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Abstract

The prognosis for pancreatic ductal adenocarcinoma (PDAC) patients has not significantly improved in the past 3
decades, highlighting the need for more effective treatment approaches. Poor patient outcomes and lack of response
to therapy can be attributed, in part, to the dense, fibrotic nature of PDAC tumours, which impedes the uptake of
systemically administered drugs. Wet-spun alginate fibres loaded with the chemotherapeutic agent gemcitabine have
been developed as a potential tool for overcoming the physical and biological barriers presented by the PDAC tumour
microenvironment and deliver high concentrations of drug to the tumour directly over an extended period of time.
While exciting, the practicality, safety, and effectiveness of these devices in a clinical setting requires further
investigation. Furthermore, an in-depth assessment of the drug-release rate from these devices needs to be undertaken
to determine whether an optimal release profile exists. Using a hybrid computational model (agent-based model and
partial differential equation system), we developed a simulation of pancreatic tumour growth and response to treatment
with gemcitabine loaded alginate fibres. The model was calibrated using in vitro and in vivo data and simulated using
a finite volume method discretization. We then used the model to compare different intratumoural implantation
protocols and gemcitabine-release rates. In our model, the primary driver of pancreatic tumour growth was the rate of
tumour cell division and degree of extracellular matrix deposition. We were able to demonstrate that intratumoural
placement of gemcitabine loaded fibres was more effective than peritumoural placement. Additionally, we found that
an exponential gemcitabine release rate would improve the tumour response to fibres placed peritumourally.
Altogether, the model developed here is a tool that can be used to investigate other drug delivery devices to improve

the arsenal of treatments available for PDAC and other difficult-to-treat cancers in the future.

Author Summary
Pancreatic cancer has a dismal prognosis with a median survival of 3-5 months for untreated disease. The treatment

of pancreatic cancer is challenging due to the dense nature of pancreatic tumours which impedes retention of drug at
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the tumour site. As such, systemic administration of chemotherapies, such as gemcitabine, has a limited efficacy. To
overcome this, sustained-release devices have been proposed. These devices are injected locally and release drug
slowly over time, providing a concentrated local, sustained drug concentration. To investigate the possible efficacy of
these devices, we developed a mathematical model that would allow us to probe treatment perturbations in silico. We
modelled the individual cancer cells and their growth and death from gemcitabine loaded into the sustained delivery
devices. Our platform allows future investigations for these devices to be run in silico so that we may better understand

the forms of the drug release-profile that are necessary for optimal treatment.

Introduction

Inoperable pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival of 3—5 months
for untreated disease [1]. Treatment of PDAC with the chemotherapeutic agent gemcitabine can achieve clinical
benefit and symptom improvement in 20—30% of patients [1, 2], although PDAC is still regarded as a chemotherapy-
resistant tumour [3, 4]. Gemcitabine is designed to target and kill cancer cells by incorporating into the DNA strand
of a PDAC cell allowing only one deoxynucleotide to be incorporated, which prevents strand elongation [5, 6],
resulting in cell cycle arrest and subsequent cell death [7, 8]. Despite gemcitabine being established as a standard
treatment for advanced PDAC over 20 years, most subsequent large phase III studies have not shown significantly
improved survival benefit [9]. Overall prognosis for PDAC has seen little improvement in the last 3 decades, largely
due to drug resistance and poor intratumoural drug accumulation.

The majority of chemotherapeutics, gemcitabine included, are administered systemically via bolus or
infusion intravenous administration. This often results in significant systemic toxicity, with only a fraction of the
injected dose reaching the tumour. As such, there has been a growing interest in the development of localized targeted
delivery systems which can modify the bio-distribution of drugs and achieve local drug accumulation in the tumour
tissue [10—12] (Figure 1). For example, drug-eluting polymeric implants are designed to deliver high concentrations
of chemotherapeutic drugs directly at the tumour site, overcoming transport and tissues barriers as well as limiting
off-target toxicities [13]. Biodegradable implants, can be designed to provide sustained drug release over weeks or
months, avoiding repeated external drug dosing, clinic visits and other surgical interventions. The characteristics of
these devices make local delivery especially attractive for chemotherapeutics with a narrow therapeutic window or
short in vivo half-life [14], such as gemcitabine.

Drug-loaded polymeric fibres can be prepared by various cross-linking methods and allow for drug molecules
to be released in a controlled manner depending on the cross-linking type and methods [15]. Previously, Wade et al.
[14] showed that wet-spun gemcitabine-loaded alginate fibres inhibited ex vivo PDAC spheroid growth and reduced
PDAC cell viability compared to gemcitabine delivered as a free drug. In a subsequent study, Wade et al. [13, 16]
showed that a coaxial fibre formulation, in which the alginate was encased by a polycaprolactone (PCL) shell
demonstrated significant in vivo antitumour efficacy; however, it is not possible to conclude experimentally whether
an alternative release-profile of gemcitabine may be more effective. Fortunately, computational and mathematical
modelling is well situated as a predictive tool for quantifying the efficacy of alternative drug release profiles and drug

administration patterns.
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Figure 1 Motivation for sustained-delivery implants for treatment of PDAC. Sustained-delivery implants are a promising treatment
methodology over conventional single free-drug intravenous or intrantumoural injections. A hypothetical comparison of drug concentrations at
the tumour site under these two protocols is pictured. Systemic injections of anti-cancer drugs often result in a rapid decrease of drug
concentration at the tumour site. In comparison, sustained-release mechanisms deliver drug over a prolonged period resulting in a durable

drug presence at the tumour site. Created using biorender.com.

Mathematical models have been used to help understand formation and treatment of a range of different
cancers for some time now [17-20]. In particular, agent-based models (ABM) have been used extensively in cancer
modelling as they allow for the consideration of spatial and phenotypic heterogeneity [21-27] which are known to be
major drivers of variations in treatment outcomes. In ABMs, the likelihood of events, such as cell proliferation,
movement, death or mutation are modelled as probabilities, allowing the simulation to evolve stochastically in time.
Phillips er al. [28] presented a hybrid mathematical approach that characterized vascular changes during tumour
growth via an ABM, with treatment, nutrient, and VEGF changes captured through a continuum model. Insights on
therapeutic failure in immunotherapy have also been provided through an ABM software known as PhysiCell [29,
30]. Oncolytic virotherapy has also been the focus of numerous ABMs [31-35], with an ABM of virotherapy
demonstrating that the parameter range leading to tumour eradication is small and hard to achieve in 3D. There have
been ABMs developed that specifically focus on pancreatic cancer growth [36, 37]; however, an ABM describing
pancreatic cancer growth and treatment with a degradable polymer implant has not yet been developed.

For some time, mathematical models of degradable drug delivery mechanisms have been used to assist in the
understanding of polymer degradation, hydrolosis kinetics and the subsequent effect of drug release on the applied
system [10, 38-45]. Using mass-balance kinetic equations, McGinty et al. [42] investigated the extent to which
variable porosity drug-eluting coatings can provide better control over drug release using transport diffusion equations.
Their results indicate that the contrast in properties of two layers can be used as a means of better controlling the

release, and that the quantity of drug delivered in early stages can be modulated by varying the initial drug distribution.
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97 More recently, Spiridonova et al. [46] fitted drug release from polymer microparticles and investigated the effect of

98 size distribution on diffusional drug release from sustained-delivery systems using a system of partial differential

99 equations (PDEs). Whilst useful for capturing the drug delivery mechanism, most models of drug-loaded polymers
100  such as these have not examined the influence of changes to drug release profiles on antitumour efficacy or how
101 intratumoural stochasticity impacts drug delivery.
102 In this work, we have developed a hybrid mathematical and computational model of PDAC tumour growth
103 and death from treatment with gemcitabine released from a polymeric fibre. We extended a previously published ABM
104 known as a Voronoi cell-based model (VCBM) [32] to model tumour cell growth and death and coupled this with a
105 PDE model for gemcitabine release from polymeric implants. In vitro drug release curves were used to optimise the
106 PDE formulation describing how gemcitabine is released from fibres. A numerical simulation was then used to
107 initialise the parameters in the ABM using in vivo control PDAC tumour growth measurements. The potential impact
108 of these fibres on tumour growth and cell death was then investigated with the VCBM-PDE model and improvements
109 on drug release kinetics and fibre placement were suggested. The model was developed as a tool that can be applied
110 to interrogate other cancer therapies using polymeric implants with the goal to improve treatment response for PDAC

111 patients.

112 Experimental methods

113 Fibre fabrication and characterisation

114 Full details for the fabrication and characterisation of alginate fibres loaded with our without gemcitabine are

115  described in Wade et al. [13, 14]. Briefly, gemcitabine-loaded alginate fibres had a uniform surface area from 50 —
116 120 um in diameter. Fibres displayed different drug release profiles depending on the concentration of polymer

117 used. Fibre diameter also varied depending on the materials used [14].

118

119 Fibre gemcitabine release kinetics

120 Full details for the experiments measuring gemcitabine release can be found in Wade et al. [14] with brief details here.
121 Gemcitabine-loaded fibres were added to 2mL of simulated body fluid (SBF), Ph 7.4 and incubated at 37°C. At various
122 time points (10, 30, 60, 90 min hourly for 10h and then daily for 3 weeks), buffer solution (200uL) was removed for
123 analysis of gemcitabine release and replaced with fresh SBF. The amount of drug released from alignate fibres was
124 determined using high performance liquid chromatography (HPLC). The amount of gemcitabine released (p1g) was
125 calculated by interpolating AUC values from the standard curve using Empower Pro V2 (Waters) software.

126

127 Implant toxicity in vitro

128 Gemcitabine loaded fibres were tested for their cytotoxicity against human pancreatic cancer cells (Mia-PaCa-2) cells
129 over 72h. Cells were incubated with 0.5 cm lengths of gemcitabine loaded or non-drug loaded fibre formulation before
130 an endpoint MTS cell viability assay was performed. Results are displayed as a percentage of an untreated control.
131 Experiments were performed in triplicate. Full details for the toxicity experiments can be found in Wade ez al. [13].

132
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133 In vivo Mia-PaCa-2 cell growth
134  Animals were subcutaneously inoculated with 100uL suspension of 1 X 10% Mia-PaCa-2 cells in PBS. Tumour
135 volume measurements began when tumours reached a volume of 200 mm?3 using

length?
2

137 where w is the longest tumour measurement and [ is the tumour measurement along a perpendicular axis. Tumour

136 volume = width X

138 volume was measured daily for a duration of approximately 33 days. Full details for this experiment can be found in
139 Wade et al. [13]. All animal experiments were conducted in accordance with the NHMRC Australian Code for the
140 Care and Use of Animals for Scientific Purposes, which requires 3R compliance (replacement, reduction, and
141 refinement) at all stages of animal care and use, and the approval of the Animal Ethics Committee of the University
142 of Wollongong (Australia) under protocol AE18/13.

143

144  Mathematical methods

145  The model developed for the release of gemcitabine from alginate fibres and the impact on a growing PDAC tumour
146 was formulated in two parts. The first describes the PDE describing the concentration of gemcitabine in the tumour
147 microenvironment (TME) and surrounding tissue over time. The second describes the VCBM [32] that captures the
148 way tumour cells proliferate, move and undergo apoptosis from gemcitabine. All parameters introduced for the model
149 are summarised in Table S1-S5 in the Supplementary Tables and Figures and a schematic for the model is in

150 Figure 2.

151 Model of gemcitabine

152 To capture the concentration of gemcitabine in the tumour microenvironment, we first considered a 2D rectangular
153 domain with boundary B (Figure TS1). Inside this domain, is implanted a gemcitabine drug-loaded fibre which is
154 represented by a vertical line source (Figure TS2A and Figure 2A). Gemcitabine diffuses from the line source at
155 some time-dependent rate that decreases as the polymeric fibre degradation slows. The gemcitabine concentration in
156 the domain is diffusing and decaying. PDAC cells in the domain are also taking up gemcitabine, removing it from the

157 concentration in the domain. Inside the fibre, we model the diffusion of drug as radially symmetric (Figure 2B).

158 We denote the concentration of drug in the TME at position (x, y) by C(x, y, t) and model this concentration
159 by
160 diffusion decay cell uptake fibre release
(_A_\ f_A_\ r A N A \
oc ) (1)
SE=DPC=AC— ) 80 =180 = yIvWC +8(x = x)) (.0,
cells k

161  where D is the diffusion coefficient in the TME, and A is the decay rate of the drug. To model cancer cells taking up
162 gemcitabine, we used & (x) which is the Dirac delta function in one-dimension, where (X, ¥ ) is the kth cancer cell’s
163  Voronoi centre position in the domain (Figure S1), and W, is the cell’s volume. Pancreatic cancer cells take up drug

164 in the domain at a rate v,.. Cell uptake was modelled by point sinks analogous to that in PhysiCell and BioFVM [30,

165 47], where cells are considered discrete “point masses” in the domain that take up drug from a single rectangular
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166 discretized voxel weighted by the local concentration of drug. We then used a line source at X = Xz, Yo <V < Yo +
167 L to model the release of gemcitabine from the polymeric fibre, where y,, is the location of the bottom of the fibre and
168 L is the fibre length (Figure TS1). This line source was represented by a Dirac delta function in one-dimension and
169 the drug diffuses from the line source with flux J(y, t).

170 To derive the flux of drug from the line source, we first assumed that the release of drug from the fibre would
171 be time dependent. As such, we chose to explicitly model a concentration of drug diffusing inside the fibre. We denote
172 the concentration of gemcitabine at radial position r and location (xg,y) by F(r,y, t) (Figure TS2 and Figure 2A).
173 We model the diffusion and movement of drug inside the fibre assuming radial symmetry. We assumed that diffusion
174 in the radial direction is significantly faster than along the fibre since the radius of the fibre 13,4, is significantly less

175 than the length of the fibre L (Figure TS1 and Figure TS2). This gives

oF 10 OF 2)
X b (v,
ot P(®) ror (r or
176  where Dg(t) is the time-dependent diffusion of drug inside the fibre. We imposed the continuity condition
F(ryotar ¥, £) = C(xp, y, 1), 3)

177 so that the diffusion of drug out of the fibre at the line source will depend on the location (x,y) and local exterior
178 concentration. The flux out of the line source J(y,t) in Eq. (1) can then be approximated from the release of drug
179 across the boundary of the fibre:

2T sotal oF
Jo,t) = {1~ ;lom DF(t)E(rtotal:y: t) YVoSy<y,+L

0 Yy<Yo ¥Y>Yo+L

“4)

180 This term is derived by converting the flux out of the radial fibre into the flux represented by the line source in Eq.
181 (1) and converting to a concentration per surface area where h is the depth of the rectangular region (presumed thing,
182 see Figure TS1). Both Eq. (3) and Eq. (4) are necessary boundary conditions for Eq. (1) and Eq. (2). In this way, we
183 assume the concentration is continuous and the flux of the fibre is equal to the flux into the TME, equivalent to a
184  conservation of mass.

185 The diffusivity of the drug, Dp(t), is modeled by the function

k %)
DF(t) = m + Dconst'

186  where k controls the decay rate to the constant decay rate from the fibre (i.e. how quickly the fibre swells), Dy, 1S
187 the constant decay rate from the fibre and € is a tuning constant to provide a finite initial diffusion coefficient, i.e.
188  Dp(0) = k/€ + D ynst- We expect Di(0) to be initially large (>1) since the polymeric fibre is hydrophilic and drug
189 would immediately diffuse out of the fibre. In addition, some drug is never properly loaded into the fibre and can be
190  released instantaneously. The formalism in Eq. (5) was broadly chosen to capture the rapid decline in release as the
191 polymeric fibre degrades. It is possible to model the breakdown of the drug release mechanisms to include device
192 swelling and degradation and for examples of this see [46, 48—50].

193 No-flux boundary conditions on B, the exterior of the TME, are imposed:

194 ﬁ=0
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197 Figure 2 The main components of the VCBM-PDE model. (A) The concentration of drug in the TME was modelled in a 2D domain bounded

198 by B, where C(x,y,t) was the concentration in the TME at position (x,y). The fibre implant was then placed at a position x = x and modelled

199 as a line source. To capture the diffusion of drug from the fibre, we modelled the concentration of gemctiabine inside the fibre F(r, y, t) at radial
200 position r and domain position y where the continuity condition in Eq. (3) required equal concentrations at the fibre boundary and at the immedicate
201 local microenvironment, i.e. F (T¢orq1, ¥, t) = C(xf, ¥, t). (B) The concentration of gemcitabine inside the polymeric fibres was modelled by radially
202 symmetric difussion Eq. (2) using a finite volume method (FVM) discretisation and considering the 2D cylindrical cross section of the fibres which
203 have length L and radius 73,.;. The fibre was discretised into concentric annuli F,, ; at annulus m andcross section j, (i = 0,1, ..., M) and the
204 concentration of drug in each annulus Fy, ; was modelled by considering drug diffusion across the bounadaries (e.g. Fyp,_4,; and Fy, 4 ; flow into

205 Fp, j and vice vera). The full discretisation is presented in the Technical Supplementary Information). (C) Modelling assumptions for the VCBM
206 were that cancer cells (pink) proliferate and some are able to cause epithelail to mesenchymal transtion and become invasive. We model this
207 transition by assuming cells differentiate into an mesenchymal cancer cell (MCC) with one daughter cell placed on a neighbouring healthy cell.

208 These MCCs cause the break down of surrounding tissue (i.e. replace healthy neighbouring cells with their progeny). Cancer cells can then die

209 through gemcitabine uptake from their local environment. (D) Individual cells were modelled as cell centres connected by springs [32]. The
210 proliferation of a cell introduced a new cell into the lattice network which caused the rearrangement of the cells in the lattice with movement
211 governed by Hooke’s law. (E) To simulate the gemcitabine concentration in the TME, Eq. (1), we introduced a FVM discretisation, where the
212 gemcitabine concentration was defined at discrete volumes centered around points in the discretisation. Cells could take up drug from the nearest
213 grid point to their centre, and this concentration was used to determine their likelihood of drug-induced cell-death.
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214 where 7 is the outward unit normal on the boundary B (Figure TSS5). In the case of a fibre implantation, all drug in
215 the domain is initially situated in the fibre:

C
216 F(r,y,0) =——

L )
total
217 where C, is the amount of drug in ug, the denominator is the volume of the fibre and there is no drug initially in the

C(x,y,0) =0,

218 domain B. We assume the location of the fibre is fixed in space over the course of the simulation and is not affected
219 by cells around it. For more details on the derivation of the model see the Technical Supplementary Information.
220 We solved Eqs. (1)-(4) numerically using a Finite Volume approximation. In particular, the diffusion of drug
221 within the fibre, Eq. (6), was solved through discretising the cross section of a fibre into annuli (see Figure 2B and
222 the Technical Supplementary Information). The model is solved using a finite volume method (FVM)
223 discretization, for examples of this form of discretization in cancer growth and treatment see [51-59].

224

225 Voronoi Cell-Based Model (VCBM) of pancreatic tumour growth

226 Agent-based models (ABMs) are primarily used to simulate heterogeneity that arises through stochasticity in cellular
227 interactions. We present an ABM to capture the 2D formation of a pancreatic tumour in the pancreas. Our model
228 extends a Voronoi cell-based model (VCBM) for tumour growth already published in [32]. The model describes how
229 individual cells behave over time by considering their behaviour to be a stochastic process. It uses points as
230 representatives of cell centres and then overlays this with a Voronoi tessellation to define individual cell boundaries.
231 A Voronoi tessellation defines the region of space where the Euclidean distance to a point is less than the distance to
232 any other cell centre in the lattice. Voronoi tessellations have been used to model tissue and cancer cell dynamics for
233 some time [60—64]. Using a Voronoi tessellation for the ABM allows cell morphology to be heterogeneous and not
234 fixed, and the morphology can change with cell movement. The model is solved on a time increment of 1hr to account
235 for the fact that cellular interactions are slow in comparison to drug diffusion (Figure TS3). To model pancreatic
236 tumour formation, we assumed the primary functions of pancreatic tumour cells were movement and proliferation.
237 Below are details of the cell types, the model for cell movement and proliferation, a description of the dynamics of
238 tumour mesenchymal cells, the model for cell death and details of how the domain changes as the tumour grows.
239 PDAC cells can acquire mesenchymal-like phenotype properties through a process known as epithelial-
240 mesenchymal transition (EMT) [65—-68]. In the EMT process, epithelial elements undergo cytoskeleton remodelling
241 and migratory capacity acquisition due to the loss of intracellular contacts and polarity [66]. This enables the
242 formation of mesenchymal-like cancer cells (MCCs) which have enhanced migratory capacities and invasiveness, as
243 well as elevated resistance to apoptosis [67]. Since there is evidence that EMT plays an important role in PDAC
244 progression [65-68], we have introduced this cell type into the model.

245 We considered four main cell types in the model: healthy pancreatic cells, PDAC cells, MCCs and dead cells
246 (cancer cells that have experienced drug-induced death), see Figure 2C. The initial tissue comprised of healthy cells,
247 arranged so that the corresponding Voronoi cells form a hexagonal tessellation, analogous to other work in the
248 literature [69, 70]. To initialise the tumour formation, we removed a healthy cell from the centre of the domain and

249 replaced it with a pancreatic tumour cell (Figure S1, Supplementary Tables and Figures). These pancreatic tumour
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250 cells could proliferate, die from gemcitabine, or form MCCs. Once formed, these pancreatic stem cells then move and
251 proliferate until they die. Healthy cells are assumed to be able to move or become MCCs.
252 Cell movement is governed by pressure-driven motility, modelled using Hooke’s law [32]. Each cell’s
253 position is updated by calculating the effective displacement of the cell’s lattice point by the sum of the forces exerted
254 on that cell, where force is modelled as a network of damped springs connecting a cell to its nearest neighbours
255 (defined by a Delaunay triangulations). Consider cell k, the displacement of this point in time At is given by

7, ()

Rt Btogus) = 7e(6) + Ay ) T (5, 6) =
7 |7 (©) ||

256  where 7} (t) is the position of the kth point in the lattice at time ¢, A,, is a damping and mobility constant, 7}, ; is the

(N

|Fk,i(t) | |) )

257 vector between k and i, sy, ; is the spring rest length (equilibrium distance) between cell k and i. The introduction of
258 new cells in the lattice through proliferation introduces new spring connections and shortens or extends others,
259  promoting the movement of cells in the environment (Figure 2D).

260 Tumour cell proliferation was assumed to be a function of the cell’s distance, d,;¢,;, to the nutrient source
261  (tumour periphery, i.e. nearest healthy cell centre, see Figure S3). The maximum radial distance for nutrient-
262 dependent cell proliferation is d,,,,. Cells that are a further distance from the nutrients than d,,,,, enter a quiescent
263 (non-proliferative state), forming what is commonly known as a necrotic core. The probability of a cell dividing p, in
264  time step Aty 1S given by

®)

d
Po (1 - neut> dneut < dmax

dmax

0 dneu t > dmax

Pa =

265 where p, is a proliferation constant derived based on the maximum rate of cell proliferation r (i.e. po =1 —
266 exp(—rAt) = rAt). The formalism in Eq. (8) is similar to what was used by Kansal ez al. [71], Jiao and Tarquato [72]
267 and Jenner et al. [32]. A cancer cell’s ability to proliferate was also based on whether there was enough local space
268  for proliferation to occur. If a cell k proliferates, a new lattice point ! is created and the two cells are placed at a
269  distance 5/pgg, from the original proliferating cells position at a rotation 6 ~€ U(0,2r] (Figure 2D). To simulate the
270 enlargement and repositioning of the daughter cells, the resting spring length of the connection between k and [
271 linearly increases over time from s/pg . to the mature resting spring length s as was formulated in our previous work
272 [32]. Once a cell has proliferated, it takes g,4, time steps before the daughter cell will try to proliferate again,
273 accounting for G1 phase of the cell cycle where the cell transitions from mitosis M to DNA synthesis S [32]. It is well
274 known that tumours contain highly heterogeneous populations of cells that have distinct reproductive abilities. To
275 account for heterogeneity in the cell cycling, cells sampled the age at birth from a Poisson distribution with mean 50.
276 MCC:s are created at the boundary of the tumour with probability p,c.. These cells are created from tumour
277 cells differentiation into a tumour cell and an MCC. We mode their invasive property by placing the daughter cell at
278 the position of a neighbouring healthy cell, removing it from the domain. Through their creation, these MCCs
279 contribute to the degradation of the healthy tissue surrounding the tumour.

280 Asin [73-76], we assumed that cancer cells die from gemcitabine contact at a rate described by the Michaelis-

281 Menten term


https://doi.org/10.1101/2022.04.18.488716
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.18.488716; this version posted April 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

282 ﬁ — L'
Cij+1Cs

283  where § is the maximum death rate due to the drug, C; ; is the concentration of drug at the grid position (i, j) in the

284 FVM discretization closest to the cell’s centre (Figure 2E and the Technical Supplementary Information), and /Cs,

285 s the concentration at which half the effect of the drug is attained. From this, the probability of an individual cell

286 dying can be determined by assuming Prob(cell death)= 1 — exp(—BAt) ~ BAt. While we chose not to model

287 explicitly the resistance to gemcitabine that cancer cells can develop [3, 4], we believe that by modelling cell death

288 probabilistically we can capture some of the heterogeneity that may exist intratumourally. If a cell dies, then its

289 phenotype changes to be a dead cell and and takes d 4, hours to disintegrate. To simulate disintegration, at each time

290 increment the spring rest lengths of a dead cell to each of its neighbours, sy ;, decreases by sy ;/dgge-

291 As the tumour grows, the model domain expands. To reduce computational cost, new healthy cells are added

292 to the domain only when a tumour cell’s radial distance from empty space is < 10um (Figure S2 Supplementary

293 Tables and Figures).

294

295  Numerical simulations and parameter estimation

296

297  The VCBM-PDE model was written in C++ and simulations called through Matlab 2021b by creating a definition file

298 for the C++ library using clibgen and build in Matlab 2021b. Code for the model at the various stages (e.g. fibre, single

299 injections) can be found on github (https:/github.com/AdrianneJennerQUT/hybrid-VCBM-of-gemcitabine-and-

300  pancreatic-cancer). Full details on all aspects of the code can be found in Code Documentation.
301 An approximation for tumour volume was then determined from the 2D simulations using the same formula
302 as the calibre measurements, multiplied by a scalar o:

length
2

304  where width is the longest distance of a cell on the periphery from the centre and length is the distance of the farthest

303 volume = width? x x o3

305 cell from the centre on the radial axis perpendicular to the radial axis of the longest distance (Figure S5
306 Supplementary Tables and Figures) where o unit length of the model is equivalent to 1 mm. This calculation choice
307 was made to closely resemble the tumour volume calculation with calibres done in vivo. As the size of the
308 computational domain was smaller than the size of the real tumour, the length unit was scaled by ¢, which scaled the
309 unit length in the VCBM domain to a comparable mm unit measurement that reduced the computational cost. We
310  chose o = 0.1728.

311 All fitting was undertaken using Isgnonlin in Matlab 2021b using pdepe and ode45 to simulate the model.
312 Parameters in the model were fit using experimental data or estimated from the literature. To fit the parameters relating
313 to drug release from the fibre we used the in vitro drug release experiments. We simplified the model to consider only
314 one cross section, i.e. Fp, ; = Fp,, since the outside concentration of drug was independent of location in the absence

315 of cells in the in vitro experiment.
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316 To estimate parameters for the pancreatic cell growth kinetics, we did a large Latin Hypercube sample of the
317  parameter space and determined parameters that resulted in a minimal least squares distance to the in vivo control
318 tumour growth measurements. Other parameters were either fixed to previous values in the literature or estimated
319 based on previous work. See Tables S1-S5 in Supplementary Tables and Figures for a full summary of all parameter

320 values and relevant references.

321  Results

322

323 Calibration of drug release kinetics and drug-induced cell death to in vitro measurements

324 Gemcitabine-loaded fibres were placed in a solution bath and the resulting cumulative concentration of gemcitabine
325 measured (Figure 3A). To obtain a model describing the release rate of the drug from the fibre, we fitted parameters
326 from Eq. (1)-(4) to these in vitro measurements for the release of gemcitabine from 3% alginate 15% PCL fibres [14].
327  Fitting the release curve parameters k, d . st Co and A,,,; gave the fit in Figure 3B and parameter values in Table
328  S1. Overall, the model was able to obtain the fit to the data and followed the trend which showed a rapid initial release
329  of gemcitabine followed by a steady-state threshold. We validated the model’s predictive capability by also fitting
330 gemcitabine release from 1% and 2% alginate fibres (Figure S4 Supplementary Tables and Figures).

331 To assess the efficacy of the drug on inducing death in PDAC cells, cell viability studies were performed
332 using Mia-PaCa-2 cell lines. To model these experiments, we considered a simplified deterministic and spatially
333  independent version of our model with only live cancer cells P, (t), dead cancer cells P, (t) and a concentration of

334  drug C(t):

dp, 5C )
PR T
ap, 8¢ (10)
- pC,

C (11)
ORI

335 where 7 is the exponential proliferation rate of cancer cells in vitro, § is the death rate of cancer cells by gemcitabine,
336  ICs, is the drug’s half effect concentration, and A is the decay rate of the drug (Figure 3C). To first determine the
337 proliferation rate of pancreatic cancer cells in vitro, an exponential growth curve was fit to cell count measurements
338 for Mia-PaCa-2 cells [77] (Figure 3D, parameter values Table S2) using simple exponential growth (i.e. setting
339 C(0) = 0 in Eq. (9)). Fixing this growth rate and the estimate for the decay rate of drug, we then determined the
340 antitumour efficacy of gemcitabine-loaded fibres in the cell viability experiments. Cells were treated with aliquots of
341 simulated body fluid from gemcitabine-loaded fibres that had been incubating for 24, 48 or 72 h (Figure 3E). To
342 simulate these experiments, the model is solved piecewise such that u(t) = &§ (t - taliquot)C (tatiquot)> Where tyiiquot
343 are the times of the drug administrations. An approximation for the concentration of drug at each time point,
344 C(taiiquot)> can be determined using the calibrated PDE model for drug release from the fibres. Fitting the drug
345 induced death rate and I C5, gave a good approximation to the data (Figure 3F). The resulting parameter values from

346 the fit of the model can be found in Table S2.
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348 Figure 3 Calibration of model parameters to in vitro experiments. (A) Drug release profiles for gemcitabine with 3% alginate 15% PCL were
g p 4 g
349 measured by placing the gemcitabine-loaded alginate fibre in a solution bath and measuring the released drug concentration over time. (B) The
350 drug concentration in the solution bath (black) was used to fit model parameters for the drug release from the fibre (green). Resulting parameters
g p g g gp
351 are inTable S1. (C) The drug-induced death rate of pancreatic cancer cells was determined by simplifying the full model assumptions to consider
352 a homogeneous model for live cancer cells P, (t) that were proliferating and dying (become dead cells P, (t)) through the effect of the drug

353 gemcitabine C(t), Egs. (9)(11). (D) Fitting an exponential growth curve to Mia-PaCa-2 cell proliferation in vitro [77] gave the growth rate of cells
354 r. Values are the meantstd. (E) To measure the efficacy of the protocol, the cell viability was determined after aliquots from drug released from
355 gemcitabine-loaded fibre were placed in a well with proliferating Mia-PaCa-2 cells at 24, 48 and 72 hours. (F) The resulting cell viability at 72
356 hours from the experiment depicted in (E) was used to fit the drug-induced cell death rate (Eq. 9-11). The data is plotted as a box and whisker plot.
357 Resulting parameters for (D) and (F) are in Table S2.

358 Calibration and sensitivity of pancreatic tumour growth

359 The VCBM simulation of pancreatic tumour growth in the absence of treatment depicts invasive and disorganised
360 movement of cancer cells into surrounding healthy tissue (Figure 4A). To calibrate tumour growth parameters in the
361 model, we used an exhaustive numerical search of the parameter space using a Latin Hypercube Sampling for
362 gagerAmaxsPo and pycc, where we were minimising the least squares of the simulation with the in vivo tumour volume
363 of Mia-PaCa-2 cells over 33 days (Figure 4B, Table S3). To obtain an understanding of the stochasticity in our model,
364 we fixed the parameter values obtained and we simulated the model 100 times and plotted the tumour volume over 33
365 days. From Figure 4B, while the growth is varied at points, there are no distinct outliers or unusual tumour growth
366 rates, and the standard deviation throughout the entire period of observation remains small. In addition, the simulations
367 sit within the in vivo tumour growth measurements for pancreatic cancer growth. The histogram for the number of
368 MCC:s across the simulations (Figure 4C) shows only a small number of MCC:s are created over the 33 days of growth,
369 which is realistic when considering the ratio between a single cell agent in the model and a real cell in a biological
370 tumour and which matches findings that MCCs will compose only a small subset of the tumour [78-80].

371 To analyse the drivers of pancreatic tumour growth dynamics in our model, we conducted a detailed
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Figure 4 Using the VCBM to model control tumour growth. (A) Snapshots of the model simulation at 0, 5 and 10 days with cancer cells in
orange, MCCs in blue and healthy cells in grey (a zoomed in version is in Figure S6). (B) Mia-PaCa-2 tumour volume over 33 days measured in
vivo in mice (black, n=4). Overlaid is the tumour volume from the VCBM simulation (pink, n=100) with parameters from Table S3. (C) MCC
counts in the VCBM simulations (n=100). (D) Sensitivity analysis of control tumour growth. Maximum tumour volume over 33 days for
perturbations of parameters with weights of 0.25, 0.75, 1.25, 1.75 and 2.25, and spatial plots of large and small tumours simulated using the depicted
weightings. In the heatmap, each pixel represents 30 averaged simulations with two parameters. In the boxes, the parameters vertically and
horizontally in the grid are the weightings in ascending order, with each pixel being a “coordinate” representing the weighting for each parameter

and the result from 30 averaged tests. Diagonal pixels only use individual parameters with different weightings.

sensitivity analysis. A systematic multi-parameter sensitivity analysis was performed for p=
[Pos Pmccr Amax» Jages Page ] Using weighting identified by Wells et al. [81] (Figure 4D). This sensitivity analysis can
identify combinatorial influences of multiple parameters and elucidate systemic features of the model. The average
tumour volume predicted by the model at day 33 for 10 simulations was recorded for each parameter set. Pairs of
parameters were varied, with each cell of Figure 4D depicting the weighting applied to each parameter in p from
0.25, 0.75, 1.25, 1.75, and 2.25. This allowed for all combinations of alterations for two parameter values to be tested.

The time taken for a cell to prepare for mitosis, g, 4., has the greatest impact on final tumour volume (Figure

4D). Increasing g,4, decreases tumour volume and conversely a decrease in g4, increases the final volume. As a
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389 result, the model predicts that if cells take longer to move through the cell cycle and undergo mitosis this will result
390 in a smaller tumour volume. Reducing the maximum distance, a cell can be from the periphery and still proliferate,
391 dmax» also appears to have a decreasing effect on the final tumour volume. This is to be expected, as reducing the
392 proliferating cell rim (through decreasing the distance from the periphery for which cells can proliferate) will reduce
393  the number of cells available to proliferate and subsequently reduce the tumour volume. Decreasing the value of d,,
394 only appears to have a significant impact on the final tumour volume when the weighting applied is < 50%. In
395 comparison With dp,q, and ggg, the tumour volume is insensitive to changes in both the probability of a cell
396 proliferating if it has reached mitosis, p,, and the probability of a new pancreatic cancer stem cell being created, pycc-
397 The time taken for a cell to reach adult size (when it can proliferate), p,g., similarly has a negligible impact on the
398  tumour volume.

399

400 Intratumoural implantation provide an alternate effective protocol

401  Before quantifying the efficacy of gemcitabine-loaded fibres, we first looked to evaluate the impact of single point
402 free-drug injections (Figure 1) of gemcitabine on the tumour volume. Simulating single point free-drug injections
403 with the VCBM-PDE is a simplification of the full model presented in Eqs. (1)-(4) where F(r,y,t) = 0. More details
404 on this can be found in the Technical Supplementary Information. We considered free-drug injections of
405 gemcitabine as administered along a radial axis of the tumour in either a single dose or four free-drug injections which
406 are rotationally symmetric (Figure SA). In the case of the four injections, the total dosage is spread across the
407 injections so that the total amount of drug administered is conserved. Simulations of the model under the different
408  injection protocols can be found in Figure 5B-C and Figure S7. The sensitivity of parameter values governing tumour
409 volume were again probed, now under a single administration of gemcitabine at the centre of the tumour (Figure SD-
410  E and Figure S8). The same trends with g, 4. and d,,,, were observed; however, an additional parameter, which
411 represents the concentration the drug required to have an impact on the tumour volume, /Cs,, was found to influence
412 the volume under further perturbations of the parameter value (Figure SE). As expected, a lower value of I1Cs,, which
413 indicates that a smaller concentration of the drug is required for it to influence cancerous cells, leads to a lower tumour
414 volume, while an increase leads to a higher tumour volume when compared to original estimate for ICgj.

415 To determine the effect of injection placement on tumour volume over time, five placements of a single
416  injection were considered at a distance d,,, from the centre: a central injection (d,, = 0), and injections d,,, = 0.9 mm
417  from the centre, d,,, = 1.7 mm from the centre, d,, = 2.5 mm from the centre and d,, = 3.5 mm from the centre
418 (Figure 5A). For each of these placements, 30 simulations were run over 33 days and both the number of tumour cells
419 and the tumour volume over time were measured (Figure SF). For a single injection, distance did not impact the
420 effectiveness of the injection and the tumour volume is qualitatively similar. There was a deviation from the consistent
421 standard deviation width for injections further from the tumour, but this can be attributed to the method used to
422 calculate the tumour volume in terms of how it deals with tumour structures which are not part of the central mass.
423 The tumour volume was more significantly affected by distance in the case of four injections (Figure 5F), with free-
424 drug injections further away from the centre of the tumour performing worse than those intratumoural injections.

425 Primarily, single free-drug injections implanted peritumourally may encourage branching of external tumour
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427 Figure S Impact of intratumoural free-drug point injections on tumour cell eradication. (A) Tumour growth was investigated under different
428 gemcitabine single free-drug injections: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre. Locations of
429 injections on the tumour surface for single or four single free-drug injections is depicted schematically. (B) VCBM with a single central injection
430 and the drug concentration at 24h. (C) The tumour volume with four injections placed 30um from the centre, and the drug concentration at each
431 location at 6h. (D) Maximum tumour volume over 33 days for +£50% perturbations in parameter values compared to the normal value (i.e. baseline
432 parameter values). (E) Maximum tumour volume over 33 days for different perturbations of ICs, compared to the normal volume. (F) The tumour
433 volume over 33 days with each injection protocol, averaged over 10 simulations.

434 structures in the model, and hence increase the calculated volume as it is based on the maximum distance from the
435 centre of the tumour to the edge. While we present an approximation for tumour volume and placement of injections
436 in units relevant to in vivo models (i.e. mm? and mm respectively), more work needs to be done to validate that the
437 efficacy of treatment predicted by the model would map to the human scale.

438

439 Fibre location and release kinetics are a major driver of tumour arrest or tumour growth

440 Using the VCBM-PDE, we analysed the impact of varying the position of the fibre and the initial drug concentration
441 on the tumour growth dynamics (Figure 6A). We introduced three classifications for the tumour growth dynamics:
442 tumour eradication (i.e. a tumour volume <1mm?®) tumour stabilisation, i.e. a tumour volume at day 33 less than the

443 initial tumour size (=% 100mm?), and tumour growth, i.e. a tumour volume on day 33 greater than the initial tumour
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444 volume. Large concentrations of gemcitabine loaded into the fibre positioned at d,,, = 3.5 mm or d,,, = 4.3 mm from
445 the tumour centre were unable to stabilise or eradicate the tumour, also known as tumour arrest (Figure 6B-C and
446 Figure S10). Once the fibre was positioned closer to the tumour centre (< 1.7 mm) lower concentrations of drug were
447 sufficient to result in stabilisation of the tumour growth (Figure 6B). It was only with high drug concentration and
448  centered fibres that we saw complete tumour eradication (Figure S9). There are large variations in the response of
449 tumour growth to the different protocols, suggesting that tumour stabilisation or arrest might be achievable for some
450 tumours whereas others might experience tumour growth even in the presence of drug-loaded fibre.

451 To then analyse the effects of changes to the drug release profile on the tumour growth, we investigated four
452 different release profiles: constant release, exponential release, sigmoidal Emax/Imax release profiles [82—84] (See
453 the Technical Supplementary Information, Section TS3). Each of these release profiles were parameterised by a
454 release rate y and for the Emax and Imax curves a half-effect term 7. The different release profiles were tested with
455  the fibre placed either centrally (intratumourally) (Figure 6D) or on the periphery of the tumour (peritumourally)
456 (Figure 6E). The four different release profiles (constant, exponential, sigmoid emax, sigmoid imax) were tested with
457 8 different release rates. For each parameter value,10 simulations were run over 33 days, with an initial amount of 500
458  ug of gemcitabine.

459 For fibres positioned in the centre (Figure 6D), it is possible to eradicate the tumour with all release profiles
460 considered given a small enough value of y. In comparison, none of the drug release profiles resulted in tumour
461 eradication when positioned peripherally (Figure 6E). However, interestingly an exponential release profile with a
462 release rate of y = 107* results in the greatest decrease in tumour volume. This ideal release rate is likely because it
463 allows the drug concentration to remain in the therapeutic range and kill newly developed pancreatic cancer cells
464 aresting the process of cell proliferation. Comparing the drug release profiles (Figure S11), we see that the exponential
465 release rate is similar to the sigmoid release profiles, but slightly steeper initially, suggesting that a smooth release
466 rate with a sufficiently large initial drug release might be an optimal protocol to achieve a reduction in tumour size.
467

468  Discussion

469

470 PDAC is a difficult-to-treat cancer with a poor prognosis. Novel therapeutic interventions are desperately needed to
471 improve patient survival. While chemotherapy drugs, such as gemcitabine, have shown durable efficacy for pancreatic
472 cancer, there has been little to no improvement in patient survival in the last 30 years [85]. PDACs are notorious for
473 a dense fibrotic stroma that is interlaced with ECM [86] and is a major cause of therapeutic resistance [87]. One way
474 of improving drug retention at the tumour site, and by consequence increase tumour eradication and patient survival,
475 is through sustained-delivery devices (Figure 1). Polymeric fibres loaded with gemcitabine have shown increased
476 therapeutic efficacy over conventional treatment delivery. To further analyse the potential of these novel therapeutic
477 implants, we have designed a hybrid Voronoi cell-based model (VCBM)-partial differential equation (PDE) model to
478 describe pancreatic tumour formation in healthy pancreatic tissue and the resulting effect of gemcitabine on the tumour
479 tissue when delivered locally. With this model, we considered both the impact of a single fibre implanted with varying

480 drug release profiles and hypothesised alternative and more effective treatment protocols.
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482 Figure 6 Comparison of different fibre release and placement options. (A) Tumour growth was investigated under different gemcitabine-loaded
483 fibre placements d,,,: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre and 4.3 mm from centre. Locations
484 of fibres on tumour surface for single implantations is depicted schematically. (B) A heatmap for the averaged final state of a tumour after 33 days
485 of simulation for different initial injection concentrations and fibre placements. “Eradicate” denotes a tumour volume below 1mm3, “stabilise”
486 denotes a tumour volume less than the initial tumour volume, and “growth” denotes a tumour volume greater than the initial tumour volume. (C)
487 The mean (solid lines) and standard deviation (shades areas) of the tumour volume over 33 days for different fibre placement options with
488 corresponding values highlighted in (B). (D) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release
489 profiles with a central fibre placement. (E) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release

490 profiles with a fibre placed on the edge of the tumour (50um away from centre). See Section TS3 of the Technical Supplementary Information

491 for more details on these release functions.

492 The model was calibrated to data and with these estimates, a parameter sensitivity analysis then revealed that
493 the fundamental driver of tumour growth in our model was the rate of cell mitosis. The idea that the cell cycling time

494 is a fundamental part of tumour progression has been found in other mathematical models [88], suggesting that the
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495 model’s sensitivity in terms of tumour volume is in line with other models in the literature. It is also known that
496 molecules can modulate the cell cycle of cancer cells, changing the cancer aggressivity. For example, melatonin is a
497 hormone known for its antitumour efficacy as it significantly increases the duration of the cell cycle of human breast
498 cancer cells [89]. Given a heterogeneous cohort of individuals with varying degrees of tumour growth rates, our model
499 suggests that the driver of these differences is most likely the cell cycling rate. Drugs targeting this should, therefore,
500  be considered.

501 Depending on the cancer type, administering an intratumoural injection of a drug can be extremely difficult
502 and administering treatments on the periphery can be an easier course of action. Simulating the model, we found that
503 intratumoural administration of gemcitabine-loaded fibres significantly outperforms peritumoural administration both
504 in terms of the number of fibres and fibre placement. However, there is a threshold distance from the tumour to achieve
505 an effective treatment, beyond which placing fibres further into the tumour bulk sees no added benefit. There is a
506 clear benefit to increasing the dosage multiplicity and spreading the administered drug out amongst the tumour
507 compared to a single high dose. Tumour volume was most significantly decreased when four free-drug point injections
508 were administered compared to a single free-drug point injection. This proposes the existence of a potential threshold
509 above which increasing the multiplicity of dosages or dosage size has a negligible effect over spreading out the
510  dosages.

511 The location of the fibre and the total drug concentration in the fibre was a major driver of tumour eradication.
512 For fibres located within the centre of the tumour with a significantly high drug concentration, it was possible to
513 completely eradicate the tumour. Moving the fibre farther away from the centre, we found that there was no
514 concentration of drug that would inhibit growth. This suggests that a large amount of drug from the implants is lost to
515 the surrounding tissue, and this has detrimental effects on the efficacy of these devices. Fortunately, simulations show
516 there is a minimal concentration of drug necessary for stabilisation, allowing these predictions to be used a way to
517  guide dosage so that toxicity is minimised and efficacy is maximised.

518 The release of the drug from the fibre has a major effect on the resulting tumour volume. Implementing an
519 exponential drug release profile, we were able to optimise the treatment to reduce the tumour size most significantly.
520 This suggests that an initial high dosage of drug followed by a slow decline in the drug release may be an optimal
521 protocol. This may be because it initiated a large amount of cell death initially, followed by a slower diffusion to reach
522 remaining viable cells. While exciting, an exponential release profile needs to be tested experimentally both for its
523 feasibility for the polymer release and to verify the predicted efficacy.

524 More recently, research has been focused on combining gemcitabine with other drugs to improve its efficacy.
525 Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) administered in combination with gemcitabine [9] is one of
526 the standard of care treatment regimens that has shown an increase in overall survival in patients with advanced PDAC,
527 as shown in a Phase I/II clinical trial [9]. A phase III clinical trial showed that gemcitabine and erlotibin also
528 significantly increased overall survival in advanced PDAC patients compared to gemcitabine alone [90, 91].

529 Due to wanting to reduce the computational complexity of the VCBM, we made some simplifying
530 assumptions that have introduced limitations into our model. To avoid simulating excessively large numbers of cells,

531 we have chosen to scale the spatial unit appropriately so that we simulate on the order of ~10° cells. An improvement
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532 for this model, could be to parallelise the agent update step to increase the speed of the simulation. In addition, we
533  consider only a 2-dimensional cross section of the tumour, which is a simplification given tumour’s grow in 3-
534 dimensional environments. We feel that since we model neighbouring tissue as having a homogenous effect on tumour
535 growth, there would be no significant impact of extending our model to 3 dimensions. Lastly, we model cell uptake
536 by point sink terms; however, a cell would uptake drug across its surface area through drug molecule binding and
537 internalisation. It would be possible to model this by extending the framework from a single point uptake to a uniform
538  uptake across a cell’s defined Voronoi cell region.

539 There are considerable avenues for future extensions of this work, and we feel the platform we have built is
540 easily extendable by other computational oncologists. In particular, future modelling could extend the model to
541 account for the dense fibrotic nature of PDAC [86, 87] and investigate the impact the release and delivery of drug. In
542 addition, the model could be used to simulate the efficacy of dual drug-loaded polymer and verify whether
543 improvements on the current treatment protocol exist. There are many applications of degradable polymeric drug
544 delivery systems in cancer therapy [10], for example, Rezk et al. [10] developed a pH-sensitive polymeric carrier to
545 study the local delivery of anticancer drug bortezomib. They fitted the release profile of the drug from their carrier
546 system to a mathematical formalism. Using our pancreatic cancer growth VCBM, it would be possible to feed in their
547 drug release mechanism and simulate the efficacy under alternative protocols and predict the remaining tumour
548 volume. Lastly, while we did not consider gemcitabine resistance in our model, it does occur in PDAC [3, 4]. A simple
549 extension of the model could consider the impact of resistance on the performance of therapy like other works on
550  resistance of chemotherapeutics using mathematical models [22, 92].

551

552 Conclusion

553 Treatment for cancers with a poor prognosis, such as PDAC, are in vital need of novel therapeutic approaches that
554  provide sustained, heightened, localised drug concentrations. The computational platform developed in this work can
555 recapitulate spatially heterogeneous tumour growth and treatment with the chemotherapy drug gemcitabine.
556 Investigating the efficacy of gemcitabine released from a degradable polymeric fibre implant, we are able to suggest
557 that a minimum dosage for maximum efficacy exists based on the location of the device within the tumour.
558 Furthermore, certain release profiles are significantly more effective than others, suggesting that the way in which
559 drug is released from these devices is crucial to improving patient treatment. Moving forward, a study of this form
560 could be used to help inform experimental design and be integrated into future device development.
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