁺ T cells, which reflect the size
459 of the HIV reservoir⁴⁴. We found that *Firmicutes bacterium CAG 95* negatively
460 correlated with CA-HIV-DNA levels and that the relation between *R. lactatiformans*
461 and CA-HIV-RNA level was positive, while *Prevotella* species showed negative
462 associations with CA-HIV-DNA and CA-HIV-RNA. How these bacterial species
463 modulate the HIV reservoir remains speculative. *R. lactatiformans* has been linked with
464 increased colonic IFN- γ ⁺ T cells and immune activation⁴⁵, while a decreased
465 abundance of *Firmicutes bacterium CAG 95* was found in subjects with hepatic
466 steatosis⁴⁶. A previous study identified several immunogenic HLA-DR-presented *P.*
467 *copri* peptides with the ability to induce T cells to produce the anti-viral cytokine IFN-
468 γ ^{47,48}. In our study, the *P. copri* healthy control-related strain was associated with
469 decreased levels of IL-6 and TNF production, both of which can facilitate HIV-1
470 replication⁴⁹.

471 We also investigated the role of HIV-associated gut dysbiosis in cytokine production
472 capacity. HIV viral proteins can induce production of IL-10 by immune cells ⁵, which
473 can be significantly reduced upon effective ART ⁵⁰. A previous study isolated PBMCs
474 from six untreated chronic infected PLHIV and six HCs and then cultured the PBMCs
475 with bacterial lysates from type strains, with the PLHIV showing elevated levels of IL-
476 10 in response to *P. copri* in comparison with HCs ¹⁰. In contrast, the PLHIV in our
477 study received long-term ART, possibly resulting in a heterogeneous *P. copri*
478 population that was negatively associated with IL-10 production capacity in the host.
479 In addition to IL-10, HIV infection also induces priming of the monocyte IL-1 β
480 pathway in long-term treated PLHIV ¹. Furthermore, our observations suggest that *B.*
481 *vulgatus* was differentially associated with Pam3Cys-induced IL-1 β production
482 between PLHIV and HCs.

483 *P. copri* is not a monospecific taxonomic group and has many distinct clades with
484 different immune functions ⁵¹. We therefore further investigated whether distinct *P.*
485 *copri* strains were associated with different cytokine production and identified two *P.*
486 *copri* strains: an HIV-related strain that showed enrichment in PLHIV and a control-
487 related strain that was enriched in HCs. Only the control-related strain showed a
488 negative association with IL-10, IL-6 and TNF production capacity, with no association
489 found with the HIV-related strain. However, even when virologically suppressed, long-
490 term treated PLHIV have significantly higher production levels of IL-10, IL-6 and TNF
491 compared to HCs ¹, which contributes to the chronic inflammation, HIV replication and
492 disease progression in PLHIV ^{49,50,52}, suggesting that the control-related strain plays a
493 potentially protective role. The control-related strain consistently showed a positive
494 association with CD4 counts and CD4-recovery-abs, which also supports this strain's
495 beneficial role in chronic inflammation. A large proportion of PLHIV seem to have lost
496 this control-related *P. copri* strain, possibly leading to higher levels of IL-10, IL-6 and
497 TNF production. Furthermore, the negative association between the control-related
498 strain and cytokine production was observed in PLHIV, suggesting the altered immune
499 system of long-term treated PLHIV may contribute to the strain–cytokine association.
500 Mechanistically, five kinds of *P. copri* peptides have been found to induce IFN- γ
501 production by T cells ⁴⁷, with one peptide showing enrichment in the control-related
502 strain that may contribute to its immune function.

503 A limitation of this study is potential batch effects among the different cohorts due to
504 non-biological factors such as technical differences. We also did not have an
505 independent cohort of PLHIV to validate our findings, but we could replicate the DI
506 and FI scores in the 500FG cohort (built in the same medical center as the PLHIV

507 cohort). Additionally, data on sexual behavior was only available for PLHIV and not
508 for HCs. Most of the PLHIV were MSM, so our conclusions may not be generalizable
509 to all PLHIV. To accurately indicate the effects on the gut microbiome of HIV itself vs.
510 sexual practice, it is best to select HCs that consist of mainly MSM. Finally, no IL-10
511 production data were available from HCs, making it hard to compare the changes in IL-
512 10 production capacity between PLHIV and HCs.

513 In conclusion, we observed differential microbial composition and function on species-
514 and strain-level in long-term treated PLHIV. This HIV-associated bacterial signature
515 was linked with HIV reservoir parameters and with PBMC production capacity of IL-
516 1 β and IL-10. A large fraction of the PLHIV have lost the control-related *P. copri* strain
517 that was associated with IL-10, IL-6 and TNF production capacity and with CD4 counts
518 and CD4-recovery-abs. The loss of this control-related strain may contribute to a higher
519 level of IL-10, IL-6 and TNF production in PLHIV and to later immune activation and
520 dysfunction. Our observation has provided deeper insight into the critical role of the
521 gut microbiome during HIV infection. In the near future, the *P. copri* strain may be
522 used as part of treatment for chronic inflammation, particularly cytokine imbalance.

523 **Materials and methods**

524

525 **Study cohorts**

526 The HIV cohort used in this study was described in our previous study ¹ in which we
527 recruited 211 PLHIV from the HIV clinic of the Radboud University Medical Center
528 between December 2015 and February 2017. All participants were Caucasian
529 individuals from the Netherlands. Study participants self-collected stool at their homes
530 no more than 24h prior to study visits and stored the specimens in a refrigerator until
531 being brought in for their visits. For this study, 143 metagenomic sequencing samples
532 were available. Participants were excluded if they reported any antibiotics usage in the
533 3 months prior to fecal sample collection. One fecal sample was analyzed per individual.
534 We included 190 age- and sex-matched HCs from the DMP cohort as the control group
535 ⁵³. To replicate our findings in independent cohort, we also included 173 sex-matched
536 HCs from 500FG cohort ²².

537

538 **Metagenomic data generation and profiling**

539 The same protocol for fecal DNA isolation and metagenomic sequencing was used for
540 both HIV samples and healthy control samples. Fecal DNA isolation was performed
541 using the QIAamp Fast DNA Stool Mini Kit (Qiagen; cat. 51604). Fecal DNA was sent
542 to Novogene to conduct library preparation and perform whole-genome shotgun
543 sequencing on the Illumina HiSeq platform. Low quality reads and reads belonging to
544 human genome were removed by mapping the data to the human reference genome
545 (version HCBI37) using KneadData (v0.7.4). After filtering, the average read depth was
546 26.8 million for 143 HIV samples, 23.1 million for 190 DMP samples and 25.1 million
547 for 173 500FG samples. Microbial taxonomic and functional profiles were determined
548 using Metaphlan3 (v3.0.7) ³⁸ and HUMAnN3 (v3.0.0.alpha.3) ³⁸. The reads identified
549 by MetaPhlAn3 are mapped to species-specific pangenomes with UniRef90
550 annotations, and the MetaPhlAn3-unclassified reads are translated and aligned to a
551 protein database. Bacteria/pathways present in < 20% of the samples from one cohort
552 were discarded.

553

554 **Strain profiles and analysis**

555 We used Pangeno-based Phylogenomic Analysis3 (PanPhlAn3) ³⁸ to identify the
556 gene composition at the strain level. A total of 4,971 gene families from the *P. copri*
557 pangenome were detected across 254 samples from the three cohorts. After filtering out
558 the gene families that appeared in < 20% of all samples, 4260 gene families were
559 studied in the subsequent analysis. A Jaccard distance matrix was built according to the

560 presence/absence pattern of gene families. The strain cluster tree was constructed using
561 the R basic function *hclust* with the hierarchical clustering method “complete”. Three
562 strain clusters were defined at a tree height of 0.4. Visualizations were generated using
563 the *dendextend* R package. Differentially abundant gene families were obtained using
564 a logistic regression model, controlling for sex, age and read counts. The subsequent
565 GO enrichment analysis was conducted using the *clusterProfiler* R package (v. 3.18.1)
566 (*P. copri* GO annotation from PhanPhlan3), where the p.value for enrichment can be
567 calculated by hypergeometric distribution. In the association analysis between cytokine
568 production and HIV-related parameters and the two *P. copri* strains, we used linear
569 regression, controlling for age, sex, read counts and sexual behavior, and using FDR <
570 0.1 as the significant threshold. We identified five *P. copri* peptides with immune
571 function in IEDB⁵⁴ (Supplementary Table 23) and checked their abundance across the
572 two strains in PLHIV and HCs using ShortBRED⁵⁵ using linear regression and
573 controlling for age, sex and read counts.

574

575 **Microbial compositional and differential abundance analysis**

576 The relative abundance data obtained from MetaPhlan3 was used to calculate bacterial
577 diversity using the vegan R package (v. 2.5-7). Alpha diversity was calculated using
578 the *diversity* function. The Bray-Curtis distance n-by-n matrix was built using the
579 *vegdist* function, and then the PERMANOVA statistical test was applied on the matrix.
580 We used the PCoA method to visualize the dissimilarities of beta diversity between
581 different cohorts. To obtain the differentially abundant bacterial species and pathways
582 between PLHIV and HCs, we first transformed the relative abundance data using CLR-
583 transformation, as described before⁵³. Bacteria/pathways present in < 20% samples in
584 at least one cohort were then discarded, and the remaining data were inverse-rank-
585 transformed to follow a normal distribution. A linear regression model was then fitted,
586 controlling for BMI, smoking status and read counts. Benjamini-Hochberg correction
587 was used to correct for multiple hypothesis testing (using FDR < 0.05 as the
588 significance threshold). DI and FI scores were calculated as the log2 ratio between
589 geometric means of relative abundances of species/pathways that were enriched in
590 PLHIV (linear regression FDR < 0.05 and HIV cohort beta > 0 in PLHIV vs. HCs) and
591 depleted in PLHIV (linear regression FDR < 0.05 and HIV cohort beta < 0 in PLHIV
592 vs. HCs). DI and FI scores for HCs from the 500FG cohort were calculated using the
593 same species/pathways from the comparison between the HIV and DMP cohorts.

594

595 **Measurement and analysis of *ex vivo* PBMC cytokine production**

596 The detailed methods of *ex vivo* PBMC stimulation and cytokines measurements have
597 been described before.¹ In short, density centrifugation was performed on freshly
598 collected venous blood to obtain the isolation of PBMCs. The freshly isolated cells
599 were then incubated with different bacterial, fungal and viral stimuli at 37°C and 5%
600 CO₂ for either 24 hours or 7 days. IL-1 β , IL-6, IL-1Ra, IL-10 and TNF were determined
601 in the supernatants of the 24-hour PBMC or monocyte stimulation experiments using
602 ELISAs. IL-17, IL-22 and IFN- γ were measured after the 7-day stimulation of PBMCs.
603 Cytokine production data for the 500FG cohort was obtained using the same method,
604 and the measurements that overlapped with those in the HIV cohort are summarized in
605 the Supplementary Table 9. For the comparison of cytokine production between PLHIV
606 and HCs from 500FG, we used different samples compared with the previous studies
607 ^{1,36}, so we conducted a re-analysis. A linear regression model was used, with correction
608 for sex and age, using FDR < 0.05 as the significant threshold. Differentially abundant
609 cytokine production and eight kinds of anti-inflammatory cytokine production (IL-10
610 and IL-1Ra) were included in the subsequent analysis.

611

612 **Microbial associations to HIV-related phenotypes and cytokine production 613 capacity**

614 For association analysis between gut microbiome and HIV-related phenotypes and
615 cytokine production capacity, we included bacterial alpha diversity (Shannon index),
616 beta diversity, P/B ratio, DI and FI score, as well as 76 species and 163 pathways that
617 were significantly different between PLHIV and HCs from DMP cohort. Before
618 Spearman correlation analysis, we first inverse-rank-transformed the data to follow a
619 standard normal distribution, then adjusted all phenotypes for confounding factors (age,
620 sex and read counts), and additionally adjusted for SO and Num-P, with FDR < 0.1 as
621 the significant threshold.

622

623 **Supplemental information**

624 Supplemental materials are available.

625

626 **Acknowledgements**

627 We thank all the volunteers in the 200HIV cohort, DMP cohort and 500FG cohort for
628 their participation and the project staff for their help and management. This research
629 was funded by Dutch Heart Foundation IN-CONTROL (CVON2018-27, to A.Z., L.J.,
630 M.G.N., and J.F.). J.F. is also supported by the ERC Consolidator grant (grant
631 agreement No. 101001678), NWO-VICI grant VI.C.202.022, and the Netherlands
632 Organ-on-Chip Initiative, an NWO Gravitation project (024.003.001) funded by the

633 Ministry of Education, Culture and Science of the government of The Netherlands. A.Z.
634 is supported the ERC Starting Grant 715772, NWO-VIDI grant 016.178.056, and the
635 NWO Gravitation grant Exposome-NL (024.004.017). M.G.N was supported by an
636 ERC Advanced Grant and a Spinoza Grant of the Netherlands Organization for
637 Scientific Research. R.K.W. is supported by the Seerave Foundation and the Dutch
638 Digestive Foundation (16-14). Y.Z. is supported by a joint fellowship from the
639 University Medical Centre Groningen and China Scholarship Council
640 (CSC202006170040). We also thank the Genomics Coordination Center for providing
641 data infrastructure and access to high performance computing clusters, Kate McIntrye
642 for critical reading and editing and Maartje Cleophas for data management and transfer.
643

644 **Author contributions**

645 J.F. and A.v.d.V. conceptualized and managed the study. W.v.d.H., L.V., Q.d.M.,
646 L.A.B.J., R.K.W., A.Z. and M.G.N. contributed to data generation. Y.Z., S.A., D.W.
647 and R.G. analyzed the data. Y.Z., J.F. and A.v.d.V. drafted the manuscript. S.A., N.V.,
648 D.W., V.M., W.v.d.H., R.G., R.K.W., A.Z., L.V., Q.d.M., L.A.B.J., and M.G.N.
649 reviewed and edited the manuscript.

650

651 **Competing interests**

652 The authors declare no competing interests.

653

654 **Correspondence contact**

655 Correspondence should be addressed to

656 J.F. (j.fu@umcg.nl) and A.v.d.V. (andre.vanderven@radboudumc.nl).

657

658 **Ethical approval**

659 The 200HIV study was approved by the Medical Ethical Review Committee region
660 Arnhem-Nijmegen (CMO2012-550). For the Dutch Microbiome Project (DMP) cohort,
661 the Lifelines study was approved by the medical ethical committee from the University
662 Medical Center Groningen (METc number: 2017/152). The 500 Functional Genomics
663 (500FG) study was approved by the Ethical Committee of Radboud University
664 Nijmegen (NL42561.091.12, 2012/550). All informed consents were collected for all
665 participants. Experiments were conducted in accordance with the principles of the
666 Declaration of Helsinki.

667

668 **Data Availability**

669 All relevant data supporting the key findings of this study are available within the article
670 and its Supplementary Information files. The raw metagenomic sequencing data of all
671 subjects were all publicly available: the 200HIV cohort via NCBI Short Read Archive
672 (SRA) under accession number PRJNA820547 (BioProject), the DMP cohort via the
673 European Genome-Phenome Archive under accession number EGAS00001005027 and
674 the 500FG cohort via SRA under accession number PRJNA319574 (BioProject). Due
675 to informed consent regulation, the clinical data of the 200HIV cohort, the 500FG
676 cohort and the DMP cohort are available upon request to Radboud University Medical
677 Center and the LifeLines, respectively. This includes the submission of a letter of
678 intention to the corresponding data access committee: the data access committee for the
679 200HIV cohort (Maartje Jacob-Cleophas, e-mail: Maartje.Jacobs-
680 Cleophas@radboudumc.nl), the Lifelines Data Access Committee for the Dutch
681 Microbiome Project (<https://forms.gle/eHeBdXJMXbVvCJRc8>), and the Human
682 Functional Genomics Data Access Committee for 500FG (Martin Jaeger, e-mail:
683 Martin.Jaeger@radboudumc.nl). Data sets can be made available under a data transfer
684 agreement and the data usage access is subject to local rules and regulations.

685

686 **Code availability**

687 For this study, the following software was used: KneadData (v0.7.4), Bowtie2
688 (v2.3.4.2), MetaPhlAn2 (v3.0.7), HUMAnN2 (v 3.0.0.alpha.3), PanPhlAn (v 3.1) and
689 shortBRED (v0.9.5). Code used for the statistical analyses is publicly available at
690 GitHub: <https://github.com/White-Shinobi/HIV-and-gut-microbiome>.

691

692

693 **References**

694

- 695 1. van der Heijden, W. A. *et al.* Chronic HIV infection induces transcriptional and
696 functional reprogramming of innate immune cells. *JCI insight* **6**, (2021).
- 697 2. Hileman, C. O. & Funderburg, N. T. Inflammation, Immune Activation, and
698 Antiretroviral Therapy in HIV. *Curr. HIV/AIDS Rep.* **14**, 93–100 (2017).
- 699 3. Keating, S. M., Jacobs, E. S. & Norris, P. J. Soluble mediators of inflammation
700 in HIV and their implications for therapeutics and vaccine development.
Cytokine Growth Factor Rev. **23**, 193–206 (2012).
- 701 4. Osuji, F. N., Onyenekwe, C. C., Ahaneku, J. E. & Ukibe, N. R. The effects of
703 highly active antiretroviral therapy on the serum levels of pro-inflammatory
704 and anti-inflammatory cytokines in HIV infected subjects. *J. Biomed. Sci.* **25**,
705 88 (2018).

706 5. Planès, R., Serrero, M., Leghmari, K., BenMohamed, L. & Bahraoui, E. HIV-1
707 Envelope Glycoproteins Induce the Production of TNF- α and IL-10 in Human
708 Monocytes by Activating Calcium Pathway. *Sci. Rep.* **8**, 17215 (2018).

709 6. Klatt, N. R., Chomont, N., Douek, D. C. & Deeks, S. G. Immune activation and
710 HIV persistence: implications for curative approaches to HIV infection.
Immunol. Rev. **254**, 326–342 (2013).

712 7. Crakes, K. R. & Jiang, G. Gut Microbiome Alterations During HIV/SIV
713 Infection: Implications for HIV Cure. *Front. Microbiol.* **10**, 1104 (2019).

714 8. Vujkovic-Cvijin, I. & Somsouk, M. HIV and the Gut Microbiota: Composition,
715 Consequences, and Avenues for Amelioration. *Curr. HIV/AIDS Rep.* **16**, 204–
716 213 (2019).

717 9. Vázquez-Castellanos, J. F. *et al.* Interplay between gut microbiota metabolism
718 and inflammation in HIV infection. *ISME J.* **12**, 1964–1976 (2018).

719 10. Lozupone, C. A. *et al.* Alterations in the gut microbiota associated with HIV-1
720 infection. *Cell Host Microbe* **14**, 329–339 (2013).

721 11. Ray, S. *et al.* Altered Gut Microbiome under Antiretroviral Therapy: Impact of
722 Efavirenz and Zidovudine. *ACS Infect. Dis.* **7**, 1104–1115 (2021).

723 12. Pinto-Cardoso, S. *et al.* Fecal Bacterial Communities in treated HIV infected
724 individuals on two antiretroviral regimens. *Sci. Rep.* **7**, 43741 (2017).

725 13. Tuddenham, S., Koay, W. L. & Sears, C. HIV, Sexual Orientation, and Gut
726 Microbiome Interactions. *Dig. Dis. Sci.* **65**, 800–817 (2020).

727 14. Armstrong, A. J. S. *et al.* An exploration of Prevotella-rich microbiomes in
728 HIV and men who have sex with men. *Microbiome* **6**, 198 (2018).

729 15. Vujkovic-Cvijin, I. *et al.* Dysbiosis of the gut microbiota is associated with
730 HIV disease progression and tryptophan catabolism. *Sci. Transl. Med.* **5**,
731 193ra91 (2013).

732 16. Vujkovic-Cvijin, I. *et al.* HIV-associated gut dysbiosis is independent of sexual
733 practice and correlates with noncommunicable diseases. *Nat. Commun.* **11**,
734 2448 (2020).

735 17. Ishizaka, A. *et al.* Unique Gut Microbiome in HIV Patients on Antiretroviral
736 Therapy (ART) Suggests Association with Chronic Inflammation. *Microbiol.*
737 *Spectr.* **9**, e0070821 (2021).

738 18. El-Far, M. *et al.* Upregulated IL-32 Expression And Reduced Gut Short Chain
739 Fatty Acid Caproic Acid in People Living With HIV With Subclinical
740 Atherosclerosis. *Front. Immunol.* **12**, 664371 (2021).

741 19. Dillon, S. M. *et al.* HIV-1 infection of human intestinal lamina propria CD4+ T
742 cells in vitro is enhanced by exposure to commensal *Escherichia coli*. *J. Immunol.* **189**, 885–896 (2012).

743 20. Dillon, S. M. *et al.* Enhancement of HIV-1 infection and intestinal CD4+ T cell
744 depletion ex vivo by gut microbes altered during chronic HIV-1 infection.
745 *Retrovirology* **13**, 5 (2016).

746 21. Dillon, S. M. *et al.* Low abundance of colonic butyrate-producing bacteria in
747 HIV infection is associated with microbial translocation and immune
748 activation. *AIDS* **31**, 511–521 (2017).

749 22. Schirmer, M. *et al.* Linking the Human Gut Microbiome to Inflammatory
750 Cytokine Production Capacity. *Cell* **167**, 1897 (2016).

751 23. Gootenberg, D. B., Paer, J. M., Luevano, J.-M. & Kwon, D. S. HIV-associated
752 changes in the enteric microbial community: potential role in loss of
753 homeostasis and development of systemic inflammation. *Curr. Opin. Infect.*
754 *Dis.* **30**, 31–43 (2017).

755 24. Nowak, P. *et al.* Gut microbiota diversity predicts immune status in HIV-1
756 infection. *AIDS* **29**, 2409–2418 (2015).

757 25. Zilberman-Schapira, G. *et al.* The gut microbiome in human immunodeficiency
758 virus infection. *BMC Med.* **14**, 83 (2016).

759 26. Vázquez-Castellanos, J. F. *et al.* Altered metabolism of gut microbiota
760 contributes to chronic immune activation in HIV-infected individuals. *Mucosal*
761 *Immunol.* **8**, 760–772 (2015).

762 27. Gosmann, C. *et al.* Lactobacillus-Deficient Cervicovaginal Bacterial
763 Communities Are Associated with Increased HIV Acquisition in Young South
764 African Women. *Immunity* **46**, 29–37 (2017).

765 28. Daillère, R. *et al.* *Enterococcus hirae* and *Barnesiella intestihominis* Facilitate
766 Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. *Immunity*
767 **45**, 931–943 (2016).

768 29. Murray, M. F. Tryptophan depletion and HIV infection: a metabolic link to
769 pathogenesis. *Lancet. Infect. Dis.* **3**, 644–652 (2003).

770 30. Papadia, C. *et al.* Plasma citrulline as a quantitative biomarker of HIV-
771 associated villous atrophy in a tropical enteropathy population. *Clin. Nutr.* **29**,
772 795–800 (2010).

773 31. Baumgartner, M. R. *et al.* Hyperammonemia with reduced ornithine, citrulline,
774 arginine and proline: a new inborn error caused by a mutation in the gene
775 encoding delta(1)-pyrroline-5-carboxylate synthase. *Hum. Mol. Genet.* **9**,
776 2853–2858 (2000).

777

778 32. Dirajlal-Fargo, S. *et al.* Comprehensive assessment of the arginine pathway and
779 its relationship to inflammation in HIV. *AIDS* **31**, 533–537 (2017).

780 33. Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. *Proc.
781 Natl. Acad. Sci. U. S. A.* **101**, 13168–13173 (2004).

782 34. Ling, Z. *et al.* Alterations in the Fecal Microbiota of Patients with HIV-1
783 Infection: An Observational Study in A Chinese Population. *Sci. Rep.* **6**, 30673
784 (2016).

785 35. Dillon, S. M. *et al.* An altered intestinal mucosal microbiome in HIV-1
786 infection is associated with mucosal and systemic immune activation and
787 endotoxemia. *Mucosal Immunol.* **7**, 983–994 (2014).

788 36. Van de Wijer, L. *et al.* The Architecture of Circulating Immune Cells Is
789 Dysregulated in People Living With HIV on Long Term Antiretroviral
790 Treatment and Relates With Markers of the HIV-1 Reservoir,
791 Cytomegalovirus, and Microbial Translocation. *Front. Immunol.* **12**, 661990
792 (2021).

793 37. Scholz, M. *et al.* Strain-level microbial epidemiology and population genomics
794 from shotgun metagenomics. *Nat. Methods* **13**, 435–438 (2016).

795 38. Beghini, F. *et al.* Integrating taxonomic, functional, and strain-level profiling of
796 diverse microbial communities with biobakery 3. *Elife* **10**, (2021).

797 39. Chang, Y.-J. *et al.* Complete genome sequence of Acidaminococcus
798 fermentans type strain (VR4). *Stand. Genomic Sci.* **3**, 1–14 (2010).

799 40. Parada Venegas, D. *et al.* Short Chain Fatty Acids (SCFAs)-Mediated Gut
800 Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel
801 Diseases. *Front. Immunol.* **10**, 277 (2019).

802 41. Schröder, C., Matthies, A., Engst, W., Blaut, M. & Braune, A. Identification
803 and expression of genes involved in the conversion of daidzein and genistein
804 by the equol-forming bacterium *Slackia isoflavoniconvertens*. *Appl. Environ.
805 Microbiol.* **79**, 3494–3502 (2013).

806 42. Zagato, E. *et al.* Endogenous murine microbiota member *Faecalibaculum*
807 rodentium and its human homologue protect from intestinal tumour growth.
808 *Nat. Microbiol.* **5**, 511–524 (2020).

809 43. Churchill, M. J., Deeks, S. G., Margolis, D. M., Siliciano, R. F. & Swanson,
810 R. HIV reservoirs: what, where and how to target them. *Nature reviews.
811 Microbiology* vol. 14 55–60 (2016).

812 44. Rutsaert, S., De Spieghelaere, W., De Clercq, L. & Vandekerckhove, L.
813 Evaluation of HIV-1 reservoir levels as possible markers for virological failure

814 during boosted darunavir monotherapy. *J. Antimicrob. Chemother.* **74**, 3030–
815 3034 (2019).

816 45. Frankel, A. E. *et al.* Cancer Immune Checkpoint Inhibitor Therapy and the Gut
817 Microbiota. *Integr. Cancer Ther.* **18**, 1534735419846379 (2019).

818 46. Zeybel, M. *et al.* Multi-omics analysis reveals the impact of microbiota on host
819 metabolism in hepatic steatosis. *medRxiv* 2021.05.22.21257482 (2021)
820 doi:10.1101/2021.05.22.21257482.

821 47. Pianta, A. *et al.* Identification of Novel, Immunogenic HLA-DR-Presented
822 Prevotella copri Peptides in Patients With Rheumatoid Arthritis. *Arthritis*
823 *Rheumatol. (Hoboken, N.J.)* **73**, 2200–2205 (2021).

824 48. Kak, G., Raza, M. & Tiwari, B. K. Interferon-gamma (IFN- γ): Exploring its
825 implications in infectious diseases. *Biomol. Concepts* **9**, 64–79 (2018).

826 49. Connolly, N. C., Riddler, S. A. & Rinaldo, C. R. Proinflammatory cytokines in
827 HIV disease-a review and rationale for new therapeutic approaches. *AIDS Rev.*
828 **7**, 168–180 (2005).

829 50. Brockman, M. A. *et al.* IL-10 is up-regulated in multiple cell types during
830 viremic HIV infection and reversibly inhibits virus-specific T cells. *Blood* **114**,
831 346–356 (2009).

832 51. Iljazovic, A., Amend, L., Galvez, E. J. C., de Oliveira, R. & Strowig, T.
833 Modulation of inflammatory responses by gastrointestinal Prevotella spp. -
834 From associations to functional studies. *Int. J. Med. Microbiol.* **311**, 151472
835 (2021).

836 52. Mahajan, S. D. *et al.* Role of chemokine and cytokine polymorphisms in the
837 progression of HIV-1 disease. *Biochem. Biophys. Res. Commun.* **396**, 348–352
838 (2010).

839 53. Gacesa, R. *et al.* The Dutch Microbiome Project defines factors that shape the
840 healthy gut microbiome. *bioRxiv* 1–33 (2020).

841 54. Vita, R. *et al.* The Immune Epitope Database (IEDB): 2018 update. *Nucleic*
842 *Acids Res.* **47**, D339–D343 (2019).

843 55. Kaminski, J. *et al.* High-Specificity Targeted Functional Profiling in Microbial
844 Communities with ShortBRED. *PLoS Comput. Biol.* **11**, e1004557 (2015).

845