

1 **Engineering and characterization of a long half-life relaxin receptor RXFP1 agonist**

2

3 **Authors:** Sarah C. Erlandson¹, Jialu Wang², Haoran Jiang², Howard A. Rockman^{2,3}, Andrew C.
4 Kruse¹

5

6 **Affiliations:**

7 ¹Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard
8 Medical School, Boston, Massachusetts 02115, USA.

9 ²Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710,
10 USA.

11 ³Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710,
12 USA.

13 *Correspondence and requests for materials should be addressed to
14 andrew_kruse@hms.harvard.edu

15

16 **Abstract**

17 Relaxin-2 is a peptide hormone with important roles in human cardiovascular and
18 reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis,
19 and anti-inflammatory and anti-fibrotic effects have led to significant interest in using relaxin-2
20 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2
21 has a very short serum half-life, limiting its clinical applications. Here we present protein
22 engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life, while
23 maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we
24 optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the
25 hormone with a circulating half-life of up to five days in mice while retaining potent agonist
26 activity at the RXFP1 receptor both *in vitro* and *in vivo*.

27

28 **Introduction**

29 Relaxins are small protein hormones belonging to the insulin superfamily, exerting a
30 variety of biological activities through the activation of G protein-coupled receptors (1). Within
31 this family is relaxin-2, a reproductive hormone responsible for mediating many of the

32 physiological changes of pregnancy through its cognate receptor, RXFP1 (2). Relaxin-2
33 signaling through RXFP1 leads to vasodilation, angiogenesis, collagen degradation, and anti-
34 inflammatory effects. In addition to relaxin-2's role in pregnancy, these cellular responses also
35 regulate the physiology of multiple organs in both sexes, including the liver, kidney, heart, lungs,
36 and blood vessels (3,4). Activation of the pleiotropic effects downstream of RXFP1 can improve
37 cardiac function and decrease fibrosis levels, which has generated interest in using relaxin-2 as a
38 treatment for cardiovascular and fibrotic diseases (5–7).

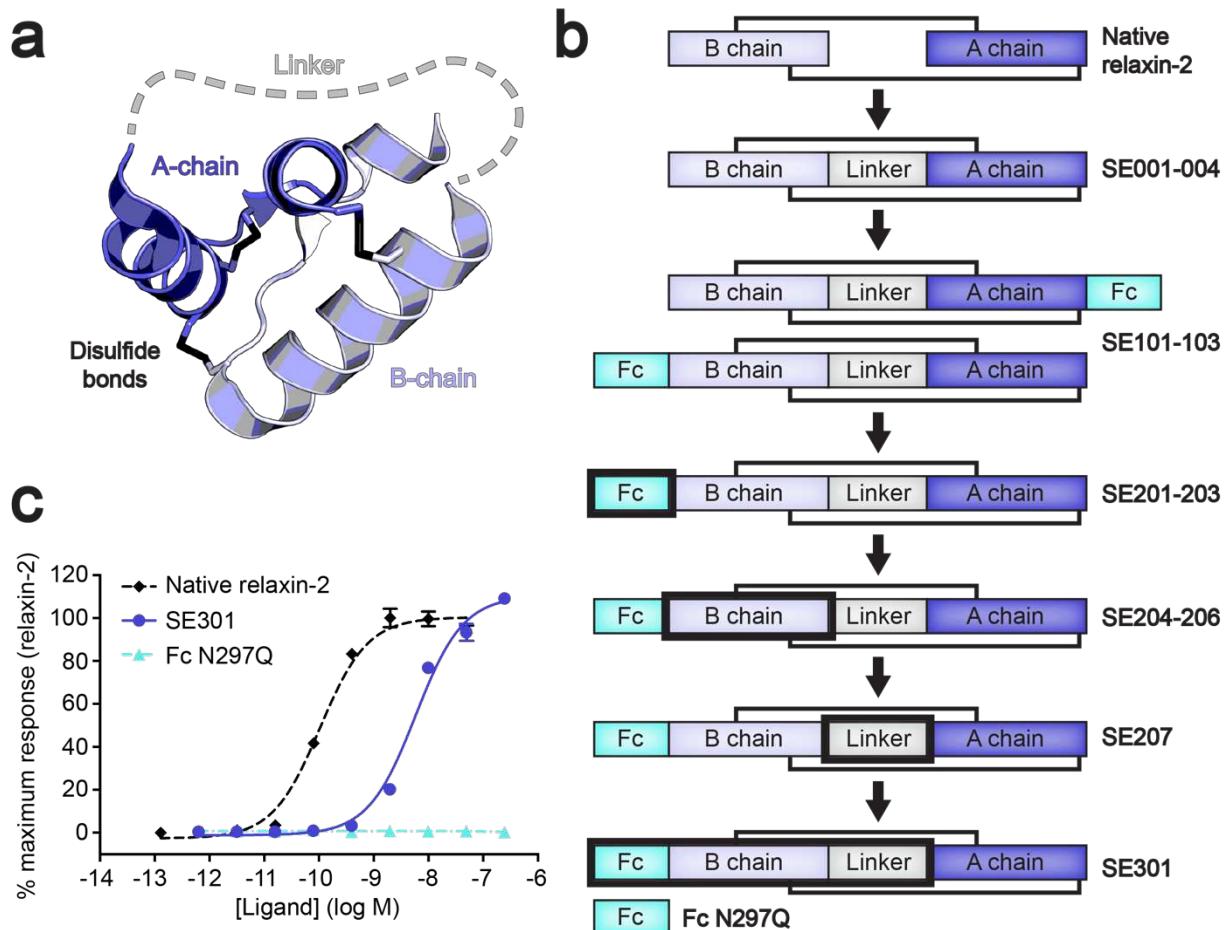
39 In animal models, recombinant relaxin-2 (serelaxin) has yielded promising results for the
40 treatment of heart failure and fibrosis of the liver, lungs, kidneys, and joints (8–13). However, in
41 large-scale clinical trials for acute heart failure, serelaxin treatment did not significantly decrease
42 patient rehospitalization or mortality, although patients showed some short-term relief of
43 symptoms such as dyspnea (14). One potential cause of these results is the short serelaxin
44 administration time of 48 hours, while patient data was collected up to 180 days after treatment.
45 As a small protein hormone, serelaxin is rapidly cleared from circulation, with a serum half-life
46 of less than 5 hours (15). Therefore, the beneficial effects may be lost relatively quickly without
47 continuous or repeated intravenous administration, limiting the use of serelaxin in many chronic
48 conditions and introducing challenges around patient compliance.

49 The native relaxin-2 molecule has a two-polypeptide chain structure, with an A-chain and
50 B-chain connected by disulfide bonds, structurally similar to insulin (16). Protein engineering of
51 the relaxin-2 molecule and small molecule screening have each been explored to develop
52 agonists of RXFP1 beyond the highly potent native relaxin-2 peptide, which has an EC₅₀ of
53 around 100 pM (**Figure 1c, Table S1**). Small molecule screens have proven to be challenging
54 (17), and only one series of small molecule agonists have been reported, with an EC₅₀ of
55 approximately 100 nM for the lead molecule, ML290 (18,19). Versions of relaxin's B-chain have
56 been produced and tested for activity at RXFP1, however, the B-chain alone shows low signaling
57 potency, with an EC₅₀ of around 7 μM (20). Optimization of B-chain only variants and the
58 addition of lipid modifications resulted in peptides able to activate RXFP1 with improved
59 potency and half-lives of up to 9 hours (21). Additionally, studies with mouse models of heart
60 failure have recently tested a fusion between relaxin-2 and an antibody Fc, however no details of
61 the protein sequence or engineering methods were reported (22).

62 Creating a fusion with an antibody Fc fragment is an established method of increasing the
63 serum half-life of a protein of interest. Through the neonatal Fc receptor (FcRN) binding,
64 antibodies can avoid lysosomal degradation and be recycled back into circulation, resulting in a
65 half-life of two to three weeks for most IgGs (23). Fc fusions to a protein of interest allow them
66 to take advantage of the same recycling mechanism, conferring a long serum half-life to a protein
67 that would otherwise be cleared quickly from circulation (24,25). Given the two-chain structure
68 of the relaxin-2 hormone, a simple fusion to an Fc fragment is impossible. Moreover, any
69 modifications to the relaxin-2 protein must be weighed against reducing signaling potency. In
70 order to engineer an Fc–relaxin-2 fusion protein, we created a single-chain relaxin-2 molecule
71 using a linker to connect the two peptide chains. Optimizations of the single-chain relaxin-2
72 sequence and the fusion to human IgG1 Fc generated a molecule with high biochemical stability
73 and yield. The optimized fusion, SE301, maintains a high level of biological activity while
74 gaining a long serum half-life. Moreover, it is straightforward and cost-effective to produce in
75 large quantities. Here we describe the rational design of the SE301 molecule and the
76 characterization of its *in vitro* and *in vivo* activity and pharmacokinetics profile.

77

78 **Engineering of a single-chain relaxin-2**


79 The native relaxin-2 hormone is translated as a single polypeptide chain. In order of
80 sequence, the prohormone consists of a B-chain of 29 residues, a connecting C-chain of 108
81 residues, and an A-chain of 24 residues. After translation, the C-chain of prorelaxin-2 is cleaved
82 out by proteolytic digestion. The resulting protein is the mature form of native relaxin-2, in
83 which the B-chain and A-chain are separate alpha helical peptides connected by two interchain
84 disulfide bonds (26).

85 The first methods of producing native relaxin-2 utilized chemical synthesis of the two
86 separate chains in reduced forms, followed by an oxidative step to form the disulfide bonds
87 (27,28). Methods using recombinant DNA technology were able to improve the yields for
88 relaxin-2 using a construct containing a “mini-C” peptide linker between the B and A chains.
89 These methods utilized the published X-ray crystal structure of relaxin-2 to design a shortened
90 C-chain length of 13 residues that would still be long enough to connect the two chains (16,29).
91 These relaxin proteins were expressed in *Escherichia coli*, purified from inclusion bodies, and

92 refolded. The “mini-C” linkers were then removed by protease digestion, resulting in a
93 recombinant form of the native relaxin-2 hormone (29).

94 To generate a mature single-chain version of relaxin-2, we first tested a linker originally
95 used as a cleavable “mini-C” peptide for relaxin-3, another member of the relaxin hormone
96 family (30). We expressed and purified the single-chain relaxin-2 with an N-terminal
97 hemagglutinin signal sequence as a His-tagged secreted protein in mammalian cells without
98 removing the “mini-C” linker (**Figure 1a,b**). The expression protocol was purposefully chosen to
99 determine if a less labor-intensive method could be used to produce properly folded and
100 biologically active relaxin-2. The protein showed a monodisperse size exclusion profile and high
101 purity by Coomassie-stained SDS-PAGE gels (**Figure S1a,b**). To determine whether our single-
102 chain relaxin-2 maintained activity at RXFP1, the protein was tested using a cell-based assay for
103 G_s signaling. The single-chain relaxin-2 (SE001) maintained sub-nM potency at human RXFP1,
104 illustrating the feasibility of generating single-polypeptide relaxin-2 molecules with high
105 biological activity from mammalian expression systems (**Figure S1c**).

106 In later rounds of protein engineering, the sequence of the “mini-C” linker was further
107 optimized (**Figure 1b**). The first linker, Asp-Ala-Ala-Ser-Ser-His-Ser-His-Ser-Ala-Arg,
108 contained several Ser residues and His residues that were removed in the redesigned sequence.
109 Ser residues were changed to remove potential sites of O-linked glycosylation and His residues
110 to prevent any pH-dependent changes in binding affinity. After redesign, the new linker
111 consisted of the sequence Asp-Ala-Ala-Gly-Ala-Asn-Ala-Asn-Ala-Gly-Ala-Arg (SE207).
112

113

114 **Figure 1: Engineering of an Fc–single-chain relaxin-2 fusion.** **a**, Diagram of single-chain
115 relaxin-2 using the X-ray crystal structure of human relaxin-2 (PDB ID: 6RLX) (16). **b**,
116 Overview of the rounds of optimization for the Fc–relaxin-2 fusion. The black box highlights
117 regions that were optimized in each iteration. **c**, CRE-SEAP G_s signaling assay data for human
118 RXFP1 using SE301 and Fc N297Q compared to native relaxin-2. Data are normalized to the
119 native relaxin-2 response and are mean \pm s.e.m. from technical triplicates.

120

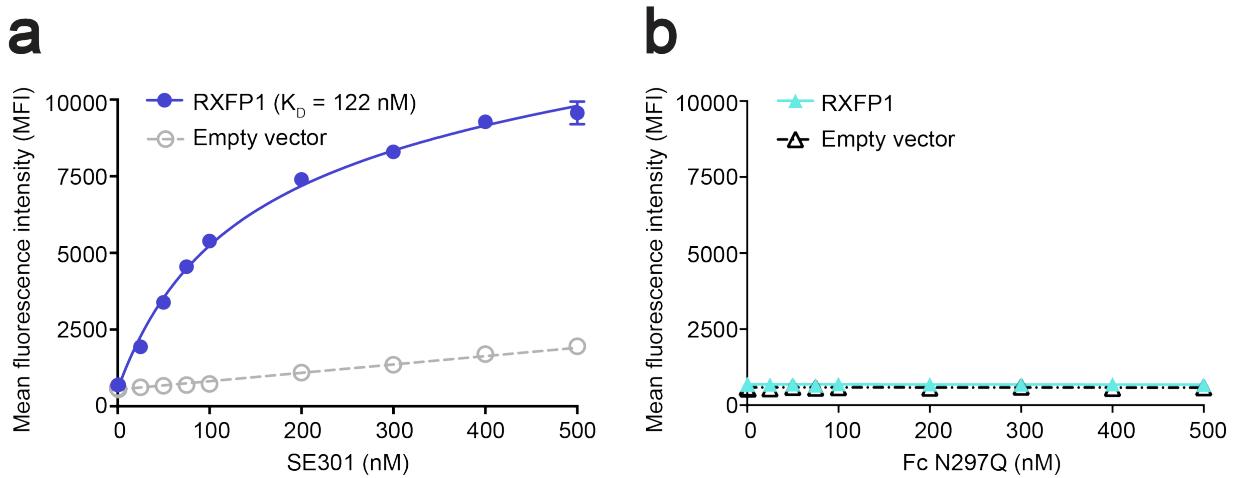
121 Optimization of Fc–single-chain relaxin-2 fusions

122 The biologically active single-chain relaxin-2 created an opportunity to alter several of
123 the protein’s properties through engineering additional fusions. The main purpose of these
124 modifications was to lengthen the short serum half-life of the small relaxin-2 protein, in order to
125 generate a long half-life agonist of the RXFP1 receptor. To accomplish this, we tested fusions of
126 a human IgG1 Fc antibody fragment to either the N- or C-terminus of single-chain relaxin-2
127 (SE101-103, **Figure 1b**). G_s signaling assays showed that N-terminal fusions maintained higher

128 signaling potency at human RXFP1 than C-terminal fusions (8.3 nM vs. 49.4 nM, **Figure S2a**).
129 These proteins also had increased purification yields, up to 400-fold higher than the initial
130 construct SE001.

131 At this stage, a mutation was introduced to the human IgG1 Fc fragment for all further
132 constructs. The mutation, N297Q, removes a glycosylation site from the Fc fragment important
133 for IgG1 effector functions. As a result, the abilities of IgG1 Fc to activate complement and
134 antibody-dependent cellular cytotoxicity are ablated in the N297Q mutant (31). The fusion site
135 between Fc N297Q and the N-terminus of single-chain relaxin-2 was the next region to be
136 optimized (**Figure 1b**). The Fc fragment had initially been fused to the single-chain relaxin-2 N-
137 terminus by a linker of Gly-Gly-Ser repeats. Fusions with a shorter 3-residue linker length
138 achieved higher signaling potency than a 12-residue Gly-Gly-Ser linker (SE101-103, **Figure**
139 **S2a**). Sequences for the 3-residue linker were then varied by constructing linkers with the
140 sequence Ala-Ala-Ala and Pro-Pro-Pro in addition to the Gly-Gly-Ser linker (SE201-203). Each
141 of these iterations maintained similar signaling potency and biochemical properties (**Figure**
142 **S2b**), therefore Gly-Gly-Ser was chosen for the final linker sequence.

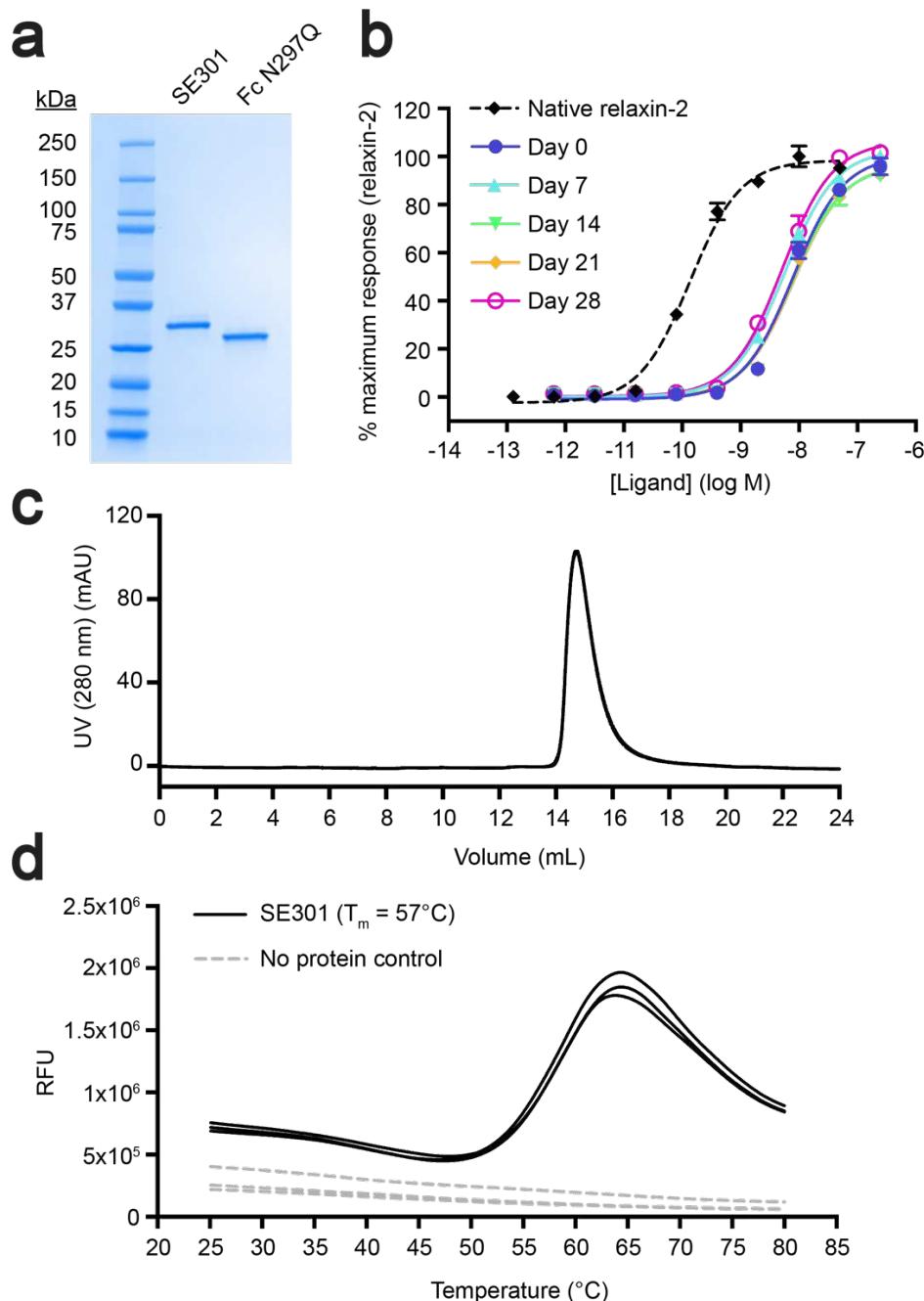
143 Finally, several mutations were introduced to the B-chain of single-chain relaxin-2 to
144 improve its biochemical properties (SE204-206, **Figure 1b**). Met4 and Met25 were mutated to
145 avoid residues prone to oxidation in the relaxin molecule. The Met residues were mutated to Lys
146 according to the sequences of relaxin-2 orthologs, offering an idea of what residues may be
147 tolerated in that position. Additionally, Trp28 was mutated to Ala in order to remove a residue
148 that may increase protein polyreactivity. These three mutations were tolerated in the Fc–relaxin-
149 2 fusions, having similar or better signaling potency than the native sequence (**Figure S2c**). In a
150 docking model of the interactions between relaxin-2 and the ligand-binding ectodomain of the
151 RXFP1 receptor (32), the residues targeted for mutagenesis are not positioned near the binding
152 interface, explaining the lack of disruption to relaxin-2 activity (**Figure S3**).
153


154 **Biochemical and functional characterization of SE301**

155 The optimized features of the Fc–relaxin-2 fusions were combined in the final molecule,
156 SE301. This molecule contained, in order of sequence, the hemagglutinin signal sequence, the Fc
157 N297Q fragment, a 3 residue Gly-Gly-Ser linker, and single-chain relaxin-2 with the redesigned
158 “mini-C” linker and the Met4 to Lys, Met25 to Lys, and Trp28 to Ala mutations to the B-chain

159 (Figure 1b). When tested in a G_s signaling assay, SE301 had an EC₅₀ of 5.8 nM at human
160 RXFP1, with an E_{max} at approximately 100% of native relaxin-2 (Figure 1c). While maintaining
161 strong activation of RXFP1, SE301 also showed very little off-target activity at the related
162 RXFP2 receptor (Figure S4a). The measured signaling potency of SE301 at human RXFP1 was
163 confirmed with a secondary G_s signaling assay method, which showed close agreement with our
164 initial experiments (EC₅₀ of 7.1 nM, Figure S5). Next, the binding affinity for SE301 was tested
165 using a flow cytometry assay with mammalian cells transfected with RXFP1 or empty vector.
166 SE301's K_D for human RXFP1 was determined to be 122 nM (Figure 2a), while a control
167 molecule of the Fc N297Q fragment alone showed no binding (Figure 2b) or signaling (Figure
168 1c) with RXFP1-expressing cells.

169 Additional biochemical studies for SE301 utilized differential scanning fluorimetry to
170 determine a melting temperature (T_m) of 57°C (Figure 3d). Furthermore, SE301 showed high
171 stability at room temperature, maintaining similar signaling efficacy and potency after 4 weeks
172 of incubation (Figure 3b). The protocols to produce SE301 as a secreted protein from
173 mammalian cells utilized straightforward expression and purification methods, with a yield of
174 approximately 150 mg per 1 L culture (See Methods). Collectively, the results from
175 characterization studies showed that SE301 is a potent RXFP1 agonist with high purity,
176 monodispersity, and yield (Figure 3a,c).


177

178

179 **Figure 2: Determination of SE301 binding affinity for RXFP1. a-b,** Flow cytometry binding
180 data for SE301 (a) and Fc N297Q (b) using human RXFP1 and empty vector-transfected
181 Expi293F cells. The K_D for SE301 at human RXFP1 was calculated to be 122 ± 36 nM. Data are
182 mean \pm s.e.m. from technical duplicates.

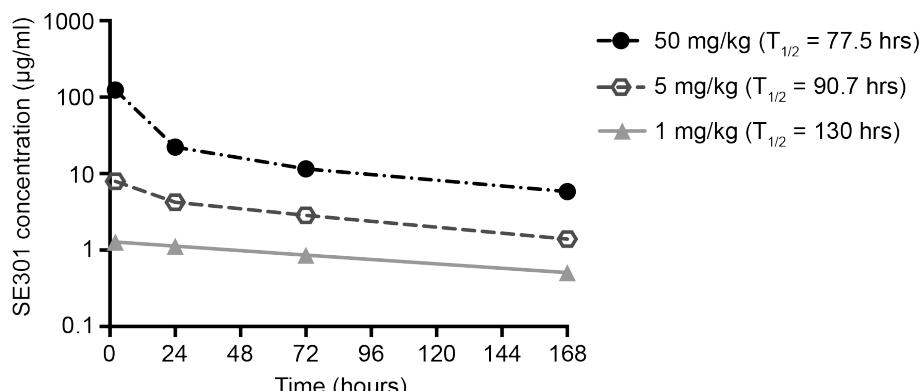
183

192 **Pharmacokinetics of SE301**

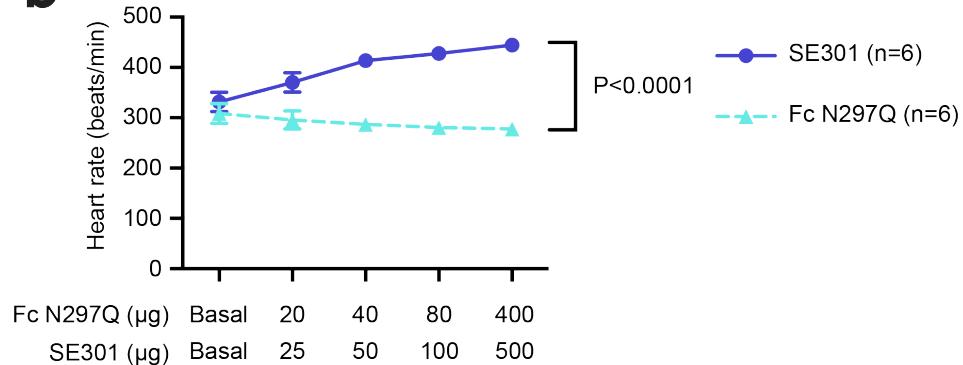
193 After biochemical and functional characterization of the SE301 molecule, we conducted
194 experiments to determine the serum half-life of SE301 *in vivo*. To answer this question, we
195 conducted a pharmacokinetics study in mice using a single injection of SE301 at one of three
196 doses, 1, 5, or 50 mg/kg. Serum samples were taken before injection, and then at 2, 24, 72, and
197 168 hours post-injection. To determine the concentration of SE301 remaining in circulation at
198 each timepoint, the serum samples were analyzed by an ELISA detecting the human IgG1 Fc of
199 SE301. Based on concentrations interpolated from the ELISA data, the serum half-life was
200 calculated to be between 77.5 and 130 hours, depending on the dose of SE301 (**Figure 4a**).
201 These results approach the 6 to 8-day serum half-life of IgGs in mice (33), showing that the Fc
202 fragment was able to confer a longer circulating half-life to SE301.

203

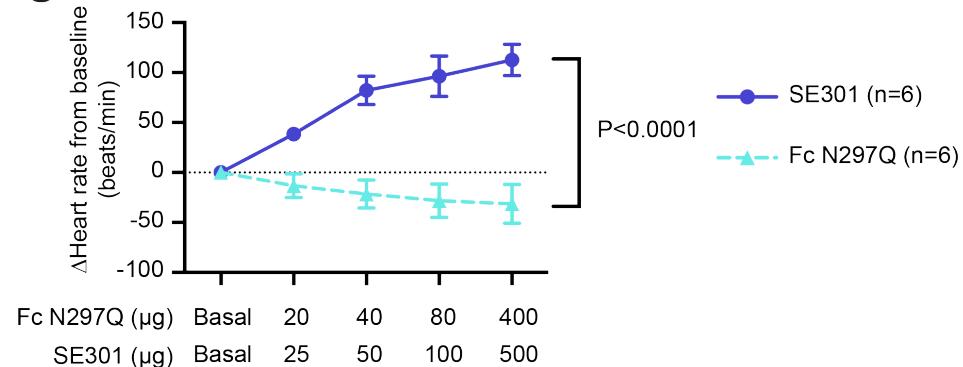
204 **SE301 shows *in vivo* activity**


205 After establishing the long serum half-life of SE301, we conducted a study to determine
206 the activity of the molecule at the RXFP1 receptor *in vivo*. In rodents, RXFP1 expressed in the
207 atria of the heart causes a positive chronotropic effect upon relaxin-2 treatment, with an increase
208 in heart rate of around 130 beats per minute (bpm) above baseline (34,35). The heart rate
209 changes in response to relaxin-2 directly result from activation of RXFP1 and are not an effect of
210 catecholamine release (35). The chronotropic effects do not translate to humans because RXFP1
211 is not expressed in the atria, and relaxin-2 administration has been shown to have no effect on
212 heart rate in clinical trials (36). Although it does not directly translate to any human disease, the
213 effect on rodent heart rate represents a short-term experiment testing RXFP1 agonist activity *in*
214 *vivo*. Therefore, we chose to carry out a mouse hemodynamics study to test SE301, in advance of
215 longer-timeline studies with animal models of human disease.

216 First, the ability of our engineered human relaxin-2 fusion to activate mouse RXFP1 was
217 tested using a cell-based G_s signaling. The assay determined an EC₅₀ of 8.6 nM for SE301 at
218 mouse RXFP1, establishing the utility of mouse models for our *in vivo* studies (**Figure S4b**). In
219 the hemodynamics study, mice were anesthetized and the heart rate of the left ventricle was
220 monitored. Increasing doses of the Fc N297Q alone control molecule or SE301 were
221 administered by intravenous injection at 10-minute intervals. Mice showed a dose-dependent
222 increase in heart rate in response to SE301, increasing from around 330 bpm at baseline to 445


223 bpm after injection with 500 μ g of SE301 (**Figure 4b,c**). In contrast, the mice showed no
224 increase in heart rate in response to Fc N297Q. Together, these data established the ability of
225 SE301 to activate the RXFP1 receptor *in vivo*.

226


a

b

c

227

228 **Figure 4: Pharmacokinetics and *in vivo* hemodynamics. a**, Pharmacokinetics study of SE301
229 in mice used a single intraperitoneal injection and measured the SE301 serum concentration by
230 ELISA from samples taken before injection, and 2, 24, 72, and 168 hours post-injection. The
231 serum half-life for SE301 was calculated to be between 77.5 to 130 hours. Data are mean \pm
232 s.e.m. and n=3 for each dose. **b-c**, Mouse hemodynamics study for SE301 or Fc N297Q injection
233 in mice. Heart rate was monitored upon increasing doses of SE301 or Fc N297Q. Plots show
234 either the measured heart rate (**b**) or calculated as a change from the baseline heart rate (**c**). Data
235 are mean \pm s.e.m. and n=6, p<0.0001.

236 **Discussion**

237 Here we described each step in the design of a long half-life RXFP1 agonist. Through
238 applying protein engineering strategies to the hormone relaxin-2, we generated a potent agonist
239 of the RXFP1 receptor with a long serum half-life, as well as high yield, purity, and biochemical
240 stability. Our general approach should be extensible to other relaxin family peptide hormones;
241 although optimal mutations, linker lengths, and fusion sites will likely vary due to the different
242 modes of ligand recognition among the relaxin receptors.

243 Mouse studies with our final Fc–relaxin-2 fusion, SE301 confirmed an extended half-life
244 of between 3 to 5 days and established its *in vivo* activity at RXFP1. In a mouse hemodynamics
245 study, SE301 increased heart rate in a manner comparable with the native relaxin-2 peptide (35).
246 Future work will test the efficacy of SE301 in animal models of cardiovascular or fibrotic
247 conditions in which treatment with the native relaxin-2 peptide has proven promising. In those
248 experiments, recombinant versions of native relaxin-2 are typically administered continuously
249 (9–11,13), similar to the intravenous infusions of the relaxin-2 peptide used in clinical trials (14).
250 Given its extended half-life, our engineered Fc–relaxin-2 has the potential to achieve a similar
251 improvement in disease phenotypes through weekly or biweekly administration by subcutaneous
252 injections. The results of these experiments will potentially provide a path toward accessing the
253 beneficial biological effects of relaxin-2 for a wider range of indications.

254

255 **Acknowledgements**

256 We would like to thank Dr. Kelly L. Arnett for assistance with differential scanning
257 fluorimetry measurements and the Center for Macromolecular Interactions at Harvard Medical
258 School where differential scanning fluorimetry experiments were performed. This work was
259 supported by National Institutes of Health grants HL056687 and HL075443 to H.A.R., an NIH
260 Ruth L. Kirschstein predoctoral fellowship (F31 GM128233) to S.C.E., and a Blavatnik
261 Biomedical Accelerator grant from Harvard Medical School to A.C.K.

262

263 **Competing interests statement**

264 A.C.K. and S.C.E are inventors on a patent application for engineered single-chain relaxin
265 proteins. A.C.K. is a co-founder and consultant for Tectonic Therapeutic and Seismic
266 Therapeutic and for the Institute for Protein Innovation, a non-profit research institute.

267

268

269

Methods

270 Molecular cloning

271 DNA encoding single-chain relaxins with an N-terminal hemagglutinin signal sequence
272 and C-terminal 6x His-tag were cloned into the pcDNA-Zeo-tetO vector (37) using PCR and
273 NEBuilder HiFi DNA Assembly Mix (New England Biolabs). Fc fusion single-chain relaxins
274 and the Fc N297Q negative control were cloned into pcDNA-Zeo-tetO with an N-terminal
275 hemagglutinin signal sequence. For human and mouse RXFP1 and human RXFP2 expression
276 constructs, receptors were cloned into pcDNA-Zeo-tetO with an N-terminal hemagglutinin signal
277 sequence and FLAG tag.

278

279 Protein expression and purification

280 *His-tagged proteins*

281 His-tagged relaxins were expressed as secreted proteins in Expi293F cells containing a
282 stably integrated tetracycline repressor (Expi293F tetR, Thermo Fisher Scientific) grown in
283 Expi293 media (Thermo Fisher Scientific). Cells were transiently transfected with
284 polyethylenimine, enhanced 24 hours post-transfection with 0.4% glucose, 5 mM sodium
285 butyrate, and 3 mM sodium valproic acid, and induced 48 hours post-transfection with 5 mM
286 sodium butyrate and 4 μ g/mL doxycycline. Supernatant containing the single-chain relaxins was
287 harvested from the cultures 5 days after induction by centrifugation at 4,000 xg for 15 minutes at
288 4°C.

289 To purify His-tagged single-chain relaxins, supernatant was filtered with a glass fiber
290 filter and loaded over Nickel Excel resin (GE Healthcare) equilibrated with 30 mM MES pH 6.5,
291 300 mM sodium chloride. The resin was washed with 30 mM MES pH 6.5, 300 mM sodium
292 chloride, 20 mM imidazole, and protein was eluted with 30 mM MES pH 6.5, 300 mM sodium
293 chloride, 500 mM imidazole. Ammonium sulfate was added to the eluted protein to 60%
294 saturation and rotated at 4°C for 1 hour. Precipitated protein was centrifuged at 10,000 xg, for 15
295 minutes at 4°C and the pellet was resuspended in 30 mM MES pH 6.5, 300 mM sodium chloride.
296 Resuspended protein was filtered using a 0.1 um pore size centrifugal filter and loaded onto a
297 Sephadex S200 column (GE Healthcare) for size exclusion chromatography (SEC). Peak
298 fractions were collected and concentrated with a centrifugal concentrator with a 3 kDa molecular

299 weight cut off. Purity of the proteins was assessed by SDS-PAGE gel. Aliquots were flash frozen
300 in liquid nitrogen and stored at -80°C.

301

302 *Fc fusion proteins*

303 Fc fusion single-chain relaxins and the Fc N297Q control were expressed in Expi293F
304 tetR cells as stated above. Supernatant containing the Fc fusions was harvested from the cultures
305 5 days after induction by centrifugation at 4,000 xg for 15 minutes at 4°C. Supernatant
306 containing the Fc fusions was diluted 1:1 in 20 mM HEPES pH 7.5, 150 mM sodium chloride
307 (HBS) and loaded onto protein G resin (GE Healthcare) equilibrated with HBS. The resin was
308 washed with HBS and protein was eluted with 100 mM glycine pH 2.5. The elution was
309 neutralized to pH 7.5 with HEPES and dialyzed overnight in HBS. Samples prepared for mouse
310 studies were dialyzed into phosphate buffered saline (PBS) at 4°C. Elutions from large-scale
311 cultures were diluted in 100 mM glycine pH 2.5 prior to neutralization to avoid precipitation
312 upon pH change. Dialyzed protein was concentrated with a centrifugal concentrator with a 3 kDa
313 molecular weight cut off. SDS-PAGE gels and analytical SEC were used to analyze proteins for
314 purity and monodispersity. Proteins were aliquoted, flash frozen in liquid nitrogen, and stored at
315 -80°C.

316

317 Cellular assays

318 *CRE-SEAP*

319 G_s signaling was measured using an assay that indirectly detects cAMP production
320 through transcription of the reporter enzyme secreted embryonic alkaline phosphatase (SEAP)
321 (38). Briefly, clear 96-well plates were coated with 30 uL of 10 ug/mL poly-D-lysine, washed
322 with PBS, and HEK293T cells (ATCC) were plated at 2.4×10^4 cells/well in Dulbecco's Modified
323 Eagle Medium (DMEM) with 10% (v/v) fetal bovine serum (FBS). The next day, the medium
324 was replaced with 50 uL of serum-free DMEM. Lipofectamine 2000 (Thermo Fisher Scientific)
325 was used to transfect cells at 70% confluence with 20 ng of CRE-SEAP reporter plasmid
326 (Clontech) and 20 ng of receptor or empty vector pcDNA-Zeo-tetO DNA per well. Transfections
327 were incubated for 5 hours at 37°C, then the medium was replaced with 200 uL of serum-free
328 DMEM plus ligand dilution curves. Twenty-four hours later, the plates were incubated at 70°C
329 for 2 hours. A solution of the SEAP substrate, 4-methylumbelliferyl phosphate (Sigma Aldrich),

330 was prepared at 120 uM in 2M diethanolamine bicarbonate pH 10. The substrate solution was
331 mixed with an equal volume (100 uL) of supernatant and incubated at room temperature for 15
332 minutes. An Envision 2103 Multilabel Reader (Perkin Elmer) was used to measure fluorescence
333 with an excitation wavelength of 360 nm and an emission wavelength of 449 nm. Signaling was
334 calculated as a percentage of native relaxin-2 response on either human or mouse RXPF1 and
335 plotted using GraphPad Prism.

336

337 *GloSensor*

338 A real-time, live-cell signaling assay was used as a second method to measure SE301
339 activation of G_s signaling through RXFP1. The assay was carried out as previously described
340 (32). Briefly, white, clear-bottom 96-well plates were coated with poly-D-lysine and washed
341 with PBS. HEK293T cells were then plated at 2.0x10⁴ cells/well. The next day, cells were
342 transfected with human RXFP1 pcDNA-Zeo-tetO and the GloSensor reporter plasmid using
343 FuGENE (Promega), according to the manufacturer's instructions. The cells were incubated for
344 24 hours at 37°C with 5% CO₂. The next day, the media was changed to 40 μL CO₂-independent
345 media (Thermo Fisher Scientific) with 10% (v/v) FBS and 2 mg/mL D-luciferin (Goldbio). The
346 plates were then incubated for 2 hours at room temperature (RT) in the dark. After 2 hours,
347 luminescence was measured before adding ligands using a SpectraMax M5 microplate reader
348 with a 1 second integration time. A dilution series of SE301 or native relaxin-2 were added to the
349 cells and the luminescence measurement was repeated at 5, 10, 15, 20, 25, and 30 minutes after
350 ligand addition. Signaling was calculated as a percentage of native relaxin-2 response on human
351 RXPF1 and plotted using GraphPad Prism.

352

353 Differential scanning fluorimetry

354 For differential scanning fluorimetry, SE301 was dialyzed overnight into PBS. Samples
355 were prepared with 0.1 mg/mL SE301 or dialysis buffer control and mixed with Protein Thermal
356 Shift Dye (Applied Biosystems) in a 1:100 ratio (v/v) of protein to dye in 96-well plates (Applied
357 Biosystems). Differential scanning fluorimetry was carried out using the Life Technologies
358 Quant Studio 6 with temperatures from 25 to 99°C, increasing by 3°C per minute. Fluorescence
359 was detected with 470 nm excitation and 586 nm emission filters. The fluorescence readings as a

360 function of temperature were analyzed in the Protein Thermal Shift Software (Applied
361 Biosystems) using the Boltzmann equation and plotted using GraphPad Prism.

362

363 **Flow cytometry binding assay**

364 To measure SE301 binding affinity, flow cytometry was used with Expi293F cells
365 transfected with human RXFP1 or empty pcDNA-Zeo-tetO vector. Expi293F tetR cells were
366 grown in Expi293 media and transfected using FectoPRO (Polyplus), according to the
367 manufacturer's protocols. The cells were enhanced 24 hours post-transfection with 0.4% glucose
368 and induced 48 hours post-transfection with 4 μ g/mL doxycycline and 5 mM sodium butyrate.
369 After 24 hours of induction, cells were harvested by spinning at 200 xg for 5 minutes at 4°C and
370 washed once with HBS with 1% (v/v) FBS and 2 mM calcium chloride (Binding Buffer). Cells
371 were plated into a V-bottom 96-well plate (Corning) at 100,000 cells/well and blocked by
372 incubation in Binding Buffer for 30 minutes at 4°C. After blocking, cells were centrifuged at 200
373 xg for 5 minutes at 4°C, resuspended in 100 μ L of Binding Buffer containing a dilution series of
374 SE301 or Fc N297Q, and incubated for 1 hour at 4°C. Cells were then centrifuged at 200 xg for 5
375 minutes at 4°C, washed twice with 200 μ L Binding Buffer, and resuspended in 100 μ L Binding
376 Buffer containing 100 nM M1 anti-FLAG antibody labeled with Alexa Fluor 488 and Alexa
377 Fluor 647 anti-human IgG Fc (BioLegend) diluted 1:100 (v/v). Cells were incubated in
378 secondary antibodies for 30 minutes at 4°C, washed once with 200 μ L Binding Buffer, and
379 resuspended in 100 μ L Binding Buffer for flow cytometry. Samples were analyzed on a BD
380 Accuri C6 flow cytometer (BD Biosciences) and gated according to plots of FSC-A/SCA-A,
381 FSC-A/FSC-H, and receptor expression according to Alexa Fluor 488 M1 anti-FLAG antibody
382 binding. Approximately 1000 events/sample were collected from cells expressing receptor for
383 human RXFP1-transfected cells or post-FSC-A/FSC-H gating for empty vector-transfected cells.
384 Mean fluorescence intensities for Alexa Fluor 647 anti-human IgG Fc binding were plotted and
385 analyzed in GraphPad Prism.

386

387 **Mouse pharmacokinetics study**

388 A pharmacokinetics study in mice was conducted to determine the serum half-life of the
389 SE301 molecule. SE301 was prepared in sterile PBS at 10 mg/mL, using methods described
390 above. For the study, male CD-1 mice were used with intraperitoneal injections (IP) of SE301 at

391 one of three doses, 1, 5, or 50 mg/kg. Nine mice were used in the pharmacokinetic study, three
392 per each dose of SE301, and each was between 7 to 10 weeks of age and weighed between 29
393 and 40 grams. The IP injection of SE301 was administered via hypogastric regions, and blood
394 samples were taken from the mice before dosing, and 2, 24, 72, and 168 hours post-dosing. At
395 each timepoint, at least 0.6 mL of blood was collected from each animal. The blood samples
396 were stored at room temperature for about 30 minutes, and then were centrifuged at 2,500 xg for
397 15 minutes at 4°C. After centrifugation, the serum was collected, an aliquot was taken for
398 analysis, and the samples were frozen over dry ice and stored at -60°C or lower. An ELISA was
399 conducted detecting human IgG1 Fc to determine the amount of SE301 per sample. Serum
400 SE301 concentration versus timepoint data were plotted in the WinNonlin software program to
401 derive pharmacokinetic parameters.

402

403 Mouse hemodynamics study

404 Animal experiments carried out for this study were handled according to approved
405 protocols and animal welfare regulations mandated by the Institutional Animal Care and Use
406 Committee of Duke University Medical Center. Eight to twelve-week-old C57BL/6J wild-type
407 mice of both sexes were used for this study. Mice were anesthetized with ketamine (100 mg/kg)
408 and xylazine (2.5 mg/kg), and bilateral vagotomy was performed. The left ventricle blood
409 pressure and heart rate were monitored with a 1.4 French (0.46 mm) high fidelity
410 micromanometer catheter (ADIInstruments) connected to a pressure transducer (ADIInstruments).
411 Basal blood pressure was recorded at steady state after catheter insertion (2-3 min after
412 insertion). Graded doses of Fc N297Q (20, 40, 80, 400 µg) or SE301 (25, 50, 100, 500 µg) were
413 administered at 10 min intervals by intravenous injection through a jugular vein. The blood
414 pressure was monitored continuously and recorded at the steady state (10 min after each
415 injection). Data analysis was performed using LabChart 8 software (ADIInstruments).

416

417

References

418

- 419 1. Bathgate, R. A. D. *et al.* Relaxin family peptides and their receptors. *Physiol. Rev.* **93**,
420 405–480 (2013).
- 421 2. Sheau, Y. H. *et al.* Activation of orphan receptors by the hormone relaxin. *Science (80-.).*
422 **295**, 671–674 (2002).
- 423 3. Samuel, C. S. *et al.* Anti-fibrotic actions of relaxin. *Br. J. Pharmacol.* **174**, 962–976
424 (2017).
- 425 4. Sarwar, M., Du, X. J., Dschietzig, T. B. & Summers, R. J. The actions of relaxin on the
426 human cardiovascular system. *Br. J. Pharmacol.* **174**, 933–949 (2017).
- 427 5. Devarakonda, T. & Salloum, F. N. Heart disease and relaxin: New actions for an old
428 hormone. *Trends Endocrinol. Metab.* **29**, 338–348 (2018).
- 429 6. Ng, H. H., Shen, M., Samuel, C. S., Schlossmann, J. & Bennett, R. G. Relaxin and
430 extracellular matrix remodeling: Mechanisms and signaling pathways. *Mol. Cell.*
431 *Endocrinol.* **487**, 59–65 (2019).
- 432 7. Kanai, A. J., Konieczko, E. M., Bennett, R. G., Samuel, C. S. & Royce, S. G. Relaxin and
433 fibrosis: Emerging targets, challenges, and future directions. *Mol. Cell. Endocrinol.* **487**,
434 66–74 (2019).
- 435 8. Blessing, W. A. *et al.* Intraarticular injection of relaxin-2 alleviates shoulder
436 arthrofibrosis. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 12183–12192 (2019).
- 437 9. Bennett, R. G., Heimann, D. G., Singh, S., Simpson, R. L. & Tuma, D. J. Relaxin
438 decreases the severity of established hepatic fibrosis in mice. *Liver Int.* **34**, 416–426
439 (2014).
- 440 10. Garber, S. L. *et al.* Relaxin decreases renal interstitial fibrosis and slows progression of
441 renal disease. *Kidney Int.* **59**, 876–882 (2001).
- 442 11. Unemori, E. N. *et al.* Relaxin induces an extracellular matrix-degrading phenotype in
443 human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. *J.*
444 *Clin. Invest.* **98**, 2739–2745 (1996).
- 445 12. Valle Raleigh, J. *et al.* Reperfusion therapy with recombinant human relaxin-2 (Serelaxin)
446 attenuates myocardial infarct size and NLRP3 inflammasome following
447 ischemia/reperfusion injury via eNOS-dependent mechanism. *Cardiovasc. Res.* **113**, 609–

448 619 (2017).

449 13. Beiert, T. *et al.* Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due
450 to anti-fibrotic and anti-inflammatory properties. *Biochem. Biophys. Res. Commun.* **490**,
451 643–6449 (2017).

452 14. Metra, M. *et al.* Effects of serelaxin in patients with acute heart failure. *N. Engl. J. Med.*
453 **381**, 716–726 (2019).

454 15. Chen, S. A. *et al.* The pharmacokinetics of recombinant human relaxin in nonpregnant
455 women after intravenous, intravaginal, and intracervical administration. *Pharm. Res.* **10**,
456 834–838 (1993).

457 16. Eigenbrot, C. *et al.* X-ray structure of human relaxin at 1.5 Å. Comparison to insulin and
458 implications for receptor binding determinants. *J. Mol. Biol.* **221**, 15–21 (1991).

459 17. McBride, A. *et al.* In search of a small molecule agonist of the relaxin receptor RXFP1 for
460 the treatment of liver fibrosis. *Sci. Rep.* **7**, 10806 (2017).

461 18. Xiao, J. *et al.* Identification and optimization of small-molecule agonists of the human
462 relaxin hormone receptor RXFP1. *Nat. Commun.* **4**, 1–7 (2013).

463 19. Wilson, K. J. *et al.* Optimization of the first small-molecule relaxin/insulin-like family
464 peptide receptor (RXFP1) agonists: Activation results in an antifibrotic gene expression
465 profile. *Eur. J. Med. Chem.* **156**, 79–92 (2018).

466 20. Hossain, M. A. *et al.* A single-chain derivative of the relaxin hormone is a functionally
467 selective agonist of the G protein-coupled receptor, RXFP1. *Chem. Sci.* **7**, 3805–3819
468 (2016).

469 21. Mallart, S. *et al.* Identification of potent and long-acting single-chain peptide mimetics of
470 human relaxin-2 for cardiovascular diseases. *J. Med. Chem.* **64**, 2139–2150 (2021).

471 22. Sun, J. *et al.* Human relaxin-2 fusion protein treatment prevents and reverses
472 isoproterenol-induced hypertrophy and fibrosis in mouse heart. *J. Am. Heart Assoc.* **8**, 1–
473 16 (2019).

474 23. Mankarious, S. *et al.* The half-lives of IgG subclasses and specific antibodies in patients
475 with primary immunodeficiency who are receiving intravenously administered
476 immunoglobulin. *J. Lab. Clin. Med.* **112**, 634–640 (1988).

477 24. Ko, S., Jo, M. & Jung, S. T. Recent achievements and challenges in prolonging the serum
478 half-lives of therapeutic IgG antibodies through Fc engineering. *BioDrugs* **35**, 147–157

479 (2021).

480 25. Czajkowsky, D. M., Hu, J., Shao, Z. & Pleass, R. J. Fc-fusion proteins: New
481 developments and future perspectives. *EMBO Mol. Med.* **4**, 1015–1028 (2012).

482 26. Hudson, P. *et al.* Relaxin gene expression in human ovaries and the predicted structure of
483 a human preprorelaxin by analysis of cDNA clones. *EMBO J.* **3**, 2333–2339 (1984).

484 27. Büllesbach, E. E. & Schwabe, C. Total synthesis of human relaxin and human relaxin
485 derivatives by solid-phase peptide synthesis and site-directed chain combination. *J. Biol.*
486 *Chem.* **266**, 10754–10761 (1991).

487 28. Tregebar, G. W. & Wade, J. D. Chemistry, Synthesis, and Processing of Relaxin. in
488 *Progress in Relaxin Research-The Proceedings of the Second International Congress on*
489 *the Hormone Relaxin* 31–44 (1994).

490 29. Vandlen, R., Winslow, J., Moffat, B. & Rinderknecht, E. Human Relaxin: Purification,
491 Characterization and Production of Recombinant Relaxins for Structure Function Studies.
492 in *Progress in Relaxin Research-The Proceedings of the Second International Congress*
493 *on the Hormone Relaxin* 59–72 (1994).

494 30. Luo, X. *et al.* A simple approach for the preparation of mature human relaxin-3. *Peptides*
495 **31**, 2083–2088 (2010).

496 31. Jefferis, R. Recombinant antibody therapeutics: the impact of glycosylation on
497 mechanisms of action. *Trends Pharmacol. Sci.* **30**, 356–362 (2009).

498 32. Erlandson, S. C. *et al.* The relaxin receptor RXFP1 signals through a mechanism of
499 autoinhibition. *bioRxiv* (2022).

500 33. Vieira, P. & Rajewsky, K. The half-lives of serum immunoglobulins in adult mice. *Eur. J.*
501 *Immunol.* **18**, 313–316 (1988).

502 34. Ward, D. G., Thomas, G. R. & Cronin, M. J. Relaxin increases rat heart rate by a direct
503 action on the cardiac atrium. *Biochem. Biophys. Res. Commun.* **186**, 999–1005 (1992).

504 35. Kakouris, H., Eddie, L. W. & Summers, R. J. Cardiac effects of relaxin in rats. *Lancet*
505 **339**, 1076–1078 (1992).

506 36. Ponikowski, P. *et al.* A randomized, double-blind, placebo-controlled, multicentre study to
507 assess haemodynamic effects of serelaxin in patients with acute heart failure. *Eur. Heart J.*
508 **35**, 431–441 (2014).

509 37. Staus, D. P. *et al.* Sortase ligation enables homogeneous GPCR phosphorylation to reveal

510 diversity in β -arrestin coupling. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 3834–3839 (2018).

511 38. Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory
512 epithelium. *Nature* **442**, 645–650 (2006).

513