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Abstract 

Background 

Expression quantitative trait loci (eQTL) studies have shown how genetic variants affect 

downstream gene expression. To identify the upstream regulatory processes, single-cell 

data can be used. Single-cell data also offers the unique opportunity to reconstruct 

personalized co-expression networks4by exploiting the large number of cells per 

individual, we can identify SNPs that alter co-expression patterns (co-expression QTLs, 

co-eQTLs) using a limited number of individuals. 
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Results 

To tackle the large multiple testing burden associated with a genome-wide analysis (i.e. 

the need to assess all combinations of SNPs and gene pairs), we conducted a co-eQTL 

meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets from 

three studies (reflecting 173 unique participants and 1 million cells) using a novel 

filtering strategy followed by a permutation-based approach. Before analysis, we 

evaluated the co-expression patterns to be used for co-eQTL identification using 

different external resources. The subsequent analysis identified a robust set of cell-type-

specific co-eQTLs for 72 independent SNPs that affect 946 gene pairs, which we then 

replicated in a large bulk cohort. These co-eQTLs provide novel insights into how 

disease-associated variants alter regulatory networks. For instance, one co-eQTL SNP, 

rs1131017, that is associated with several autoimmune diseases affects the co-

expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, 

the SNP additionally affects co-expression of RPS26 and a group of genes associated 

with T cell-activation and autoimmune disease. Among these genes, we identified 

enrichment for targets of five T-cell-activation-related transcriptional factors whose 

binding sites harbor rs1131017. This reveals a previously overlooked process and 

pinpoints potential regulators that could explain the association of rs1131017 with 

autoimmune diseases. 

 

Conclusion 

Our co-eQTL results highlight the importance of studying gene regulation at the context-

specific level to understand the biological implications of genetic variation. With the 
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expected growth of sc-eQTL datasets, our strategy4combined with our technical 

guidelines4will soon identify many more co-eQTLs, further helping to elucidate 

unknown disease mechanisms. 

Background 

In recent years, genome-wide association studies (GWAS) have revealed a large 

number of associations between genetic variation and disease (1). Many of these 

variants also change downstream gene expression, as identified using expression 

quantitative trait locus (eQTL) analysis (2). However, even with many such connections 

now identified, the upstream biological processes that regulate these eQTLs often 

remain hidden. Such knowledge is important for better understanding the underlying 

processes that lead to specific disease, which would aide in drug development (3). 

One way to study the biological processes in which eQTL genes are involved is to 

construct gene co-expression networks. In these networks, genes (nodes) involved in 

shared biological processes are expected to be connected through co-expression 

(edges) (4). Traditionally, these networks have been reconstructed with bulk RNA 

sequencing (RNA-seq) data, using a variety of computational tools (537). However, 

whether certain biological processes are active can depend on various factors, such as 

cell type, environmental exposures and even single nucleotide polymorphisms (SNPs) 

(2,8,9). With single-cell technologies, many of these highly specific contexts can now be 

captured at high resolution. Single-cell RNA-seq (scRNA-seq) not only allows for cell-

type-specific analyses, it does so without the technical biases introduced by the cell-

sorting required to perform similar analyses with bulk RNA-seq. 
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In addition to capturing the cell-type-specific contexts, scRNA-seq can also be used to 

construct personalized co-expression networks using the repeated measurements (i.e. 

multiple single-cell gene expression profiles) for each individual. This enables 

quantification of the covariance between genes, and thus their co-expression strengths, 

within an individual (10). These personalized co-expression networks can then be used 

to study the effects of genetic variation on network properties. Some of these network 

changes can be linked to individual SNP genotypes, called co-expression quantitative 

trait loci (co-eQTLs). 

While we have previously shown that co-eQTLs can be both cell-type-specific and 

stimulation-specific, several challenges to systematic identification remain (10,11). 

Firstly, it is unclear how to best construct gene regulatory networks (GRNs) with scRNA-

seq data. Co-expression patterns identified from bulk RNA sequencing data have been 

shown to be informative for physical and functional gene3gene interactions (537), but it 

is unclear whether the co-expression patterns identified with scRNA-seq data also 

reflect gene3gene functional interactions given technical challenges of scRNA-seq data 

such as sparseness and low signal-to-noise ratios (12,13). These issues are caused by 

a combination of low mRNA counts in cells, imperfect capture efficiencies and the 

inherent stochasticity of mRNA expression (14). Many methods have been proposed to 

account for this issue. A recent benchmark paper (15) suggested 8rho proportionality9 

(16) as an association measure because of its consistent performance. Also 

complementary strategies could be beneficial, such as combining association measures 

with MetaCell, a recently proposed method that groups homogeneous cells to reduce 

sparsity, but to our knowledge it has not yet been evaluated in benchmark studies (17). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488925doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488925
http://creativecommons.org/licenses/by/4.0/


5 

Moreover, a recent benchmark paper concluded that different GRN construction 

methods show moderate performance that is often dataset-specific (18), indicating that 

many challenges remain in GRN reconstruction. Therefore, validation of the robustness 

and functional relevance of the network is warranted. 

Secondly, there is no consensus method for co-eQTL mapping and personalized GRN 

construction. In bulk data with only one measurement per individual, it is not possible to 

identify co-eQTLs directly. To carry out a similar type of analysis in bulk data, we 

previously used a linear regression model with an interaction term to identify interaction 

QTLs in bulk data from whole blood (8). This approach can reveal co-eQTLs using the 

expression levels of individual genes as interaction terms. However, as bulk data nearly 

always comprises a mixture of cell types, it is not straightforward to unequivocally 

conclude that eQTLs showing an interaction effect reflect co-eQTLs (genetic variants 

that affect the co-expression between pairs of genes). A further compounding problem 

is that very large numbers of samples are required to identify co-eQTLs, and effects that 

manifest in specific (rare) cell types can easily be missed because they are masked by 

more common cell types. In theory, single-cell data allows direct estimation of cell-type-

specific and individual-specific co-expression strength and should reduce the sample 

size requirement compared to bulk datasets. However, in practical terms, there are 

currently no datasets large enough to provide the statistical power to do genome-wide 

co-eQTL mapping, as this involves a large multiple testing burden due to billions of tests 

for every SNP and every possible gene pair combination. As such, there is a clear need 

for a robust co-eQTL strategy that can overcome the severe multiple testing issues and 
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deal with the aforementioned issues with regards to the construction of reliable 

personalized co-expression networks. 

In this work, we studied the genetic regulation of gene co-expression by conducting the 

largest-to-date co-eQTL meta-analysis in 173 peripheral blood mononuclear cell 

(PBMC) scRNA-seq samples. Before conducting this co-eQTL analysis, we determined 

the best strategy to identify cell-type-specific co-expression relationships in scRNA-seq 

data by benchmarking various methods and studying them in several independent 

datasets, including bulk RNA-seq and a CRISPR-coupled scRNA-seq screen knockout 

dataset. We then studied the effects of cell-type and inter-individual differences in gene 

co-expression networks by reconstructing personalized and cell-type-specific networks. 

We subsequently developed a robust co-eQTL mapping strategy with a novel filtering 

approach and an adapted permutation-based multiple testing procedure to deal with the 

correlation structure in the co-expression networks. By applying this strategy, we could 

perform a co-eQTL meta-analysis using data from three different scRNA-seq studies. 

We provided a comprehensive analysis of the different factors that affect the quality and 

quantity of co-eQTLs, including the number of cells, gene expression levels and filtering 

strategy. We then studied which biological processes and genes are regulated by the 

identified co-eQTLs by performing different enrichment analyses and exploring common 

biological functions, transcription factor (TF) binding and disease associations to try and 

pinpoint potential direct regulators of the co-eQTL genes. In sum, our results suggest 

that the combination of a robust method and a large sample size is crucial for 

identification of genetic variants that affect co-expression networks. 
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Results 

Overview of the study 

To uncover the contexts and biological processes that affect gene expression 

regulation, this study took advantage of both the resolution of single-cell data and the 

directionality captured by co-eQTLs. First, we constructed cell-type-specific co-

expression networks from three recently generated PBMC scRNA-seq studies totaling 

187 individuals and approximately one million cells. In two of the studies, donors were 

measured using two different versions of 10X Genomics chemistry (version 2 or version 

3). To avoid batch effects due to these technical differences, we split both studies into 

two datasets, depending on the chemistry, leading to five datasets in total: 1) two 

datasets from the Oelen study (11) that collected unstimulated PBMCs from 104 healthy 

individuals from the Northern Netherlands, a dataset measured using version 2 

chemistry (hereafter called the Oelen v2 dataset) and one measured using version 3 

chemistry (called the Oelen v3 dataset), 2) a dataset from the van der Wijst study (10) 

that collected unstimulated PBMCs from 45 healthy individuals from the Northern 

Netherlands measured using version 2 chemistry (called the 8van der Wijst9 dataset) and 

3) two datasets from the van Blokland study (19) that collected unstimulated PBMCs 

from 38 individuals 638 weeks after having a heart attack, one dataset measured using 

version 2 chemistry (called the van Blokland v2 dataset) and one measured using 

version 3 chemistry (called the van Blokland v3 dataset) (Figure 1a, Supplementary 

Table 1). 
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We focused on the six major cell types (B cells, CD4+ T cells, CD8+ T cells, dendritic 

cells (DCs), monocytes and natural killer (NK) cells), of which CD4+ T cells, CD8+ 

T cells and monocytes were the most frequent cell types (Supplementary Figure 1). 

We compared commonly used measures of correlation and those previously reported to 

be particularly suitable for capturing co-expression in scRNA-seq data, including rho 

proportionality (16), Spearman correlation and GRNBoost2 (20), and tested 

complementary strategies such as MetaCell (17). We validated that the co-expression 

patterns from our single-cell dataset are enriched for actual gene regulatory 

relationships by benchmarking the concordance of the co-expression patterns across 

the three single-cell studies (10,11,19) and three cell-type-specific or whole-blood bulk 

RNA-seq datasets (2,21,22) (Figure 1b). Furthermore, we validated identified 

connections with a CRISPR dataset (23). 

Next, we evaluated the concordance of the co-expression networks between the major 

blood cell types and between different individuals within each cell type (Figure 1b). To 

identify the genetic contribution to such common and cell-type-specific effects, we 

performed a constrained co-eQTL meta-analysis. For this, we filtered SNPs that exhibit 

an eQTL effect (with the corresponding gene referred to as an eGene below) and tested 

all genes with sufficient co-expression strength with the eGene (called co-eGenes 

below) among different individuals (Figure 1c). 

For the co-eQTL interpretation, we considered different scenarios that can lead to 

detection of co-eQTL. One is that the genetic variant changes the binding affinity of a 

TF and thus the regulation of its target gene, which would cause a co-eQTL between 

the variant, the TF and the target gene (Figure 1c). However, a co-eQTL will also occur 
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for all genes in strong correlation with this TF (Figure 1c), so we tried to identify directly 

interacting TFs via additional annotations and enrichment analyses. Other scenarios 

include genetic variants that change the structure of the TF and thereby its binding 

affinity and genetic variants that affect sub-cell-type composition and thus the 

correlation pattern of sub-cell-type-specific genes. 

We then replicated the identified co-eQTLs in a large bulk study (2), explored technical 

factors influencing the identification of co-eQTLs (sample size, number of cells, different 

filtering approaches) and biologically interpreted several examples of co-eQTLs (Figure 

1d). 
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Figure 1. Study overview. 

a) Overview of the three PBMC scRNA-seq studies used in our study. The studies, the 

version of the used chemistry for data generation (version 2, referred as v2, and version 

3, referred as v3), number of individuals involved (indicated as the number in the 

parenthesis), and relative composition of the major blood cell types used in this study. 

b) Co-expression benchmarking scheme. We first benchmarked co-expression patterns 

among the three scRNA-seq studies and compared them to co-expression patterns in 

different bulk datasets. As an additional external validation, we benchmarked both the 

scRNA-seq and bulk co-expression patterns with a CRISPR knockout dataset. After 
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benchmarking, we evaluated differences in co-expression patterns among cell types 

and among individuals within a cell type. c) Co-expression QTL (co-eQTL) mapping. 

Building on the benchmarked co-expression pattern, we developed a novel strategy to 

identify co-eQTLs (genetic variants changing co-expression). Part of the strategy is a 

strict filtering of tested SNP–eGene–co-eGene triplets, where the SNP is required to be 

an eQTL for one of the genes and the genes show significant correlation in at least a 

certain number of individuals. d) Co-expression QTL (co-eQTL) insights. co-eQTL 

mapping was conducted for each major blood cell type, then replicated in a bulk 

dataset. To evaluate technical influences, we assessed the impact of cell number, 

number of tests and the number of individuals on the number of significant co-eQTLs. 

Lastly, we interpreted the biological relevance of the co-eQTLs and reconstructed the 

gene regulatory network using identified co-eQTLs. 

Correlation validation 

Co-expression correlations can be assessed using various dependency measures. A 

recent benchmark study (15) reported that the proportionality measure from the propr 

package (16) outperforms several other methods in the identification of functional, 

coherent biological clusters. We observed high correlations between rho proportionality 

and Spearman correlations (r = 0.68) for genes expressed in > 5% of the cells 

(Supplementary Figure 2a), but for genes expressed in fewer cells, rho proportionality 

gave arbitrarily high values while the Spearman correlation remains near zero 

(Supplementary Figure 2b). The reason for the stark differences for very lowly 

expressed genes is probably that rho proportionality changes zero values to the next 
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lowest value of the gene pair, which may result in false positive associations (i.e. very 

high rho values) for lowly expressed gene pairs. Another drawback of rho proportionality 

is the high computational demand (24), which makes it challenging to evaluate all gene 

pairs. As the differences between Spearman correlation and rho proportionality are very 

small for highly expressed genes and Spearman correlation calculation is far more 

efficient and handles zero values better, we chose to use Spearman correlation over rho 

proportionality. 

We also tested other approaches, including GRNBoost2 (20), grouping cells into 

MetaCells (17) before calculation of Spearman correlation, and testing pseudotime 

ordering (25) and RNA velocity (26), but these did not yield more reliable results than 

Spearman correlation (Supplementary Figures 3,4,5; Supplementary Text). We 

therefore selected Spearman correlation to measure the co-expression patterns in 

scRNA-seq data for its robustness and simple interpretability. However, although we 

determined that Spearman correlation was optimal for the single-cell PBMC datasets 

that we studied, we cannot exclude that the other methods might be optimal for other 

single-cell datasets. 

We then evaluated whether the co-expression patterns obtained from scRNA-seq data 

are robust and reproducible across different single-cell datasets and whether they 

reflect functional interactions among genes. Benchmarking the co-expression patterns 

obtained from scRNA-seq data is difficult because, to our knowledge, there is no clear 

gold-standard dataset of known functional gene3gene interactions for different cell 

types. As an alternative approach to assess the reliability of the identified co-expression 
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relationships, we compared to what extent we could replicate the co-expression 

patterns found in one dataset in another dataset. 

We first compared the cell-type-specific co-expression patterns among the five scRNA-

seq datasets in our study (10,11,19). For this, we inferred the co-expression strength 

using Spearman correlation for each gene pair in each dataset and cell type, where 

gene pairs were only considered when both genes were expressed in at least 50% of 

the cells. We summarized the concordance between datasets by calculating the 

Pearson correlation on the gene pair correlation values. Overall, there was high 

concordance across all cell types (median r = 0.80 across all cell types). CD4+ T cells, 

the most abundant cell type in our dataset, had a high correlation across the different 

10X chemistries and datasets, with values ranging from 0.67 to 0.86 and a median of 

0.81 (Figure 2a). For CD8+ T cells and NK cells, we observed a comparably high 

correlation (CD8+ T cells median r = 0.86, NK cells median r = 0.80), while the 

correlation was slightly lower for the other cell types (monocytes median r = 0.69, 

B cells median r = 0.70, DCs median r = 0.71) (Supplementary Figure 6). The number 

of genes expressed in 50% of the cells varied between dataset and chemistry, so it was 

not always possible to test the same set of genes. In general, this filtering strategy is 

quite stringent, yielding a limited number of tested genes (at most 766 genes for the 

Oelen v3 dataset in CD4+ T cells, Figure 2a), which ensured a high-quality gene set to 

test due to the sparse single-cell data. A detailed evaluation of the expression cutoff 

follows in the next sections. 

Next, we compared the co-expression patterns from the single-cell datasets to three 

different bulk datasets from BLUEPRINT (21), ImmuNexUT (22) and the BIOS 
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Consortium (2). The BLUEPRINT dataset contains fluorescence-activated cell sorting 

(FACS)-sorted expression data from naive CD4+ T cells and classical monocytes for up 

to 197 individuals. The ImmuNexUT study collected gene expression data from 337 

patients for 28 FACS-sorted immune cell subsets. The BIOS dataset contains whole-

blood expression data from 3,198 individuals. Notably, the co-expression correlation 

between the single-cell and bulk-based datasets (Figure 2b) was much lower than 

those between the single-cell datasets alone (Figure 2a). 

Comparing our single-cell data with ImmuNexUT, the only dataset with cell-type-specific 

expression for all evaluated cell types, CD8+ T cells showed the highest correlation 

(median r = 0.570) and monocytes (median r = 0.395) and DCs (median r = 0.259) 

showed the lowest correlations (Figure 2b, Supplementary Figure 7). The correlations 

from BLUEPRINT were slightly lower but in the same range (CD4+ T cells median r = 

0.356, monocytes median r = 0.339) (Figure 2b, Supplementary Figure 7). Finally, we 

observed that the whole blood bulk data from the BIOS dataset correlated reasonably 

with the different single-cell cell types (median r between 0.265 and 0.458 across cell 

types; Figure 2b, Supplementary Figure 7). 

We studied this seemingly low correlation between bulk and single-cell data, and 

identified multiple factors that play a role. One is the sparseness of the single-cell data, 

which could introduce noise and therefore lead to less stable co-expression values. To 

test this, we correlated the co-expression from the Oelen v3 dataset with that from 

ImmuNexUT using varying expression cutoffs based on the number of cells expressing 

a gene (Figure 2c). Indeed, the sparseness of the single-cell data affects the 

correlation. We observed increased concordance with increasing gene expression 
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levels: the correlation increased from r = 0.21 for an expression cutoff of 10% to r = 0.71 

at a cutoff of 90%. However, the number of genes that can be tested dropped from 

4,482 at an expression cutoff of 10% to 172 at a cutoff of 90%. The same trends were 

observable when comparing the Oelen v3 dataset with the BLUEPRINT dataset for 

different cutoffs (Supplementary Figure 8). For this reason, we chose a cutoff of 50% 

as a trade-off between both extremes in our benchmarking study (Figure 2a,b,e,f). 

Other aspects that may affect correlations between genes are the difference in 

resolution and potential biases introduced by acquiring cell-type-specific data, such as 

the gene expression changes induced by FACS and the technical complications of 

deconvoluting cell types. Furthermore, the validity of bulk-based correlations is affected 

by the possibility of Simpson9s paradox occurring. Simpson9s paradox describes the 

incorrect introduction or removal of correlations by averaging expression levels. This 

can potentially occur in bulk datasets, whereas single-cell data can accurately identify 

the co-expression value since we can calculate co-expression values per cell type and 

per individual (Supplementary Figure 9a). To estimate the effects of this phenomenon, 

we recalculated co-expression from the single-cell data using a bulk-like approach, 

compared it to the normal single-cell co-expression values and observed several 

examples of highly expressed genes in which Simpson9s paradox occurs 

(Supplementary Figure 9b,c). However, taking the average gene expression over 

many cells also results in more robust expression estimates, which can generate less 

noisy co-expression estimates, especially for lowly expressed genes. For this reason, 

we cannot differentiate for all genes which co-expression differences between single-
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cell and bulk are caused by Simpson9s paradox and which are caused by noisy single-

cell data. 

To contextualize the correlation values between single-cell and bulk data, we also 

compared the bulk datasets with each other and assessed whether bulk datasets 

actually capture gene co-expression consistently. Surprisingly, the co-expression 

correlation similarity between bulk datasets was quite low (r between 0.47 and 0.52 for 

CD4+ T cells and between 0.35 and 0.42 for monocytes) (Figure 2d, Supplementary 

Figure 10). Given that these correlations are expected to be an upper bound when 

comparing bulk datasets with single-cell datasets, our observed correlations in those 

comparisons are very reasonable. 
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Figure 2. Evaluation of correlation metrics 

a) Comparison of the co-expression profiles among the different single-cell datasets in this 

study. Spearman correlation of the Oelen v2 and v3 datasets, the van Blokland v2 and v3 

datasets and the van der Wijst dataset were compared with each other, always taking the CD4+ 

T cells and genes expressed in at least 50% of the cells in the corresponding datasets. The 

number of genes tested is shown in parentheses below the exact Spearman correlation value. 

b) Comparison of the co-expression profiles between the single-cell datasets and with the bulk 

RNA-seq datasets from BLUEPRINT, ImmuNexUT (both measuring FACS-sorted naive CD4+ 

T cells) and BIOS (whole blood). Again, we only assessed genes expressed in at least 50% of 

the cells for the single-cell dataset (number of tested genes shown in parentheses below the 

Spearman correlation value). c) Relationship between the co-expression similarity between the 

ImmuNexUT naive CD4+ T cells and Oelen v3 dataset CD4+ T cells and increasing gene 

expression cutoffs (the ratio of cells with non-zero expression for a given gene). The number of 

genes tested are indicated by color scale and the numbers in the bar plot. d) Comparison of the 

co-expression profiles between the bulk RNA-seq datasets, taking the same gene subset as in 

a) and b). The number of tested genes is shown in parentheses below the exact Spearman 

correlation value. e) Enrichment of correlated genes in scRNA-seq (Oelen v3 dataset) among 

associated genes identified by CRISPR knockout. For the enrichment, genes differentially 

expressed after knockout of FOXP1, FUS, HNRNPK, IRF1 and PCBP1 were identified and 

tested for enrichment. P-values in the plot show the significance level of the Wilcoxon rank-sum 

test. f) Enrichment of correlated genes in bulk RNA-seq (ImmuNexUT) among associated genes 

identified by CRISPR knockout. See e) and Methods for further details. 

 

Given the imperfect correlation between the different bulk datasets, we used gene 

expression data from CRISPR-knockouts as an additional evaluation criterion. For this 
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purpose, we benchmarked the co-expression patterns from our single-cell datasets 

against a CRISPR knockout scRNA-seq dataset in CD4+ T cells (23). While a unique 

single-guide RNA barcode reveals which gene was targeted in which cell, some cells 

may escape from successful CRISPR perturbation. To account for this, we used 

Mixscape to assign a perturbation status to each cell (27). For each knockout, we then 

determined other genes that were differentially expressed (DE) in successfully 

perturbed cells compared to wild-type cells. We then selected genes for which 

perturbation resulted in at least 10 DE genes and compared the correlation of these DE 

genes with non-DE genes using the Wilcoxon rank-sum test (see Methods). For four 

out of five gene knockouts, we observed significantly higher correlation of the knockout 

gene with the DE genes than with non-DE genes (p < 0.05) in the single-cell dataset 

(Figure 2e). In contrast, the bulk naive CD4+ T cell data from ImmunNexUT showed a 

weaker connection between correlation and DE genes, with only two out of five 

knockout genes having significantly higher correlation with the DE genes (p < 0.05) 

(Figure 2f). 

As another line of evidence, we tested whether pairs of genes known to interact on the 

protein level showed higher co-expression correlation compared to other pairs of genes. 

Here we found that gene pairs with protein interactions listed in the STRING database 

(28) had a higher co-expression correlation than gene pairs not in STRING, both when 

using the single-cell dataset and the bulk dataset (for both Wilcoxon rank-sum test, p < 

0.05, Supplementary Figure 11). 

Overall, we have shown that single-cell data can identify true gene co-expression 

relationships as co-expression patterns from scRNA-seq data are highly replicable 
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among different datasets and are supported by functional interactions among genes 

identified by CRISPR perturbations and the STRING database. 

Cell type and donor differences in co-expression pattern 

Next, we examined cell-type-specific and individualized co-expression patterns. As 

expected, lymphoid cell types (B, T and NK cells, r > 0.73) were more alike with each 

other but they are less alike with myeloid cell types (monocytes and DCs, r > 0.45) 

(Figure 3a, Supplementary Figure 12a). However, myeloid cell types were not as alike 

to each other as lymphoid cell types. This is possibly due to the fact that DCs are one of 

the least abundant cell types (Supplementary Figure 1), which would have resulted in 

less accurate co-expression estimations. Overall, the correlation between different cell 

types within one scRNA-seq dataset (for Oelen v3 dataset median r = 0.64, Figure 3a) 

was generally lower than the correlation between different scRNA-seq datasets when 

studying a single cell type (median r = 0.80 across all cell types, Figure 2a, 

Supplementary Figure 6). These differences highlight cell-type-specific differences in 

the correlation pattern, further confirming the biological aspects captured by scRNA-seq 

co-expression values. We also explored the distribution of co-expression among cell 

types (Figure 3b, Supplementary Figure 12b). Typically, the correlations between 

gene pairs were rather low, with only a small proportion of gene pairs (median 12.4%) 

showing correlations above 0.1. However, we did observe cell-type-specific differences, 

with DCs possessing a higher proportion of co-expressed gene pairs compared to the 

other cell types (32.3% of gene pairs with r > 0.1). 
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In addition to detecting cell-type-specific associations, scRNA-seq enables direct 

calculation of co-expression correlations per individual as it provides many 

measurement points per donor. When we calculated the correlation separately for each 

donor and cell type, we observed overall strong correspondence of co-expression 

networks between different donors for the more frequent cell types (CD4+ T cells 

median r = 0.56, CD8+ T cells median r = 0.48, monocytes median r = 0.47) (Figure 3c, 

Supplementary Figure 12c). As a result of noisier estimates, the correlation between 

individuals was drastically lower for the less frequent cell types (DCs median r = 0.24, 

B cells median r = 0.06). Moreover, these correlations were much smaller than 

comparing one cell type across entire datasets (i.e. including all individuals at once), 

which showed correlations of at least 0.81 for CD4+ T cells, 0.64 for CD8+ T cells, 0.49 

for monocytes, 0.66 for NK cells, 0.62 for B cells and 0.38 for DCs (Figure 2a). This 

decline is potentially caused by the number of cells used to calculate the correlation, 

which is drastically lower when comparing donors within one dataset. The number of 

cells could also explain the differences between the cell types. To test this, we 

subsampled the number of cells for each cell type and indeed observed that the 

correlation increased when the number of cells increased (Figure 3d). Apart from the 

number of cells, we also observed potential cell type differences. The similarities 

between individuals were significantly smaller in NK cells compared to monocytes and 

T cells, when the same number of cells was used (Figure 3d). We also confirmed these 

observations in another scRNA-seq dataset (Supplementary Figure 12d). 

We further explored the relationship between the number of cells per individual and the 

correlation between individuals by fitting a logarithmic curve for the four most frequent 
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cell types: CD4+ T cells, CD8+ T cells, monocytes and NK cells (Supplementary 

Figure 13). Each of the observed trends could be fit well with the logarithmic curve 

(adjusted R2 values between 0.86 and 0.98). We then extrapolated the trend to 1,000 

cells, showing that a correlation > 0.80 would be expected for T cells and monocytes 

with this number of cells and a correlation of 0.65 for NK cells (Supplementary Figure 

13). We acknowledge, however, that the exact upper bound for the correlation between 

donors cannot be estimated accurately with our current dataset. For example, the 

correlation close to 100% for CD4+ T cells and 1,500 cells is likely too high considering 

that donor-specific differences such as genetics and environment will remain 

independent of the number of cells. Nevertheless, our fits highlight the value of having 

measurements from many cells for accurate correlation estimates as well as cell-type-

specific differences in the correlation pattern. 

During this comparison, we observed a few gene pairs that showed a high variance in 

correlation across donors within one cell type (median fraction of gene pairs with 

correlation Z-score variance > 2 across cell types: 4.9% for Oelen v2 dataset and 3.3% 

for Oelen v3 dataset, Supplementary Figure 14). This high variance could, in theory, 

be caused by different sources, e.g. technical factors or environmental influences, but 

could also reflect genetic differences between individuals. Since we observed low co-

expression variance between different individuals for the same cell type and similar 

numbers of cells (Figure 3d), we concluded that these differences are not likely to 

originate from technical factors, and thus we next looked into genetic variation as one of 

the other potential major influences. 
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Figure 3. Comparison of correlation across cell types and donors 

Each analysis was performed in the Oelen v3 dataset for all genes expressed in at least 50% of 

the cells of the respective cell type. a) Comparing co-expression patterns across cell types 

within the Oelen v3 dataset for genes expressed in 50% of the cells for both cell types in each 

pair-wise comparison. The number of tested genes is shown in parenthesis below the 

Spearman correlation value. b) Correlation distribution within each cell type. c) Correlation 

between different individuals within each cell type showing the distribution of all pair-wise 

comparisons between individuals. d) Relationship between the number of cells per individual 

and cell type and correlation between individuals separately for each cell type. In each 

subsampling step, we assessed all individuals who have at least this number of cells and 
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subsampled to exactly this number (this leads to removal of some individuals for higher number 

of cells and thus, a direct comparison with the correlation values in c) is not possible). 

Establishing a method to identify co-expression QTLs 

To assess how strongly genetic variation influences the correlation between pairs of 

genes, we performed a co-eQTL analysis. In contrast to classical eQTL analysis, co-

eQTL analysis not only reveals the downstream target gene whose expression is 

affected by a genetic variant, it can also help identify the upstream regulatory factors 

that affect these eQTLs, as discussed in the Overview. 

Compared to an eQTL analysis, a full co-eQTL analysis with all SNP3gene pair 

combinations would massively increase the multiple testing burden. Previously, we 

showed the necessity of filtering the SNP3gene pair combinations to reduce the multiple 

testing burden associated with a genome-wide co-eQTL analysis on all possible triplets 

while not missing true co-eQTLs (11). For example, in our current study, testing all pairs 

of genes expressed in monocytes would lead to 1.96×108 tests when considering only 

one SNP per pair and to a very limited power to detect small effect sizes (power of 1.4% 

to detect a significant effect for a phenotype (here the co-expression relationship) with a 

heritability of 10% that is explained by a single locus, Supplementary Figure 15). 

In this study, we aimed to define a generally applicable filtering strategy that yields a 

large number of highly confident co-eQTLs. First, we decided to focus on cis-eQTL 

SNPs and genes because we expect a SNP influencing the co-expression of two genes 

to also influence the expression of one of the genes directly (a strategy we applied 

successfully before in (10,11)). To identify these cis-eQTLs, we first performed a cis-
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eQTL meta-analysis across four of the five scRNA-seq datasets. We excluded the van 

Blokland v3 dataset from this eQTL analysis and all subsequent analyses because the 

small sample size (N = 14) provided very few variants above the minor allele frequency 

(MAF) cutoff (>10%), which made it unsuitable for this meta-analysis. To reduce the 

multiple testing burden and maximize the number of cis-eQTLs detected given the 

relatively low number of individuals (N = 173) used for the eQTL mapping, we confined 

ourselves to 16,987 lead cis-eQTLs previously identified in a large (N = 31,684) bulk 

blood eQTL study (2). Depending on cell type, we identified between 917 (for CD4+ 

T cells) and 51 (for B cells) eQTLs (FDR<0.05; Supplementary Table 2, 3). 

As filtering for the eQTL effects still resulted in a large number of tests (e.g. for CD4+ 

T cells, n = 12,137,281, Supplementary Table 4) and consequently a large multiple 

testing burden, we imposed additional filtering on the co-eGenes to study. Here, we 

used a filtering strategy based on the co-expression significance, selecting co-eGenes 

for which we observed a significant (nominal p f 0.05) correlation with the eGene in at 

least 10% of the individuals (Methods). We assumed this captures genuine co-

expression effects that are present in at least one of the genotype groups (i.e. 

homozygous reference/heterozygous/homozygous alternative allele). Note that the 

filtering strategy we used here is less stringent than the cutoff used in the co-expression 

benchmarking analyses (Figure 2,3; Methods). This is because the two analyses have 

very different goals, while the benchmarking was more technical in nature, we aimed to 

uncover new biology in the co-eQTL analyses. Thus we used a less stringent selection 

in the co-eQTL analysis to ensure that we did not miss out on detecting relevant 

biological processes underlying gene regulation. 
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An additional challenge is the large number of missing co-expression values for gene 

pairs within individuals. This is introduced by the sparsity of the scRNA-seq data: 

correlation is missing when the expression of one gene is zero in all cells of an 

individual. We argue that these missing co-expression values may not reflect true null 

correlations between gene pairs because zero values in single-cell data can also be 

caused by lowly expressed genes not being quantified accurately. As we observed that 

replacing missing values with 0 can lead to spurious co-eQTL results (Supplementary 

Figure 16), we removed such missing correlations when calculating co-eQTL 

correlations rather than imputing them with 0 correlation values. 

Finally, we applied a customized permutation strategy for each gene pair. Since 

common upstream regulators might lead to co-expression of many co-eGenes, we 

expect correlated test statistics among the family of tests carried out for each SNP3

eGene pair. Therefore, we applied a customized permutation strategy per SNP3eGene 

pair and an adapted multiple testing correction strategy based on fastQTL (29,30) (see 

Methods for details). 

With our co-eQTL mapping strategy, we conducted a meta-analysis with four of the five 

single-cell datasets (Oelen v2 and v3, van Blokland v2 and the van der Wijst dataset). 

This identified cell-type-specific co-eQTLs for 72 independent SNPs, affecting 946 

unique gene pairs in total (Supplementary Table 5, Supplementary Table 6). We 

identified the maximum number of 500 co-eQTLs in CD4+ T cells, comprising 30 SNPs, 

500 gene pairs and 420 unique genes. We identified the minimum number of 35 co-

eQTLs in B cells, comprising 1 SNP, 35 gene pairs and 36 unique genes. 
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We first examined the cell-type-specificity of these co-eQTLs. This analysis is limited by 

the fact that, due to our filtering strategy, we used a different set of cell-type-specific 

eQTLs and tested a different set of co-eGenes. Consequently, this resulted in very 

different sets of tested triplets for biologically different cell types, which could explain the 

small overlap of significant co-eQTLs between cell types (Supplementary Figure 17, 

18a; Supplementary Table 6). Therefore, to give a complete picture of the cell-type-

specificity of co-eQTLs, we replicated co-eQTLs from each cell type in all other cell 

types and quantified this with two different measures: 1) the ratio of co-eQTLs that could 

be tested in the replication cell type (Supplementary Figure 18a) and 2) the rb 

concordance measure (31), which reflects the correlation of the effect sizes for the co-

eQTLs that were tested in the replication cell type (Figure 4a, Supplementary Figure 

18b, details in Methods). Consistent with the co-eQTL overlap results, the ratio of 

tested co-eQTLs are generally small, ranging between 5% to 97% (Supplementary 

Figure 18a). However, for the SNP3eGene3co-eGene triplets that were tested in the 

replication cell type, their effect sizes and directions were generally highly concordant, 

with a median rb value of 0.85 (Figure 4a, Supplementary Figure 18b, 

Supplementary Table 7). The highest rb were observed between CD4+ T cells and 

CD8+ T cells (0.97 for co-eQTLs identified in CD4+ T cells replicated in CD8+ T cells, 

0.99 for co-eQTLs identified in CD8+ T cells replicated in CD4+ T cells). 

To validate our co-eQTL results, we first examined the effect sizes and directions 

among the datasets used in the meta-analysis and observed high correlations 

(Supplementary Figure 19). Next, we replicated them in the BIOS bulk whole blood 

dataset (N = 2,491 excluding common individuals, see Methods) (2), using the ratio of 
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tested co-eQTLs and rb value (see Methods). For this replication, we used a linear 

regression model with an interaction term to model the associations between the 

expression level of eGenes and the product of genotype and the expression level of co-

eGenes (see Methods for detailed explanation), as we have done before (8). We tested 

all identified co-eQTLs in the BIOS data. and their effect sizes and directions showed rb 

values between 0.30 to 0.61 (Figure 4b, Supplementary Table 8, 9), with the highest 

concordance achieved for CD4+ T cells, with an rb value of 0.61 (SE = 0.06). 

After we established a baseline for the number of co-eQTLs identified and their 

replication rates, we used this to evaluate various technical factors such as filtering 

strategy, sub-cell-type composition, sample size and cell number. We first compared the 

analysis to a set of co-eQTLs identified when omitting the filtering step for significantly 

correlated gene pairs, which increased the number of tests (Supplementary Table 4). 

While this led to detection of an increased number of co-eQTLs for the more abundant 

cell types (CD4+ T, CD8+ T, monocytes and NK cells) and a decreased number of co-

eQTLs for less abundant cell types (B cells and DCs) (Supplementary Tables 4, 10), 

we also observed a general decrease in concordance among cell types compared to the 

co-eQTLs obtained with the filtering strategy (Supplementary Figure 18, 20; 

Supplementary Table 11). We then repeated the BIOS replication procedures for co-

eQTLs found without the filtering strategy and observed a decrease in effect 

concordance compared to the set of co-eQTLs identified with the filtering strategy 

(Supplementary Figures 21-23; Supplementary Tables 12, 13), indicating that the 

filtering increases the robustness of the co-eQTLs. 
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We additionally explored the correlation mean and variance, as well as the non-zero 

ratio for co-eQTLs compared to non-significant triplets, in the scenarios with and without 

additional filtering (Supplementary Figure 24). Here we observed that significant co-

eQTLs show both a higher co-expression correlation mean and variance and a higher 

non-zero ratio for their expression (Supplementary Figure 24) compared to non-

significant triplets. This is to be expected as gene pairs with a high average co-

expression correlation more likely reflect true biological associations and gene pairs 

with a high correlation variance likely reflect true co-expression network polymorphisms. 

This trend is also much clearer for the filtered set compared to the non-filtered set 

(Supplementary Figure 24), suggesting that alternative preselection strategies could 

be envisioned that are based on specific expression values or co-expression correlation 

variance thresholds. 

Sub-cell-type composition is a potential confounder that might introduce false positive 

co-eQTLs, similar to cell type-composition in bulk studies (32). If a genetic variant is 

associated with sub-cell-type composition, co-eQTLs with sub-cell-type-specific genes 

might be identified even when there is no direct association between the SNP and the 

co-expression. To assess this, we analyzed co-eQTLs found among classical 

monocytes, non-classical monocytes and the whole set of all monocytes. Here we found 

that co-eQTL effect sizes are highly concordant (rb g 0.9) (Supplementary Figure 25) 

for co-eQTLs tested in one of the subtypes and in the major cell type (>82% of co-eQTL 

identified in monocytes were tested in both classical monocytes and non-classical 

monocytes). This suggests that the co-eQTLs are not generally driven by sub-cell-type 
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composition, although individual co-eQTLs could still be caused by sub-cell-type 

differences. 

To highlight how future co-eQTL analyses can benefit from the expected expansion of 

population-based scRNA-seq datasets with available genotype data, we determined 

how the number of identified co-eQTLs is related to the number of individuals and cells 

per individual. To test the influence of the number of cells, we randomly subsampled the 

CD4+ T cells and monocytes per individual and repeated the co-eQTL mapping pipeline 

(Figure 4c). For the influence of the number of individuals, we randomly subsampled 

the individuals for CD4+ T cells (Figure 4d). We observed that the number of co-eQTLs 

is linearly and positively correlated with both the number of cells and the number of 

individuals, although the number of individuals had a stronger effect than the number of 

cells (Figure 4c,d; Supplementary Table 5). 
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Figure 4. General characteristics of identified co-eQTLs 

a) Replication of discovered co-eQTLs across the major cell types. Correlation of the effect 

sizes in replications among different cell types, measured by rb value. Text inside each block 

indicates the rb value, standard error and number of replicated co-eQTLs. Color intensity 

indicates rb value. b) Replication in BIOS dataset for different cell types, indicated by the rb 

values. Scatter plot shows the detailed Z-score comparison between the co-eQTL meta-

analysis and the Z-score from the BIOS replication for CD4+ T cells. c) Number of 

significant co-eQTLs for varying cell numbers. Dot color indicates the cell type, as indicated 

in the text next to each dot. <cMono= means classical monocytes. <ncMono= means non-

classical monocytes. <CD4+ T Subsampled cells= means that this analysis was done for 
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CD4+ T cells, but for every individual we randomly downsampled cells to the desired cell 

number as indicated in the x-axis. d) Number of significant co-eQTLs for varying sample 

numbers. <CD4+ T Subsampled Individuals= indicates that this analysis was done for CD4+ 

T cells, but we randomly subsampled for the individuals. 

 

Annotating identified co-expression QTLs 

After we successfully validated the identified co-eQTLs by exploring different technical 

aspects and replicating them in the BIOS dataset (2), we examined to what extent the 

co-eQTLs could provide interesting biological insights into genetic regulation, which 

could be relevant for the interpretation of disease variants. As discussed in the 

Overview, we hypothesize that among the co-eGenes identified for each SNP3eGene 

pair there are direct regulator genes or genes co-expressed with the direct regulators for 

the eGene. Even if the direct upstream regulatory factor was not evaluated in the co-

eQTL analysis, due to the limited capturing efficiency of the single-cell data, the 

biological function of the co-eQTLs could still be inferred by the other co-eGenes in 

strong co-expression with the unknown upstream regulator as they presumably share 

the same biological function and potentially also a common role in disease. To assess 

these hypotheses, we combined different lines of evidence: functional enrichment based 

on gene ontology (GO) terms, enrichment of TF binding sites and enrichment of GWAS 

annotations. 

Each enrichment analysis was run separately per cell type and for all co-eGenes 

associated with the same SNP3eGene pair (see Methods for details). To increase the 
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power of enrichment analyses, we restricted ourselves to SNP3eGenes pairs with at 

least five co-eGenes, which covered 25% of SNP3eGenes pairs in at least one cell type 

(19 out of 76 unique SNP3eGene pairs). GO enrichment analysis revealed shared 

functional pathways for the co-eGenes. For 18 of the 19 SNP3eGene pairs, we found 

enrichment among the associated co-eGenes for at least one GO term 

(Supplementary Table 14). Moreover, we assessed potential common TFs regulating 

the shared function of these co-eGenes using ChIP-seq data processed by ReMap 

2022 (33) and found enrichment of TF binding sites among the co-eGenes for 7 of the 

19 SNP3eGene pairs (Supplementary Table 15). For four of the SNP3eGene pairs, 

the co-eQTL SNP itself or a SNP in high linkage disequilibrium (LD) (R2 g 0.9) lay in the 

binding region of the enriched TFs (Supplementary Table 15), making these likely 

candidates for the direct regulator.  

We also explored whether co-eQTLs and the respective sets of co-eGenes could 

enhance our understanding of disease-associated variants. For this, we annotated co-

eQTL SNPs with GWAS loci, identifying approximately half the SNPs to be in high LD 

(R2 g 0.8) with a GWAS locus (41 out of 72 SNPs, Supplementary Table 16). To 

assess if sets of co-eGenes for a specific SNP-eGene share a common role in disease, 

we explored if the co-eGenes show higher gene level trait association for GWAS traits 

that are also associated with the respective co-eQTL SNP. We identified overlapping 

GWAS traits for two co-eQTL SNPs and their co-eGenes for at least one GWAS trait 

and cell type, with many of the traits covering blood cell counts and immune-mediated 

diseases (GWAS SNP p-value < 5×10−8, FDR <0.05, Supplementary Table 17), 

further strengthening the biological connection of the co-eGenes with the eQTL. 
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Furthermore, we observed that the direction of effect of the co-eQTLs can be helpful in 

grouping genes sharing the same functions. For this, we compared the direction of 

effect of the co-eQTL with the direction of the associated eQTL, choosing the same 

reference allele in both cases. If the direction matched, we classified it as concordant. In 

these co-eQTLs, increasing expression of the eGene led to increasing co-expression. If 

the directions did not match, we said the direction of the co-eQTL is discordant. 

Between 37% and 97% of the co-eQTLs showed a concordant direction of effect across 

cell types (Supplementary Figure 26), but the majority of co-eGenes were associated 

with rs11310173RPS26 and thus the observed distributions are probably not 

generalizable for future larger studies that identify more co-eQTL. 

In the following section, we highlight some examples of how these co-eQTL can help to 

better understand the molecular functional consequences of genetic variants associated 

to disease. 
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Figure 5. Annotation of co-eQTLs 

a) Union network constructed with co-eQTLs found in CD4+ T cells or monocytes 

that are associated with the SNP–eGene: rs1131017–RPS26. The two circled 
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clusters contain co-eGenes that are in those corresponding GO terms. b) Example 

of one co-eQTL: rs1131017–RPS26-CD74. Left plot indicates the co-expression 

patterns from all individuals in the Oelen v3 dataset. Each regression line was fitted 

with expression data from one individual. Right plot indicates the co-expression 

values from the three genotype groups. c) Comparison between z-scores from 

monocytes and z-scores from CD4+ T cells. Red dots indicate positive co-eQTLs 

from CD4+ T cells. Blue dots indicate negative co-eQTLs from CD4+ T cells. d) 

Example of one co-eQTL: rs1131017–RPS26-RPL11 with the same layout as (b). e) 

GO term enrichment results for the co-eGenes in negative co-eQTLs from CD4+ 

T cells. f) GO term enrichment results for the co-eGenes in positive co-eQTLs from 

CD4+ T cells. 

 

When grouping co-eQTLs based on their associated eQTL, eQTL rs11310173RPS26 

had the most significantly associated co-eGenes in all cell types except for DCs 

(between 372 co-eGenes for CD4+ T cells and 35 for B cells) (Figure 5a,b,c,d). 

RPS26, encoding a ribosomal protein, showed strong correlation with other ribosomal 

proteins, and we had previously reported a few RPS26 co-eQTLs in CD4+ T cells (10) 

and monocytes (11). Our new methodology and the larger sample size in the current 

study allowed us to now compare the genes part of the rs11310173RPS26 co-eQTLs 

across cell types. 

In monocytes, NK cells and B cells, nearly all the associated genes showed a positive 

direction of effect, concordant with the eQTL direction (95% of all co-eGenes for 

monocytes, 90% for NK cells and 97% for B cells), while in CD4+ T cells and CD8+ 
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T cells, several genes showed a negative direction of effect, discordant with the eQTL 

direction (46% of all co-eGenes for CD4+ T cells and 43% for CD8+ T cells). 

The positively associated genes replicated well across all cell types (Figure 5c, 

Supplementary Figure 27) and were enriched for functions associated with translation 

(Figure 5e), which is consistent with the fact that many co-eGenes were ribosomal 

proteins from both the large and the small subunit (for CD4+ T cells: 46 of 47 tested 

RPL genes and all 31 tested RPS genes were associated). In contrast, the negatively 

associated genes only replicated well between CD4+ T cells and CD8+ T cells 

(Supplementary Figure 27; Figure 5c,d), despite the fact that these genes were well 

expressed in the other cell types. This negatively associated set of genes showed 

enrichment in functions associated with immune response and T cell activation (Figure 

5f). 

TF enrichment analysis identified six TFs4RBM39, TCF7, LEF1, KLF6, CD74 and 

MAF4whose binding sites were enriched in the promoter region of the rs11310173

RPS26 co-eGenes, that had a binding site overlapping with rs1131017 and that were 

among the rs11310173RPS26 co-eGenes themselves (Supplementary Table 15). This 

led us to the assumption that one or more of these TFs represent the direct regulators 

of the eQTL, as described in the Overview (Figure 1c, Scenario 1). Five of the TFs 

(TCF7, LEF1, KLF6, CD74 and MAF) are also connected with lymphocyte activity (the 

first four based on GO annotations, MAF based on a recent study (34)), further 

strengthening the link with T cell activation. Of these, MAF and CD74 were specifically 

enriched not only among all co-eGenes but additionally among co-eGenes with a 

negative effect direction (Supplementary Table 15). 
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GWAS enrichment analysis showed enrichment for several different blood cell counts, 

but only in CD4+ T cells and CD8+ T cells we also observed enrichment for immune-

mediated disease (rheumatoid arthritis, Crohn's disease (CD), multiple sclerosis (MS) 

and hay fever), further connecting the co-eGenes especially with T cells 

(Supplementary Table 17). Interestingly, several studies have highlighted a connection 

of RPS26 with T cell activation and survival (35,36), and the associated co-eQTL SNP 

rs1131017 is associated with the enriched immune-mediated diseases (rheumatoid 

arthritis, CD, MS, hay fever), and additionally associated with type 1 diabetes (T1D) and 

with other autoimmune traits (37). 

We examined whether the large number of co-eQTLs for rs1131017 were confounded 

by sub-cell-types in CD4+ T cells. We cannot exclude the possibility that this variant 

showed this effect in CD4+ and CD8+ T cells by specifically affecting the amount of 

circulating CD4+ or CD8+ sub-cell types whose marker genes would subsequently 

show up as co-eQTLs in our analysis, where we have not distinguished between sub-

cell types. To test whether this is a possibility, we associated SNP rs1131017 and the 

ratio between CD4+/CD8+ TEM cells and CD4+/CD8+ naive T cells, but we did not see 

a significant correlation (Supplementary Figure 28). Together, these results suggest 

that RPS26 plays a dual-function role, both in general transcription and specifically in 

lymphocytes in T cell activation. This points to a potential working mechanism in the role 

of rs1131017 in the manifestation of autoimmune diseases. 

Another set of promising co-eQTLs are those associated with rs78064583TMEM176A in 

monocytes (11 co-eGenes) and rs78064583TMEM176B in monocytes (6 co-eGenes) 

and DCs (1 co-eGene) as they connect the co-eQTL SNP rs7806458 that has been 
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associated with MS (38) with blood coagulation. This is interesting as this disease has 

previously been connected to disturbances in blood coagulation (39). The relevance of 

the co-eGenes to MS is supported by two lines of evidence. Firstly, GO enrichment 

suggested that the six co-eGenes associated with rs78064583TMEM176B in 

monocytes are enriched for complement component C3b binding (Supplementary 

Table 14), which is closely related to the blood coagulation system (40). When looking 

closely at the exact gene functions, we found three genes (ITGB1, FCN1 and CFP) that 

contribute to the local production of complement (41). Secondly, GWAS enrichment 

analysis showed MS enrichment for co-eGenes associated with rs78064583TMEM176A 

in monocytes (Supplementary Table 17). Intriguingly, the eGene TMEM176B was 

previously found to be associated with the maturation of DCs (42), and it has been 

shown that white blood cells, including DCs, can act as a local source of certain 

complement proteins (43,44). Though we could not identify (in)direct regulator genes for 

these co-eQTL in our TF enrichment analysis with the ReMap database, we argue that 

these co-eGenes, supported by several lines of evidence, provide valuable mechanistic 

insights for the MS SNP rs7806458. 

For several of the other co-eQTLs, we could not provide as strong and coherent 

evidence for the interpretation but nevertheless found promising connections to 

biological functions and disease that can be explored in further studies. One is the 

SNP3eGene pair rs92715203HLA-DQA2. We found co-eQTL effects for it in CD4+ and 

CD8+ T cells, monocytes and DCs, with the number of co-eGenes ranging from 7 to 17. 

Interestingly, rs9271520 is in LD with several immune disease SNPs where we also 

found enrichment for the co-eGenes in the same GWAS traits. The most significant 
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(sorted by GWAS SNP p-values) enriched traits include rheumatoid arthritis, MS and 

asthma (see Supplementary Table 17 for full GWAS enrichment results). However, we 

found several other genes in the HLA region being co-eGenes associated with 

rs92715203HLA-DQA2, and, when we removed those HLA genes, the GWAS 

enrichment signals disappeared. This indicateed that the enriched signal could be due 

to the LD structure in the HLA region and a confident mapping of the causal regulatory 

connections is not possible with our dataset. Other interesting co-eQTL examples and 

their interpretations are discussed in Supplementary Text. 

In general, our study is still underpowered in finding a lot of associated co-eGenes 

(Figure 4c,d, Supplementary Figure 15). This limits the set of SNP-eGenes, for which 

we can perform a well powered enrichment analysis and so the biological interpretation 

of these co-eQTLs. One of the potentially interesting SNP-eGenes, with too few co-

eGenes for the enrichment analysis, is rs393727 - RNASET2, which is associated with 

four co-eGenes (B2M, ITGB1, ALOX5AP, CRIP1). The SNP rs393727 is in very high LD 

with two previously described SNPs associated with Crohn9s disease (CD) and 

inflammatory bowel disease (IBD) (Supplementary Table 16), eGene RNASET2 has 

also been previously associated with IBD (45), and among the four co-eGenes, ITGB1 

was associated with CD (46) and CRIP1 is associated with gut immunity (47). 

Intriguingly, we found a number of overlapping co-eGenes associated with different 

SNP3eGene pairs, indicating potential common upstream regulatory pathways. For 

example, all the co-eGenes positively associated with rs41476383SMDT1 are also 

found to be positively associated with rs113110173RPS26, while the four co-eGenes 

negatively associated with rs3937273RNASET2 are also negatively associated with 
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rs11310173RPS26 (Supplementary Figure 29). 

Discussion 

In this study, we validated the use of scRNA-seq data to identify cell-type-specific co-

expression patterns and developed a novel approach to extend the discovery of co-

eQTLs. Applying this to a large meta-analysis with 173 samples, we identified 72 

independent SNPs leading to co-eQTLs for 946 unique gene pairs across different cell 

types. These co-eQTLs shed light on the biological processes upstream of individual 

cis-eQTLs, such as that seen for rs1131017, which affects RPS26 expression levels 

and is associated to autoimmune diseases. We observed that this variant affects T cell 

activation genes, providing a potential explanation for the association of this variant to 

autoimmune diseases. 

In this study, we used Spearman correlation to quantify the co-expression patterns from 

scRNA-seq data because of its straightforward interpretability, scalability, robustness 

against outliers and high reproducibility among different scRNA-seq and bulk RNA-seq 

datasets. However, we acknowledge that such correlations do not take into account the 

sparseness of scRNA-seq data, and it is difficult to infer direct regulator genes. This of 

course also depends on the quality of the single-cell data. Direct interactions can only 

be distinguished from indirect interactions when the direct upstream target was 

measured, which is currently not always the case. As other association methods (16,20) 

that were top-performing in independent benchmarking studies (15,18) did not perform 

better in our validation and a reliable temporal ordering of the cells (25,26) was not 

possible in our dataset, we applied Spearman correlation as a solid basis for the co-
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eQTL analysis. Future work may find that other association measures are equally 

suitable or more suitable, and this may potentially depend on the specific single-cell 

dataset under investigation. 

We also found that scRNA-seq and bulk RNA-seq data do not always correlate well for 

all gene pairs and explored different factors that could explain this. Part of the variable 

correlation could be explained by the sparsity of the single-cell data, as higher 

expressed gene pairs correlated better, but at least a few example cases showed the 

potential occurrence of Simpson9s paradox. With regards to cell type3composition, 

however, the FACS-sorted datasets did not correlate better with single-cell datasets 

than the whole-blood bulk dataset, which could either be caused by the smaller sample 

size of the single-cell data, technical changes introduced by FACS or specific 

differences in the (sub-)cell types, as we had naive CD4+T cells and classical 

monocytes (subsets of CD4+T cells and monocytes, respectively) for BLUEPRINT and 

ImmuNexUT that we tested for the single-cell data. Another interpretation is that 

scRNA-seq and bulk RNA-seq data capture different functional gene clusters, as a 

previous study showed in tumor samples (48). One possible explanation for this is that 

bulk and single-cell capture different sources of variability. Whereas single-cell data 

captures between-cell variability, bulk data captures between-person variability, which is 

affected by additional factors like genetics and environment. Therefore, a statistical 

framework combining both data types could be beneficial in the future. 

Our study sheds light on several important considerations for future scRNA-seq study 

design regarding personalized network construction and co-eQTL mapping. Firstly, we 

showed that several factors, including cell number and gene selection, greatly influence 
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the stability of co-expression patterns. We observed a clear trend indicating that a 

certain minimum number of cells from one individual is needed to achieve a stable co-

expression pattern (Figure 3d). Secondly, we also explored factors influencing the 

number and quality of co-eQTLs. We showed that the number of significantly detected 

co-eQTLs can be greatly increased by either increasing the number of individuals or by 

increasing the number of cells per individual (Figure 4c, d). We believe that future 

larger single-cell datasets such as two very recent studies (49,50) and the sc-eQTLGen 

consortium (51) will improve statistical power to identify more robust co-eQTLs. 

Furthermore, we showed that a sophisticated filtering strategy of tested SNP3gene3

gene triplets is essential to maximize the number of reliable co-eQTLs. However, we 

also suggest that the filtering strategy should be designed for the specific goals of the 

respective analysis. In this study, we systematically searched for robust co-eQTLs and 

adapted our strategy to balance the trade-off between achieving a stable co-expression 

pattern and enlarging the search space. For this reason, we first selected SNP3gene 

pairs and then used co-expression strength as an additional criterion rather than the 

very stringent expression cutoff criterion we used in our benchmarking analysis. In 

contrast, in our previous study (11), we focused specifically on co-eQTLs among the 

eQTLs that changed after pathogen stimulation and performed a strict pre-filtering for a 

highly targeted analysis. In the current study, we were, in particular, able to replicate the 

most significant co-eQTLs from the targeted analysis (Supplementary Figure 30). 

While the targeted analysis identified additional lower significance co-eQTLs that are 

below our much stricter multiple testing-corrected significance threshold, we were able 

to quantify the number of co-eQTLs more broadly for several additional SNPs and to 
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include, for the first time, a comparison across cell types. In other cases, a selection of 

known TF3target pairs or pathway information could be desirable, e.g. for prioritizing 

TFs connected with diseases for experimental validation purposes. 

We showed that the annotated co-eQTLs could identify potential direct regulators of the 

associated eQTLs as well as the affected biological processes, with several examples 

based on a combination of different enrichment analyses. We identified several TFs 

either directly as co-eGenes or via enriched binding sites among the co-eGenes of a 

SNP3eGene pair, providing potential regulatory mechanisms for explaining the co-

eQTL. For the eQTL rs11310173RPS26, six enriched TFs were themselves co-eGenes 

in CD4+ T cells, providing compelling evidence to support the hypotheses that direct 

regulators can be identified among co-eQTLs. Among these six TFs, five are associated 

with lymphocyte activation, further strengthening the connection of the eQTL with 

lymphocyte activation and through this to autoimmune diseases. 

Another interesting aspect of the rs11310173RPS26 example is that we revealed a 

potential mechanism for a previously described GWAS signal by showing cell-type-

specific genetic regulation of a multi-functional gene. By comparing T cells and 

monocytes, we identified that RPS26 may be involved in two distinct biological 

functions. Interestingly, these two distinct functional co-eQTL clusters are characterized 

by opposite effect directions. Moreover, while RPS26 showed enough variation to be 

picked up as an eQTL effect, it did not show high correlation with either gene cluster 

(Supplementary Figure 31), which may be why understanding its role in multiple 

functions has been challenging up to now (36,52). We envision that more multi-

functional eGenes could operate in such a cell-type-specific manner, with variation in 
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expression that could be explained as the downstream consequences of many other 

conserved or highly co-expressed gene clusters, and this understanding could assist in 

interpreting GWAS signals. We also observed that different eGenes could have shared 

upstream genes/pathways as we identified four common immune-related co-eGenes 

associated with rs3937273RNASET2 and rs11310173RPS26, and both SNPs were in 

LD with immune diseases (T1D and CD), suggesting a shared upstream process for 

these two eQTL effects. By providing cell-type-specific gene regulation backgrounds 

through co-eQTLs, we expect more eQTLs and GWAS signals to be explained in the 

relevant cell type via future large-scale co-eQTL studies. 

For the other co-eQTL examples, no enriched TF was in the co-eGene list, potentially 

because the TFs were not measured in the scRNA-seq datasets due to low expression. 

Here, the enrichment allowed us to still identify relevant TFs for further exploration. A 

third group of co-eQTL examples were supported by GWAS or GO enrichment analysis 

but not TF enrichment analysis. Here, the co-eGenes revealed part of the disease-

relevant network, but we could not pinpoint the direct regulatory TFs. One explanation 

for this may be that our study is still underpowered to discover co-eGenes, while the 

enrichment strategy works best when there are a substantial number of co-eGenes as 

for rs11310173RPS26. Based on our evaluation, we estimated that future studies with 

larger sample size and more cells will identify many more co-eQTLs (Figure 4c,d). This 

can help identify the direct regulators for some of our other examples, where the current 

enrichment analyses provided no clear interpretation, as well as co-eQTLs associated 

with other SNP3eGenes. 
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There are also several challenges to interpret the identified co-eQTLs. Firstly, as 

discussed earlier, it is difficult to determine the direct and indirect regulators that work 

through co-expression among correlated co-eGenes. This creates problems in using 

correlation-based metrics to quantify replication performance. For example, all the co-

eQTLs we identified in B cells were associated with the rs11310173RPS26 pair, making 

the correlation-based rb measure invalid for this case. Also, to reduce the multiple 

testing burden, we only tested the top-SNP, a choice that could pose additional 

challenges for follow-up analysis such as colocalization to identify the causal SNP. 

Moreover, comparison of co-eQTLs between cell types remains challenging. We 

showed that the number of co-eQTLs is strongly driven by the number of cells (Figure 

4c), so that it is not meaningful to only compare the absolute number of co-eQTLs 

between cell types in the current study. Furthermore, the sparsity of the single-cell data 

lead to the removal of many lowly expressed genes which, combined with the strict 

filtering our analysis required, meant only a small number of genes were tested in all 

cell types. In addition, sub-cell-type composition can introduce false positive co-eQTLs 

within a cell type if a genetic variant influences the sub-cell-type composition and one of 

the tested genes shows sub-cell-type-specific differences in expression. However, in 

our evaluation of classical and non-classical monocytes, we observed no strong 

confounding of monocyte co-eQTLs by the sub-cell types (Supplementary Figure 24). 

We also found several SNPs in LD with GWAS SNPs for traits such as monocyte 

counts, but there was no additional evidence that these SNPs have an effect on 

(sub-)cell type composition. Still, these analyses were limited to a smaller number of 

samples and a small number of cells in the sub-cell types, so we cannot exclude that 
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some co-eQTLs were caused by sub-cell-type composition effects of the co-eQTL 

SNPs. 

Several of the limitations of our current analysis will be overcome by on-going 

technological developments. First of all, we expect that follow-up analyses with larger 

sample sizes and more cells per person will identify many additional co-eQTLs. This 

can be further enhanced by improvements in single-cell technologies that lead to better 

capture efficiency of expressed genes. CITE-seq (53) and similar technologies (54,55) 

allow improved cell type and sub-cell type classification that can show the effect of sub-

cell type differences more accurately. The combination of multiple-omics, such as 

scRNA-seq, scATAC-seq and/or single-cell proteomics (56358), will enable us to 

capture regulation happening outside the mRNA level, and lead to improved association 

analysis of gene pairs above standard Spearman correlation. 

Conclusion 

Through our co-eQTL mapping strategy we identified a robust set of co-eQTLs that 

provides insight into cell-type-specific gene regulation and leads for future functional 

testing. Among these results, we uncovered a potential mechanism for a previously 

identified GWAS signal and a multi-functional gene. Our evaluation of different technical 

factors provides valuable suggestions for future experimental study design. We believe 

that more co-eQTLs will be uncovered by applying our general co-eQTL mapping 

pipeline to future large-scale scRNA-seq data. We envision that these co-eQTLs will in 

the future help to position eQTL and GWAS signals into cell-type-specific GRNs by 

annotating which regulatory edges are affected by which genetic variants. This 
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knowledge is important for interpreting the effects of genetic variants in general, but also 

specifically for improve personalized medicine through better genetic risk prediction for 

diseases and personalized drug treatment based on genotype (51). 

Methods 

Single-cell datasets 

Three different scRNA-seq datasets were included in this study, both for benchmarking 

the associations and for combined meta-analysis of co-expression QTLs. All five 

datasets from the three studies were generated from human PBMCs and are referred to 

by their first author: the Oelen dataset (n = 104 donors) (11), the van der Wijst dataset 

(n = 45 donors) (10) and the van Blokland dataset (n = 38 cardiac patients) (19). Further 

specifications can be found in Supplementary Table 1 and the respective manuscripts. 

The processed versions of the datasets from the original publications were used, 

including quality control and cell type identification (for details, see the respective 

publications). The Oelen dataset also contains cells stimulated with different pathogens, 

but we only included the unstimulated cells in this analysis to improve comparison with 

the other datasets. For the van Blokland dataset, we included the data from the time 

point 638 weeks after the individual was admitted to the hospital for myocardial 

infarction, again to improve comparison across datasets. 

For cell type classification, we took the annotation for the Oelen data from their original 

publication (11) and annotated the van Blokland and van der Wijst datasets using the 

Azimuth classification method (59). For Azimuth classification, we used the following 

settings: 1) the FindTransferAnchors function to find anchors using the reference from 
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publication (59), normalization method "SCT", reference reduction "spca" and first 50 

dimensions and 2) the MapQuery function to annotate cell types using the same 

reference and parameters such as reference.reduction = "spca" and reduction.model = 

"wnn.umap". We then compared the annotation from the Oelen publication and the 

Azimuth classification and found high correspondence (Supplementary Figure 32). For 

analyses using the sub-cell-type classification, we always refer to the Azimuth 

classification results. 

 

Single-cell co-expression 

We calculated the Spearman correlation of gene pairs in the three different single-cell 

studies (Oelen dataset (11), van Blokland dataset (19) and van der Wijst dataset (10)) 

and then compared between datasets and 10XGenomics chemistry. In the 

benchmarking section, correlation was calculated separately per cell type but together 

over all individuals and only for gene pairs for which both genes were expressed in at 

least 50% of the cells from the respective cell type. For the comparison between two 

datasets, the gene pair3wise Spearman correlation values from each dataset were 

compared using Pearson correlation. 

 

Rho calculation 

Rho proportionality was calculated using the <propr= function in R, from the <propr= 

package, with the symmetrized value set to true. We used the v3 unstimulated 

monocytes to compare the rho proportionality values to Spearman-rank correlations of 

the same data. We filtered out genes expressed in fewer than 5% of cells, leaving 8,634 
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genes to be assessed. Concordance between rho values and Spearman correlations 

was assessed with Pearson correlation. 

We also explored rho proportionality values for very lowly expressed genes because the 

log-normalization of the method potentially introduces false associations for these 

genes (60). However, the computational demand to run the method was so high that we 

could not evaluate all expressed genes at once. Instead, we subsampled a set of 50 

very lowly expressed genes (expressed in 035% of the cells) and 50 very highly 

expressed genes (expressed in at least 90% of the cells) and calculated the rho 

proportionality and Spearman correlation values for each combination of these 100 

genes. We then compared gene pairs for which both genes were lowly expressed, pairs 

for which both genes were highly expressed, and mixed pairs, for which one gene was 

lowly and one highly expressed. 

Alternative association metrics besides rho proportionality and Spearman correlation 

are discussed in Supplementary Text. 

Validation in bulk datasets 

Spearman correlations from single-cell data were compared to Spearman correlations 

made with three different bulk datasets: the BLUEPRINT Epigenome consortium data 

(21), the ImmuNexUT dataset (22) and the BIOS dataset(2). For BLUEPRINT, we further 

removed the first principal component from the monocyte dataset to remove any 

uncorrected covariates. For the ImmuNexUT dataset, preprocessing was performed as 

described in the publication: we filtered out genes with less than 10 counts in 90% of the 

samples, performed TMM normalization with edgeR and scaling to CPM, batch 

corrected with combat and removed samples with a mean correlation coefficient smaller 
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than 0.9. For the BIOS dataset, we corrected for 20 RNA Alignment metrics and then 

calculated the co-expression values using all individuals. 

We then calculated the Pearson correlation across all gene pair-wise correlation values. 

As BLUEPRINT and ImmuNexUT are cell type-sorted datasets, we matched the cell 

types between bulk and single-cell data in these cases in the comparison. Again, we 

used only genes expressed in at least 50% of the cells from the cell type. This threshold 

was chosen after our initial evaluation of different thresholds from 10% to 90% in the 

comparison of BLUEPRINT and Oelen v3 dataset, with 50% chosen to balance the 

number of genes that can be used against the correlation strength between the 

datasets. 

Validation using CRISPR knockout data 

To further validate the correlation values, we used CRISPR knockout data from (23). 

Mixscape was used to identify perturbed vs unperturbed cells for each CRISPR 

perturbation (27). We selected five knockout genes for which a sufficient number of 

successful CRISPR-perturbed cells were identified and that were expressed in our 

single-cell dataset (Oelen v3 dataset, CD4+ T cells) in > 50% of cells. The publication 

identified DE genes in wild-type vs perturbed cells and wild-type vs non-perturbed cells, 

as labeled by Mixscape. We selected a credible set of DE genes that were expressed in 

the single-cell dataset and significant in the wild-type vs perturbed cells but not in the 

wild-type vs non-perturbed cells. For this, we applied FDR-correction based on all 

genes expressed in the single-cell dataset. The correlation of these genes was 

compared to the correlation of non-DE genes, i.e. all other genes expressed in the 

single-cell dataset, using the Wilcoxon rank-sum test (one-sided test with <greater= in 
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DE genes). The same test was done using the naive CD4+ T cells from the 

ImmuNexUT dataset. 

Validation using STRING annotations 

Following the same approach used for the CRISPR knockout data, we explored if gene 

pairs whose proteins are interacting show higher correlation. We used the STRING 

database (version 11) (28), processed by the (18) benchmark study, to identify 

interacting gene pairs. We compared the correlation of gene pairs in STRING versus 

gene pairs not listed in STRING via Wilcoxon rank-sum test (one-sided test with 

<greater= for Gene pairs in STRING): once using the correlation estimates from the 

Oelen v3 dataset and once using the estimates from the ImmuNexUT dataset, both 

times for the CD4+ T cells and filtered for genes expressed in > 50% of single cells. 

Exploring Simpson’s paradox 

To identify whether our strategy to identify single-cell co-expression is affected by 

Simpson9s paradox and whether bulk-based approaches would suffer from it, we 

studied the co-expression outcomes for two different strategies. In both strategies, we 

only included genes with non-zero expression in at least half of all monocytes in the 

Oelen v3 dataset. In the first strategy, we calculated Spearman correlations for gene 

pairs per individual separately for each gene pair. In the second strategy, we calculated 

the average expression of genes per individual and then calculated the Spearman 

correlation between genes. To identify potential Simpson9s paradox events, we looked 

into the gene pairs that had the largest deviation in co-expression estimate between the 

two strategies. 

Comparison between cell types 
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After successful validation of the Spearman correlation values, we compared 

differences between cell types within one dataset for the Oelen v2 and v3 dataset. Here 

we applied the same strategy as in the dataset comparison. We selected genes 

expressed in 50% of the cells from both cell types for each corresponding comparison, 

calculated Spearman correlation per gene pair within each cell type and followed up 

with Pearson correlation to compare both cell types. We also explored the absolute 

distribution of correlation coefficients between the cell types. 

Comparison between individuals 

Again, we applied the same strategy as for the cell type and dataset comparison. We 

calculated gene pair3wise Spearman correlation values for each cell type and donor 

separately, taking all genes expressed in 50% of cells from the cell type in general (not 

per donor). We then compared each donor with each other donor by calculating 

Pearson correlation over the gene pair-wise correlation values to get a distribution of 

how well donors match per cell type. 

To explore the effect of the number of cells per donor on this distribution, we 

subsampled each cell type to different numbers of cells (depending on the frequency of 

the cell type). For this, we take all individuals with at least this number of cells in this cell 

type and subsample the cell number to exactly this value for each individual. We stop 

subsampling at a threshold for the cell type when more than 75% of all measured 

individuals have fewer cells than the threshold. For the four most abundant cell types 

(CD4+ T cells, CD8+ T cells, monocytes and NK cells), we additionally fitted a 

logarithmic curve separately for each cell type to better quantify the connection: 

correlation_individuals ~ log(number_cells) (with log being the natural logarithm). 
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We then used the fitted formulas to extrapolate up to 1,500 cells for each cell type. 

Power calculation 

For power calculation, we use an F-test, as implemented in (61), with a sample size of 

173 (the total size of the combined cohorts), a heritability between 10% and 30% and a 

Bonferroni-corrected significance threshold of 0.05. The range for the heritability was 

chosen based on previously detected co-eQTLs (11). The number of tests influences the 

Bonferroni-corrected thresholds and depends on the selected gene3gene3SNP triplets. 

Here we assumed only one SNP per gene pair and all genes are tested against each 

other. Then, we increased the non-zero ratio threshold for gene selection from 0 to 0.95 

(monocytes, Oelen v3 dataset), got the number of tests and calculated the power. 

Testing multiple SNPs per pair would further increase the total number of tests and 

reduce the overall power. 

eQTL mapping 

We performed a meta-analysis to identify significant eQTL in four out of the five single-

cell datasets (Oelen v2 and v3 dataset (11), van Blokland v2 dataset (19) and van der 

Wijst dataset (10)). We excluded the van Blokland v3 dataset because the sample size 

was so small that few variants lay above the MAF threshold (see below). Due to the 

limited sample size, we chose to perform a constrained eQTL mapping rather than a 

genome-wide mapping. To select the SNP3gene pair to test for eQTL mapping, we took 

the eQTL results from the largest meta eQTL analysis study in whole blood (2) and 

selected the most significant SNP for each gene. This resulted in 16,987 SNP3gene 

pairs to test. For these selected SNP3gene pairs, we performed eQTL mapping using 
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eQTLPipeline v1.4.9 (62) within a cis-window of 100 kb, using 10 permutation rounds for 

determining FDR as described in (2) and a MAF of 0.1. 

Co-expression QTL (co-eQTL) mapping and the filtering strategy 

First, we generated all possible combinations of the cell-type-specific eQTL findings 

(denoted as SNP3eGene) from the constrained eQTL mapping procedure in the 

respective cell type (as explained in the eQTL mapping method section above) and all 

other genes (denoted as co-eGene) that are expressed in the corresponding cell types. 

This resulted in the full list of SNP3eGene3co-eGene triplets for co-eQTL mapping 

analysis. We then calculated co-expression using Spearman correlation for the unique 

eGene3co-eGene pairs for each individual using untreated cells of the six major cell 

types (CD4+ T and CD8+ T cells, monocytes, B cells, NK cells and DCs) and the sub-

cell-types in monocytes (classical monocytes and non-classical monocytes). For each 

gene pair, we counted the ratio of individuals who exhibit a significant correlation 

(nominal p-value from Spearman correlation < 0.05). If at least 10% of individuals 

showed a significant co-expression correlation for the specific eGene3co-eGene, we 

took this gene pair further into follow-up analysis. The total number of tests for each cell 

type can be found in Supplementary Table 4. 

To assess the impact of cell numbers and sample numbers on the quality and quantity 

of co-eQTLs, we artificially created a few scenarios with fewer cells per individual and 

fewer individuals using a random subsampling strategy. To examine the impact of cell 

numbers, we randomly subsampled the CD4+ T cells per individual to three different 

levels (50, 150 and 250 cells). In each level, we kept the individuals with fewer cells, 

randomly subsampled those with a cell number higher than the corresponding level and 
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performed the co-eQTL analysis using the strategies mentioned. Similarly, to examine 

the impact of sample numbers, we randomly subsampled 50 and 100 individuals, and 

excluded nine individuals with fewer than 10 CD4+ T cells for both scenarios. 

Multiple testing correction strategy for co-eQTL 

To account for the correlation structure for gene pairs with one common gene and 

genome-wide, we modified and applied the permutation-based multiple testing 

correction strategy from fastQTL (29), implementing the method as follows. For each 

SNP3eGene3co-eGene triplet, we performed 100 permutations. Then, for each SNP3

eGene pair, we determined the lowest p-values per permutation over all the genes (co-

eGene) tested for the SNP3eGene pair. This resulted in the 100 lowest permuted p-

values per SNP3eGene pair. For each SNP3eGene pair, we fitted a beta-distribution 

over the 100 permuted lowest p-values, which enabled us to subsequently establish the 

empirical p-value for the lowest non-permuted p-value. Through this procedure we 

ensured that under the null test statistic each SNP3eQTLGen pair has a uniform p-value 

distribution. Finally, for all SNP3eGene pairs, we calculated Benjamini-Hochberg FDR 

over the empirical p-values. 

For each SNP3eGene pair, we also derived a p-value cutoff that indicates which of the 

co-eGenes are significant for that SNP3eGene pair via the following steps. After 

determining the FDR for all SNP3eGene pairs, we determined the empirical p-values 

that are closest to FDR = 0.05. Using the beta distributions for each SNP3eGene pair, 

we then determined its nominal p-value threshold. All co-eGenes with a nominal p-value 

lower than the corresponding p-value threshold for that SNP3eGene pair were 

considered significant. 
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Replication in BIOS dataset 

We replicated the co-eQTL findings in bulk whole-blood RNA-seq data from the BIOS 

Consortium, using the same method described in a previous study (8). Briefly, we 

implemented the following ordinary least squares model with the Python package 

statsmodels (63): eGene ~ SNP + co-eGene + SNP:co-eGene. We then examined the 

effect sizes of the interaction term SNP:co-eGene and used Benjamini-Hochberg 

procedures for multiple testing correction. 

Calculation of rb values and allelic concordance 

We used the same evaluation metrics to quantify the cell-type-specificity and replication 

performance in the BIOS data set of the co-eQTLs. First we used the rb method with 

modification. We followed the same procedures as the original study (31) but chose a 

suggested alternate strategy to estimate errors across gene pairs between two tissues. 

Whereas the original paper used null SNPs per each eQTL for this purpose, we tested 

only the significant eQTL SNP for SNP3eGene3co-eGene triplets and therefore we did 

not have information for the null SNPs. Thus, we used the alternative approach 

indicated in the original paper with Equation 1), where re is the estimation errors across 

gene pairs between two tissues, rp is the correlation of co-expression levels between 

two cell types in the overlapping sample, ns is the number of overlapping samples, ni 

and nj are the number of samples in cell typed i and j, respectively. For the BIOS 

replication, we excluded overlapping individuals from the BIOS RNA-seq dataset for the 

replication analysis. Additionally, in cases where fewer than 10 co-eQTLs were tested in 

the replication analysis, we could not get a robust estimation of the rb value and hence 

represent them as NAs in the results section. 
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Equation 1 ��  =  �� × ��√�ÿ×�Ā 
Due to our filtering strategy, we did not always test the same set of SNP3eGene3co-

eGene triplets in all cell types. Therefore we also need to compare the tested ratio when 

quantifying the cell-type-specificity. The tested ratio means the SNP3eGene3co-eGene 

triplets that were also tested in another cell type or the BIOS replication analysis. 

A third evaluation metric that we used is allelic concordance between the discovered co-

eQTLs and the results in the replication study. This is defined as the ratio of co-eQTLs 

with concordant effect direction by the number of significant co-eQTLs identified in the 

replication study. 

Biological interpretation based on enrichment of GO terms, TF binding sites and 

GWAS variants 

We explored the biological function of the co-eQTLs based on different enrichment 

analyses that all tested if co-eGenes associated with the same SNP3eGene pair in the 

same cell type show similar functional properties. For this, we selected all SNP3eGene 

pairs that had at least five significant co-eGenes in the same cell type. 

First, we performed GO enrichment analysis separately for each co-eGene set, grouped 

by SNP3eGene and cell type, applying the R package clusterProfiler (ver 4.0.5) (64) and 

performing FDR multiple testing correction separately for each SNP3eGene pair across 

the different GO terms (defining enrichment below FDR < 0.05 as significant). As the 

background set for the enrichment, we used all genes tested in the co-eQTL analysis in 

the respective cell type. 
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Next, we explored if these co-eGene sets were enriched for certain TF binding sites. TF 

annotations were taken from ChIP-seq peaks processed in the ReMap 2022 database 

(33), which we filtered for cell lines associated with blood cell lines. We tested the 

overlap of these peaks with the promoter regions of the co-eGenes tested, defining the 

promoter region as the region 2kB upstream and downstream of the first transcription 

start site of the gene. Enrichment was tested based on Fisher9s exact tests for each TF, 

using all genes tested in the co-eQTL analysis in the respective cell type as the 

background set. We performed FDR multiple testing correction separately for each 

SNP3eGene pair over all TFs (defining enrichment below FDR < 0.05 as significant). 

Furthermore, we explored if the enriched TF itself was a co-eGene associated with the 

respective SNP3eGene pair and if the co-eQTL SNP or a SNP in high LD (R2g 0.9) lies 

in a binding site of the enriched TF. The SNPs in high LD were obtained from SNiPA 

(65) using the variant set from the 1000 Genomes Project, Phase 3 v5, European 

population, Genome assembly GRCH37 and genome annotations from Ensembl 87. 

For the GWAS annotations, we considered two different strategies. In the first approach, 

we annotated SNPs or SNPs in high LD (R2 g 0.8) with GWAS loci from the GWAS 

Catalog (1), with the last updated timestamp being 3/1/2022, 07:13 AM (GMT+0100). 

LD information for this was taken from LDtrait (66) with the following parameters: 

window size = 500KB, reference population = 1000 Genomes CEU, GRCh37). In the 

second approach, we used the magma method (67) to assess enrichment of GWAS 

associations among co-eGenes. We obtained uniformly processed GWAS summary 

statistics for 114 traits that were used for the GWAS analysis of the GTEx consortium 

(68,69). We then followed the strategy previously described by (67). We defined gene 
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sets for each co-eQTL SNP in each tissue as the set of significant co-eGenes 

associated with the SNP, as done for the GO and TF enrichment analysis. Protein 

names/gene symbols were converted to Entrez gene ids and mapped to the 

corresponding annotations on the human genome assembly 38. We performed 

individual magma analyses for each trait based on summary statistics and LD structure 

from the 1000 genomes European reference panel for all gene sets compared to the 

background set of genes tested for co-eQTL, always conditioning on default gene-level 

covariates (for example, gene length). Subsequently, we applied the Benjamini-

Hochberg method and selected gene set3trait associations with FDR < 5%. 

After we observed different distributions of co-eQTLs for rs113110173RPS26 with 

regards to the direction of effect in the different cell types, we repeated all enrichment 

analysis (GO, TF and GWAS) separately for the positively associated co-eGenes and 

negatively associated co-eGenes in CD4+ T cells. 

 

Direction of effect 

We compared the direction of effect in eQTLs and co-eQTLs by comparing the direction 

of the zscores. After ensuring that the reference allele aligns in the eQTL and co-eQTL 

analysis, co-eQTLs for which the sign of the zscore matches the sign of the eQTL 

zscore are called concordant. If otherwise, they are called discordant. 
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