

1 Examining the efficacy of localised gemcitabine therapy for 2 the treatment of pancreatic cancer using a hybrid agent- 3 based model.

4 Adrienne L. Jenner¹, Wayne Kelly², Michael Dallaston¹, Robyn Araujo¹, Isobelle Parfitt¹, Dominic
5 Steinitz^{3,4}, Pantea Pooladvand⁵, Peter S. Kim⁵, Samantha J. Wade^{6,7}, Kara L. Vine^{6,7},

6 ¹School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia,

7 ²School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia,

8 ³Tweag Software Innovation Lab, London, United Kingdom,

9 ⁴Kingston University, Kingston, United Kingdom,

10 ⁵School of Mathematics and Statistics, University of Sydney, NSW, Australia,

11 ⁶Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,

12 ⁷School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia,

14 **Abstract**

15 The prognosis for pancreatic ductal adenocarcinoma (PDAC) patients has not significantly improved in the past 3
16 decades, highlighting the need for more effective treatment approaches. Poor patient outcomes and lack of response
17 to therapy can be attributed, in part, to the dense, fibrotic nature of PDAC tumours, which impedes the uptake of
18 systemically administered drugs. Wet-spun alginate fibres loaded with the chemotherapeutic agent gemcitabine have
19 been developed as a potential tool for overcoming the physical and biological barriers presented by the PDAC tumour
20 microenvironment and deliver high concentrations of drug to the tumour directly over an extended period of time.
21 While exciting, the practicality, safety, and effectiveness of these devices in a clinical setting requires further
22 investigation. Furthermore, an in-depth assessment of the drug-release rate from these devices needs to be undertaken
23 to determine whether an optimal release profile exists. Using a hybrid computational model (agent-based model and
24 partial differential equation system), we developed a simulation of pancreatic tumour growth and response to treatment
25 with gemcitabine loaded alginate fibres. The model was calibrated using *in vitro* and *in vivo* data and simulated using
26 a finite volume method discretization. We then used the model to compare different intratumoural implantation
27 protocols and gemcitabine-release rates. In our model, the primary driver of pancreatic tumour growth was the rate of
28 tumour cell division and degree of extracellular matrix deposition. We were able to demonstrate that intratumoural
29 placement of gemcitabine loaded fibres was more effective than peritumoural placement. Additionally, we found that
30 an exponential gemcitabine release rate would improve the tumour response to fibres placed peritumourally.
31 Altogether, the model developed here is a tool that can be used to investigate other drug delivery devices to improve
32 the arsenal of treatments available for PDAC and other difficult-to-treat cancers in the future.

33 **Author Summary**

34 Pancreatic cancer has a dismal prognosis with a median survival of 3-5 months for untreated disease. The treatment
35 of pancreatic cancer is challenging due to the dense nature of pancreatic tumours which impedes retention of drug at

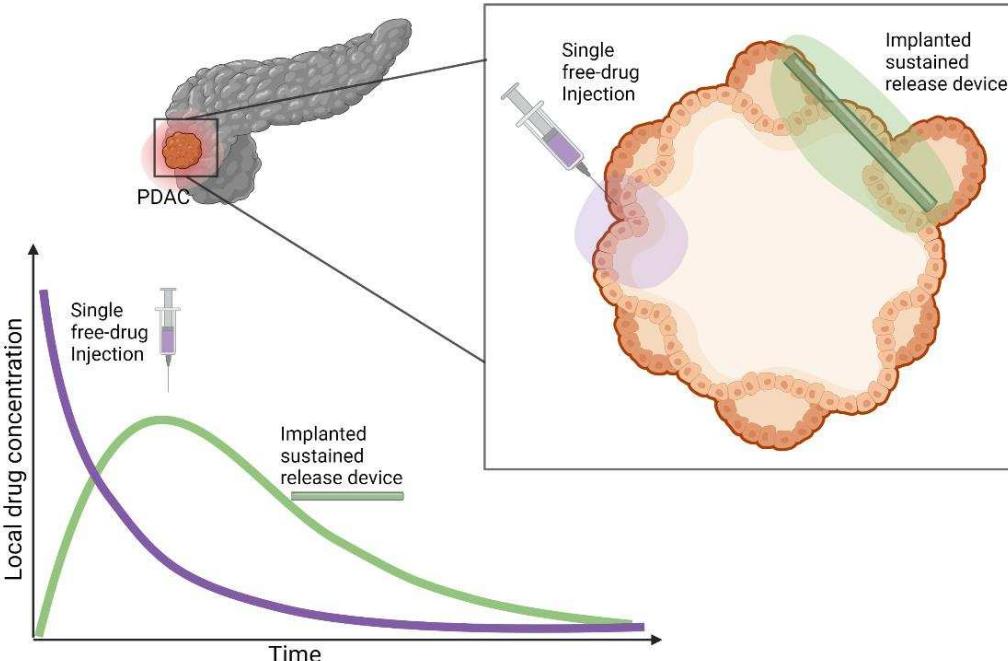
36 the tumour site. As such, systemic administration of chemotherapies, such as gemcitabine, has a limited efficacy. To
37 overcome this, sustained-release devices have been proposed. These devices are injected locally and release drug
38 slowly over time, providing a concentrated local, sustained drug concentration. To investigate the possible efficacy of
39 these devices, we developed a mathematical model that would allow us to probe treatment perturbations *in silico*. We
40 modelled the individual cancer cells and their growth and death from gemcitabine loaded into the sustained delivery
41 devices. Our platform allows future investigations for these devices to be run *in silico* so that we may better understand
42 the forms of the drug release-profile that are necessary for optimal treatment.

43 **Introduction**

44 Inoperable pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival of 3–5 months
45 for untreated disease [1]. Treatment of PDAC with the chemotherapeutic agent gemcitabine can achieve clinical
46 benefit and symptom improvement in 20–30% of patients [1, 2], although PDAC is still regarded as a chemotherapy-
47 resistant tumour [3, 4]. Gemcitabine is designed to target and kill cancer cells by incorporating into the DNA strand
48 of a PDAC cell allowing only one deoxynucleotide to be incorporated, which prevents strand elongation [5, 6],
49 resulting in cell cycle arrest and subsequent cell death [7, 8]. Despite gemcitabine being established as a standard
50 treatment for advanced PDAC over 20 years, most subsequent large phase III studies have not shown significantly
51 improved survival benefit [9]. Overall prognosis for PDAC has seen little improvement in the last 3 decades, largely
52 due to drug resistance and poor intratumoural drug accumulation.

53 The majority of chemotherapeutics, gemcitabine included, are administered systemically via bolus or
54 infusion intravenous administration. This often results in significant systemic toxicity, with only a fraction of the
55 injected dose reaching the tumour. As such, there has been a growing interest in the development of localized targeted
56 delivery systems which can modify the bio-distribution of drugs and achieve local drug accumulation in the tumour
57 tissue [10–12] (**Figure 1**). For example, drug-eluting polymeric implants are designed to deliver high concentrations
58 of chemotherapeutic drugs directly at the tumour site, overcoming transport and tissues barriers as well as limiting
59 off-target toxicities [13]. Biodegradable implants, can be designed to provide sustained drug release over weeks or
60 months, avoiding repeated external drug dosing, clinic visits and other surgical interventions. The characteristics of
61 these devices make local delivery especially attractive for chemotherapeutics with a narrow therapeutic window or
62 short *in vivo* half-life [14], such as gemcitabine.

63 Drug-loaded polymeric fibres can be prepared by various cross-linking methods and allow for drug molecules
64 to be released in a controlled manner depending on the cross-linking type and methods [15]. Previously, Wade *et al.*
65 [14] showed that wet-spun gemcitabine-loaded alginate fibres inhibited *ex vivo* PDAC spheroid growth and reduced
66 PDAC cell viability compared to gemcitabine delivered as a free drug. In a subsequent study, Wade *et al.* [13, 16]
67 showed that a coaxial fibre formulation, in which the alginate was encased by a polycaprolactone (PCL) shell
68 demonstrated significant *in vivo* antitumour efficacy; however, it is not possible to conclude experimentally whether
69 an alternative release-profile of gemcitabine may be more effective. Fortunately, computational and mathematical
70 modelling is well situated as a predictive tool for quantifying the efficacy of alternative drug release profiles and drug
71 administration patterns.



72
73 **Figure 1 Motivation for sustained-delivery implants for treatment of PDAC.** Sustained-delivery implants are a promising treatment
74 methodology over conventional single free-drug intravenous or intratumoural injections. A hypothetical comparison of drug concentrations at
75 the tumour site under these two protocols is pictured. Systemic injections of anti-cancer drugs often result in a rapid decrease of drug
76 concentration at the tumour site. In comparison, sustained-release mechanisms deliver drug over a prolonged period resulting in a durable
77 drug presence at the tumour site. Created using biorender.com.

78
79 Mathematical models have been used to help understand formation and treatment of a range of different
80 cancers for some time now [17–20]. In particular, agent-based models (ABM) have been used extensively in cancer
81 modelling as they allow for the consideration of spatial and phenotypic heterogeneity [21–27] which are known to be
82 major drivers of variations in treatment outcomes. In ABMs, the likelihood of events, such as cell proliferation,
83 movement, death or mutation are modelled as probabilities, allowing the simulation to evolve stochastically in time.
84 Phillips *et al.* [28] presented a hybrid mathematical approach that characterized vascular changes during tumour
85 growth via an ABM, with treatment, nutrient, and VEGF changes captured through a continuum model. Insights on
86 therapeutic failure in immunotherapy have also been provided through an ABM software known as PhysiCell [29,
87 30]. Oncolytic virotherapy has also been the focus of numerous ABMs [31–35], with an ABM of virotherapy
88 demonstrating that the parameter range leading to tumour eradication is small and hard to achieve in 3D. There have
89 been ABMs developed that specifically focus on pancreatic cancer growth [36, 37]; however, an ABM describing
90 pancreatic cancer growth and treatment with a degradable polymer implant has not yet been developed.

91 For some time, mathematical models of degradable drug delivery mechanisms have been used to assist in the
92 understanding of polymer degradation, hydrolysis kinetics and the subsequent effect of drug release on the applied
93 system [10, 38–45]. Using mass-balance kinetic equations, McGinty *et al.* [42] investigated the extent to which
94 variable porosity drug-eluting coatings can provide better control over drug release using transport diffusion equations.
95 Their results indicate that the contrast in properties of two layers can be used as a means of better controlling the
96 release, and that the quantity of drug delivered in early stages can be modulated by varying the initial drug distribution.

97 More recently, Spiridonova *et al.* [46] fitted drug release from polymer microparticles and investigated the effect of
98 size distribution on diffusional drug release from sustained-delivery systems using a system of partial differential
99 equations (PDEs). Whilst useful for capturing the drug delivery mechanism, most models of drug-loaded polymers
100 such as these have not examined the influence of changes to drug release profiles on antitumour efficacy or how
101 intratumoural stochasticity impacts drug delivery.

102 In this work, we have developed a hybrid mathematical and computational model of PDAC tumour growth
103 and death from treatment with gemcitabine released from a polymeric fibre. We extended a previously published ABM
104 known as a Voronoi cell-based model (VCBM) [32] to model tumour cell growth and death and coupled this with a
105 PDE model for gemcitabine release from polymeric implants. *In vitro* drug release curves were used to optimise the
106 PDE formulation describing how gemcitabine is released from fibres. A numerical simulation was then used to
107 initialise the parameters in the ABM using *in vivo* control PDAC tumour growth measurements. The potential impact
108 of these fibres on tumour growth and cell death was then investigated with the VCBM-PDE model and improvements
109 on drug release kinetics and fibre placement were suggested. The model was developed as a tool that can be applied
110 to interrogate other cancer therapies using polymeric implants with the goal to improve treatment response for PDAC
111 patients.

112 **Experimental methods**

113 *Fibre fabrication and characterisation*

114 Full details for the fabrication and characterisation of alginate fibres loaded with or without gemcitabine are
115 described in Wade *et al.* [13, 14]. Briefly, gemcitabine-loaded alginate fibres had a uniform surface area from 50 –
116 120 μm in diameter. Fibres displayed different drug release profiles depending on the concentration of polymer
117 used. Fibre diameter also varied depending on the materials used [14].

118

119 *Fibre gemcitabine release kinetics*

120 Full details for the experiments measuring gemcitabine release can be found in Wade *et al.* [14] with brief details here.
121 Gemcitabine-loaded fibres were added to 2mL of simulated body fluid (SBF), Ph 7.4 and incubated at 37°C. At various
122 time points (10, 30, 60, 90 min hourly for 10h and then daily for 3 weeks), buffer solution (200 μL) was removed for
123 analysis of gemcitabine release and replaced with fresh SBF. The amount of drug released from alginate fibres was
124 determined using high performance liquid chromatography (HPLC). The amount of gemcitabine released (μg) was
125 calculated by interpolating AUC values from the standard curve using Empower Pro V2 (Waters) software.

126

127 *Implant toxicity *in vitro**

128 Gemcitabine loaded fibres were tested for their cytotoxicity against human pancreatic cancer cells (Mia-PaCa-2) cells
129 over 72h. Cells were incubated with 0.5 cm lengths of gemcitabine loaded or non-drug loaded fibre formulation before
130 an endpoint MTS cell viability assay was performed. Results are displayed as a percentage of an untreated control.
131 Experiments were performed in triplicate. Full details for the toxicity experiments can be found in Wade *et al.* [13].

132

133 *In vivo* Mia-PaCa-2 cell growth

134 Animals were subcutaneously inoculated with 100 μ L suspension of 1×10^6 Mia-PaCa-2 cells in PBS. Tumour
135 volume measurements began when tumours reached a volume of 200 mm^3 using

136
$$volume = width \times \frac{length^2}{2}$$

137 where w is the longest tumour measurement and l is the tumour measurement along a perpendicular axis. Tumour
138 volume was measured daily for a duration of approximately 33 days. Full details for this experiment can be found in
139 Wade *et al.* [13]. All animal experiments were conducted in accordance with the NHMRC Australian Code for the
140 Care and Use of Animals for Scientific Purposes, which requires 3R compliance (replacement, reduction, and
141 refinement) at all stages of animal care and use, and the approval of the Animal Ethics Committee of the University
142 of Wollongong (Australia) under protocol AE18/13.

143

144 **Mathematical methods**

145 The model developed for the release of gemcitabine from alginate fibres and the impact on a growing PDAC tumour
146 was formulated in two parts. The first describes the PDE describing the concentration of gemcitabine in the tumour
147 microenvironment (TME) and surrounding tissue over time. The second describes the VCBM [32] that captures the
148 way tumour cells proliferate, move and undergo apoptosis from gemcitabine. All parameters introduced for the model
149 are summarised in **Table S1-S5** in the **Supplementary Tables and Figures** and a schematic for the model is in
150 **Figure 2**.

151 *Model of gemcitabine*

152 To capture the concentration of gemcitabine in the tumour microenvironment, we first considered a 2D rectangular
153 domain with boundary B (**Figure TS1**). Inside this domain, is implanted a gemcitabine drug-loaded fibre which is
154 represented by a vertical line source (**Figure TS2A** and **Figure 2A**). Gemcitabine diffuses from the line source at
155 some time-dependent rate that decreases as the polymeric fibre degradation slows. The gemcitabine concentration in
156 the domain is diffusing and decaying. PDAC cells in the domain are also taking up gemcitabine, removing it from the
157 concentration in the domain. Inside the fibre, we model the diffusion of drug as radially symmetric (**Figure 2B**).

158 We denote the concentration of drug in the TME at position (x, y) by $C(x, y, t)$ and model this concentration
159 by

160
$$\frac{\partial C}{\partial t} = D \nabla^2 C - \lambda C - \sum_{cells\ k} \delta(x - x_k) \delta(y - y_k) v_c W_k C + \delta(x - x_F) J(y, t), \quad (1)$$

161 where D is the diffusion coefficient in the TME, and λ is the decay rate of the drug. To model cancer cells taking up
162 gemcitabine, we used $\delta(x)$ which is the Dirac delta function in one-dimension, where (x_k, y_k) is the k th cancer cell's
163 Voronoi centre position in the domain (**Figure S1**), and W_k is the cell's volume. Pancreatic cancer cells take up drug
164 in the domain at a rate v_c . Cell uptake was modelled by point sinks analogous to that in PhysiCell and BioFVM [30,
165 47], where cells are considered discrete "point masses" in the domain that take up drug from a single rectangular

166 discretized voxel weighted by the local concentration of drug. We then used a line source at $x = x_F, y_0 \leq y \leq y_0 +$
 167 L to model the release of gemcitabine from the polymeric fibre, where y_0 is the location of the bottom of the fibre and
 168 L is the fibre length (**Figure TS1**). This line source was represented by a Dirac delta function in one-dimension and
 169 the drug diffuses from the line source with flux $J(y, t)$.

170 To derive the flux of drug from the line source, we first assumed that the release of drug from the fibre would
 171 be time dependent. As such, we chose to explicitly model a concentration of drug diffusing inside the fibre. We denote
 172 the concentration of gemcitabine at radial position r and location (x_F, y) by $F(r, y, t)$ (**Figure TS2** and **Figure 2A**).
 173 We model the diffusion and movement of drug inside the fibre assuming radial symmetry. We assumed that diffusion
 174 in the radial direction is significantly faster than along the fibre since the radius of the fibre r_{total} is significantly less
 175 than the length of the fibre L (**Figure TS1** and **Figure TS2**). This gives

$$\frac{\partial F}{\partial t} = D_F(t) \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial F}{\partial r} \right), \quad (2)$$

176 where $D_F(t)$ is the time-dependent diffusion of drug inside the fibre. We imposed the continuity condition

$$F(r_{total}, y, t) = C(x_F, y, t), \quad (3)$$

177 so that the diffusion of drug out of the fibre at the line source will depend on the location (x_F, y) and local exterior
 178 concentration. The flux out of the line source $J(y, t)$ in **Eq. (1)** can then be approximated from the release of drug
 179 across the boundary of the fibre:

$$J(y, t) = \begin{cases} -\frac{2\pi r_{total}}{h} D_F(t) \frac{\partial F}{\partial r} (r_{total}, y, t) & y_0 \leq y \leq y_0 + L \\ 0 & y < y_0, \quad y > y_0 + L \end{cases}. \quad (4)$$

180 This term is derived by converting the flux out of the radial fibre into the flux represented by the line source in **Eq.**
 181 **(1)** and converting to a concentration per surface area where h is the depth of the rectangular region (presumed thing,
 182 see **Figure TS1**). Both **Eq. (3)** and **Eq. (4)** are necessary boundary conditions for **Eq. (1)** and **Eq. (2)**. In this way, we
 183 assume the concentration is continuous and the flux of the fibre is equal to the flux into the TME, equivalent to a
 184 conservation of mass.

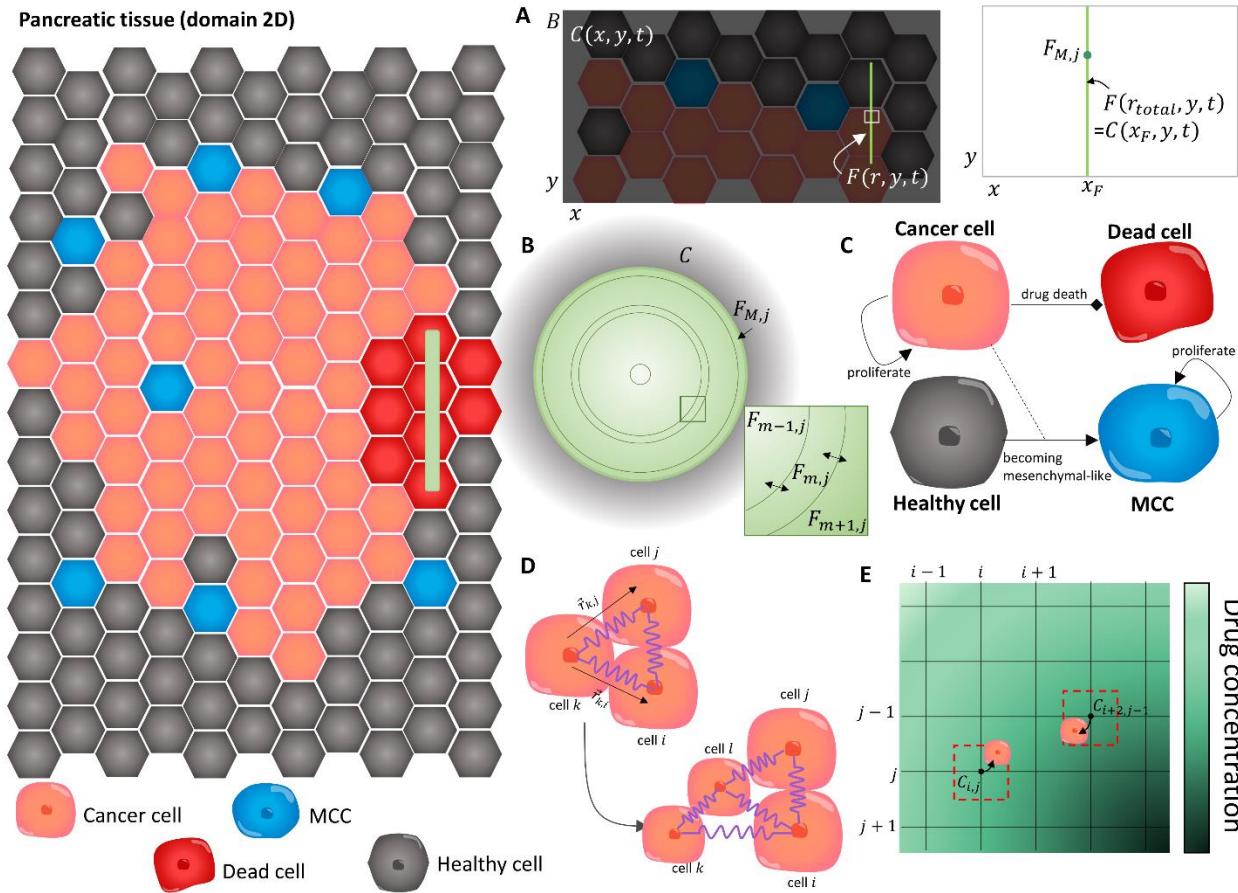
185 The diffusivity of the drug, $D_F(t)$, is modeled by the function

$$D_F(t) = \frac{k}{t + \epsilon} + D_{const}, \quad (5)$$

186 where k controls the decay rate to the constant decay rate from the fibre (i.e. how quickly the fibre swells), D_{const} is
 187 the constant decay rate from the fibre and ϵ is a tuning constant to provide a finite initial diffusion coefficient, i.e.
 188 $D_F(0) = k/\epsilon + D_{const}$. We expect $D_F(0)$ to be initially large (>1) since the polymeric fibre is hydrophilic and drug
 189 would immediately diffuse out of the fibre. In addition, some drug is never properly loaded into the fibre and can be
 190 released instantaneously. The formalism in **Eq. (5)** was broadly chosen to capture the rapid decline in release as the
 191 polymeric fibre degrades. It is possible to model the breakdown of the drug release mechanisms to include device
 192 swelling and degradation and for examples of this see [46, 48–50].

193 No-flux boundary conditions on B , the exterior of the TME, are imposed:

$$\frac{\partial C}{\partial \vec{n}} = 0$$



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Figure 2 The main components of the VCBM-PDE model. (A) The concentration of drug in the TME was modelled in a 2D domain bounded by B , where $C(x, y, t)$ was the concentration in the TME at position (x, y) . The fibre implant was then placed at a position $x = x_F$ and modelled as a line source. To capture the diffusion of drug from the fibre, we modelled the concentration of gemcitabine inside the fibre $F(r, y, t)$ at radial position r and domain position y where the continuity condition in Eq. (3) required equal concentrations at the fibre boundary and at the immediate local microenvironment, i.e. $F(r_{total}, y, t) = C(x_F, y, t)$. (B) The concentration of gemcitabine inside the polymeric fibres was modelled by radially symmetric diffusion Eq. (2) using a finite volume method (FVM) discretisation and considering the 2D cylindrical cross section of the fibres which have length L and radius r_{total} . The fibre was discretised into concentric annuli $F_{m,j}$ at annulus m and cross section j , ($i = 0, 1, \dots, M$) and the concentration of drug in each annulus $F_{m,j}$ was modelled by considering drug diffusion across the boundaries (e.g. $F_{m-1,j}$ and $F_{m+1,j}$ flow into $F_{m,j}$ and vice versa). The full discretisation is presented in the **Technical Supplementary Information**. (C) Modelling assumptions for the VCBM were that cancer cells (pink) proliferate and some are able to cause epithelial to mesenchymal transition and become invasive. We model this transition by assuming cells differentiate into an mesenchymal cancer cell (MCC) with one daughter cell placed on a neighbouring healthy cell. These MCCs cause the break down of surrounding tissue (i.e. replace healthy neighbouring cells with their progeny). Cancer cells can then die through gemcitabine uptake from their local environment. (D) Individual cells were modelled as cell centres connected by springs [32]. The proliferation of a cell introduced a new cell into the lattice network which caused the rearrangement of the cells in the lattice with movement governed by Hooke's law. (E) To simulate the gemcitabine concentration in the TME, Eq. (1), we introduced a FVM discretisation, where the gemcitabine concentration was defined at discrete volumes centered around points in the discretisation. Cells could take up drug from the nearest grid point to their centre, and this concentration was used to determine their likelihood of drug-induced cell-death.

214 where \vec{n} is the outward unit normal on the boundary B (**Figure TS5**). In the case of a fibre implantation, all drug in
215 the domain is initially situated in the fibre:

216
$$F(r, y, 0) = \frac{C_0}{\pi r_{total}^2 L}, \quad C(x, y, 0) = 0,$$

217 where C_0 is the amount of drug in μg , the denominator is the volume of the fibre and there is no drug initially in the
218 domain B . We assume the location of the fibre is fixed in space over the course of the simulation and is not affected
219 by cells around it. For more details on the derivation of the model see the **Technical Supplementary Information**.

220 We solved **Eqs. (1)-(4)** numerically using a Finite Volume approximation. In particular, the diffusion of drug
221 within the fibre, **Eq. (6)**, was solved through discretising the cross section of a fibre into annuli (see **Figure 2B** and
222 the **Technical Supplementary Information**). The model is solved using a finite volume method (FVM)
223 discretization, for examples of this form of discretization in cancer growth and treatment see [51–59].

224

225 *Voronoi Cell-Based Model (VCBM) of pancreatic tumour growth*

226 Agent-based models (ABMs) are primarily used to simulate heterogeneity that arises through stochasticity in cellular
227 interactions. We present an ABM to capture the 2D formation of a pancreatic tumour in the pancreas. Our model
228 extends a Voronoi cell-based model (VCBM) for tumour growth already published in [32]. The model describes how
229 individual cells behave over time by considering their behaviour to be a stochastic process. It uses points as
230 representatives of cell centres and then overlays this with a Voronoi tessellation to define individual cell boundaries.
231 A Voronoi tessellation defines the region of space where the Euclidean distance to a point is less than the distance to
232 any other cell centre in the lattice. Voronoi tessellations have been used to model tissue and cancer cell dynamics for
233 some time [60–64]. Using a Voronoi tessellation for the ABM allows cell morphology to be heterogeneous and not
234 fixed, and the morphology can change with cell movement. The model is solved on a time increment of 1hr to account
235 for the fact that cellular interactions are slow in comparison to drug diffusion (**Figure TS3**). To model pancreatic
236 tumour formation, we assumed the primary functions of pancreatic tumour cells were movement and proliferation.
237 Below are details of the cell types, the model for cell movement and proliferation, a description of the dynamics of
238 tumour mesenchymal cells, the model for cell death and details of how the domain changes as the tumour grows.

239 PDAC cells can acquire mesenchymal-like phenotype properties through a process known as epithelial-
240 mesenchymal transition (EMT) [65–68]. In the EMT process, epithelial elements undergo cytoskeleton remodelling
241 and migratory capacity acquisition due to the loss of intracellular contacts and polarity [66]. This enables the
242 formation of mesenchymal-like cancer cells (MCCs) which have enhanced migratory capacities and invasiveness, as
243 well as elevated resistance to apoptosis [67]. Since there is evidence that EMT plays an important role in PDAC
244 progression [65–68], we have introduced this cell type into the model.

245 We considered four main cell types in the model: healthy pancreatic cells, PDAC cells, MCCs and dead cells
246 (cancer cells that have experienced drug-induced death), see **Figure 2C**. The initial tissue comprised of healthy cells,
247 arranged so that the corresponding Voronoi cells form a hexagonal tessellation, analogous to other work in the
248 literature [69, 70]. To initialise the tumour formation, we removed a healthy cell from the centre of the domain and
249 replaced it with a pancreatic tumour cell (**Figure S1, Supplementary Tables and Figures**). These pancreatic tumour

250 cells could proliferate, die from gemcitabine, or form MCCs. Once formed, these pancreatic stem cells then move and
251 proliferate until they die. Healthy cells are assumed to be able to move or become MCCs.

252 Cell movement is governed by pressure-driven motility, modelled using Hooke's law [32]. Each cell's
253 position is updated by calculating the effective displacement of the cell's lattice point by the sum of the forces exerted
254 on that cell, where force is modelled as a network of damped springs connecting a cell to its nearest neighbours
255 (defined by a Delaunay triangulations). Consider cell k , the displacement of this point in time Δt_{cells} is given by

$$\vec{r}_k(t + \Delta t_{cells}) = \vec{r}_k(t) + \lambda_m \sum_{\forall i} \frac{\vec{r}_{k,i}(t)}{\|\vec{r}_{k,i}(t)\|} (s_{k,i}(t) - \|\vec{r}_{k,i}(t)\|), \quad (7)$$

256 where $\vec{r}_k(t)$ is the position of the k th point in the lattice at time t , λ_m is a damping and mobility constant, $\vec{r}_{k,i}$ is the
257 vector between k and i , $s_{k,i}$ is the spring rest length (equilibrium distance) between cell k and i . The introduction of
258 new cells in the lattice through proliferation introduces new spring connections and shortens or extends others,
259 promoting the movement of cells in the environment (**Figure 2D**).

260 Tumour cell proliferation was assumed to be a function of the cell's distance, d_{neut} , to the nutrient source
261 (tumour periphery, i.e. nearest healthy cell centre, see **Figure S3**). The maximum radial distance for nutrient-
262 dependent cell proliferation is d_{max} . Cells that are a further distance from the nutrients than d_{max} enter a quiescent
263 (non-proliferative state), forming what is commonly known as a necrotic core. The probability of a cell dividing p_d in
264 time step Δt_{cells} is given by

$$p_d = \begin{cases} p_0 \left(1 - \frac{d_{neut}}{d_{max}}\right) & d_{neut} \leq d_{max}, \\ 0 & d_{neut} > d_{max} \end{cases} \quad (8)$$

265 where p_0 is a proliferation constant derived based on the maximum rate of cell proliferation r (i.e. $p_0 = 1 -$
266 $\exp(-r\Delta t) \approx r\Delta t$). The formalism in **Eq. (8)** is similar to what was used by Kansal *et al.* [71], Jiao and Tarquato [72]
267 and Jenner *et al.* [32]. A cancer cell's ability to proliferate was also based on whether there was enough local space
268 for proliferation to occur. If a cell k proliferates, a new lattice point l is created and the two cells are placed at a
269 distance s/p_{age} from the original proliferating cells position at a rotation $\theta \sim U(0,2\pi)$ (**Figure 2D**). To simulate the
270 enlargement and repositioning of the daughter cells, the resting spring length of the connection between k and l
271 linearly increases over time from s/p_{age} to the mature resting spring length s as was formulated in our previous work
272 [32]. Once a cell has proliferated, it takes g_{age} time steps before the daughter cell will try to proliferate again,
273 accounting for G1 phase of the cell cycle where the cell transitions from mitosis M to DNA synthesis S [32]. It is well
274 known that tumours contain highly heterogeneous populations of cells that have distinct reproductive abilities. To
275 account for heterogeneity in the cell cycling, cells sampled the age at birth from a Poisson distribution with mean 50.

276 MCCs are created at the boundary of the tumour with probability p_{MCC} . These cells are created from tumour
277 cells differentiation into a tumour cell and an MCC. We mode their invasive property by placing the daughter cell at
278 the position of a neighbouring healthy cell, removing it from the domain. Through their creation, these MCCs
279 contribute to the degradation of the healthy tissue surrounding the tumour.

280 As in [73–76], we assumed that cancer cells die from gemcitabine contact at a rate described by the Michaelis-
281 Menten term

282

$$\beta = \frac{\delta C_{i,j}}{C_{i,j} + IC_{50}},$$

283 where δ is the maximum death rate due to the drug, $C_{i,j}$ is the concentration of drug at the grid position (i,j) in the
284 FVM discretization closest to the cell's centre (**Figure 2E** and the **Technical Supplementary Information**), and IC_{50}
285 is the concentration at which half the effect of the drug is attained. From this, the probability of an individual cell
286 dying can be determined by assuming $\text{Prob}(\text{cell death}) = 1 - \exp(-\beta\Delta t) \approx \beta\Delta t$. While we chose not to model
287 explicitly the resistance to gemcitabine that cancer cells can develop [3, 4], we believe that by modelling cell death
288 probabilistically we can capture some of the heterogeneity that may exist intratumourally. If a cell dies, then its
289 phenotype changes to be a dead cell and takes d_{age} hours to disintegrate. To simulate disintegration, at each time
290 increment the spring rest lengths of a dead cell to each of its neighbours, $s_{k,i}$, decreases by $s_{k,i}/d_{age}$.

291 As the tumour grows, the model domain expands. To reduce computational cost, new healthy cells are added
292 to the domain only when a tumour cell's radial distance from empty space is $< 10\mu\text{m}$ (**Figure S2 Supplementary**
293 **Tables and Figures**).

294

295 Numerical simulations and parameter estimation

296

297 The VCBM-PDE model was written in C++ and simulations called through Matlab 2021b by creating a definition file
298 for the C++ library using *clibgen* and *build* in Matlab 2021b. Code for the model at the various stages (e.g. fibre, single
299 injections) can be found on github (<https://github.com/AdrianneJennerQUT/hybrid-VCBM-of-gemcitabine-and-pancreatic-cancer>). Full details on all aspects of the code can be found in **Code Documentation**.

301 An approximation for tumour volume was then determined from the 2D simulations using the same formula
302 as the calibre measurements, multiplied by a scalar σ :

303

$$\text{volume} = \text{width}^2 \times \frac{\text{length}}{2} \times \sigma^3$$

304 where width is the longest distance of a cell on the periphery from the centre and length is the distance of the farthest
305 cell from the centre on the radial axis perpendicular to the radial axis of the longest distance (**Figure S5**
306 **Supplementary Tables and Figures**) where σ unit length of the model is equivalent to 1 mm. This calculation choice
307 was made to closely resemble the tumour volume calculation with calibres done *in vivo*. As the size of the
308 computational domain was smaller than the size of the real tumour, the length unit was scaled by σ , which scaled the
309 unit length in the VCBM domain to a comparable mm unit measurement that reduced the computational cost. We
310 chose $\sigma = 0.1728$.

311 All fitting was undertaken using *lsqnonlin* in Matlab 2021b using *pdepe* and *ode45* to simulate the model.
312 Parameters in the model were fit using experimental data or estimated from the literature. To fit the parameters relating
313 to drug release from the fibre we used the *in vitro* drug release experiments. We simplified the model to consider only
314 one cross section, i.e. $F_{m,j} = F_m$, since the outside concentration of drug was independent of location in the absence
315 of cells in the *in vitro* experiment.

316 To estimate parameters for the pancreatic cell growth kinetics, we did a large Latin Hypercube sample of the
317 parameter space and determined parameters that resulted in a minimal least squares distance to the *in vivo* control
318 tumour growth measurements. Other parameters were either fixed to previous values in the literature or estimated
319 based on previous work. See **Tables S1-S5 in Supplementary Tables and Figures** for a full summary of all parameter
320 values and relevant references.

321 **Results**

322

323 *Calibration of drug release kinetics and drug-induced cell death to in vitro measurements*

324 Gemcitabine-loaded fibres were placed in a solution bath and the resulting cumulative concentration of gemcitabine
325 measured (**Figure 3A**). To obtain a model describing the release rate of the drug from the fibre, we fitted parameters
326 from **Eq. (1)-(4)** to these *in vitro* measurements for the release of gemcitabine from 3% alginate 15% PCL fibres [14].
327 Fitting the release curve parameters k , d_{const} , C_0 and A_{out} gave the fit in **Figure 3B** and parameter values in **Table S1**. Overall, the model was able to obtain the fit to the data and followed the trend which showed a rapid initial release
328 of gemcitabine followed by a steady-state threshold. We validated the model's predictive capability by also fitting
329 gemcitabine release from 1% and 2% alginate fibres (**Figure S4 Supplementary Tables and Figures**).
330

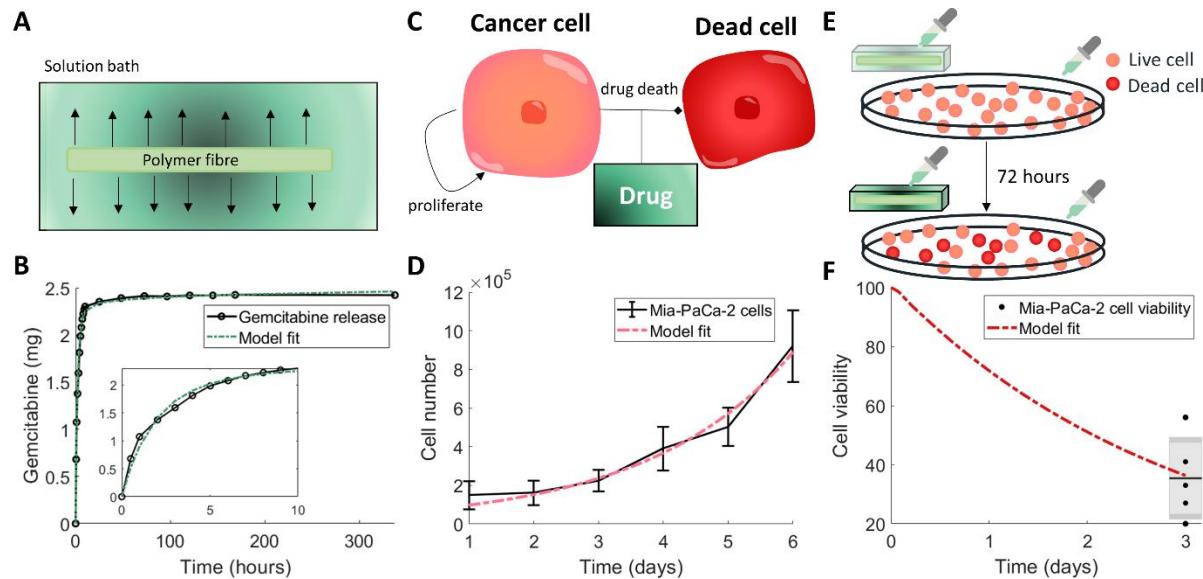
331 To assess the efficacy of the drug on inducing death in PDAC cells, cell viability studies were performed
332 using Mia-PaCa-2 cell lines. To model these experiments, we considered a simplified deterministic and spatially
333 independent version of our model with only live cancer cells $P_L(t)$, dead cancer cells $P_D(t)$ and a concentration of
334 drug $C(t)$:

$$\frac{dP_L}{dt} = rP_C - \frac{\delta C}{C + IC_{50}} P_C, \quad (9)$$

$$\frac{dP_D}{dt} = \frac{\delta C}{C + IC_{50}} P_C, \quad (10)$$

$$\frac{dC}{dt} = \mu(t) - \lambda C, \quad (11)$$

335 where r is the exponential proliferation rate of cancer cells *in vitro*, δ is the death rate of cancer cells by gemcitabine,
336 IC_{50} is the drug's half effect concentration, and λ is the decay rate of the drug (**Figure 3C**). To first determine the
337 proliferation rate of pancreatic cancer cells *in vitro*, an exponential growth curve was fit to cell count measurements
338 for Mia-PaCa-2 cells [77] (**Figure 3D**, parameter values **Table S2**) using simple exponential growth (i.e. setting
339 $C(0) = 0$ in **Eq. (9)**). Fixing this growth rate and the estimate for the decay rate of drug, we then determined the
340 antitumour efficacy of gemcitabine-loaded fibres in the cell viability experiments. Cells were treated with aliquots of
341 simulated body fluid from gemcitabine-loaded fibres that had been incubating for 24, 48 or 72 h (**Figure 3E**). To
342 simulate these experiments, the model is solved piecewise such that $\mu(t) = \delta(t - t_{aliquot})C(t_{aliquot})$, where $t_{aliquot}$
343 are the times of the drug administrations. An approximation for the concentration of drug at each time point,
344 $C(t_{aliquot})$, can be determined using the calibrated PDE model for drug release from the fibres. Fitting the drug
345 induced death rate and IC_{50} gave a good approximation to the data (**Figure 3F**). The resulting parameter values from
346 the fit of the model can be found in **Table S2**.



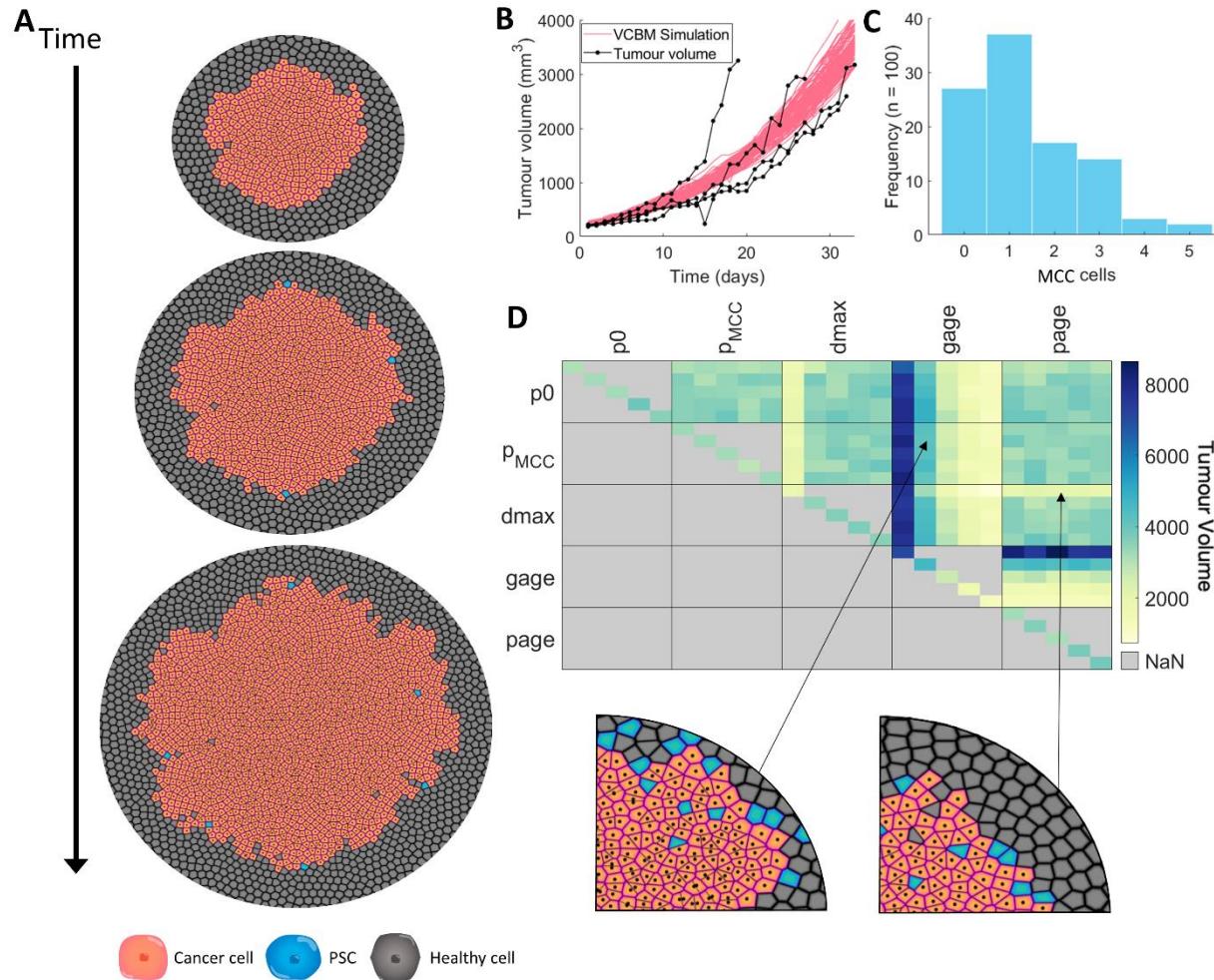
347

348 **Figure 3 Calibration of model parameters to *in vitro* experiments.** (A) Drug release profiles for gemcitabine with 3% alginate 15% PCL were
 349 measured by placing the gemcitabine-loaded alginate fibre in a solution bath and measuring the released drug concentration over time. (B) The
 350 drug concentration in the solution bath (black) was used to fit model parameters for the drug release from the fibre (green). Resulting parameters
 351 are in **Table S1**. (C) The drug-induced death rate of pancreatic cancer cells was determined by simplifying the full model assumptions to consider
 352 a homogeneous model for live cancer cells $P_L(t)$ that were proliferating and dying (become dead cells $P_D(t)$) through the effect of the drug
 353 gemcitabine $C(t)$, **Eqs. (9)-(11)**. (D) Fitting an exponential growth curve to Mia-PaCa-2 cell proliferation *in vitro* [77] gave the growth rate of cells
 354 r . Values are the mean \pm std. (E) To measure the efficacy of the protocol, the cell viability was determined after aliquots from drug released from
 355 gemcitabine-loaded fibre were placed in a well with proliferating Mia-PaCa-2 cells at 24, 48 and 72 hours. (F) The resulting cell viability at 72
 356 hours from the experiment depicted in (E) was used to fit the drug-induced cell death rate (**Eq. 9-11**). The data is plotted as a box and whisker plot.
 357 Resulting parameters for (D) and (F) are in **Table S2**.

358 *Calibration and sensitivity of pancreatic tumour growth*

359 The VCBM simulation of pancreatic tumour growth in the absence of treatment depicts invasive and disorganized
 360 movement of cancer cells into surrounding healthy tissue (**Figure 4A**). To calibrate tumour growth parameters in the
 361 model, we used an exhaustive numerical search of the parameter space using a Latin Hypercube Sampling for
 362 g_{age} , d_{max} , p_0 and p_{MCC} , where we were minimising the least squares of the simulation with the *in vivo* tumour volume
 363 of Mia-PaCa-2 cells over 33 days (**Figure 4B**, **Table S3**). To obtain an understanding of the stochasticity in our model,
 364 we fixed the parameter values obtained and we simulated the model 100 times and plotted the tumour volume over 33
 365 days. From **Figure 4B**, while the growth is varied at points, there are no distinct outliers or unusual tumour growth
 366 rates, and the standard deviation throughout the entire period of observation remains small. In addition, the simulations
 367 sit within the *in vivo* tumour growth measurements for pancreatic cancer growth. The histogram for the number of
 368 MCCs across the simulations (**Figure 4C**) shows only a small number of MCCs are created over the 33 days of growth,
 369 which is realistic when considering the ratio between a single cell agent in the model and a real cell in a biological
 370 tumour and which matches findings that MCCs will compose only a small subset of the tumour [78–80].

371 To analyse the drivers of pancreatic tumour growth dynamics in our model, we conducted a detailed



372

373 **Figure 4 Using the VCBM to model control tumour growth.** (A) Snapshots of the model simulation at 0, 5 and 10 days with cancer cells in
 374 orange, MCCs in blue and healthy cells in grey (a zoomed in version is in **Figure S6**). (B) Mia-PaCa-2 tumour volume over 33 days measured *in*
 375 *vivo* in mice (black, n=4). Overlaid is the tumour volume from the VCBM simulation (pink, n=100) with parameters from **Table S3**. (C) MCC
 376 counts in the VCBM simulations (n=100). (D) Sensitivity analysis of control tumour growth. Maximum tumour volume over 33 days for
 377 perturbations of parameters with weights of 0.25, 0.75, 1.25, 1.75 and 2.25, and spatial plots of large and small tumours simulated using the depicted
 378 weightings. In the heatmap, each pixel represents 30 averaged simulations with two parameters. In the boxes, the parameters vertically and
 379 horizontally in the grid are the weightings in ascending order, with each pixel being a “coordinate” representing the weighting for each parameter
 380 and the result from 30 averaged tests. Diagonal pixels only use individual parameters with different weightings.

381 sensitivity analysis. A systematic multi-parameter sensitivity analysis was performed for $\mathbf{p} =$
 382 $[p_0, p_{MCC}, d_{max}, g_{age}, p_{age}]$ using weighting identified by Wells *et al.* [81] (**Figure 4D**). This sensitivity analysis can
 383 identify combinatorial influences of multiple parameters and elucidate systemic features of the model. The average
 384 tumour volume predicted by the model at day 33 for 10 simulations was recorded for each parameter set. Pairs of
 385 parameters were varied, with each cell of **Figure 4D** depicting the weighting applied to each parameter in \mathbf{p} from
 386 0.25, 0.75, 1.25, 1.75, and 2.25. This allowed for all combinations of alterations for two parameter values to be tested.
 387 The time taken for a cell to prepare for mitosis, g_{age} , has the greatest impact on final tumour volume (**Figure**
 388 **4D**). Increasing g_{age} decreases tumour volume and conversely a decrease in g_{age} increases the final volume. As a

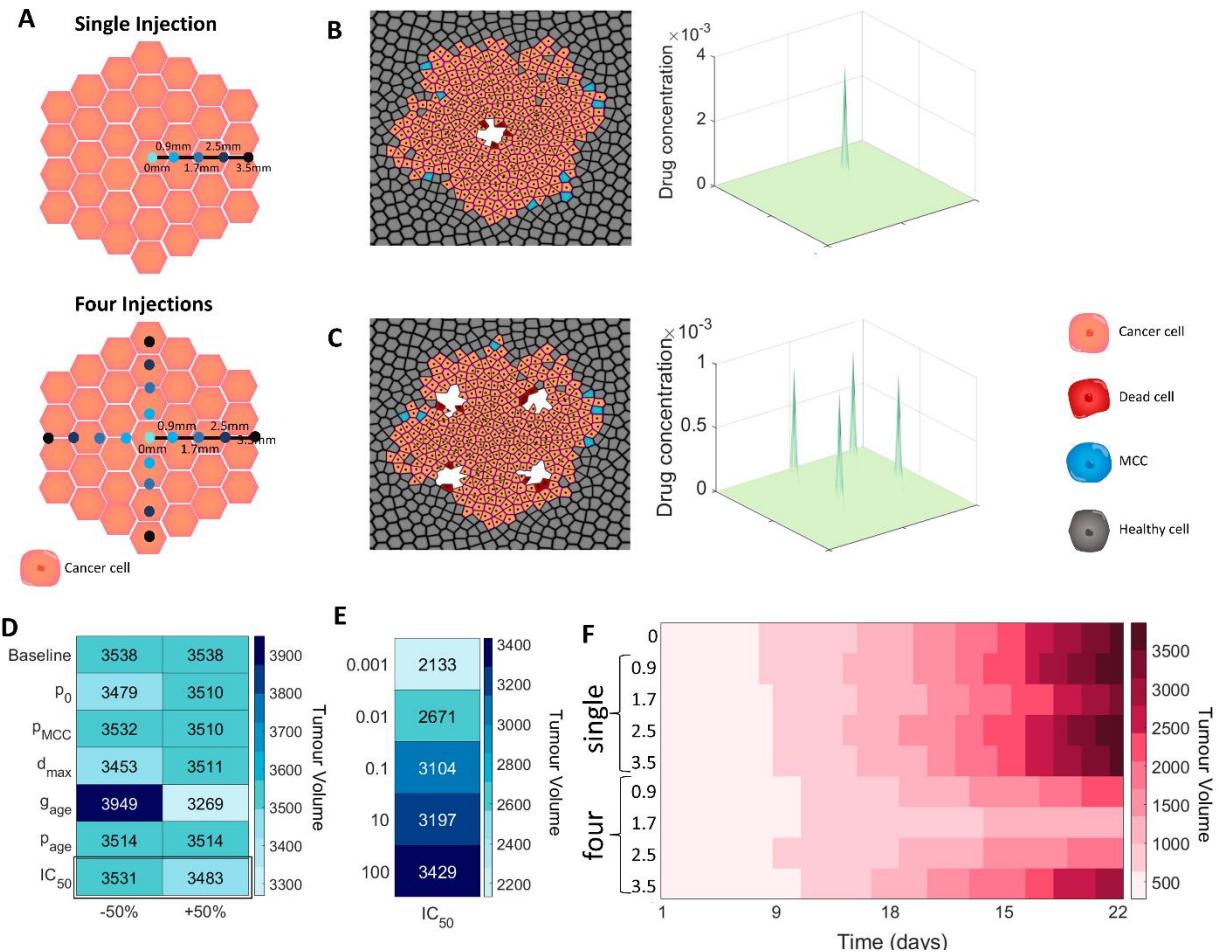
389 result, the model predicts that if cells take longer to move through the cell cycle and undergo mitosis this will result
390 in a smaller tumour volume. Reducing the maximum distance, a cell can be from the periphery and still proliferate,
391 d_{max} , also appears to have a decreasing effect on the final tumour volume. This is to be expected, as reducing the
392 proliferating cell rim (through decreasing the distance from the periphery for which cells can proliferate) will reduce
393 the number of cells available to proliferate and subsequently reduce the tumour volume. Decreasing the value of d_{max}
394 only appears to have a significant impact on the final tumour volume when the weighting applied is $\leq 50\%$. In
395 comparison with d_{max} and g_{age} , the tumour volume is insensitive to changes in both the probability of a cell
396 proliferating if it has reached mitosis, p_0 , and the probability of a new pancreatic cancer stem cell being created, p_{MCC} .
397 The time taken for a cell to reach adult size (when it can proliferate), p_{age} , similarly has a negligible impact on the
398 tumour volume.

399

400 *Intratumoural implantation provide an alternate effective protocol*

401 Before quantifying the efficacy of gemcitabine-loaded fibres, we first looked to evaluate the impact of single point
402 free-drug injections (**Figure 1**) of gemcitabine on the tumour volume. Simulating single point free-drug injections
403 with the VCBM-PDE is a simplification of the full model presented in **Eqs. (1)-(4)** where $F(r, y, t) = 0$. More details
404 on this can be found in the **Technical Supplementary Information**. We considered free-drug injections of
405 gemcitabine as administered along a radial axis of the tumour in either a single dose or four free-drug injections which
406 are rotationally symmetric (**Figure 5A**). In the case of the four injections, the total dosage is spread across the
407 injections so that the total amount of drug administered is conserved. Simulations of the model under the different
408 injection protocols can be found in **Figure 5B-C** and **Figure S7**. The sensitivity of parameter values governing tumour
409 volume were again probed, now under a single administration of gemcitabine at the centre of the tumour (**Figure 5D-**
410 **E** and **Figure S8**). The same trends with g_{age} and d_{max} were observed; however, an additional parameter, which
411 represents the concentration the drug required to have an impact on the tumour volume, IC_{50} , was found to influence
412 the volume under further perturbations of the parameter value (**Figure 5E**). As expected, a lower value of IC_{50} , which
413 indicates that a smaller concentration of the drug is required for it to influence cancerous cells, leads to a lower tumour
414 volume, while an increase leads to a higher tumour volume when compared to original estimate for IC_{50} .

415 To determine the effect of injection placement on tumour volume over time, five placements of a single
416 injection were considered at a distance d_m from the centre: a central injection ($d_m = 0$), and injections $d_m = 0.9$ mm
417 from the centre, $d_m = 1.7$ mm from the centre, $d_m = 2.5$ mm from the centre and $d_m = 3.5$ mm from the centre
418 (**Figure 5A**). For each of these placements, 30 simulations were run over 33 days and both the number of tumour cells
419 and the tumour volume over time were measured (**Figure 5F**). For a single injection, distance did not impact the
420 effectiveness of the injection and the tumour volume is qualitatively similar. There was a deviation from the consistent
421 standard deviation width for injections further from the tumour, but this can be attributed to the method used to
422 calculate the tumour volume in terms of how it deals with tumour structures which are not part of the central mass.
423 The tumour volume was more significantly affected by distance in the case of four injections (**Figure 5F**), with free-
424 drug injections further away from the centre of the tumour performing worse than those intratumoural injections.
425 Primarily, single free-drug injections implanted peritumourally may encourage branching of external tumour



426

427 **Figure 5 Impact of intratumoural free-drug point injections on tumour cell eradication.** (A) Tumour growth was investigated under different
 428 gemcitabine single free-drug injections: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre. Locations of
 429 injections on the tumour surface for single or four single free-drug injections is depicted schematically. (B) VCBM with a single central injection
 430 and the drug concentration at 24h. (C) The tumour volume with four injections placed 30 μ m from the centre, and the drug concentration at each
 431 location at 6h. (D) Maximum tumour volume over 33 days for $\pm 50\%$ perturbations in parameter values compared to the normal value (i.e. baseline
 432 parameter values). (E) Maximum tumour volume over 33 days for different perturbations of IC_{50} compared to the normal volume. (F) The tumour
 433 volume over 33 days with each injection protocol, averaged over 10 simulations.

434 structures in the model, and hence increase the calculated volume as it is based on the maximum distance from the
 435 centre of the tumour to the edge. While we present an approximation for tumour volume and placement of injections
 436 in units relevant to *in vivo* models (i.e. mm³ and mm respectively), more work needs to be done to validate that the
 437 efficacy of treatment predicted by the model would map to the human scale.

438

439 *Fibre location and release kinetics are a major driver of tumour arrest or tumour growth*

440 Using the VCBM-PDE, we analysed the impact of varying the position of the fibre and the initial drug concentration
 441 on the tumour growth dynamics (**Figure 6A**). We introduced three classifications for the tumour growth dynamics:
 442 tumour eradication (i.e. a tumour volume <1mm³) tumour stabilisation, i.e. a tumour volume at day 33 less than the
 443 initial tumour size ($\approx 100\text{mm}^3$), and tumour growth, i.e. a tumour volume on day 33 greater than the initial tumour

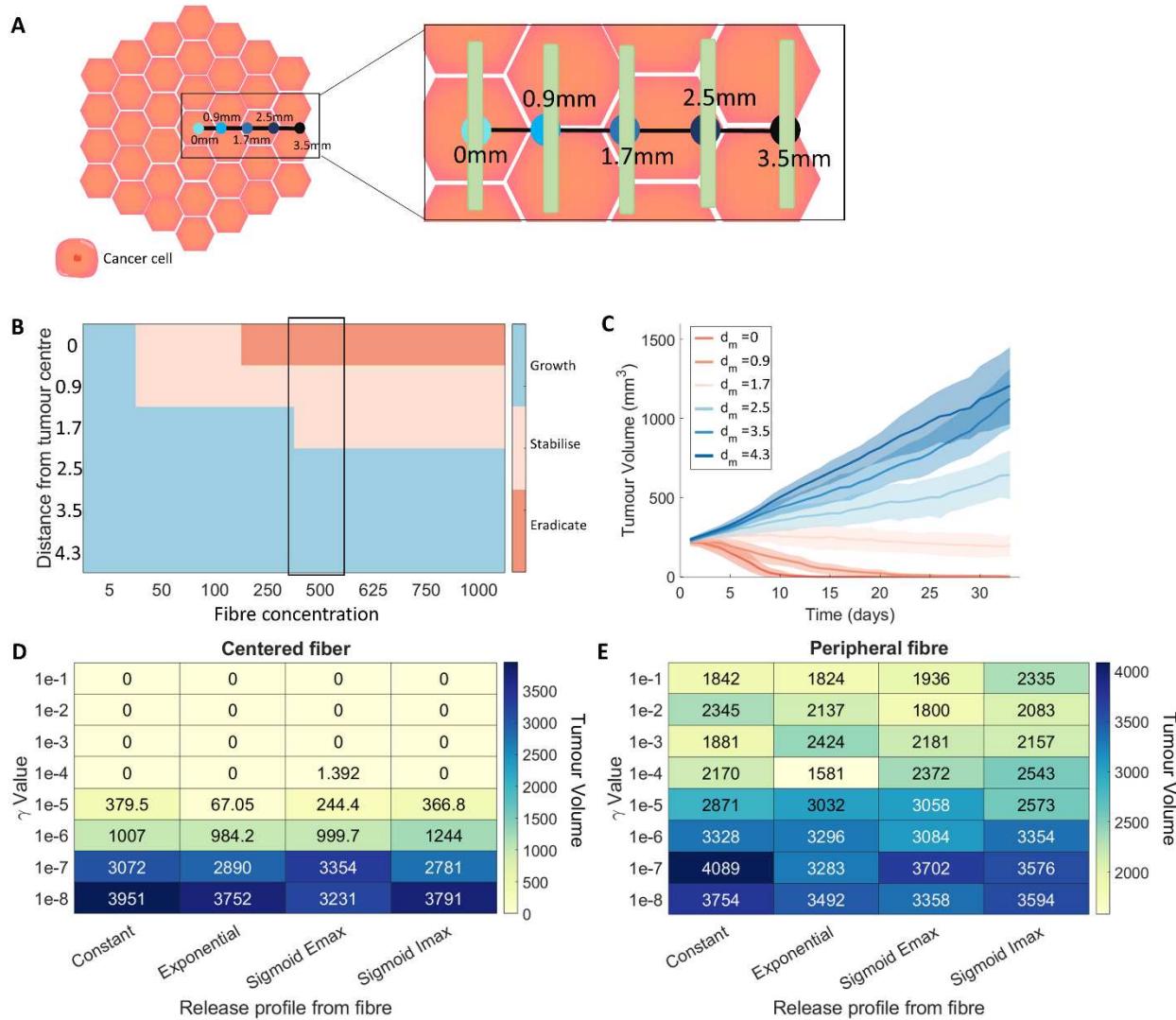
444 volume. Large concentrations of gemcitabine loaded into the fibre positioned at $d_m = 3.5$ mm or $d_m = 4.3$ mm from
445 the tumour centre were unable to stabilise or eradicate the tumour, also known as tumour arrest (**Figure 6B-C** and
446 **Figure S10**). Once the fibre was positioned closer to the tumour centre (≤ 1.7 mm) lower concentrations of drug were
447 sufficient to result in stabilisation of the tumour growth (**Figure 6B**). It was only with high drug concentration and
448 centered fibres that we saw complete tumour eradication (**Figure S9**). There are large variations in the response of
449 tumour growth to the different protocols, suggesting that tumour stabilisation or arrest might be achievable for some
450 tumours whereas others might experience tumour growth even in the presence of drug-loaded fibre.

451 To then analyse the effects of changes to the drug release profile on the tumour growth, we investigated four
452 different release profiles: constant release, exponential release, sigmoidal Emax/Imax release profiles [82–84] (See
453 the **Technical Supplementary Information, Section TS3**). Each of these release profiles were parameterised by a
454 release rate γ and for the Emax and Imax curves a half-effect term η . The different release profiles were tested with
455 the fibre placed either centrally (intratumourally) (**Figure 6D**) or on the periphery of the tumour (peritumourally)
456 (**Figure 6E**). The four different release profiles (constant, exponential, sigmoid emax, sigmoid imax) were tested with
457 8 different release rates. For each parameter value, 10 simulations were run over 33 days, with an initial amount of 500
458 μg of gemcitabine.

459 For fibres positioned in the centre (**Figure 6D**), it is possible to eradicate the tumour with all release profiles
460 considered given a small enough value of γ . In comparison, none of the drug release profiles resulted in tumour
461 eradication when positioned peripherally (**Figure 6E**). However, interestingly an exponential release profile with a
462 release rate of $\gamma = 10^{-4}$ results in the greatest decrease in tumour volume. This ideal release rate is likely because it
463 allows the drug concentration to remain in the therapeutic range and kill newly developed pancreatic cancer cells
464 arresting the process of cell proliferation. Comparing the drug release profiles (**Figure S11**), we see that the exponential
465 release rate is similar to the sigmoid release profiles, but slightly steeper initially, suggesting that a smooth release
466 rate with a sufficiently large initial drug release might be an optimal protocol to achieve a reduction in tumour size.
467

468 Discussion

469
470 PDAC is a difficult-to-treat cancer with a poor prognosis. Novel therapeutic interventions are desperately needed to
471 improve patient survival. While chemotherapy drugs, such as gemcitabine, have shown durable efficacy for pancreatic
472 cancer, there has been little to no improvement in patient survival in the last 30 years [85]. PDACs are notorious for
473 a dense fibrotic stroma that is interlaced with ECM [86] and is a major cause of therapeutic resistance [87]. One way
474 of improving drug retention at the tumour site, and by consequence increase tumour eradication and patient survival,
475 is through sustained-delivery devices (**Figure 1**). Polymeric fibres loaded with gemcitabine have shown increased
476 therapeutic efficacy over conventional treatment delivery. To further analyse the potential of these novel therapeutic
477 implants, we have designed a hybrid Voronoi cell-based model (VCBM)-partial differential equation (PDE) model to
478 describe pancreatic tumour formation in healthy pancreatic tissue and the resulting effect of gemcitabine on the tumour
479 tissue when delivered locally. With this model, we considered both the impact of a single fibre implanted with varying
480 drug release profiles and hypothesised alternative and more effective treatment protocols.



481

482 **Figure 6 Comparison of different fibre release and placement options.** (A) Tumour growth was investigated under different gemcitabine-loaded
 483 fibre placements d_m : central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre and 4.3 mm from centre. Locations
 484 of fibres on tumour surface for single implantations is depicted schematically. (B) A heatmap for the averaged final state of a tumour after 33 days
 485 of simulation for different initial injection concentrations and fibre placements. “Eradicate” denotes a tumour volume below 1mm^3 , “stabilise”
 486 denotes a tumour volume less than the initial tumour volume, and “growth” denotes a tumour volume greater than the initial tumour volume. (C)
 487 The mean (solid lines) and standard deviation (shades areas) of the tumour volume over 33 days for different fibre placement options with
 488 corresponding values highlighted in (B). (D) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release
 489 profiles with a central fibre placement. (E) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release
 490 profiles with a fibre placed on the edge of the tumour (50 μm away from centre). See **Section TS3** of the **Technical Supplementary Information**
 491 for more details on these release functions.

492 The model was calibrated to data and with these estimates, a parameter sensitivity analysis then revealed that
 493 the fundamental driver of tumour growth in our model was the rate of cell mitosis. The idea that the cell cycling time
 494 is a fundamental part of tumour progression has been found in other mathematical models [88], suggesting that the

495 model's sensitivity in terms of tumour volume is in line with other models in the literature. It is also known that
496 molecules can modulate the cell cycle of cancer cells, changing the cancer aggressivity. For example, melatonin is a
497 hormone known for its antitumour efficacy as it significantly increases the duration of the cell cycle of human breast
498 cancer cells [89]. Given a heterogeneous cohort of individuals with varying degrees of tumour growth rates, our model
499 suggests that the driver of these differences is most likely the cell cycling rate. Drugs targeting this should, therefore,
500 be considered.

501 Depending on the cancer type, administering an intratumoural injection of a drug can be extremely difficult
502 and administering treatments on the periphery can be an easier course of action. Simulating the model, we found that
503 intratumoural administration of gemcitabine-loaded fibres significantly outperforms peritumoural administration both
504 in terms of the number of fibres and fibre placement. However, there is a threshold distance from the tumour to achieve
505 an effective treatment, beyond which placing fibres further into the tumour bulk sees no added benefit. There is a
506 clear benefit to increasing the dosage multiplicity and spreading the administered drug out amongst the tumour
507 compared to a single high dose. Tumour volume was most significantly decreased when four free-drug point injections
508 were administered compared to a single free-drug point injection. This proposes the existence of a potential threshold
509 above which increasing the multiplicity of dosages or dosage size has a negligible effect over spreading out the
510 dosages.

511 The location of the fibre and the total drug concentration in the fibre was a major driver of tumour eradication.
512 For fibres located within the centre of the tumour with a significantly high drug concentration, it was possible to
513 completely eradicate the tumour. Moving the fibre farther away from the centre, we found that there was no
514 concentration of drug that would inhibit growth. This suggests that a large amount of drug from the implants is lost to
515 the surrounding tissue, and this has detrimental effects on the efficacy of these devices. Fortunately, simulations show
516 there is a minimal concentration of drug necessary for stabilisation, allowing these predictions to be used a way to
517 guide dosage so that toxicity is minimised and efficacy is maximised.

518 The release of the drug from the fibre has a major effect on the resulting tumour volume. Implementing an
519 exponential drug release profile, we were able to optimise the treatment to reduce the tumour size most significantly.
520 This suggests that an initial high dosage of drug followed by a slow decline in the drug release may be an optimal
521 protocol. This may be because it initiated a large amount of cell death initially, followed by a slower diffusion to reach
522 remaining viable cells. While exciting, an exponential release profile needs to be tested experimentally both for its
523 feasibility for the polymer release and to verify the predicted efficacy.

524 More recently, research has been focused on combining gemcitabine with other drugs to improve its efficacy.
525 Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) administered in combination with gemcitabine [9] is one of
526 the standard of care treatment regimens that has shown an increase in overall survival in patients with advanced PDAC,
527 as shown in a Phase I/II clinical trial [9]. A phase III clinical trial showed that gemcitabine and erlotinib also
528 significantly increased overall survival in advanced PDAC patients compared to gemcitabine alone [90, 91].

529 Due to wanting to reduce the computational complexity of the VCBM, we made some simplifying
530 assumptions that have introduced limitations into our model. To avoid simulating excessively large numbers of cells,
531 we have chosen to scale the spatial unit appropriately so that we simulate on the order of $\sim 10^6$ cells. An improvement

532 for this model, could be to parallelise the agent update step to increase the speed of the simulation. In addition, we
533 consider only a 2-dimensional cross section of the tumour, which is a simplification given tumour's grow in 3-
534 dimensional environments. We feel that since we model neighbouring tissue as having a homogenous effect on tumour
535 growth, there would be no significant impact of extending our model to 3 dimensions. Lastly, we model cell uptake
536 by point sink terms; however, a cell would uptake drug across its surface area through drug molecule binding and
537 internalisation. It would be possible to model this by extending the framework from a single point uptake to a uniform
538 uptake across a cell's defined Voronoi cell region.

539 There are considerable avenues for future extensions of this work, and we feel the platform we have built is
540 easily extendable by other computational oncologists. In particular, future modelling could extend the model to
541 account for the dense fibrotic nature of PDAC [86, 87] and investigate the impact the release and delivery of drug. In
542 addition, the model could be used to simulate the efficacy of dual drug-loaded polymer and verify whether
543 improvements on the current treatment protocol exist. There are many applications of degradable polymeric drug
544 delivery systems in cancer therapy [10], for example, Rezk *et al.* [10] developed a pH-sensitive polymeric carrier to
545 study the local delivery of anticancer drug bortezomib. They fitted the release profile of the drug from their carrier
546 system to a mathematical formalism. Using our pancreatic cancer growth VCBM, it would be possible to feed in their
547 drug release mechanism and simulate the efficacy under alternative protocols and predict the remaining tumour
548 volume. Lastly, while we did not consider gemcitabine resistance in our model, it does occur in PDAC [3, 4]. A simple
549 extension of the model could consider the impact of resistance on the performance of therapy like other works on
550 resistance of chemotherapeutics using mathematical models [22, 92].

551

552 **Conclusion**

553 Treatment for cancers with a poor prognosis, such as PDAC, are in vital need of novel therapeutic approaches that
554 provide sustained, heightened, localised drug concentrations. The computational platform developed in this work can
555 recapitulate spatially heterogeneous tumour growth and treatment with the chemotherapy drug gemcitabine.
556 Investigating the efficacy of gemcitabine released from a degradable polymeric fibre implant, we are able to suggest
557 that a minimum dosage for maximum efficacy exists based on the location of the device within the tumour.
558 Furthermore, certain release profiles are significantly more effective than others, suggesting that the way in which
559 drug is released from these devices is crucial to improving patient treatment. Moving forward, a study of this form
560 could be used to help inform experimental design and be integrated into future device development.

561

562 **Funding**

563 ALJ and IP were funded by the First Byte Funding Scheme from the Centre for Data Science at Queensland University
564 of Technology. ALJ was also funded by a Fonds de recherche du Quebec – Sante International Postdoctoral
565 Fellowship, Centre for Applied Mathematics in Biosciences and Medicine (CAMBAM). Funding from the Illawarra
566 Cancer Carers and the PanCare Foundation (APP1165978, administered by Cancer Australia) awarded to KLV is also
567 gratefully acknowledged. PSK was supported by the Australian Research Council Discovery Project (DP18010512).

568

569 **References**

570

571 1. Heinemann V (2001) Gemcitabine: progress in the treatment of pancreatic cancer. *Oncology* 60:8–18

572 2. Burris 3rd HA, Moore MJ, Andersen J, et al (1997) Improvements in survival and clinical benefit with
573 gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. *J Clin
574 Oncol* 15:2403–2413

575 3. Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W, Sandvold ML (2009)
576 Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. *Scand J
577 Gastroenterol* 44:782–786

578 4. Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR
579 (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in
580 pancreatic cancer. *Clin Cancer Res* 11:3094–3101

581 5. de Sousa Cavalcante L, Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action,
582 sensitivity and chemoresistance in pancreatic cancer. *Eur J Pharmacol* 741:8–16

583 6. Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P
584 (2001) Cell cycle effects of gemcitabine. *Int J Cancer* 93:401–408

585 7. Abrams MJ, Rakiszawski K, Vasekar M, Passero F, Abbas A, Jia Y, Saif MW (2016) Recent advances in
586 pancreatic cancer: Updates and insights from the 2015 annual meeting of the American Society of Clinical
587 Oncology. *Therap Adv Gastroenterol* 9:141–151

588 8. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F (2005) Role of gemcitabine in cancer therapy.

589 9. Von Hoff DD, Ervin T, Arena FP, et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel
590 plus gemcitabine. *N Engl J Med* 369:1691–1703

591 10. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS (2019) Drug release and kinetic models of
592 anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer
593 chemotherapy. *Int J Biol Macromol* 141:388–400

594 11. Nazir S, Khan MUA, Al-Arjan WS, Abd Razak SI, Javed A, Kadir MRA (2021) Nanocomposite hydrogels
595 for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer
596 activities. *Arab J Chem* 14:103120

597 12. Kearney CJ, Mooney DJ (2013) Macroscale delivery systems for molecular and cellular payloads. *Nat Mater*
598 12:1004–1017

599 13. Wade SJ, Sahin Z, Piper A-K, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL
600 (2020) Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal
601 Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. *Adv Healthc Mater*
602 9:2001115

603 14. Wade SJ, Zuzic A, Foroughi J, Talebian S, Aghmesheh M, Moulton SE, Vine KL (2017) Preparation and
604 in vitro assessment of wet-spun gemcitabine-loaded polymeric fibers: Towards localized drug delivery for
605 the treatment of pancreatic cancer. *Pancreatology* 17:795–804

606 15. Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. *Prog Polym Sci* 37:106–126

607 16. Wade SJ (2019) Fabrication and preclinical assessment of drug eluting wet spun fibres for pancreatic cancer
608 treatment.

609 17. Louzoun Y, Xue C, Lesinski GB, Friedman A (2014) A mathematical model for pancreatic cancer growth
610 and treatments. *J Theor Biol* 351:74–82

611 18. Liu J, Wang XS (2019) Numerical optimal control of a size-structured PDE model for metastatic cancer
612 treatment. *Math Biosci* 314:28–42

613 19. Lai X, Friedman A (2019) Mathematical modeling in scheduling cancer treatment with combination of
614 VEGF inhibitor and chemotherapy drugs. *J Theor Biol* 462:490–498

615 20. Ghasemi M, Sivaloganathan S (2020) A computational study of combination HIFU–chemotherapy as a
616 potential means of overcoming cancer drug resistance. *Math Biosci* 329:108456

617 21. Metzcar J, Wang Y, Heiland R, Macklin P (2019) A Review of Cell-Based Computational Modeling in
618 Cancer Biology. *JCO Clin Cancer Informatics* 2:1–13

619 22. Craig M, Jenner AL, Namgung B, Lee LP, Goldman A (2020) Engineering in Medicine to Address the
620 Challenge of Cancer Drug Resistance: From Micro: From Nanotechnologies to Computational and
621 Mathematical Modeling. *Chem Rev*. <https://doi.org/10.1021/acs.chemrev.0c00356>

622 23. Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson ARA (2017) Spatial heterogeneity
623 and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies.
624 *bioRxiv* 78:2127–2139

625 24. Gallaher JA, Massey SC, Hawkins-Daarud A, et al (2020) From cells to tissue: How cell scale heterogeneity
626 impacts glioblastoma growth and treatment response. *PLoS Comput Biol* 16:e1007672
627 25. Macnamara CK (2021) Biomechanical modelling of cancer: Agent-based force-based models of solid
628 tumours within the context of the tumour microenvironment. *Comput Syst Oncol* 1:e1018
629 26. Macnamara CK, Caiazzo A, Ramis-Conde I, Chaplain MAJ (2020) Computational modelling and simulation
630 of cancer growth and migration within a 3D heterogeneous tissue: The effects of fibre and vascular
631 structure. *J Comput Sci* 40:101067
632 27. Szymańska Z, Cytowski M, Mitchell E, Macnamara CK, Chaplain MAJ (2018) Computational Modelling of
633 Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling. *Bull Math Biol*
634 80:1366–1403
635 28. Phillips CM, Lima EABF, Woodall RT, Brock A, Yankeelov TE (2020) A hybrid model of tumor growth
636 and angiogenesis: In silico experiments. *PLoS One* 15:e0231137
637 29. Ozik J, Collier N, Wozniak JM, Macal C, Cockrell C, Friedman SH, Ghaffarizadeh A, Heiland R, An G,
638 Macklin P (2018) High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS
639 workflow. *BMC Bioinformatics*. <https://doi.org/10.1186/s12859-018-2510-x>
640 30. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: An open source
641 physics-based cell simulator for 3-D multicellular systems. *PLoS Comput Biol* 14:e1005991
642 31. Berg DR, Offord CP, Kemler I, Ennis MK, Chang L, Paulik G, Bajzer Z, Neuhauser C, Dingli D (2019) In
643 vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics. *PLoS Comput Biol*
644 15:1–18
645 32. Jenner AL, Frascoli F, Coster ACF, Kim PS (2020) Enhancing oncolytic virotherapy: Observations from a
646 Voronoi Cell-Based model. *J Theor Biol*. <https://doi.org/10.1016/j.jtbi.2019.110052>
647 33. Chen J, Weihs D, Vermolen FJ (2020) A Cellular Automata Model of Oncolytic Virotherapy in Pancreatic
648 Cancer. *Bull Math Biol* 82:1–25
649 34. Wodarz D, Hofacre A, Lau JW, Sun Z, Fan H, Komarova NL (2012) Complex spatial dynamics of oncolytic
650 viruses in vitro: mathematical and experimental approaches. *PLoS Comput Biol* 8:e1002547
651 35. Engeland CE, Heidbuechel JPW, Araujo RP, Jenner AL (2022) Improving immunovirotherapies: the
652 intersection of mathematical modelling and experiments. *ImmunoInformatics* 6:100011
653 36. Chen J, Vermolen FJ (2021) Several Agent-Based and Cellular Automata Mathematical Frameworks for
654 Modeling Pancreatic Cancer. In: *Numer. Math. Adv. Appl. ENUMATH 2019*. Springer, pp 265–274
655 37. Dogra P, Ram\’irez JR, Peláez MJ, Wang Z, Cristini V, Parasher G, Rawat M (2020) Mathematical
656 modeling to address challenges in pancreatic cancer. *Curr Top Med Chem* 20:367–376
657 38. Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from
658 microspheres: Implications to drug delivery systems. *Adv Drug Deliv Rev* 58:1274–1325
659 39. Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading
660 polymers. *Int J Pharm* 418:28–41
661 40. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. *J Control Release* 161:351–
662 362
663 41. Casalini T, Rossi F, Lazzari S, Perale G, Masi M (2014) Mathematical modeling of PLGA microparticles:
664 From polymer degradation to drug release. *Mol Pharm* 11:4036–4048
665 42. McGinty S, King D, Pontrelli G (2017) Mathematical modelling of variable porosity coatings for controlled
666 drug release. *arXiv* 45:51–60
667 43. Jenner AL, Frascoli F, Yun CO, Kim PS (2020) Optimising hydrogel release profiles for viro-
668 immunotherapy using oncolytic adenovirus expressing IL-12 and GM-CSF with immature dendritic cells.
669 *Appl Sci* 10:2872
670 44. Kalkhoran AHZ, Vahidi O, Naghib SM (2018) A new mathematical approach to predict the actual drug
671 release from hydrogels. *Eur J Pharm Sci* 111:303–310
672 45. Manga RD, Jha PK (2017) Mathematical models for controlled drug release through pH-responsive
673 polymeric hydrogels. *J Pharm Sci* 106:629–638
674 46. Spiridonova TI, Tverdokhlebov SI, Anissimov YG (2019) Investigation of the Size Distribution for
675 Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries. *J Pharm Sci*
676 108:2690–2697
677 47. Ghaffarizadeh A, Friedman SH, MacKlin P (2016) BioFVM: An efficient, parallelized diffusive transport
678 solver for 3-D biological simulations. *Bioinformatics* 32:1256–1258
679 48. Petlin DG, Rybachuk M, Anissimov YG (2015) Pathway Distribution Model for Solute Transport in
680 Stratum Corneum. *J Pharm Sci* 104:4443–4447

681 49. Petlin DG, Amarah AA, Tverdokhlebov SI, Anissimov YG (2017) A fiber distribution model for predicting
682 drug release rates. *J Control Release* 258:218–225

683 50. Kaunisto E, Marucci M, Borgquist P, Axelsson A (2011) Mechanistic modelling of drug release from
684 polymer-coated and swelling and dissolving polymer matrix systems. *Int J Pharm* 418:54–77

685 51. Pasdunkorale A J, Turner IW (2005) A second order control-volume finite-element least-squares strategy for
686 simulating diffusion in strongly anisotropic media. *J Comput Math* 1–16

687 52. Chaudhry QA, Abbas A, Noor A, Asif M (2019) In silico modeling for the risk assessment of toxicity in
688 cells. *Comput & Math with Appl* 77:1541–1548

689 53. Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve Turing models in the
690 biological pattern formation. *Comput & Math with Appl* 62:4322–4336

691 54. Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell
692 invasion of tissue: biological insight from mathematical analysis and computational simulation. *J Math Biol*
693 63:141–171

694 55. Hubbard ME, Byrne HM (2013) Multiphase modelling of vascular tumour growth in two spatial
695 dimensions. *J Theor Biol* 316:70–89

696 56. Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. *Handb Numer Anal* 7:713–1018

697 57. Khalid S, Chaudhry QA (2019) Quantitative analysis of cancer risk assessment in a mammalian cell with the
698 inclusion of mitochondria. *Comput & Math with Appl* 78:2449–2467

699 58. Ain K, Wibowo RA, Soelistiono S (2017) Modeling of electrical impedance tomography to detect breast
700 cancer by finite volume methods. In: *J. Phys. Conf. Ser.* p 12001

701 59. Storey KM, Jackson TL (2021) An Agent-Based Model of Combination Oncolytic Viral Therapy and Anti-
702 PD-1 Immunotherapy Reveals the Importance of Spatial Location When Treating Glioblastoma. *Cancers*
703 (Basel) 13:5314

704 60. Haroske G, Dimmer V, Steindorf D, Schilling U, Theissig F, Kunze KD (1996) Cellular sociology of
705 proliferating tumor cells in invasive ductal breast cancer. *Anal Quant Cytol Histol* 18:191–198

706 61. Bock M, Tyagi AK, Kreft J-U, Alt W (2010) Generalized voronoi tessellation as a model of two-
707 dimensional cell tissue dynamics. *Bull Math Biol* 72:1696–1731

708 62. Saribudak A, Kucharavy H, Hubbard K, Uyar MÜ (2016) Spatial Heterogeneity Analysis in Evaluation of
709 Cell Viability and Apoptosis for Colorectal Cancer Cells. *IEEE J Transl Eng Heal Med* 4:1–9

710 63. Lin L, Wang X, Zeng X (2014) Geometrical modeling of cell division and cell remodeling based on Voronoi
711 tessellation method. *C Comput Model Eng & Sci* 98:203–220

712 64. Saribudak A, Dong Y, Gundry S, Hsieh J, Uyar MÜ (2015) Mathematical models of tumor growth using
713 Voronoi tessellations in pathology slides of kidney cancer. In: 2015 37th Annu. Int. Conf. IEEE Eng. Med.
714 Biol. Soc. pp 4454–4457

715 65. Maier HJ, Wirth T, Beug H (2010) Epithelial-mesenchymal transition in pancreatic carcinoma. *Cancers*
716 (Basel) 2:2058–2083

717 66. Luu T (2021) Epithelial-mesenchymal transition and its regulation mechanisms in pancreatic cancer. *Front
718 Oncol* 11:1228

719 67. Karamitopoulou E (2013) Role of epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma: is
720 tumor budding the missing link? *Front Oncol* 3:221

721 68. Bulle A, Lim K-H (2020) Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal
722 transition in pancreatic cancer. *Signal Transduct Target Ther* 5:1–12

723 69. Buijs JO den, Musters M, Verrrips T, Post JA, Braam B, Van Riel N (2004) Mathematical modeling of
724 vascular endothelial layer maintenance: the role of endothelial cell division, progenitor cell homing, and
725 telomere shortening. *Am J Physiol Circ Physiol* 287:H2651–H2658

726 70. Lobo EP (2014) Modelling the Role of Interclonal Cooperativity During Early Carcinogenesis. University of
727 Sydney

728 71. Kansal AR, Torquato S, Harsh GR, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth
729 dynamics using a three-dimensional cellular automaton. *J Theor Biol* 203:367–382

730 72. Jiao Y, Torquato S (2011) Emergent behaviors from a cellular automaton model for invasive tumor growth
731 in heterogeneous microenvironments. *PLoS Comput Biol* 7:e1002314

732 73. Crosley P, Farkkila A, Jenner AL, et al (2021) Pro caspase-Activating Compound-1 Synergizes with TRAIL
733 to Induce Apoptosis in Established Granulosa Cell Tumor Cell Line (KGN) and Explanted Patient
734 Granulosa Cell Tumor Cells In Vitro. *Int J Mol Sci* 22:4699

735 74. Kalvass JC, Pollack GM (2007) Kinetic considerations for the quantitative assessment of efflux activity and
736 inhibition: implications for understanding and predicting the effects of efflux inhibition. *Pharm Res* 24:265–

737 276
738 75. Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, Beardmore R
739 (2013) When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The
740 Smile-Frown Transition. *PLoS Biol* 11:14–16
741 76. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL (2000) Response surface model for
742 anesthetic drug interactions. *Anesthesiology* 92:1603–1616
743 77. Li Z, Tian T, Lv F, et al (2013) Six1 Promotes Proliferation of Pancreatic Cancer Cells via Upregulation of
744 Cyclin D1 Expression. *PLoS One*. <https://doi.org/10.1371/journal.pone.0059203>
745 78. Sinha A, Cherba D, Bartlam H, Lenkiewicz E, Evers L, Barrett MT, Haab BB (2014) Mesenchymal-like
746 pancreatic cancer cells harbor specific genomic alterations more frequently than their epithelial-like
747 counterparts. *Mol Oncol* 8:1253–1265
748 79. Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D (2017) The epithelial to mesenchymal
749 transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. *Mol
750 Cancer* 16:1–11
751 80. Chan T-S, Shaked Y, Tsai KK (2019) Targeting the interplay between cancer fibroblasts, mesenchymal stem
752 cells, and cancer stem cells in desmoplastic cancers. *Front Oncol* 9:688
753 81. Wells DK, Chuang Y, Knapp LM, Brockmann D, Kath WL, Leonard JN (2015) Spatial and Functional
754 Heterogeneities Shape Collective Behavior of Tumor-Immune Networks. *PLoS Comput Biol*.
755 <https://doi.org/10.1371/journal.pcbi.1004181>
756 82. Upton RN, Mould DR (2014) Basic concepts in population modeling, simulation, and model-based drug
757 development: Part 3-introduction to pharmacodynamic modeling methods. *CPT Pharmacometrics Syst
758 Pharmacol* 3:1–16
759 83. Gabrielsson J, Andersson R, Jirstrand M, Hjorth S (2019) Dose-response-time data analysis: an
760 underexploited trinity. *Pharmacol Rev* 71:89–122
761 84. Prinz H (2010) Hill coefficients, dose--response curves and allosteric mechanisms. *J Chem Biol* 3:37–44
762 85. Hardacre JM, Mulcahy M, Small W, Talamonti M, Obel J, Krishnamurthi S, Rocha-Lima CS, Safran H,
763 Lenz H-J, Chiorean EG (2013) Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for
764 pancreatic cancer: a phase 2 study. *J Gastrointest Surg* 17:94–101
765 86. Perez VM, Kearney JF, Yeh JJ (2021) The PDAC Extracellular Matrix: A Review of the ECM Protein
766 Composition, Tumor Cell Interaction, and Therapeutic Strategies. *Front Oncol* 4114
767 87. Xie D, Xie K (2015) Pancreatic cancer stromal biology and therapy. *Genes & Dis* 2:133–143
768 88. Crivelli JJ, Földes J, Kim PS, Wares JR (2012) A mathematical model for cell cycle-specific cancer
769 virotherapy. *J Biol Dyn* 6:104–120
770 89. Cos S, Recio J, Sánchez-Barceló EJ (1996) Modulation of the length of the cell cycle time of MCF-7 human
771 breast cancer cells by melatonin. *Life Sci* 58:811–816
772 90. Conroy T, Hammel P, Hebbar M, et al (2018) FOLFIRINOX or gemcitabine as adjuvant therapy for
773 pancreatic cancer. *N Engl J Med* 379:2395–2406
774 91. Moore MJ, Goldstein D, Hamm J, et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone
775 in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada
776 Clinical Trials Group. *J Clin Oncol* 25:1960–1966
777 92. Cassidy T, Nichol D, Robertson-Tessi M, Craig M, Anderson ARA (2021) The role of memory in non-
778 genetic inheritance and its impact on cancer treatment resistance. *PLoS Comput Biol* 17:e1009348
779