

1 **Macrophages undergo necroptosis during severe influenza A infection and**
2 **contribute to virus-associated cytokine storm**

3

4 **Short title: Macrophages necroptosis during influenza A infection**

5 André C. Ferreira^{1,2,3,*}, Carolina Q. Sacramento^{1,2,*}, Filipe S. Pereira-Dutra^{1,*}, Natália Fintelman-
6 Rodrigues^{1,2}, Priscila P. Silva^{1,3}, Mayara Mattos^{1,2}, Caroline S. de Freitas^{1,2}, Andressa
7 Marttorelli^{1,2}, Gabrielle R. de Melo¹, Mariana C. Macedo¹, Isaclaudia G. Azevedo-Quintanilha¹,
8 Aluana S. Carlos³, João Vitor Emídio³, Cristiana C. Garcia⁴, Patrícia T. Bozza¹, Fernando A.
9 Bozza^{1,5,6,†} and Thiago M. L. Souza^{1,2,†,#}

10

11 **Affiliation**

12

13 ¹ Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil;

14 ² National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center
15 for Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, RJ, Brazil;

16 ³ Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brazil;

17 ⁴ Respiratory and Measles Virus Laboratory, IOC, Fiocruz, Rio de Janeiro, RJ, Brasil.

18 ⁵ National Institute of infectious disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, Brazil.

19 ⁶ Department of Critical Care, Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ, Brasil.

20

21 * The authors contributed equally as the first authors.

22 † The authors contributed equally as the last authors.

23 # Corresponding author: tmoreno@cdts.fiocruz.br; Tel.: +55-21-2562-1311

24

25 **Keywords:** Influenza virus, necroptosis, TNF, etanercept, Macrophages

26 **Abstract**

27 Influenza A virus (IAV) causes a major public health concern, because it is one of the
28 leading causes of respiratory tract infections and hospitalization. Severe influenza has been
29 associated with the cytokine storm, and IAV productive infection cell death in airway epithelial
30 cells may contribute to the exacerbation of this proinflammatory event. On the other hand, IAV
31 replication in macrophages is non-permissive and whether this immune cell may contribute to
32 severe influenza physiopathology requires more details. Here, we investigated IAV-induced
33 macrophage death, along with potential therapeutic intervention. We found that IAV or simply its
34 surface glycoprotein hemagglutinin (HA) triggers necroptosis in human and murine macrophages
35 in a Toll-like receptor-4 (TLR4) and TNF-dependent manner. Anti-TNF treatment, with the
36 clinically approved drug etanercept, prevented the engagement of the necroptotic loop and mice
37 mortality. Impaired IAV-induced pro-inflammatory cytokine storm and lung injury. Our results
38 implicate macrophage necroptosis with severe influenza in experimental models and potentially
39 repurpose a clinically available therapy.

40

41 **Author Summary**

42

43 Various fates of cell death have an integral role in the influenza A virus (IAV) pathogenesis
44 and lung/respiratory dysfunction. IAV physiopathology is not restricted to airway epithelial cells,
45 where this virus actively replicated. Macrophages should support both viral clearance and priming
46 of adaptative immune response in patients that adequately control influenza. However, during
47 severe IAV infection, macrophages – which are unable to support a permissive viral replication -
48 undergo disruptive cell death and contribute to the exacerbated production of proinflammatory
49 cytokines/chemokines. We characterized this process by showing that IAV or just its surface
50 glycoprotein hemagglutinin (HA) trigger necroptosis, a disruptive and TNF-dependent cells death.
51 Since TNF is a hallmark of pro-inflammatory cell death, we blocked this mediator with a
52 repurposed biomedicine etanercept, which prevented the severe IAV infection in the experimental
53 model. The present work improves the knowledge of influenza pathophysiology by highlighting
54 the importance of macrophage cell death during severe infection.

55

56

57

58

59

60

61

62

63

64 **Introduction**

65

66 Acute respiratory illness caused by influenza A (IAV) is associated with epidemic [1] and
67 pandemic outbreaks, like during the emergence of Influenza A(H1N1)pdm09 during 2009 [2].
68 Besides higher incidence of complicated clinical outcomes during pandemic situations, seasonal
69 influenza also represents a public health threat. Influenza presentation ranges from mild to
70 potentially lethal cases of severe acute respiratory syndrome (SARS) [3,4]. Annually, there are an
71 estimated 1 billion cases of influenza, of which 3–5 million are severe and 10 to 20 % of these
72 complicated cases may result in deaths [4–6].

73 IAV has a negative-sense and segmented RNA genome coding for at least 11 viral proteins,
74 of which hemagglutinin (HA) and neuraminidase (NA) are the major surface glycoproteins [7].
75 During its life cycle, HA attaches to sialic acid residues on cellular surface, allowing IAV to be
76 endocytosed [8]. After, HA-dependent fusion of viral envelope with endosome membrane, viral
77 RNA and associated proteins are transported to the cellular nucleus, where replication and
78 transcription take place. Newly synthesized proteins are assembled, virions bud the cell membrane
79 and NA assists their final release [9]. During this process, infected cells may succumb to death,
80 and the pathway to death has been associated to IAV pathogenesis [9,10]. In airway epithelial
81 cells, where IAV performs its replicative cycle completely and generates infectious progeny,
82 infection activates the receptor interaction serine/threonine-protein kinases 1 and 3 (RIPK1 and
83 RIPK3) promoting apoptosis and necroptosis [11–14]. Whereas apoptosis has been proposed as
84 cell death related to limit IAV-induced tissue damage [15], virus-induced necrotic cell death may
85 exacerbate inflammatory engagement [14,16]. During necroptosis, cells are triggered to shift from
86 an apoptotic-like cell death to the disruption of the plasma membrane, facilitating the release of
87 immunomodulatory damage associated with molecular patterns (DAMPs), leading to

88 inflammation [17]. The pro-inflammatory cytokine storm is an important hallmark of IAV-induced
89 severe pneumonia, strongly associated with lung/respiratory dysfunction [18].

90 Moreover, IAV physiopathology is not restricted to airway epithelial cells. Macrophages
91 are also exposed to this virus, although they are unable to harbor a permissive virus replication[19].
92 In the IAV-infected lung, both resident macrophages by the infected and macrophages derived
93 from blood monocytes, since they migrate towards the respiratory tract and differentiate to
94 macrophages [20,21]. To limit the infection in the lower respiratory tract, macrophages should
95 clear the virus particles and prime the adaptive immune response [22]. However, IAV-infected
96 macrophage death has been related to overproduction of local and systemic cytokines/chemokines,
97 cellular infiltration, extracellular matrix degradation, and airway epithelial denudation. Whether
98 these events are influenced by the mechanism of macrophage death require more details [22]. Here,
99 we show that IAV- and HA-induced necroptosis in primary macrophages lead to a loop of events
100 involving Toll-like receptor 4 (TLR4), Tumor necrosis factor (TNF), and RIPK1, resulting in
101 exacerbation of inflammatory response. Moreover, we show that the blocked TNF-related
102 necroptosis signaling by biodrug etanercept increased the survival of IAV-infected animals and
103 jeopardized the inflammatory response associated with several IAV infections.

104

105

106 **RESULTS**

107

108 ***IAV and its HA induce necroptosis and pro-inflammatory response in primary macrophages***

109 For initial assessments of IAV-induced macrophage death, we evaluated the cell surface
110 exposure of phosphatidylserine (PS) and the loss of plasma membrane integrity, by respectively
111 labeling the cells with AnnexinV and propidium iodide (PI) through flow cytometry. We observed
112 that IAV increased the number of AnnexinV⁺ and AnnexinV⁺/PI⁺ cells (**Figure 1A**). Because IAV
113 life cycle in macrophages is generally dead-end [19], we tested whether the viral protein
114 responsible for initial attachment and a known pathogen-associated molecular patterns
115 (PAMPs)[23], the HA, could also trigger a similar cell fate. Indeed, HA also enhanced the number
116 of AnnexinV⁺ and AnnexinV⁺/PI⁺ macrophages (**Figure 1A**). Next, we treated the murine
117 macrophages cells with pharmacological inhibitors of necroptosis (Nec-1, an inhibitor of RIPK1)
118 or apoptosis (zVAD, a pan-caspase inhibitor) before IAV infection. Nec-1 pretreatment prevented
119 the increase of annexinV⁺/PI⁺ cellular content (**Figure 1B and Figure S3**) and LDH levels
120 quantified in the culture supernatant (**Figure 1C**), whereas zVAD was not able to prevent these
121 events. The same results were obtained with human macrophages, because Nec-1 prevented IAV-
122 and HA-induced enhancement of LDH levels (**Figure 1D**). Of note, TNF was used as a positive
123 control to induce apoptosis [24], and TNF/zVAD as a positive control of necroptosis [25].
124 Consistently with cytometry findings and LDH levels, IAV and HA significantly increased the
125 expression of p-RIPK1/RIPK3 that transduce the necroptotic signal to the effector protein Mixed
126 lineage kinase domain-like (MLKL) (**Figure 1E and Figure S4**), the pore-forming protein
127 involved with membrane disruption [10,26]. Importantly, pretreatment with Nec-1 prevented
128 IAV- and HA-induced engagement of necroptotic signals in macrophages (**Figure 1E and Figure**
129 **S4**).

130 Because necroptosis is associated with the pro-inflammatory response, macrophages
131 infected with IAV or exposed to HA produced nitric oxide (**Figure 1F**) and IL-6 (**Figure 1G**).
132 Nec-1 pretreatment on these cells completely shifted the macrophage phenotype to prevent the
133 pro-inflammatory phenotype and increasing the content of the regulatory cytokine IL-10 (**Figure**
134 **1F-I**). Together, these data suggest that IAV-induced necroptosis in macrophages may be directly
135 related to the pro-inflammatory cytokine storm observed in severe disease.

136

137 ***Toll-like receptor 4 (TLR4) is engaged during IAV- and HA-induced necroptosis***

138 Because influenza HA has been shown to engage TLR4 as an early signal of innate immune
139 response in leukocytes [27,28], we hypothesized that this event could also occur in macrophages
140 as an upstream event to trigger necroptosis. Thus, macrophages were pre-treated with an TLR4
141 signaling pathway inhibitor (CLI95) and exposed to IAV or HA. CLI95-treated IAV/HA-exposed
142 macrophages display lower levels of LDH (**Figure 2A**) and annexinV⁺/PI⁺ cells (**Figure 2B**),
143 compared to untreated control macrophages (**ctr; Figure 2**).

144 Next, pharmacological data were further validated with macrophages from TLR4 knockout
145 mice (TLR4^{-/-}), and compared to macrophages from wild-type (WT) and TLR2 knockout (TLR2⁻
146 /-) mice. In the absence of TLR4 signaling, neither IAV nor HA could induce necroptosis above
147 the basal levels, as judged by the similar levels of LDH and annexinV⁺/PI⁺ cell counts between
148 TLR4^{-/-} and mock-infected control (**Figure 2C-D and Figure S5**). Similarly, to WT macrophages,
149 cells lacking TLR2 underwent necroptosis due to exposure to IAV or HA (**Figure 2C-D and**
150 **Figure S5**).

151 To gain insight into the role of TLR4 in IAV/HA-triggered necroptosis, we analyzed the
152 expression of p-RIPK1, RIPK3, and MLKL in WT and TLR4^{-/-} macrophages. We observed that

153 the absence of TLR4 impaired the expression of p-RIPK1, RIPK3, and MLKL (**Figure 2E**).
154 Moreover, the lack of TLR4 signaling prevented the increase of pro-inflammatory cytokines IL-6
155 (**Figure 2F**) and TNF (**Figure 2G**) induced by IAV, HA, or LPS (Figure 2E and F). On the other
156 hand, the IL-10 levels were enhanced in the TLR4^{-/-} macrophages stimulated with LPS or infected
157 with IAV (**Figure 2H**), suggesting a stronger control of IAV-induced cytokine imbalance *in vitro*.
158

159 ***IAV or its HA trigger necroptosis and pro-inflammatory response is a TNF-dependent manner***
160 ***in macrophages.***

161 Since IAV/HA induced cell death with the engagement of TLR4 signaling, we next
162 evaluated whether TNF- α , a downstream pro-inflammatory cytokine produced during these events,
163 could be involved in the necroptotic loop. IAV-infected or HA-exposed macrophages were
164 pretreated with an anti-TNF- α neutralizing antibody, which prevented viral-induced necroptosis
165 by 40-50 %, as shown by a reduction in annexinV⁺/PI⁺ cell counts (**Figure 3A-B**) and LDH levels
166 (**Figure 3C**). The IAV/HA-enhanced intracellular levels of RIPK1 were abolished by anti-TNF- α
167 antibodies (**Figure 3D-E**). By blocking TNF signaling, we also prevented the IAV/HA-induced
168 production of nitric oxide (**Figure 3F**) and IL-6 (**Figure 3G**). Notably, treatment with anti-TNF
169 associated with increased IL-10 levels even in virus stimulated macrophages (**Figure 3H**).
170 Together, our *in vitro* results demonstrate that necroptosis induced by IAV/HA is triggered by a
171 loop of events involving TLR4, TNF- α , p-RIPK1, leading to necroptosis and the exacerbation of
172 inflammation (**Figure 3I**).
173

174 ***Blocking of IAV-induced necroptosis loop ameliorates severely infected animals.***

175 Our next step was to assess whether clinically approved Etanercept/ENBREL (anti-TNF- α
176 biodrug) could impair the IAV-induced necroptotic loop. During the *in vivo* experiment, we
177 observed that the IAV led to significant weight loss on the 3rd day post-infection (DPI) (**Figure**
178 **4A**). In contrast, the Etanercept treatment at reference dose (2.5 mg/kg) resulted in the weight
179 stabilization of IAV-infected mice, showing a significant difference compared to untreated ones
180 from the 6 DPI afterwards (**Figure 4A**). The protective effects of Etanercept were also observed
181 in survival, because IAV-infected etanercept-treated mice presented significantly enhanced
182 survival (by 8-times) when compared to untreated infected mice (**Figure 4B**).

183 We next analyzed the respiratory tract of the mice at 3 DPI and 5 DPI, before the mortality
184 peak. Despite not inhibiting the total leukocyte accumulation in BAL (**Figure 5A-B**), etanercept
185 treatment significantly reduced the number of polymorphonuclear leukocytes (PMN) in both time
186 points analyzed (**Figure 5A-B**). Moreover, the etanercept-treated group presented a significant
187 increase in the mononuclear leukocytes on 3 DPI. We observed that etanercept reduced the content
188 of annexinV⁺/PI⁺ mononuclear cells induced by IAV, suggesting a necroptosis reduction during
189 both times analyzed (**Figure 5C-D**). Moreover, the etanercept-treated group also presented a
190 reduction of IAV-induced overall cell death levels, as measured by LDH levels in BAL (**Figure**
191 **5E**). In this context, we also evaluated whether the impairment of the TNF pathway could also
192 reduce necroptosis in lung tissue. We observed an increased expression of pRIPK1 and MLKL in
193 lung tissue of IAV-infected mice (**Figure 5F**). Treatment with etanercept prevented the increase
194 of these protein levels (**Figure 5G-H**) while increased caspase-8 content, suggesting that anti-
195 TNF treatment shift cell death from necroptosis to apoptosis.

196 Treatment with etanercept reduced the levels lung inflammation in IAV-infected mice, as
197 evaluated by protein content (**Figure 6A**), CXCL1/KC (**Figure 6B**), CCL2/MCP1 (**Figure 6C**)

198 IL-6 (**Figure 6D**), TNF levels (**Figure 6E**), IFN- γ (**Figure 6F**) and IL-10 (**Figure 6G**) levels in
199 the BAL. Together, our data suggest that the impairment of a necroptosis loop ameliorates
200 cytokines storms induced by IAV infection.

201 **DISCUSSION**

202 Emerging and re-emerging IAV strains are responsible for seasonal epidemics and
203 pandemics, leading influenza to be a continuous warning to global public health systems [4,5]. One
204 of the biggest challenges in the development of influenza antivirals is the difficulty to early provide
205 treatments during acute viral infections to improve clinical outcomes [29]. Host-directed broad-
206 spectrum antimicrobial drugs have been attempted to be used against respiratory viral infection,
207 such as influenza and coronavirus disease 2019 (COVID-19) [30,31]. In this context, the use of
208 immunomodulatory drugs has been reported as a promising approach for treating
209 hypercytokinemia induced by acute viral infections [32].

210 After viral infection, an innate response is triggered in host cells to produce interferons,
211 cytokines and chemokines to lead an immune activation , and in certain circumstances, the final
212 fate of the host cell is its death [17]. The various ways by which cells die may directly influence
213 viral physiopathology and patient's clinical outcome [9,10]. With respect to pulmonary viral
214 infections, it has been reported that different viruses lead to the induction of specific types of death
215 mechanisms. Recently, we reported that pyroptosis is triggered by SARS-CoV-2 human
216 monocytes, either by experimental infection and in critically ill COVID-19 patients [33]. For IAV,
217 necroptosis and apoptosis have been reported in epithelial airways cells [11–14], where virus actively
218 replicates. Here, we further described that macrophages, non-permissive cells to IAV replication,
219 exposed to this virus or just its surface glycoprotein HA experience necroptosis, which leads to the

220 imbalance of pro-inflammatory and regulatory modulators associated with cytokine storm and
221 severe influenza *in vitro* and *in vivo*.

222 Indeed, necroptosis has been described as a highly inflammatory process [26], leading to
223 lung dysfunction and the development of severe multiorgan tissue damage during virus
224 infections [34–36]. Importantly, the inhibition of necroptosis in IAV/HA-exposed cells shifted
225 macrophage from pro-inflammatory to regulatory phenotype [37], because IL-6 and nitric oxide
226 levels were reduced and while IL-10 levels were enhanced.

227 We observed that TLR4, which plays a major role in the recognition of PAMPs [38–40], is
228 engaged by IAV and its HA. Following this event, RIPK1 activation, RIPK3 engagement and
229 MLKL expression are hallmarks of the pore-forming event that culminate with cell lysis³¹
230 measurable by quantification of PI+ cells and increased LDH levels detected throughout this study.
231 Necroptosis is a TNF-dependent event [38,41] and, in fact, this pro-inflammatory cytokine was
232 triggered during macrophage necroptosis provoked by IAV/HA. Moreover, the blockage of TNF
233 by etanercept led to reduction of the expression of both p-RPK1 and MLKL in mononuclear cells
234 *ex vivo*, while increasing the levels of cleaved caspase 8. Because caspase 8 is related to apoptosis,
235 our data suggest that the *in vivo* intervention with etanercept on IAV-infected mice downregulated
236 the necroptotic loop by altering the way monocular cells die and allowing the shift from necroptosis
237 to apoptosis [38,42,43]

238 In summary, we demonstrated a positive feedback loop of events that led to necroptosis
239 and exacerbated inflammation in IAV-infected macrophages. Our data demonstrated that IAV
240 infection and its HA induce necrotic cell death by engaging TLR4 signaling to generate an
241 enhanced TNF- α level and RIP1K/MLKL activation. Etanercept, which is endowed with anti-
242 TNF- α activity, controlled severe influenza, impairing both necroptosis in IAV-infected mice. The
243 etanercept-treated animals change their proinflammatory to a regulatory response, increasing

244 survival. The present work improves the knowledge of influenza pathophysiology by highlighting
245 the importance of macrophage cell death during severe infection.

246

247 MATERIALS AND METHODS

248

249 *Reagents*

250 We used different pharmacological inhibitors throughout this study (Table 1). The
251 concentration of each inhibitor was chosen based on the manufacturer's recommendations. All
252 inhibitors were dissolved in 100% dimethylsulfoxide (DMSO) and subsequently diluted at least
253 10⁴-fold in culture medium before each assay. The final DMSO concentrations showed no
254 cytotoxicity.

255

256 **Table 1. List of small molecules and bio-drugs used as pharmacological inhibitors.**

Compound	Abbreviation	Target	Concentration	Manufacture	Catalog number
Z-VAD-FMK	ZVAD	Pan-caspase	10 µM	Invivogen	tlrl-vad
Necrostatin-1	Nec-1	RIPK1	25 µM	Sigma-Andrich	64419-92-7
Recombinant Mouse TNF-alpha	TNF	TNF-receptor	1 ng/mL	R&D System	410-MT/CF
Resatorvid	CLI95	TLR4	2 µM	Invivogen	tlrl-cli95
anti-TNF antibody	anti-TNF	TNF	1 ng/mL	R&D System	MAB4101
Polymyxin b	POLI	LPS	100 ng/mL	Sigma-Aldrich	P4932
Lipopolysaccharide serotype 0111: B4	LPS	TLR4	10ng/mL	Sigma-Aldrich	L4931
Etanercept	ETN	TNF-receptor	2.5 mg/kg	Pfizer	

257

258 Besides the pharmacological inhibitors, Recombinant Influenza A Virus Hemagglutinin H1
259 protein (HA, Abcam, Cat.# ab217651) was used. To select HA dose, macrophages were exposed

260 to different concentrations of this protein or lipopolysaccharide (LPS; Sigma Aldrich). We
261 observed that 10 ng/mL of HA was the minimal dose to induce TNF (Figure S1) and 10 ng/mL of
262 LPS was used as positive control (**Figure S1**).

263
264 ***Virus Strain and Growth Conditions***
265

266 Madin-Darby Canine Kidney (MDCK) were cultured in Dulbecco's Modified Eagle Medium
267 (DMEM; Life Technologies) and supplemented with 10 % fetal bovine serum (FBS; HyClone),
268 100 U/mL penicillin, and 100 mg/mL streptomycin (Sigma-Aldrich) at 37 °C in a 5 % CO₂
269 atmosphere.

270 IAV, A/H1N1/Puerto Rico/8/34 strain (PR8), was grown and titrated in MDCK [44,45].
271 Briefly, confluent cells in 75 cm² culture flasks were infected with PR8 at the multiplicity of
272 infection (MOI) of 0.1. The inoculum was prepared in DMEM containing 2 µg/ml of TPCK-
273 trypsin (Sigma-Aldrich). Cells were exposed to PR8 for 1 h at 37 °C to allow virus adsorption.
274 After the incubation period, cells were washed with PBS, and fresh inoculation medium was added.
275 Cultures were accompanied daily until the detection of IAV-induced cytopathic effect (CPE).
276 Culture supernatants containing the viruses were collected and centrifuged (1,500 rpm for 5
277 minutes) to remove cell debris. The viral stocks were aliquoted and stored at -70 °C for further
278 studies.

279 Titration was performed through plaque assays, using 10-fold dilutions (10⁻¹ to 10⁻¹⁰) in 6-
280 well plates. After 1h incubation with virus dilutions, the inoculum was removed, cells were
281 washed, and fresh DMEM with 2.5% agarose with TPCK-trypsin at 1 µg/ml was added. After 3
282 days at 37 °C, laying agar was removed, the wells were washed with PBS and stained with crystal
283 violet 0.1 %.

284

285

286 ***Mice***

287 C57BL/6 mice (20–30 g) were supplied by the Institute of Science and Technology in
288 Biomodels from Oswaldo Cruz Foundation and used at 8–12 weeks of age. The Institutional
289 animal welfare committee (Committee on the Use of Laboratory Animals of the Oswaldo Cruz
290 Foundation) approved all animal experiments in agreement with the Brazilian National guidelines
291 supported by CONCEA (Conselho Nacional de Controle em Experimentação Animal) under
292 license number L050/15 (CEUA/FIOCRUZ). Mice were maintained with rodent diet and water
293 available *ad libitum* with 12h light-dark cycle under controlled temperature (23 ± 1 °C).

294

295 ***Murine and human macrophages***

296 To obtain murine bone marrow-derived macrophages (BMDM), cells isolated from femur
297 and tibia of mice with C57BL/6 background; either from wild type (WT), Toll-like Receptor 2 or
298 4 knockout (TLR2^{-/-} or TLR4^{-/-}, respectively) mice. The isolated cells were cultured for 7 days in
299 RPMI-1640 medium supplemented with 30% (vol/vol) L929 supernatant, 20% (vol/vol) heat-
300 inactivated fetal bovine serum, 1% L-glutamine (vol/vol), and 1% penicillin-streptomycin
301 (vol/vol) as previously described by Assunção et al., (2017). Differentiated macrophages were
302 cultured in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (vol/vol), 1%
303 L-glutamine (vol/vol), and 1% penicillin/streptomycin (vol/vol). BMDM cells were maintained at
304 a density of 5x10⁵ cells/ml.

305 Human monocyte-derived macrophages (MDMs) were obtained through plastic adherence
306 of peripheral blood mononuclear cells (PBMCs). In brief, PBMCs were obtained from buffy coat
307 preparations of healthy donors by density gradient centrifugation (Ficoll-Paque, GE Healthcare).
308 PBMCs (2.0 x 10⁶ cells) were plated onto 48-well plates (NalgeNunc) in DMEM containing 10 %

309 human serum (HS; Millipore) and penicillin/streptomycin. Cells were maintained for monocyte
310 differentiation into macrophages at standard culture conditions for 6–7 days. Then, non-adherent
311 cells were washed, and the remaining macrophage layer was maintained in DMEM with 5 % HS
312 [47].

313 The purity of murine and human macrophages was above 95 %, as determined by flow
314 cytometric analysis (FACScan; Becton Dickinson) using anti-CD3 (BD Biosciences) and anti-
315 CD16 (Southern Biotech) monoclonal antibodies.

316

317 ***In vitro experiments***

318 Murine or human macrophages were plated (5×10^5 cells/well) in 24-well culture plates
319 (flat-bottom, tissue-culture-treated plates; Costar) and were incubated for 12 h at 37°C and 5%
320 CO₂. The cultures were then infected with PR8 (MOI of 0.25) or exposed to 10 ng/mL of HA for
321 24 h. In parallel, as positive controls, macrophage cultures were also stimulated with 1 ng/mL of
322 TNF- α or 10 ng/mL of LPS. After this incubation period, culture supernatants were collected for
323 cell death analysis by LDH measurement and cytokines/chemokines quantification. The cell
324 monolayers were harvested for flow cytometry and western blot analysis. To impair the cell death,
325 10 μ M of zVAD, 25 μ M of Nec-1, 2 μ M of CLI95, or 1 ng/mL of anti-TNF- α antibody were added
326 to the cell culture and incubated for 30 min before IAV-infection or the application of stimuli (HA,
327 LPS or TNF), and remained for all the infection/stimulus time, at 37°C in 5% CO₂.

328

329 ***Analysis of cell death***

330 Macrophage's viability was evaluated by quantifying LDH and by flow cytometry in the
331 presence of the pharmacological inhibitors. LDH quantification was performed after culture
332 supernatants centrifugation (5,000 rpm for 1 minute) to remove cellular debris. According to the
333 manufacturer's instructions, extracellular lactate dehydrogenase (LDH) was quantified using the
334 Doles® kit. In summary, 25 μ L of cell samples were seeded in 96-well culture plates and incubated
335 with 5 μ L of ferric alum and 100 μ L of LDH substrate for 3 minutes at 37 °C. Nicotinamide adenine
336 dinucleotide (NAD, oxidized form) was added, followed by a stabilizing solution. After 10
337 minutes-incubation, plates were read in a spectrophotometer at 492 nm.

338 For flow cytometry analysis, macrophages were diluted in a labeling buffer (10^6 cells/mL).
339 Then, 100 μ L of cell samples were marked with 5 μ L of AnnexinV (BD Biosciences) and 1 μ L of
340 PI (BD Biosciences) for 15 minutes for cell death analysis. Around 10,000 events were acquired
341 using FACSCalibur, and analyses were performed using the CellQuest software. Macrophages
342 were gated through cell size (forward light scatter, FSC) and granularity (side light scatter, SSC)
343 analysis (Figure S2). The profiles for macrophage's positivity to AnnexinV and/or PI
344 ($\text{AnnexinV}^+/\text{PI}^+$) were determined for cells from *in vitro* experiments and from BAL of IAV-
345 infected mice. Data acquisition was set to count a total of 10,000 events, and the FLOWJO
346 software package was used to analyze the data.

347

348 ***In vivo experiments***

349 For infection procedures, mice were anesthetized with 60 mg/kg of ketamine and 4 mg/kg
350 of xylazine and inoculated intranasally with PBS (MOCK) or 10^3 PFU of PR8 in 25 μ l of PBS
351 [48]. The animals were kept under observation until they completely recovered. Six hours post-
352 infection, the treated groups received an intraperitoneal dose of 2.5 mg/kg of Etanercept/ENBREL
353 in 200 μ L of vehicle (PBS). The treatment was continued with a daily dose of 2.5 mg/kg of

354 etanercept for 7 days. We used 10 mice per experimental group: mock-infected (MOCK);
355 influenza-infected and treated with vehicle (IAV); and influenza-infected and treated with
356 Etanercept (IAV/ETN). The animals were monitored daily for 15 days for survival and eight days
357 for body-weight analysis. In the case of weight loss higher than 25 %, euthanasia was performed
358 to alleviate animal suffering.

359

360 ***Bronchoalveolar lavage and lung homogenates***

361

362 Mice were euthanized on days 3 and 5 after infection to evaluate the lung's inflammatory
363 process induced by IAV infection. The mice were anesthetized, and bronchoalveolar lavage (BAL)
364 from both lungs was harvested by washing the lungs three times with two 1-ml aliquots of cold
365 PBS. After centrifugation of BAL (1500 rpm for 5 minutes), the pellet was used for total and
366 differential leukocytes counts and cell death analysis by flow cytometry. The supernatant of the
367 centrifuged BAL was used for cytokines/chemokines and total protein measurements and cell
368 death analysis by LDH quantification. Total leukocytes (diluted in Turk's 2 % acetic acid fluid)
369 were counted using a Neubauer chamber. Differential cell counts were performed in cytopspins
370 (Cytospin3; centrifugation of 350 x g for 5 minutes at room temperature) and stained by the May-
371 Grünwald-Giemsa method. The levels of cytokines and chemokines were assessed by ELISA. The
372 total protein concentration in the BAL was measured using a BCA protein assay kit (Thermo
373 Scientific).

374 After BAL harvesting, the lungs were perfused with 5 ml of PBS to remove the circulating
375 blood. Lungs were then collected and macerated in 750 µL of cold phosphate buffer containing
376 protease inhibitor cocktail (Roche Applied Science, Mannheim, Germany). Homogenates were
377 stored at -80 °C for western blot analysis.

378

379 ***Measurements Inflammatory Mediators***

380 The levels of TNF, IL-6, IL-10, IFN- γ , CCL2 or CXCL1 were quantified in the *in vitro*
381 macrophage supernatants and BAL from IAV-infected mice using DuoSet® ELISA assays,
382 following the manufacturer's instructions (R&D Systems). Briefly, 100 μ L of each sample were
383 added in 96-well plates covered with the capture antibody. After a 2 h-incubation period at room
384 temperature (RT), the detection antibody was added, and the plates were incubated for a second
385 round of 2 h at RT. Streptavidin-HRP and its substrate were added with a 20 min incubation
386 interval, and the optical density was determined using a microplate reader set to 450 nm. Nitrite
387 levels in cell-free culture supernatant were measured using the Griess reagent system according to
388 the manufacturer's instructions (Promega cat.# G2930).

389

390 ***Western blot assay***

391

392 Cellular extracts of 1×10^6 cells or 0.5 g of tissue were homogenized in the RIPA lysis buffer
393 (1% Triton X-100, 2% SDS, 150 mM NaCl, 10 mM HEPES, 2 mM EDTA) containing protease
394 and phosphatase inhibitor cocktail (Roche, pH 8.0). After centrifugation at 13 000 g for 5 min, cell
395 lysates were prepared in reducing and denaturing conditions and subjected to SDS-PAGE. Equal
396 concentrations of proteins were fractionated by electrophoresis on 10% of acrylamide gels. The
397 proteins were transferred onto a nitrocellulose membrane (Millipore, Billerica, MA, USA),
398 followed by blocking of nonspecific binding sites in 5% nonfat milk in TBST (50 mM Tris-HCl -
399 pH 7.4, 150 mM NaCl, 0.05% Tween 20) for 1 h at room temperature and blotted with primary
400 antibodies in TBST overnight at 4 °C. The following antibodies were used: anti-Phospho-RIPK1
401 (Ser166) (Cell Signaling- # 31122S), anti-RIPK3 (D8J3L) (Cell Signaling - # 15828S), anti-
402 MLKL (D2I6N) (Cell Signaling- #14993S), and anti- β -actin (Sigma, #A1978) Proteins of interest

403 were identified by incubating the membrane with IRDye® LICOR secondary antibodies in TBST,
404 followed by fluorescence imaging detection using the Odyssey® system (CLx Imaging System).
405 Protein bands were quantified by densitometric image analysis using the ImageJ software. All the
406 data were normalized by β -actin expression quantification.

407

408 ***Statistical analysis***

409

410 All experiments were carried out at least three times independently, including technical
411 replicates in each assay. Statistical analysis was carried out using the GraphPad Prism software. P
412 values were calculated by unpaired Student's t test, except for PMC calculated with Wilcoxon
413 rank-sum test. Results are expressed as mean \pm SEM (median (IQR)). The significance of the
414 survival curves was evaluated using the Log-rank (Mantel-Cox) test. P values < 0.05 were
415 considered statistically significant.

416

417 **Acknowledgements**

418 We would like to thank Dra. Juliana De Meis from Laboratório de Pesquisa sobre o
419 Timo/FIOCRUZ for kindly donated etanercept (ENBREL®) and Dr. Marcelo Bozza from Instituto
420 de Microbiologia Paulo de Goes/Federal University of Rio de Janeiro, for donating C57Bl/6
421 knockout mice. We thank to Fiocruz Luminex Platform (*Subunidade Luminex-RPT03C* Rede de
422 Plataformas PDTIS, FIOCRUZ/RJ) and the assistance of MSc Edson Fernandes de Assis for the
423 use of its Luminex facilities.

424 **Funding**

425 This work was supported by Conselho Nacional de Desenvolvimento Científico e
426 Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
427 and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

428 **Conflicts of interest**

429 The authors declare no conflicts of interest.

430 **References**

- 431 1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology
432 of influenza A viruses. *Microbiol Rev*. 1992;56: 152–179. doi:10.1128/mr.56.1.152-
433 179.1992
- 434 2. Fineberg H V. Pandemic Preparedness and Response — Lessons from the H1N1
435 Influenza of 2009. *N Engl J Med*. 2014;370: 1335–1342. doi:10.1056/NEJMRA1208802
- 436 3. Paules C, Subbarao K. Influenza. *Lancet*. 2017;390: 697–708. doi:10.1016/S0140-
437 6736(17)30129-0
- 438 4. World Health Organization. Global influenza strategy 2019-2030. World Health
439 Organization, editor. World Health Organization. Geneva: World Health Organization;
440 2019. Available: <https://apps.who.int/iris/handle/10665/311184>.
- 441 5. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al.
442 Estimates of global seasonal influenza-associated respiratory mortality: a modelling study.
443 *Lancet*. 2018;391: 1285–1300. doi:10.1016/S0140-6736(17)33293-2
- 444 6. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, et al. Global
445 mortality associated with seasonal influenza epidemics: New burden estimates and
446 predictors from the GLaMOR Project. *J Glob Health*. 2019;9: 1–12.
447 doi:10.7189/jogh.09.020421
- 448 7. Resa-Infante P, Jorba N, Coloma R, Ortín J. The influenza virus RNA synthesis machine.
449 *RNA Biol*. 2011;8: 207–215. doi:10.4161/rna.8.2.14513
- 450 8. Kalil AC, Thomas PG. Influenza Fisiopatología. *Crit Care*. 2019;23: 1–7.

451 9. Yatim N, Albert ML. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell
452 Death Pathways, and Immunity. *Immunity*. 2011;35: 478–490.
453 doi:10.1016/j.immuni.2011.10.010

454 10. Nailwal H, Chan FK-M. Necroptosis in anti-viral inflammation. *Cell Death Differ*.
455 2019;26: 4–13. doi:10.1038/s41418-018-0172-x

456 11. Kuriakose T, Man SM, Subbarao Malireddi RK, Karki R, Kesavardhana S, Place DE, et
457 al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome
458 and programmed cell death pathways. *Sci Immunol*. 2016;1.
459 doi:10.1126/sciimmunol.aag2045

460 12. Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH, Ingram JP, et al. RIPK3
461 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated
462 Apoptosis to Protect against Influenza A Virus. *Cell Host Microbe*. 2016;20: 13–24.
463 doi:10.1016/j.chom.2016.05.011

464 13. Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF, Benitez AA, et al. DAI Senses
465 Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. *Cell Host*
466 *Microbe*. 2016;20: 674–681. doi:10.1016/j.chom.2016.09.014

467 14. Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M, et al. Influenza Virus Z-
468 RNAs Induce ZBP1-Mediated Necroptosis. *Cell*. 2020;180: 1115-1129.e13.
469 doi:10.1016/j.cell.2020.02.050

470 15. Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of
471 Influenza A virus-induced cell death. *Cell Death Dis*. 2018;9. doi:10.1038/s41419-018-
472 1035-6

473 16. Shubina M, Tummers B, Boyd DF, Zhang T, Yin C, Gautam A, et al. Necroptosis restricts
474 influenza A virus as a stand-alone cell death mechanism. *J Exp Med*. 2020;217.
475 doi:10.1084/jem.20191259

476 17. Orzalli MH, Kagan JC. Apoptosis and Necroptosis as Host Defense Strategies to Prevent
477 Viral Infection. *Trends Cell Biol*. 2017;27: 800–809. doi:10.1016/j.tcb.2017.05.007

478 18. Yang Y, Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe
479 influenza pneumonia. *Cell Mol Immunol*. 2016;13: 432–442. doi:10.1038/cmi.2016.1

480 19. Marvin SA, Russier M, Huerta CT, Russell CJ, Schultz-Cherry S. Influenza Virus
481 Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function.
482 Dermody TS, editor. *J Virol.* 2017;91. doi:10.1128/JVI.01417-16

483 20. Sakabe S, Iwatsuki-Horimoto K, Takano R, Nidom CA, Le M thi Q, Nagamura-Inoue T,
484 et al. Cytokine production by primary human macrophages infected with highly
485 pathogenic H5N1 or pandemic H1N1 2009 influenza viruses. *J Gen Virol.* 2011;92: 1428–
486 1434. doi:10.1099/vir.0.030346-0

487 21. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the
488 Cytokine Storm. *Microbiol Mol Biol Rev.* 2012;76: 16–32. doi:10.1128/MMBR.05015-11

489 22. Meischel T, Villalon-Letelier F, Saunders PM, Reading PC, Londrian SL. Influenza A
490 virus interactions with macrophages: Lessons from epithelial cells. *Cell Microbiol.*
491 2020;22: 1–11. doi:10.1111/cmi.13170

492 23. Frabutt DA, Wang B, Riaz S, Schwartz RC, Zheng Y-H. Innate Sensing of Influenza A
493 Virus Hemagglutinin Glycoproteins by the Host Endoplasmic Reticulum (ER) Stress
494 Pathway Triggers a Potent Antiviral Response via ER-Associated Protein Degradation.
495 Schultz-Cherry S, editor. *J Virol.* 2018;92. doi:10.1128/JVI.01690-17

496 24. Liu H, Ma Y, Pagliari LJ, Perlman H, Yu C, Lin A, et al. TNF- α -Induced Apoptosis of
497 Macrophages Following Inhibition of NF- κ B: A Central Role for Disruption of
498 Mitochondria. *J Immunol.* 2004;172: 1907–1915. doi:10.4049/jimmunol.172.3.1907

499 25. Wu YT, Tan HL, Huang Q, Sun XJ, Zhu X, Shen HM. ZVAD-induced necroptosis in
500 L929 cells depends on autocrine production of TNF α mediated by the PKC-MAPKs-AP-1
501 pathway. *Cell Death Differ.* 2011;18: 26–37. doi:10.1038/cdd.2010.72

502 26. Dhuriya YK, Sharma D. Necroptosis: A regulated inflammatory mode of cell death. *J*
503 *Neuroinflammation.* 2018;15: 1–9. doi:10.1186/s12974-018-1235-0

504 27. Liu W-C, Lin S-C, Yu Y-L, Chu C-L, Wu S-C. Dendritic Cell Activation by Recombinant
505 Hemagglutinin Proteins of H1N1 and H5N1 Influenza A Viruses. *J Virol.* 2010;84:
506 12011–12017. doi:10.1128/jvi.01316-10

507 28. Zhang S, Gu D, Ouyang X, Xie W. Proinflammatory effects of the hemagglutinin protein
508 of the avian influenza A (H7N9) virus and microRNA-mediated homeostasis response in
509 THP-1 cells. *Mol Med Rep.* 2015;12: 6241–6246. doi:10.3892/mmr.2015.4142

510 29. Muthuri SG, Venkatesan S, Myles PR, Leonardi-Bee J, Al Khuwaitir TSA, Al Mamun A,
511 et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted
512 to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual
513 participant data. *Lancet Respir Med.* 2014;2: 395–404. doi:10.1016/S2213-
514 2600(14)70041-4

515 30. Li CC, Wang XJ, Wang HCR. Repurposing host-based therapeutics to control coronavirus
516 and influenza virus. *Drug Discov Today.* 2019;24: 726–736.
517 doi:10.1016/j.drudis.2019.01.018

518 31. Pan H, Peto R, Henao-Restrepo A, Preziosi M, Sathi-yamoorthy V, Abdool Karim Q, et
519 al. Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results. *N
520 Engl J Med.* 2021;384: 497–511. doi:10.1056/NEJMoa2023184

521 32. Gu Y, Zuo X, Zhang S, Ouyang Z, Jiang S, Wang F, et al. The Mechanism behind
522 Influenza Virus Cytokine Storm. *Viruses.* 2021;13: 1362. doi:10.3390/v13071362

523 33. Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias S da SG, Fintelman-Rodrigues
524 N, Sacramento CQ, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human
525 primary monocytes. *Cell Death Discov.* 2021;7: 43. doi:10.1038/s41420-021-00428-w

526 34. De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, et al. Fatal
527 outcome of human influenza A (H5N1) is associated with high viral load and
528 hypercytokinemia. *Nat Med.* 2006;12: 1203–1207. doi:10.1038/nm1477

529 35. McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of
530 pulmonary intravascular coagulopathy in COVID-19 pneumonia. *Lancet Rheumatol.*
531 2020;2: e437–e445. doi:10.1016/S2665-9913(20)30121-1

532 36. Fajgenbaum DC, June CH. Cytokine Storm. *N Engl J Med.* 2020;383: 2255–2273.
533 doi:10.1056/nejmra2026131

534 37. O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists.
535 *Nat Rev Immunol.* 2016;16: 553–565. doi:10.1038/nri.2016.70

536 38. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate
537 game of cell death. *Cell Mol Immunol.* 2021;18: 1106–1121. doi:10.1038/s41423-020-
538 00630-3

539 39. He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in
540 macrophages through a receptor-interacting kinase-3-mediated pathway. *Proc Natl Acad
541 Sci U S A.* 2011;108: 20054–20059. doi:10.1073/pnas.1116302108

542 40. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like
543 Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL. *J Biol Chem.* 2013;288:
544 31268–31279. doi:10.1074/jbc.M113.462341

545 41. Orzalli MH, Kagan JC. Apoptosis and Necroptosis as Host Defense Strategies to Prevent
546 Viral Infection. *Trends Cell Biol.* 2017;27: 800–809. doi:10.1016/j.tcb.2017.05.007

547 42. Someda M, Kuroki S, Miyachi H, Tachibana M, Yonehara S. Caspase-8, receptor-
548 interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell
549 differentiation and necroptosis. *Cell Death Differ.* 2020;27: 1539–1553.
550 doi:10.1038/s41418-019-0434-2

551 43. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, et al.
552 Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. *Nature.*
553 2019;574: 428–431. doi:10.1038/s41586-019-1548-x

554 44. Szretter KJ, Balish AL, Katz JM. Influenza: Propagation, Quantification, and Storage.
555 *Curr Protoc Microbiol.* 2006;3: 1–22. doi:10.1002/0471729256.mc15g01s3

556 45. Organization. WH. Manual for the laboratory diagnosis and virological surveillance of
557 influenza. Geneva; 2011. Available: <https://apps.who.int/iris/handle/10665/44518>

558 46. Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, et al.
559 Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages
560 through PPAR γ dependent mechanisms. *Biochim Biophys Acta - Mol Cell Biol Lipids.*
561 2017;1862: 246–254. doi:10.1016/j.bbalip.2016.11.006

562 47. Mesquita M, Fintelman-Rodrigues N, Sacramento CQ, Abrantes JL, Costa E, Temerozo
563 JR, et al. HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an
564 IFITM3-Dependent Fashion. Tompkins SM, editor. *PLoS One.* 2014;9: e101056.
565 doi:10.1371/journal.pone.0101056

566 48. Barbosa R, Salgado A, Garcia CC, Filho BG, Apdf G. Protective Immunity and Safety of
567 a Genetically Modified Influenza Virus Vaccine. *PLoS One.* 2014;9: 98685.
568 doi:10.1371/journal.pone.0098685

569

570

571 **FIGURE LEGENDS**

572

573 **Figure 1. IAV and viral HA induce necroptosis and pro-inflammatory response in primary**
574 **macrophages.** Murine (BMDM) or human macrophages (MDM) cultures were pretreated or not
575 with zVAD (10 μ M) or Nec -1 (25 μ M) and infected with IAV at MOI of 0.25, exposed to the
576 viral 10 ng/mL of HA or 1 ng/mL of TNF- α . (A-B) BMDM cells death was also evaluated by flow
577 cytometry analysis of AnnexinV/PI positive cells. Assessment of cell viability through the
578 measurement of LDH release in the supernatant of BMDM (C) or human (D). (E) The expression
579 of p-RIPK1, RIPK3 and MLKL were detected in BMDM lysates by Western blotting. β -actin
580 levels were used for control of protein loading. (F) Levels of nitrite were measured by Griess
581 method in supernatant of BMDM cultures after 24h of stimulus. The levels of (H) IL-6 and (K)
582 IL-10 were measured by ELISA assay in supernatant of BMDM cultures after 24h of stimulus.
583 Data are presented as the mean \pm SEM of 5 independent experiments * P < 0.05 versus control
584 group (MOCK); # P < 0.05 versus respective untreated infected/stimulated group.

585

586 **Figure 2. TLR4 engagement is necessary to IAV- and HA-induced necroptosis. (A-B)** BMDM
587 cultures were pretreated with 2 μ M of CLI95 for 2 h and infected with IAV at MOI of 0.25,
588 exposed to 10 ng/mL of HA or LPS. After 24 h, LDH was measured (A), annexinV/PI labeled (B).
589 * P < 0.05 versus respective control group (MOCK); # P < 0.05 versus respective untreated
590 infected/stimulated group. (C-D) BMDM cultures from WT, TLR2 $^{-/-}$ and TLR4 $^{-/-}$ mice were
591 infected with IAV at MOI of 0.25, exposed to 10 ng/mL of HA or LPS. After 24 h, LDH was
592 measured (C), annexinV/PI labeled (D). (E) The expression of p-RIPK1, RIPK3 and MLKL were
593 detected in BMDM by Western blotting. β -actin levels were used for control of protein loading.
594 The level of (F) IL-6, (G) TNF and (K) IL-10 levels were measured by ELISA assay in supernatant

595 of BMDM cultures after 24h of stimulus. * $P < 0.05$ in comparison to the respective non-infected
596 groups (MOCK) and # $P < 0.05$ versus respective Wt infected/stimulated group. Graphs are
597 representative of three independent experiments.

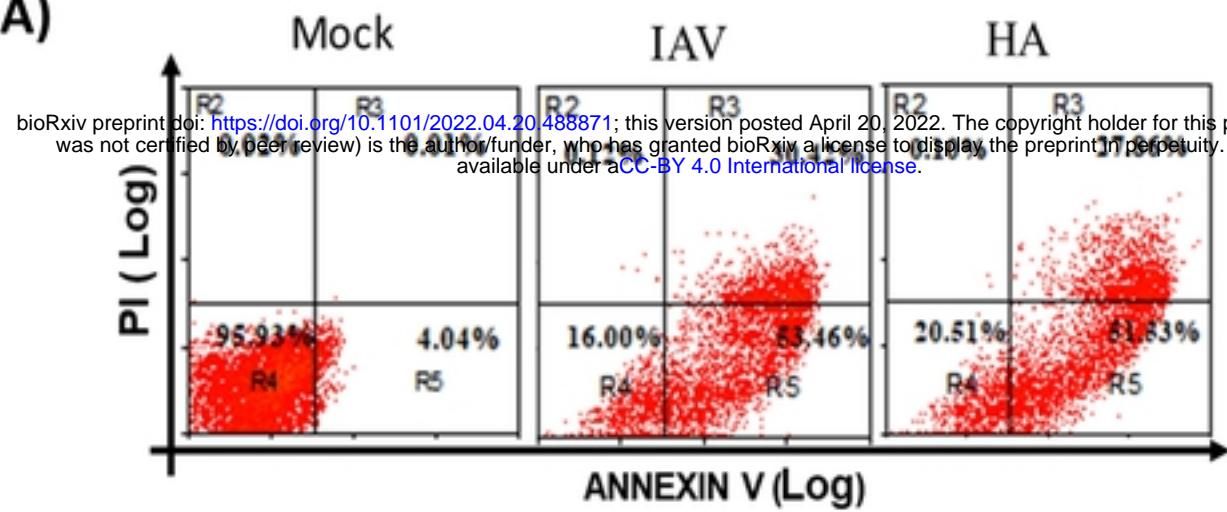
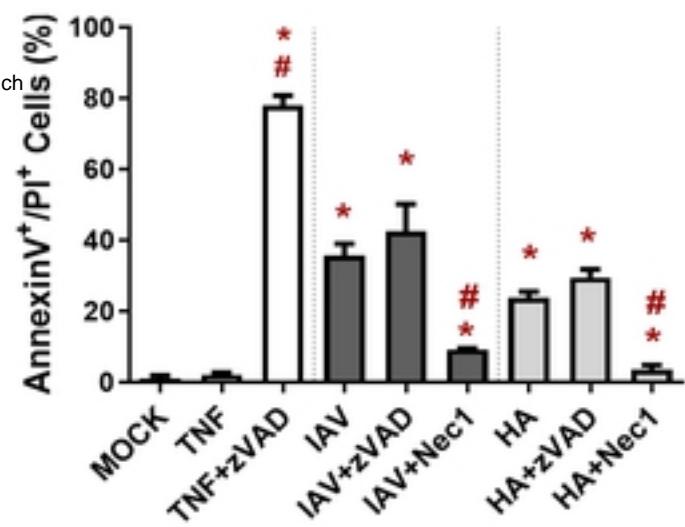
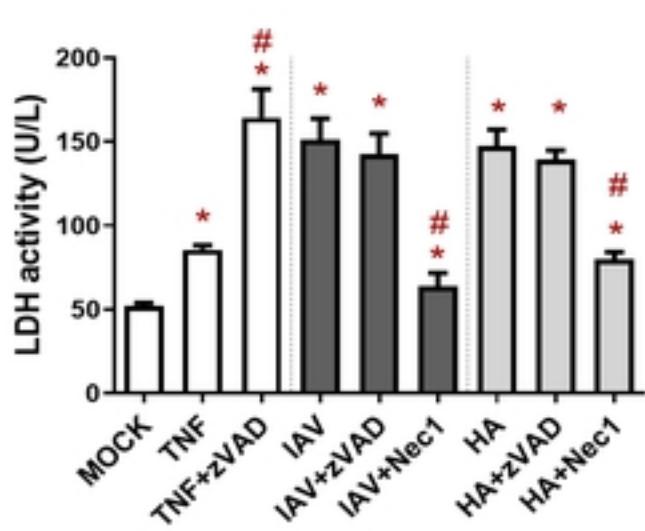
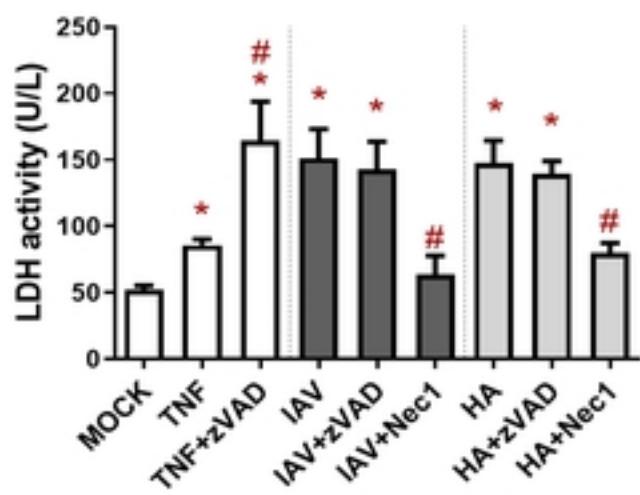
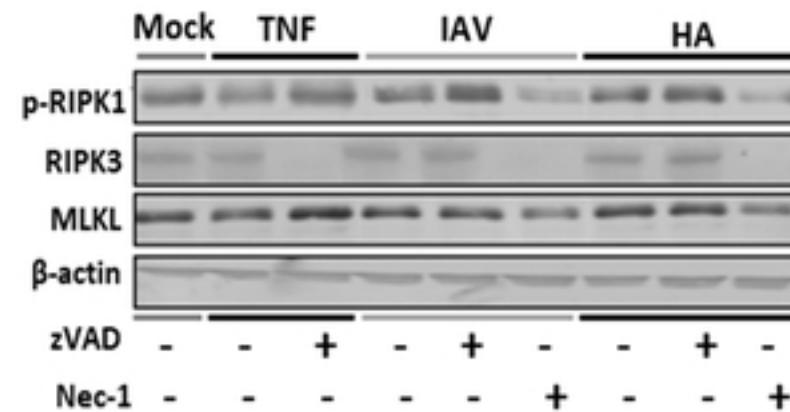
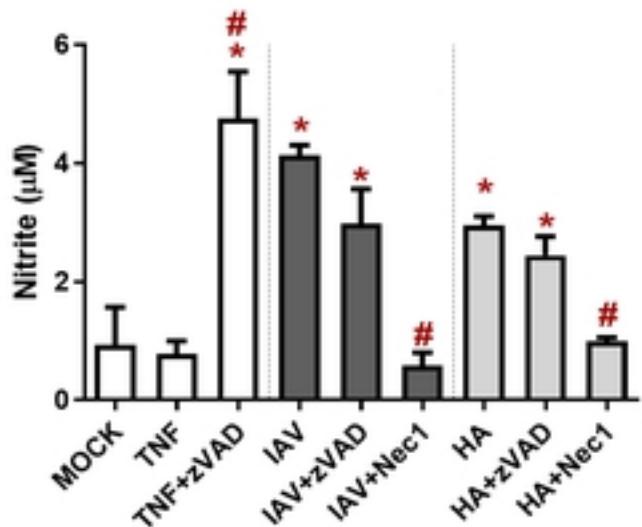
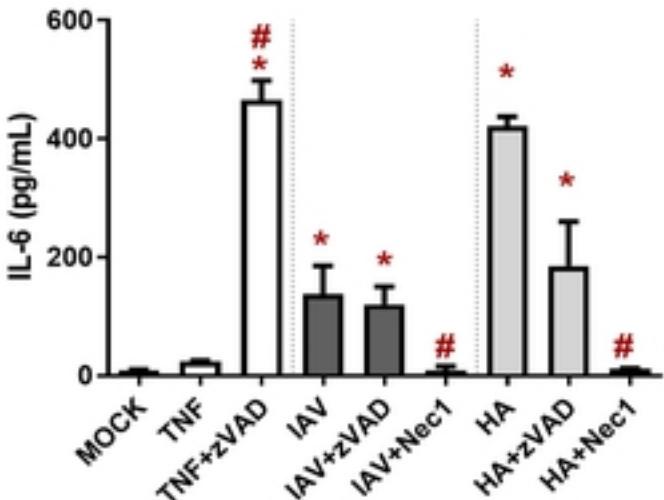
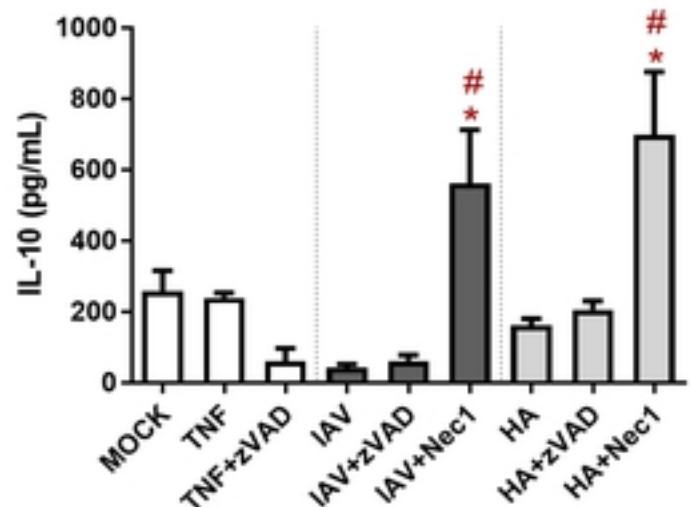
598

599 **Figure 3. IAV- and HA-induced necroptosis is dependent a TNF.** Macrophage cultures were
600 pre-treated with 1 ng/mL anti-TNF- α antibody and then infected with IAV (MOI of 0.25) or
601 exposed to 10 ng/mL of viral HA for 24 h. Cell death analysis was performed by flow cytometry
602 analysis of annexinV/PI positive cells (A-B). Assessment of cell viability through the measurement
603 of LDH release in the supernatant of BMDM (C). (D) The expression of p-RIPK1 were detected
604 in BMDM by Western blotting. β -actin levels were used for control of protein loading. (E) Graphs
605 of bands densitometry obtained after loading normalization and expressed as fold change over
606 Mock untreated control. (F) Levels of nitrite were measured by Griess method in supernatant of
607 BMDM cultures after 24h of stimulus. The levels of (H) IL-6 and (K) IL-10 were measured by
608 ELISA assay in supernatant of BMDM cultures after 24h of stimulus. Data are presented as the
609 mean \pm SEM of 5 independent experiments * $P < 0.05$ versus untreated control group (MOCK);
610 # $P < 0.05$ versus respective untreated infected/stimulated group.. (I) Model of A/HA-triggered
611 necroptosis. IAV/HA-triggered necroptosis by a loop of events involving TLR4, TNF- α , RIPK1,
612 leading to exacerbation of inflammation. Image created with Biorender.com.

613

614 **Figure 4. Etanercept reduced weigh loss improved survival and during IAV lethal infection**
615 **in mice.** C57Bl/6 mice were inoculated intranasally with 10^3 PFU of IAV. Six hours post-infection,
616 animals were treated intraperitoneally with of 2.5 mg/kg of Etanercept (ETN). Mice received a
617 daily dose of ETN for 7 days and were monitored for survival (A) and body-weight loss (B)

618 analysis. Data are show as percentage of survival and weight. Graphs are representative of three
619 independent experiments. * $P < 0.05$ in comparison to IAV-infected untreated group.









620

621 **Figure 5: Etanercept reduced necroptosis *in vivo*.** C57Bl/6 mice were inoculated intranasally
622 with 10^3 PFU of IAV with and without daily treatment with Etanercept (ETN, 2.5 mg/kg, i.p.). At
623 days 3 and 5 post-infection, animals were euthanized, and BAL and lung were collected. **(A-B)**
624 Total and differential cell counts in bronchoalveolar lavage (BAL) were represented as number of
625 differential cell counts at days 3 **(A)** and 5 **(B)** post-infection. Total: leukocytes total, Mono:
626 mononuclear leukocytes, PMN: polymorphonuclear leukocytes. **(C-D)** Mononuclear cells death
627 was evaluated by annexinV/PI labelling. **(E)** Lung damage was evaluated by measuring LDH
628 release in the bronchoalveolar lavage (BAL) **(F-I)** The expression of p-RIPK1, MLKL, and
629 cleaved Caspase-8 were detected in the lung tissue homogenates by Western blotting. β -actin
630 levels were used for control of protein loading) **(G-I)** Graphs of bands densitometry obtained
631 after loading normalization and expressed as fold change over Mock control. Data are expressed
632 as means \pm SEM; One-way ANOVA with Dunnett's post-hoc test. * $P < 0.05$ in comparison to
633 Mock and # $P < 0.05$ in comparison to IAV-infected untreated group. Experiments were performed
634 with 4-6 mice/group.

635

636 **Figure 6. Etanercept reduced cytokine storm in IAV-infected mice.** C57Bl/6 mice were
637 inoculated intranasally with 10^3 PFU of IAV with and without daily treatment with Etanercept
638 (ETN, 2.5 mg/kg, i.p.). At days 3 and 5 post-infection (DPI), animals were euthanized and the
639 bronchoalveolar lavage (BAL) was collected for quantification of the of total protein (A) and
640 inflammatory mediators. The level of CXCL1/KC (B), CCL2/MCP1 (C), IL-6 (D), TNF (E), INF- γ

641 (F) and IL-10 (G) were measured by ELISA. Data are expressed as means \pm SEM; One-way
642 ANOVA with Dunnett's post-hoc test. * $P < 0.05$ in comparison to Mock and # $P < 0.05$ in
643 comparison to IAV-infected untreated group. Experiments were performed with 4-6 mice/group.

A)**B)****C)****D)****E)****F)****H)****I)****Figure 1**

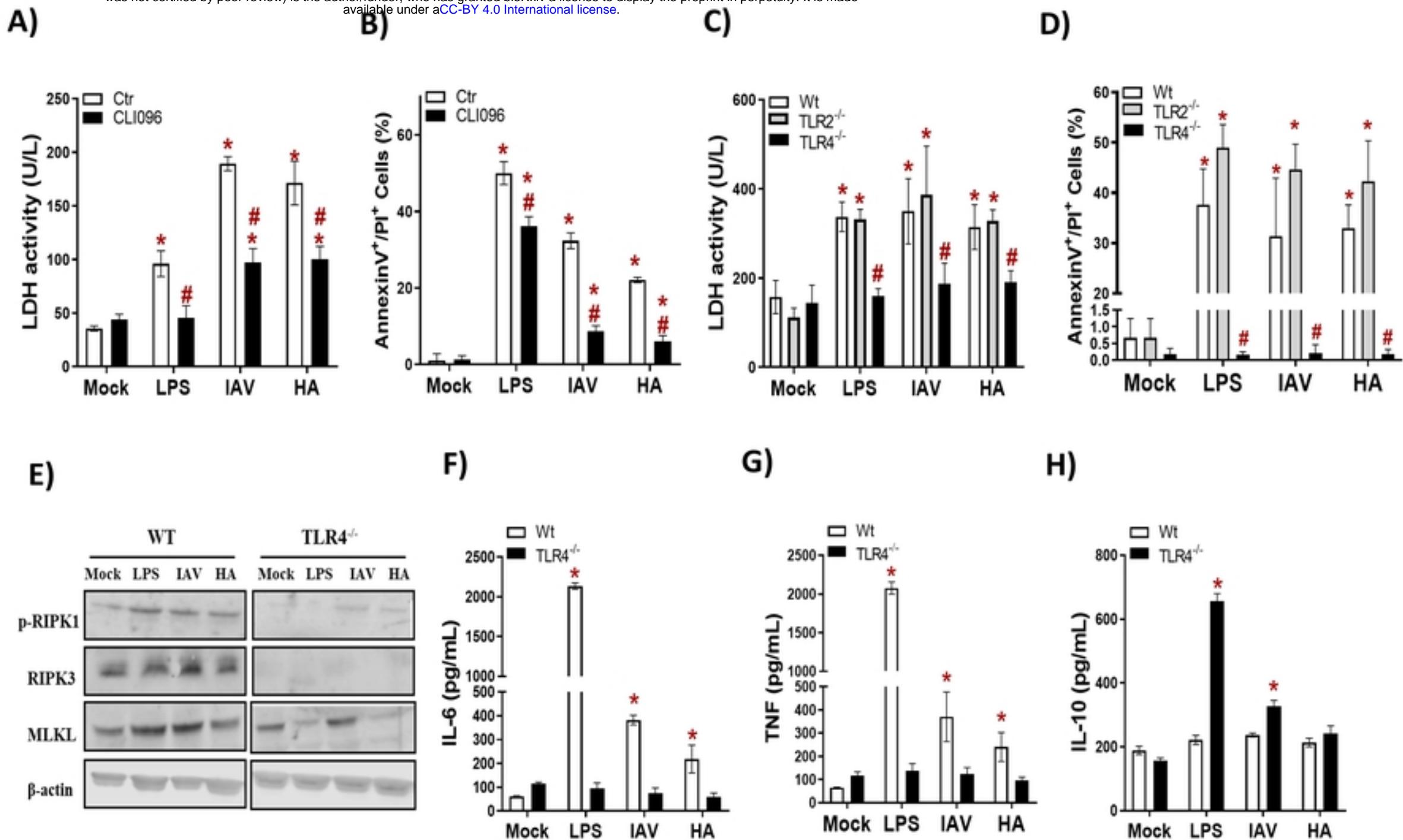
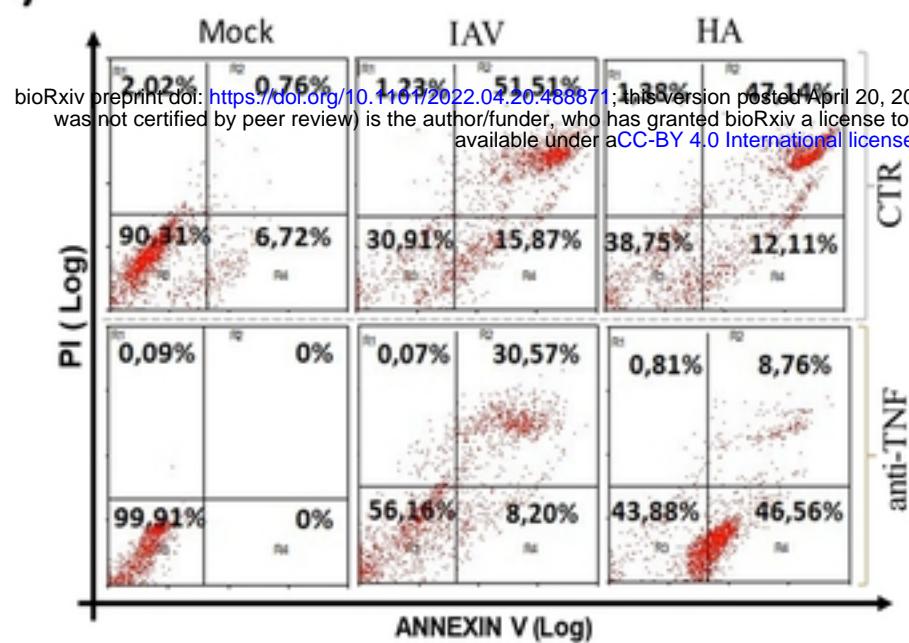
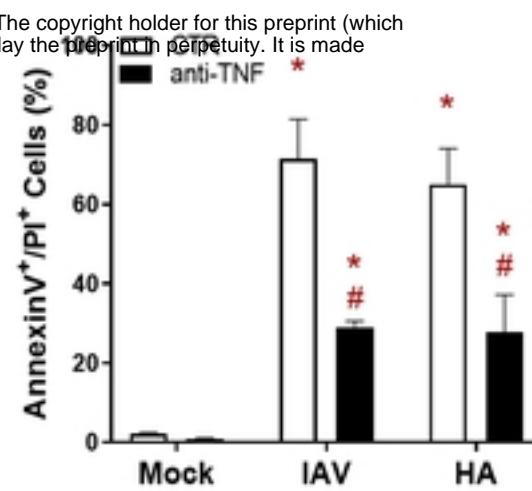
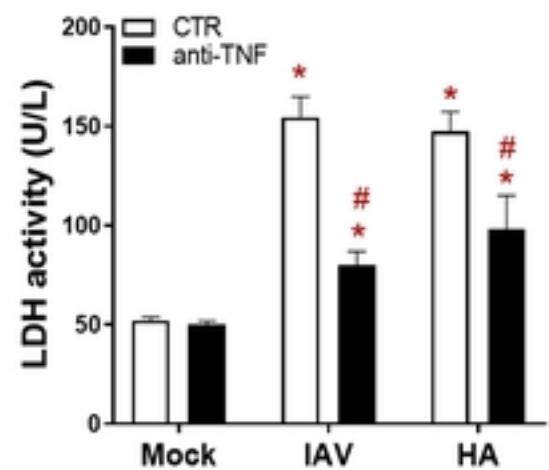
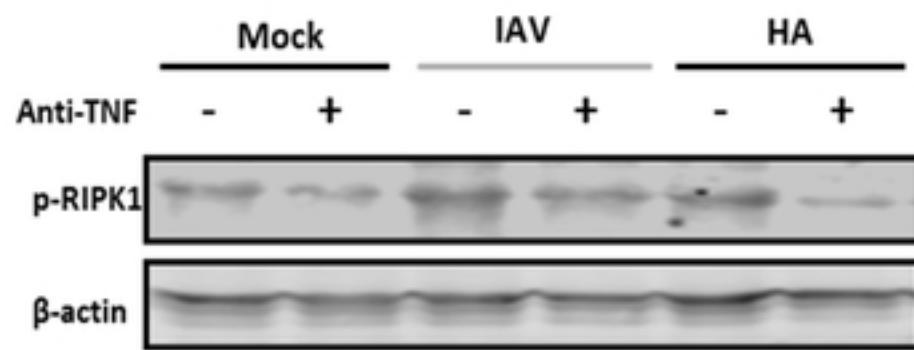
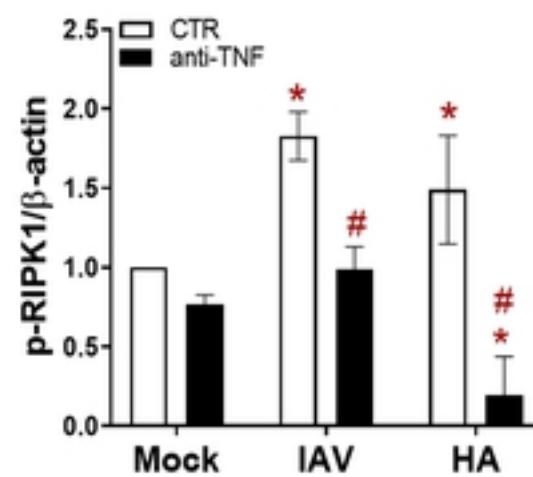
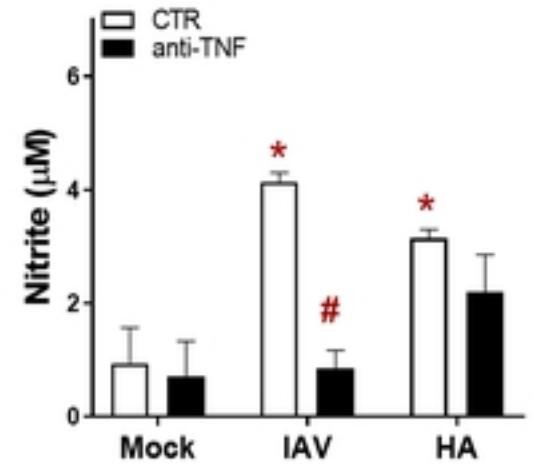
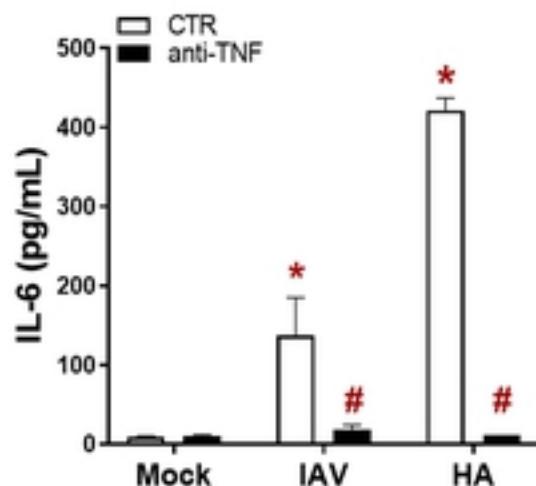
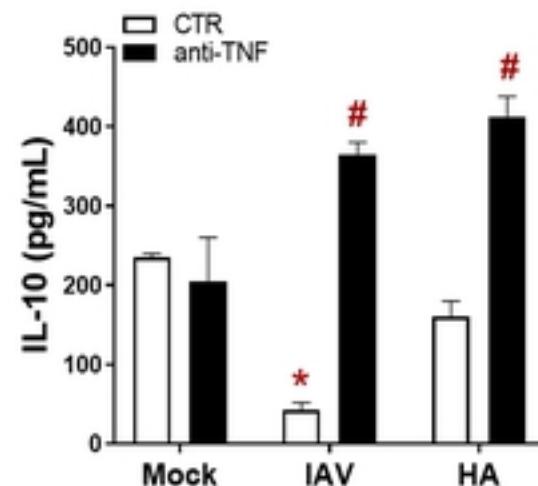
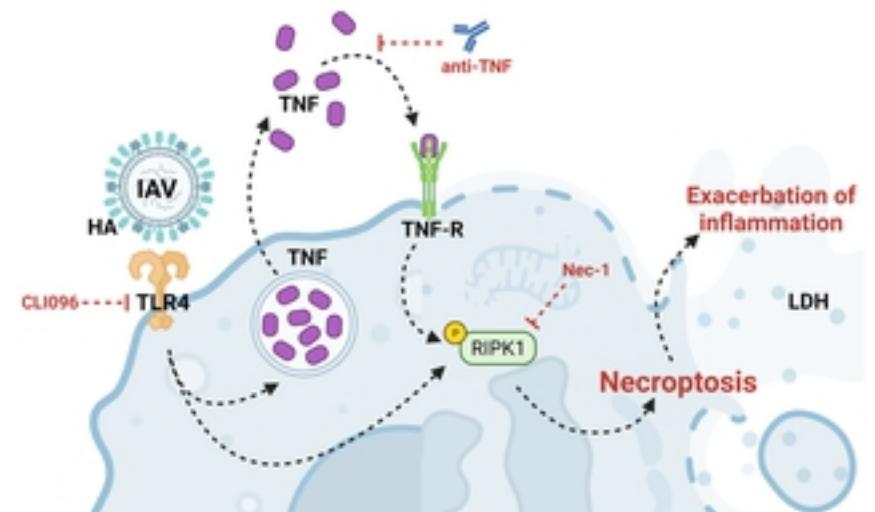
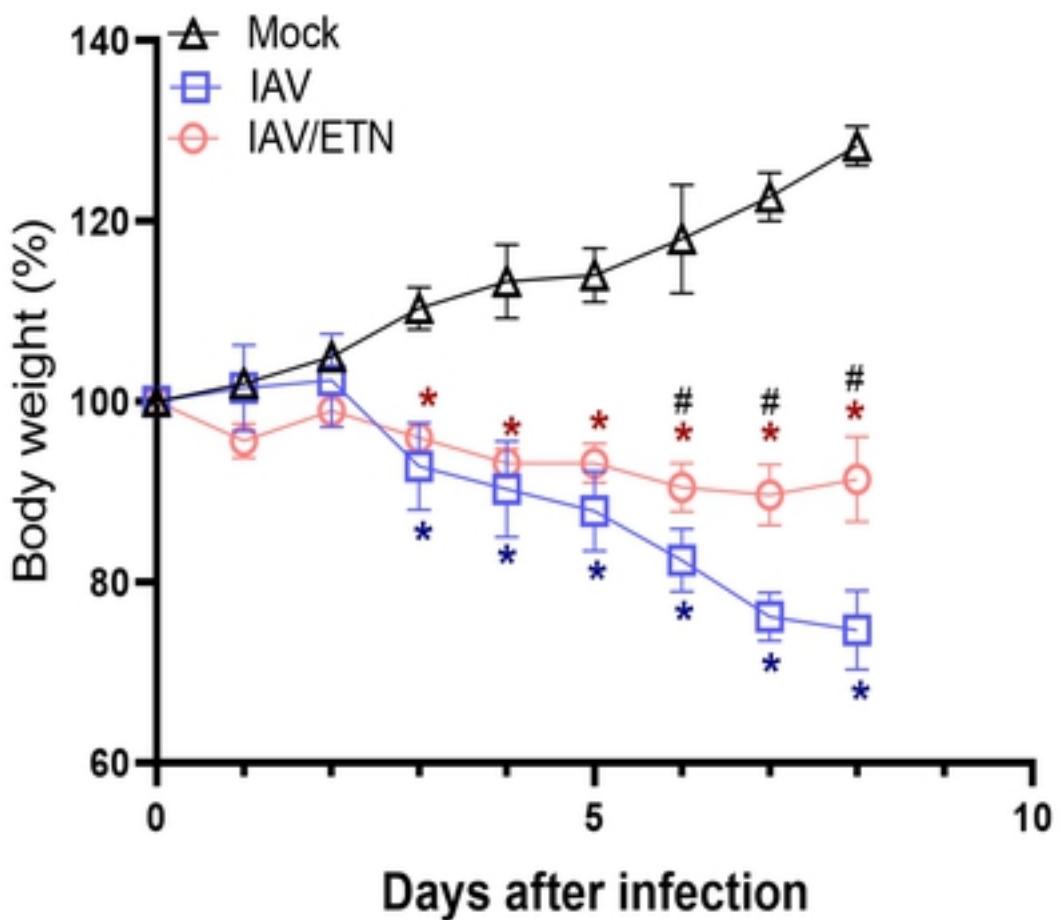












Figure 2

A)**B)****C)****D)****E)****F)****G)****H)****I)****Figure 3**

A)

B)

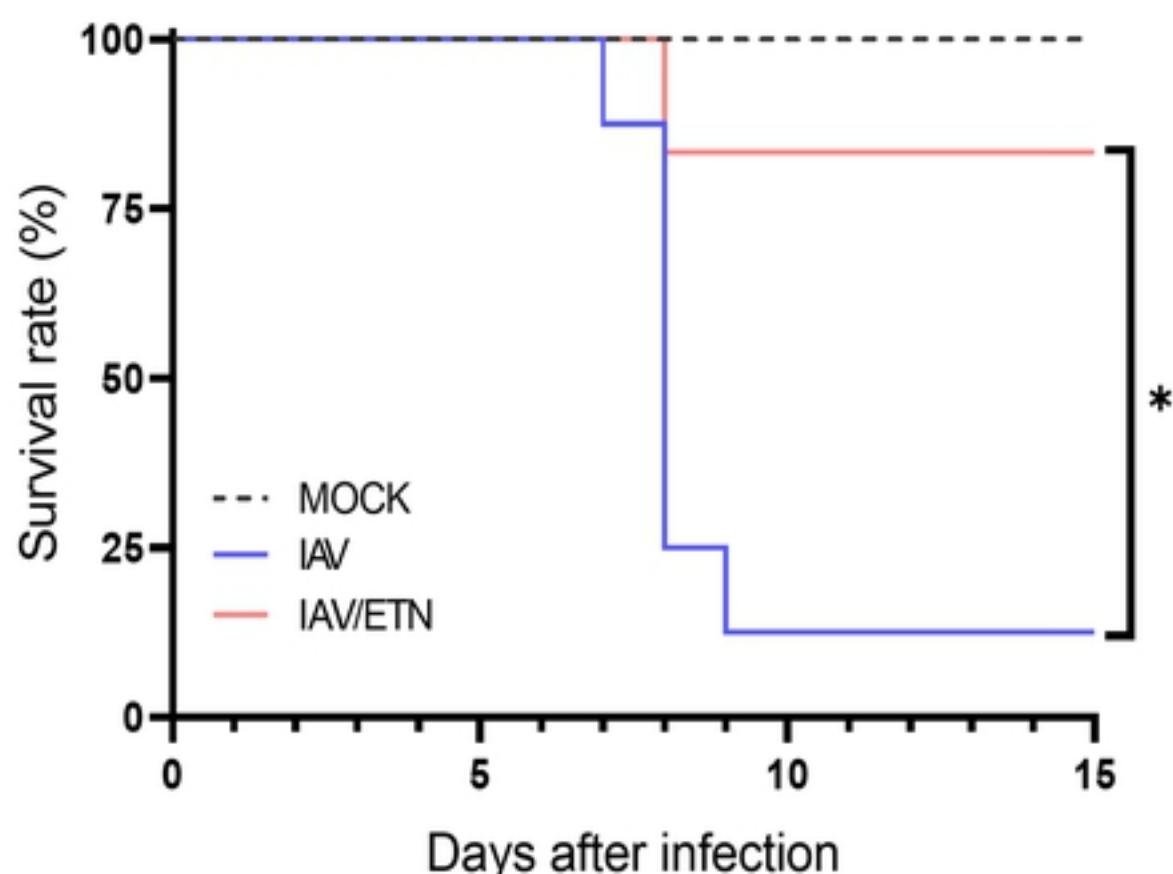
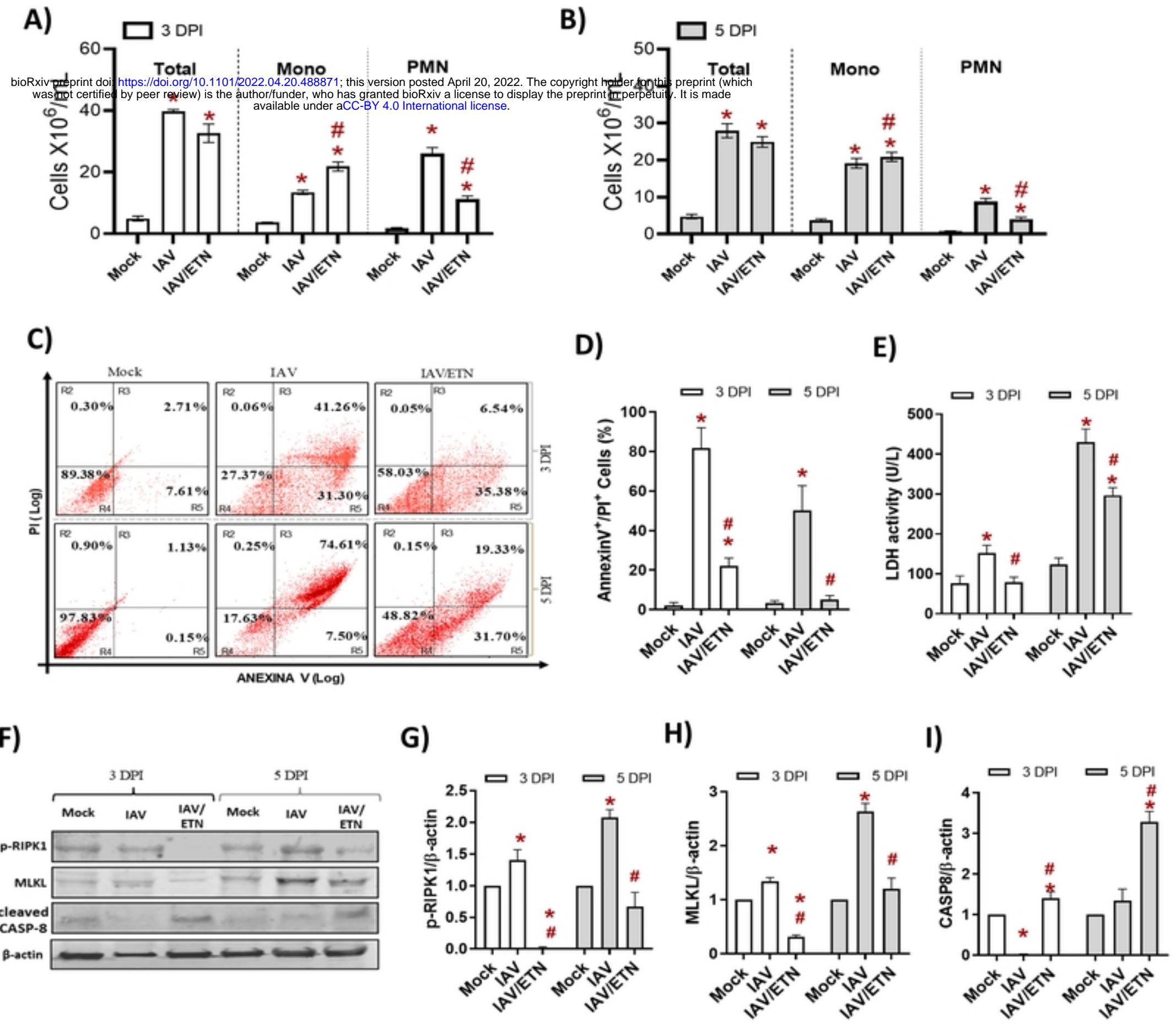
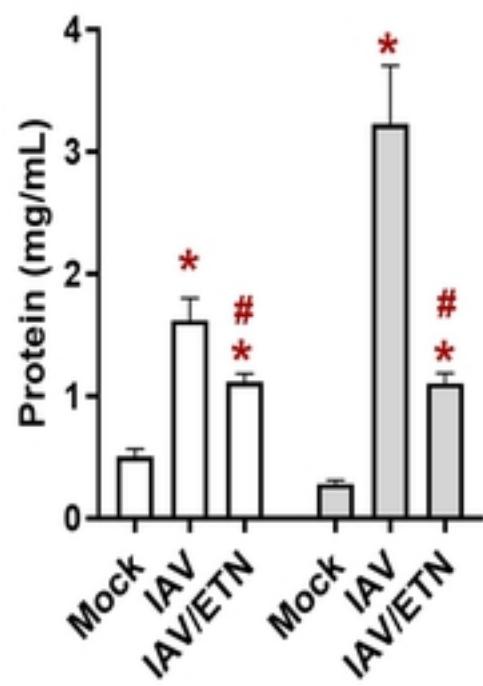
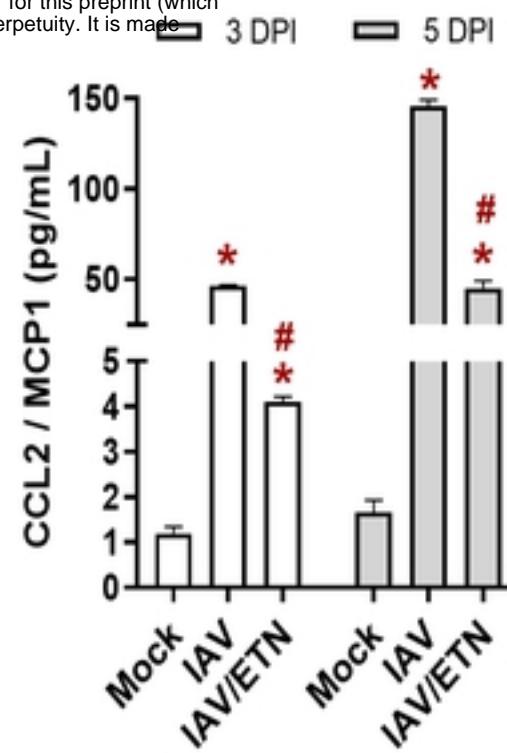
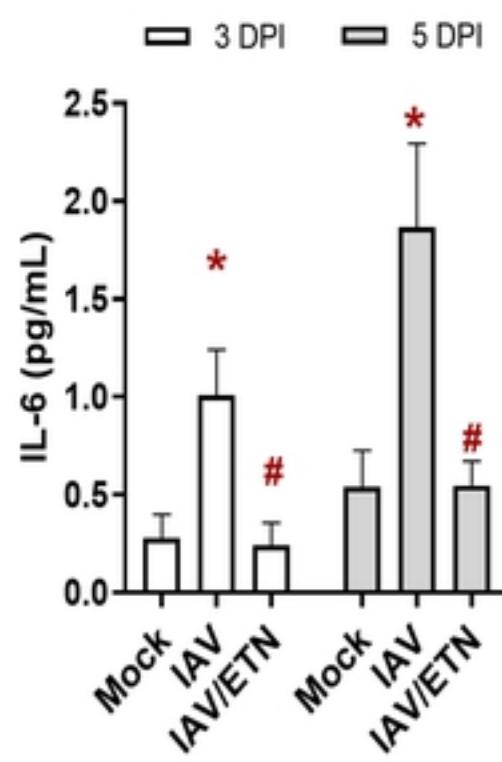
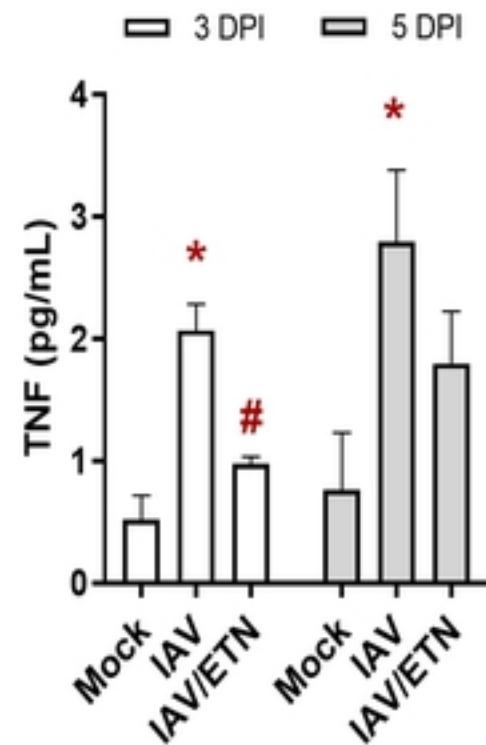


Figure 4

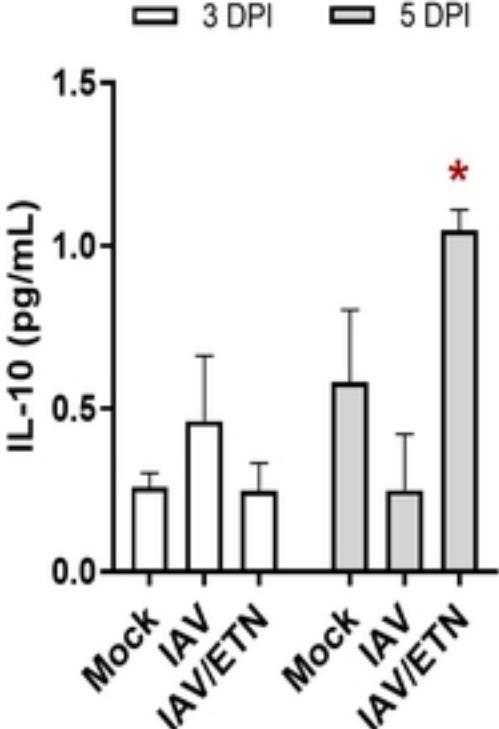


Figure 5

A)

bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.20.488871>; this version posted April 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B)**C)****D)****E)****F)****G)****Figure 6**