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Abstract
Background

The integration of multi-omics information (e.g., epigenetics and transcriptomics) can be useful
for interpreting findings from genome-wide association studies (GWAS). It has additionally been
suggested that multi-omics may aid in novel variant discovery, thus circumventing the need to
increase GWAS sample sizes. We tested whether incorporating multi-omics information in earlier
and smaller sized GWAS boosts true-positive discovery of genes that were later revealed by
larger GWAS of the same/similar traits.

Methods

We applied ten different analytic approaches to integrating multi-omics data from twelve sources
(e.g., Genotype-Tissue Expression project) to test whether earlier and smaller GWAS of 4 brain-
related traits (i.e., alcohol use disorder/problematic alcohol use [AUD/PAU], major depression
[MDD], schizophrenia [SCZ], and intracranial volume [ICV]) could detect genes that were revealed
by a later and larger GWAS.

Results

Multi-omics data did not reliably identify novel genes in earlier less powered GWAS (PPV<0.2;
80% false-positive associations). Machine learning predictions marginally increased the number
of identified novel genes, correctly identifying 1-8 additional genes, but only for well-powered early
GWAS of highly heritable traits (i.e., ICV and SCZ). Multi-omics, particularly positional mapping
(i.e., fastBAT, MAGMA, and H-MAGMA), was useful for prioritizing genes within genome-wide
significant loci (PPVs = 0.5 - 1.0).

Conclusions

Although the integration of multi-omics information, particularly when multiple methods agree,
helps prioritize GWAS findings and translate them into information about disease biology, it does
not substantively increase novel gene discovery in brain-related GWAS. To increase power for
discovery of novel genes and loci, increasing sample size is a requirement.
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Introduction

Genome-wide association studies (GWAS) have proven to be a uniquely effective tool for
investigating the genetic architecture of complex traits. They have provided insights into the
polygenic contributions of common variants, and vyielded replicable genetic signals (1,2).
However, for complex genetic traits, particularly for psychopathology, the number of cases
needed for discovery is high, and depends on the heritability, polygenicity, heterogeneity,
diagnostic accuracy, and prevalence of the trait (3,4). Schizophrenia, a highly heritable disorder,
has witnessed linear increases in GWAS discoveries once a critical threshold was reached (5)
(e.g., from 7 loci for 17,836 cases (6) to 270 loci for 69,369 cases (7)). Depression required a
much larger sample size (5). Discoveries for substance use disorders have lagged, with evidence
of greater polygenicity. Despite hundreds of loci for smoking behavior phenotypes (8), only 5
genome-wide significant loci have been identified for nicotine dependence (9). A similar broader
non-diagnostic index of problematic alcohol use (2) yielded 29 loci, but findings are still quite
limited for other drugs: only 10 loci for opioid use disorder (31,473 cases) (10) and 2 for cannabis
use disorder (14,080 cases) (11). In parallel to GWAS, there has been an explosion in the multi-
omics data (e.g., gene expression, Hi-C) which are now available to interrogate GWAS findings.
For some traits, expression data can also be drawn from model organisms in experimentally
controlled exposure and behavioral paradigms (12). As greater evidence arises for genome-wide
significant signals to be enriched in regulatory regions, these multi-omics data have proved to be
valuable in gene prioritization. There has also been speculation that leveraging these ever-
increasing omics sources might “recover” true signal from smaller GWAS, i.e., signals that may
not meet criteria for genome-wide significance but are supported by multi-omics data, and
eventually are identified as GWAS become larger, thus serving as a substitute for additional
sample size (13-15).

We tested the hypothesis that the application of existing omics data and methods to a
smaller-sized GWAS will yield additional “true positive” discoveries that would be found in the
next, larger, GWAS. To test this hypothesis with respect to brain-related phenotypes, we selected
four traits: (a) Alcohol use disorder/Problematic alcohol use (AUD/PAU), representing either
diagnostic alcohol use disorder or an amalgam of diagnostic AUD and a non-diagnostic screener
for problem drinking that is highly correlated with AUD; (b) Schizophrenia (SCZ), one of the
earliest psychiatric disorders with many genome-wide significant findings that have increased with
increasing sample size, making it an ideal reference trait for this test; (c) Major depression (MDD),
a common, less heritable but highly polygenic and more clinically heterogeneous trait that is
witnessing increasing discoveries in genome-wide significant loci, but at a much steeper cost of
sample size. MDD is common, less heritable than SCZ and clinically heterogeneous and highly
polygenic, similar to AUD/PAU; and (d) Intracranial volume (ICV), a highly heritable phenotype,
which we selected to assess whether brain-derived omics data would be superior indices of
genetic variability in the brain per se.

We addressed three primary hypotheses: (a) does incorporation of multiple omics (multi-
omics) sources to annotate the findings of the smaller GWAS recapitulate genes identified in the
subsequent GWAS of the same or genetically closely-related trait (i.e., genetic correlation > 0.7),
while minimizing false positives; (b) If multi-omics data can recover novel genes then which omics
data and methods produce the most reliable predictions; and (c) does the multivariate
consideration of these various sources of data improve prediction of genes? To test these, we
examined sequential pairs of GWAS for a given trait (i.e., AUD/PAU, SCZ, MDD, ICV), where the
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latter GWAS, due to inclusion of more subjects, increased the number of genome-wide significant
findings. Across analyses, we used genes, rather than variants, as the unit of discovery, because
multi-omics data are gene-focused. We used a combination of omics data sources (including
cross-species data) and statistical methods to annotate each GWAS. Key criteria were the
positive predictive value (PPV, the proportion of genes identified in a larger GWAS relative to all
genes predicted to be relevant using omics approaches in the prior, smaller GWAS), and the
sensitivity (the proportion of genes identified by both the larger and smaller GWAS relative to all
genes identified in the larger GWAS).

Methods
GWAS summary statistics

For each trait, analyses started with summary statistics from the smaller GWAS of the trait, ran a
series of bioinformatic methods to identify additional genes, and compared the results to a
subsequent GWAS of the trait with a larger sample size. Analyses focused on four traits: alcohol
use disorder/problematic alcohol use (AUD/PAU) (1,2), major depressive disorder (MDD) (16,17),
schizophrenia (SCZ) (7,18), and intracranial volume (ICV) (19). See Table 1 for study details.

Post-GWAS multi-omics methods

Eight post-GWAS multi-omics methods (Table 2) were used to identify genes associated with
each ftrait, based on the results of each GWAS, including the max-SNP p-value (20), MAGMA
(21), H-MAGMA (22), fastBAT (23), DEPICT (24), FUSION (25,26), S-MultiXcan (27), and SMR
(28). These methods were selected as they are among the most widely-used and are
representative of the major method types (i.e., positional: MAGMA, H-MAGMA, and fastBAT,;
expression-based: FUSION, S-MultiXcan, SMR, and DEPICT). These methods were applied to
both data waves of each trait (i.e., both the larger and smaller GWAS). Analyses focused on gene-
level associations, to incorporate information across methods and species. MAGMA was applied
using the FUMA web platform (29), fastBAT, DEPICT, S-MultiXcan, and SMR were applied using
the Complex-Traits Genetics Virtual Lab (30). Among the multi-omics methods used, FUSION
and S-MultiXcan used RNA expression in the brain from the GTEx Consortium (31), and SMR
used RNA expression in the brain from PsychENCODE(32) and the Brain-eMeta (33) study, as
well as plasma protein expression from INTERVAL (34) (Table 1B).

Additional multi-omics data

Additional multi-omics data were drawn from published data sets: genes differentially expressed
in human brain tissue (Table 1C) (35-37) and genes differentially expressed in brains of mouse
models of each disorder (Table 1D). For AUD/PAU, data came from alcohol-naive mice from a
line bred for binge-drinking-like behavior, High Drinking in the Dark mice (38). Results from 7
tissues were integrated using an aggregated Cauchy association test (39), which is also used by
the FUSION TWAS method to integrate across tissues (25). An additional list of genes from rodent
studies enriched for the heritability of alcohol use disorder was included as an additional method
(12). MDD-associated genes came from a study examining differentially expressed genes in two
brain tissues across three mouse chronic stress models (40). Results within each model were
similarly combined across tissues using an aggregated Cauchy association test. As results were
only reported for nominally significant genes, precluding a meta-analysis combining models, the
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minimum p-value across the three models was assigned as a gene-level p-value. SCZ-associated
genes came from a study examining differentially expressed genes in one brain tissue across
three mouse models of developmental disruption. Results were combined across models using
Fisher's combined probability test (41).

Predictive value of significant genes

Multi-omics methods were applied to summary data from the smaller GWAS. Genes identified by
each multi-omics method were defined as those surviving false discovery rate correction within
method. Genes that were either not measured in a data source (e.g., RNA expression was too
low to measure), or unreported (i.e., some data sources only reported genes that were at least
nominally-significant) were marked as showing no association for that source. For each trait, the
target set of genes was defined as genes close (i.e., 10 kb) to a genome-wide significant locus
(p<5x1078) in the larger of the two paired GWAS.

Analyses for novel gene discovery examined genes that were not proximal to a genome-
wide significant locus in the smaller GWAS but were identified by individual multi-omics methods
or combinations of methods. These analyses tested whether these genes were identified as
genome-wide significant in the larger GWAS. Analyses for prioritization examined genes identified
by proximity to a genome-wide significant locus in the smaller GWAS. These analyses tested if
these genes were more likely to be identified as genome-wide significant in the larger GWAS if
they were also identified by individual multi-omics methods or combinations of methods.

Two primary performance metrics were used, the positive predictive value (PPV) and
sensitivity (42). The PPV, which ranges from 0-1, reflects the probability that a positive prediction
reflects a true genetic signal (i.e., the ratio of the true positive rate to the sum of the true and false
positive rates). PPV reflects what proportion of target genes identified in the later, larger, GWAS,
are genes predicted to be relevant using omics approaches in the prior, smaller GWAS. For
example, a PPV of 0.75 would mean that 75% of the genes identified by multi-omics data in the
smaller GWAS are positionally significant in the larger GWAS. Sensitivity, which also ranges from
0-1, reflects the proportion of the positionally significant genes in the larger GWAS captured by
the test (the ratio of the true positive rate to the sum of the true positive and false negative rates).
That is, of the genes positionally identified in the later, larger, GWAS, what proportion are found
using multi-omics data in the prior, smaller, GWAS? For example, a sensitivity of 0.5 would mean
that multi-omics identified 50% of all the positionally significant genes in the later GWAS. Thus,
an ideal test would have both a high PPV and a high sensitivity (i.e., the test captures the majority
of the significant genes in the larger GWAS, with very few incorrect predictions). A test with a high
PPV and low sensitivity misses the majority of the significant genes in the larger GWAS, but the
few that are identified are mostly correct predictions. Conversely, a test with high sensitivity and
a low PPV captures the majority of the significant genes in the larger GWAS, but at the cost of a
high number of incorrect predictions.

Multivariate machine learning gene prioritization

Training procedure. As the predictions of individual methods are not perfectly correlated
(Supplemental Figure 1), and methods may only partially contribute to prediction (i.e., may need
to be weighted), a multivariate combination of methods might improve performance. Models were
trained, using only the earlier GWAS, to predict which genes were positionally linked to genome-
wide significant SNPs using data from multi-omics methods. Summary data in the smaller GWAS
were split into a training and testing component. We estimated PPV and sensitivity using the hold-
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out (testing) set, and then subsequently in the larger future GWAS. For example, in MDD, ML
models were trained using half the chromosomes from Howard et al. (17). These models were
then tested in the remaining chromosomes of Howard et al., which yielded a predicted probability
of how likely a gene is to be proximal to a genome-wide significant locus, based on multi-omics
data. A probability threshold was selected by examining PPV and sensitivity distributions in
Howard et al. We then took the genes which surpassed the identified threshold and assessed the
PPV and sensitivity of those predictions in the larger Levey et al. (16) GWAS.

ML Algorithms. GWAS of psychiatric disorders and brain-related traits are currently only
powered to find small proportions of variants associated with these traits. Standard ML classifiers
may thus not be appropriate, as these methods perform best when data are evenly balanced (i.e.,
when 50% of genes are significant). Therefore, we used a combination of up-sampling,
bootstrapping, bagging, and ensemble learning in two algorithms. Missing data across methods
was handled with a median impute (bagimpute and K-means impute were unreliable due to high
missingness). The first method was AdaBoosting (43); a tree ensemble method that was originally
developed to predict rare outcomes (44). AdaBoosted trees were bagged with up-sampling
minority cases. The second method was model-average neural network (ANN) (45); a series of
simple functions which attempt to capture patterns in the data. The model ANN averages across
many runs to develop a prediction. An ensemble prediction was then generated by averaging the
predictions from the two approaches. All machine learning models were trained with 3-fold cross-
validation with up-sampling of genes containing GWAS-significant SNPs. This cross-validation
and training was repeated 10 times (bootstrapping with replacement), increasing the proportion
of genes containing GWAS-significant SNPs in the training data.

Finally, we determined feature importance to identify which multi-omics methods most
contributed to gene identification. For ANN, an ROC curve was generated for each variable
using sensitivity and specificity, and the probabilities were cut off at a series of (random) points.
Using the trapezoidal rule, the area under the ROC was calculated for each multi-omics method
and used as a measure of feature importance (46). When using AdaBoost we used tree-specific
feature importance, computed by summing how much the model improved each time it used a
multi-omics method (47).
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Results

Correlations between gene sets identified by multi-omics were quite low (median=0.12, range=0-
0.7; Supplementary Figure 1). Related methods identified more similar gene sets, though
correlations remained moderate (positional: median=0.4, range=-.27-0.63; expression-based:
median=0.38, range=0.22-0.72). Genes identified by methods using GWAS summary statistics
showed very low overlap with genes identified by post-mortem gene expression studies in
humans and rodents and with rodent-based gene set analyses (range=-0.01-0.02).

For novel gene discovery (Figure 1), no method achieved a PPV greater than 0.2 for any
trait (i.e., 80% of genes identified by multi-omics were not proximal to a genome-wide significant
locus in the larger GWAS) with the exception of fastBAT for AUD/PAU, which correctly identified
a single gene (ADH1A), yielding a PPV of 1.0 (Figure 1A). Similarly, upon examination of
agreement across methods, none surpassed a PPV of 0.22 for any trait (Figure 1B).

For gene prioritization, genes that were identified both by proximity to a genome-wide
significant locus and by multi-omics were more likely to be significant in the larger GWAS than
genes only identified by a genome-wide significant locus (Figure 2A). However, no method had
both a high PPV and a high sensitivity for any trait. Expression-based methods had a slightly
higher PPV than position-based methods, but position-based methods attained a much greater
sensitivity for all traits. Analyses examining agreement between methods found that genes
identified by more methods (regardless of the specific method) had a higher PPV across all traits,
though with a lower sensitivity (Figure 2B). That is, when more methods agreed, the gene was
more likely to be positionally significant in the larger GWAS. However, the low sensitivity indicates
that this approach misses the majority of findings in the larger GWAS.

Across both novel gene discovery and gene prioritization analyses, genes identified by
more methods in the smaller GWAS tended to have a higher -log10(p) value in the larger GWAS
and similarly tended to be identified by more methods in the larger GWAS (Supplemental Results;
Supplemental Figures 2&3). Supplemental analyses additionally examined performance across
all possible combinations of multi-omics methods, as well as for different definitions of a
‘significant’ gene in the larger GWAS. No combination performed best across all traits, and the
pattern of associations for different definitions of ‘significant’ (i.e., p<5x10 or identified by multi-
omics in the larger GWAS) remained similar (Supplemental Results; Supplemental Figures
48&5).

Machine learning

Model predictions are probability scores (i.e., the probability that a gene contains a genome-wide
significant SNP, based on multi-omics). The performance (PPV and sensitivity) of different cut-
offs was evaluated in the hold-out data from the smaller GWAS (Supplemental Figure 6). A
probability cut-off of 75% was selected for AdaBoost, 90% for the model-average neural net, and
50% for the ensemble of the two. The performance of each gene set was then assessed in the
later, larger GWAS (Supplemental Table 1). ML performance in the held-out data from the
smaller GWAS was moderately reflective of performance in the larger GWAS (Supplemental
Figure 7 A&B), with the exception of AUD/PAU. Novel gene discovery (Figure 1C) was the most
successful for SCZ (PPV = 0.67), though only a minority of novel genes were found (sensitivity =
0.066; i.e., 8 genes). Similarly, for ICV, one of the three identified genes was significant. Novel
gene discovery in AUD/PAU and MDD did not surpass a PPV of 0.1. AdaBoost attained moderate
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performance for gene prioritization across all traits (PPV = 0.48-0.75, sensitivity = 0.42-0.88;
Figure 2C). While the average neural net had a higher PPV for SCZ (0.8), this was at the cost of
much lower sensitivity (0.28). Examination of variable importance scores revealed that fastBAT,
MAGMA, and H-MAGMA were the primary contributors to prediction across models and methods
(Figure 3). DEPICT also attained a comparable level of importance for AUD/PAU in the average
neural net and for MDD in AdaBoost. In general, gene expression methods were the least
informative predictors.

Discussion

GWAS have provided unique insight into the genetic architecture of complex traits. Their
informativeness, particularly for complex and heterogeneous traits, is tightly dependent on sample
size. As increasing GWAS sample size is arduous and expensive, there is a natural desire to
identify additional sources of data that may increase signal within existing GWAS data. In
particular, it has been hypothesized that augmenting GWAS with other kinds of omics data (e.g.,
transcriptomics and data from non-human animal models) may boost signal within existing less
powered GWAS to circumvent the need for additional GWAS data. In contrast to this hypothesis,
we found that current omics approaches, in the context of existing GWAS sample sizes, does not
foreshadow later discoveries by larger GWAS. Increasing GWAS sample size is a requirement to
increase power for discovery of novel genes and loci.

Using a smaller GWAS and a subsequent larger GWAS of the same trait, we examined
whether applying multi-omics to gene identification in the smaller GWAS could identify genes that
will become significant in a future larger GWAS. No single method or combination of methods
achieved both a high PPV and sensitivity when “predicting” novel signals in a larger subsequent
GWAS (Figure 1). While machine learning out-performed individual methods and even linear
combinations of methods, it only correctly identified an additional 1-8 genes, and only for highly
heritable traits with a well-powered smaller GWAS (SCZ and ICV). This observation converges
with related work evaluating methods for SNP and locus annotation (13,14,48), which has
concluded that such methods can only marginally increase the number of true-positive
observations. Similarly, prior work examining positional gene-based methods in a simulated trait
with relatively few causal SNPs (n=602) observed a tradeoff between sensitivity and specificity
(49), which is also seen here. Overall, multi-omics data for novel gene discovery incur either a
high false-negative (i.e., they miss many novel discoveries) or a high false-positive burden (i.e.,
they have many findings which are not present when the sample size increases), and are thus
not a reasonable replacement for larger discovery samples.

As expected, GWAS-significant genes that are also prioritized by multi-omics were more
likely to replicate in future GWAS (Figure 2). However, the number of agreeing methods
necessary to attain even a moderate PPV (i.e., PPV = 0.6) differed for each trait (1-6), and no
single method or combination of methods performed the best across all traits (Figure 2,
Supplemental Figure 4). Machine learning (ML) performed similarly to the best-performing
individual and combinations of methods. Broadly, these results support current practices in the
field, wherein associations that are GWAS-significant and robust across multi-omics methods are
given the greatest credence, and suggest that further development of ML approaches to post-
GWAS multi-omics integration may be a fruitful avenue for prioritization within loci (50).

Despite the variation in method performance, positional methods (i.e., fastBAT, MAGMA,
and H-MAGMA) were frequently among the top performers. These achieved a comparable PPV
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to expression-based methods, with superior sensitivity. Positional methods were also the top
ranked by both machine learning algorithms (with the exception of MDD analyses with AdaBoost,
where fastBAT was second to DEPICT; Figure 3). Analyses defined an association in the larger
GWAS as those that are proximal (within 10 kb) to a GWAS-significant SNP, which could have
biased results towards position-based methods. This definition was selected as the most-proximal
gene has been found to be the most accurate method in cases where associated genes are known
and established (51). However, it is an imperfect approach, as many significant SNPs are not
proximal to a protein-coding region (51,52). Indeed, this observation was a major impetus for the
development of the expression-based multi-omics methods used here (22,26). Follow-up
analyses thus tested whether multi-omics could identify genes that would be Bonferroni-significant
in a similar multi-omics analysis of the larger GWAS (Supplemental Figure 8). Expression-based
methods largely achieved a higher PPV than the position-based methods (though not for
AUD/PAU), but at the cost of much lower sensitivity. This result suggests that expression-based
methods may have more method-specific variance in their results, leading to enhanced within-
method prediction and reduced cross-method prediction. This again emphasizes our observation
that agreement between methods leads to more reliable results.

Across analyses, the success of multi-omics approaches appeared largely to depend on
trait heritability and GWAS power. Analyses were the most successful in SCZ (the best-powered
GWAS), attaining the largest PPV and sensitivity. However, despite a relatively large sample size,
analyses were largely the least successful in MDD (the trait with the lowest SNP-based
heritability). AUD/PAU was an occasional exception to this general pattern, wherein PPV greatly
increased for each additional agreeing method for gene prioritization (Figure 2). Substance use
disorders are unique among psychiatric disorders, as there are a few large-effect loci mapping to
substance-specific receptors and bioavailability pathways (53). The increase in AUD/PAU PPV
likely reflects the relatively large effect size of genes in these pathways, and indeed it largely
included genes implicated in alcohol metabolism (i.e., ADH1B, ADH5, and ADH7). However,
these results more broadly suggest that multi-omics will be the least able to successfully prioritize
findings, and to identify novel associations, in traits where it would be the most useful (i.e., where
GWAS are particularly underpowered and no loci of large effect are evident).

Analyses focused on trait associations at the gene level, rather than individual SNPs (14).
This enabled the additional integration of multi-omics data that did not use GWAS information,
including results from post mortem studies of gene expression in patients and rodent models, and
a gene-set for AUD/PAU that integrates information from a variety of rodent data sources (12).
These methods were uniformly the least informative across all analyses. However, data from post-
mortem studies of MDD and SCZ, and the AUD/PAU rodent gene set, had a moderate PPV and
low sensitivity for gene prioritization. We note that we did not systematically query the literature
to derive comprehensive gene-sets for all traits. Indeed, the AUD/PAU rodent gene set, which
was derived from a systematic review of the literature (12), achieved a higher PPV and sensitivity
for AUD/PAU than data from individual studies of rodent models did for their respective traits. The
gene-level focus reflects an additional weakness of the omics-integration approach, in that it could
lead to improved knowledge of biology without narrowing down the identity of causal loci in human
populations. Thus, while recent related studies using locus-level analyses yielded similar findings
(14), we cannot rule out that alternative methods could have led to stronger results.
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We note some additional limitations of the present study. Analyses only used GWAS from
European samples. Recent work suggests that gene-level findings from expression-based
methods may be more replicable across ancestries than SNP-level effects (54). Thus, expression-
based methods may have superior performance in contexts that could not be evaluated in the
present study, owing to the lack of well-powered GWAS for brain-related traits in non-European
samples. We tested four different traits that are quite different, to cover a range of trait
characteristics, but we cannot exclude that some other traits might respond more or less
successfully to the integration of omics data. Lastly, the smaller GWAS were subsets of the
subsequent larger GWAS. This should have favorably biased the tests, but nevertheless they did
not perform well.

Conclusions

The present results demonstrate that multi-omics are not a replacement for increasing
GWAS sample size. Instead, results support the use of multi-omics as methods for prioritizing
genes that contain GWAS-significant loci. Underpowered traits (e.g., cannabis use disorder (11))
will require much larger sample sizes before even prioritization will be possible. We view the
combination of larger GWAS sample sizes and multi-omics method advancements as likely the
most fruitful avenue for identifying multiple plausible causal loci for brain-related traits.
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A: GWAS summary statistics

Trait Study Sample size # Genome-wide
risk loci
Alcohol Use Disorder Kranzler et al. 2019 (1) Ncases= 35,105 11
Ncontro= 172,697
Problematic Alcohol Use Zhou et al. 2020 (2) Nefrective= 300,789 | 29
Major Depressive Disorder | Howard et al. 2019 (17) cases= 152,648 | 51
Neontro= 562,035*
Major Depressive Disorder | Levey et al. 2021 (16) cases= 320,212* | 100
Neontroi= 581 ,929*
Schizophrenia Ripke et al. 2014 (18) Ncases= 36,989 96
Neontro= 113,075
Schizophrenia Ripke et al. 2020 (7) cases= 69,369 242
Ncontro= 236,642
Intracranial Volume (UK | Jansen et al. 2020 (19) N =17,062 8
Biobank only)
Intracranial Volume Jansen et al. 2020 (19) N =47,316 18
B: Post-GWAS multi-omics data sources
Name/type Study Sample size Notes
GTEXx — brain RNA GTEx Consortium, 2017 (31) 80-154 13 brain regions
PsychEncode — brain RNA | Wang et al. 2018 (32) 1,387 1 region
Brain-eMeta — brain RNA Qi et al., 2018 (33) 1,194 Meta analysis
across regions
and samples
INTERVAL -  plasma | Sun et al., 2018 (34) 3,301 -
protein levels
C: Human post-mortem brain gene expression
Trait Study Case/Control # Brain regions
Alcohol Use Disorder Rao et al., 2020 (35) 30/30 4
Major Depressive Disorder | Wu et al., 2021 (36) 101/96 7
Schizophrenia Collado-Torres et al., 2019 (37) | 286/265 2
D: Rodent post-mortem brain gene expression
Trait Study # Models # Brain regions
Alcohol Use Disorder Ferguson et al., 2019 (38) 1 7
Major Depressive Disorder | Scarpa et al., 2020 (40) 3 2
Schizophrenia Donegan et al., 2020 (55) 3 1
E: Rodent gene set
Trait Study Method -
Alcohol Use Disorder Huggett et al., 2021 (12) GeneWeaver -

Table 1. Data sources. A) Publicly available summary statistics for each trait used in post-GWAS
multi-omics analyses. * = Sample size omits data that is not publicly available. The number of
significant risk loci (p<0.05x10%) was calculated in FUMA, using publicly available summary
statistics. B) Publicly available data used in post-GWAS multi-omics methods (see Table 2). C)
Published data on genes which are differentially expressed in the brain, comparing participants
with each disorder to controls. D) Published data on genes which are differentially expressed in
mouse models of each disorder. E) Published rodent gene set on genes implicated in rodent

models of alcohol use.
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Method Description
SNP-based Gene is assigned the p-value of the most significant SNP within 10kb of its
boundaries (20).

MAGMA Set-based analysis, regression-based p-values (21).

H-MAGMA Incorporates chromatin interaction profiles for gene boundaries (22) .
fastBAT Fast set-based analysis, simulation-based p-values (23).

DEPICT Predicts gene function to prioritize the most likely causal genes (24).
FUSION Transcriptome-wide association study (TWAS) using GTEx gene expression

to impute gene expression. Integrates across multiple tissues using an
aggregated Cauchy association test (25,26).

S-MultiXcan Transcriptome-wide association study (TWAS) using GTEx gene expression
to impute gene expression. Integrates across multiple tissues using
multivariate regression (27).

SMR Summary mendelian randomization. Tests for mediation of genetic effects by
gene or protein expression, using Brain-eMeta, PsychEncode, and INTERVAL
(28).

Table 2. Post-GWAS multi-omics methods. Methods used to augment GWAS summary
statistics and identify gene-level associations.
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Figure 1. Multi-omics cannot reliably identify true-positive novel genes. Genes that are not
proximal to a GWAS-significant locus but are identified by multi-omics methods in the smaller
GWAS are not likely to contain a GWAS-significant locus in the larger GWAS. A) The positive
predictive value and sensitivity for each method, and for all methods combined (Any). B)
Performance for increasing agreement between multi-omics methods. C) Performance of
machine-learning (ML) in the larger GWAS (ML was trained in the smaller GWAS). Points
represent the estimates, while horizonal bars reflect the 95% CI. AUD/PAU = Alcohol use
disorder/Problematic alcohol use; MDD = Major depressive disorder; SCZ = Schizophrenia; ICV

= |ntracranial volume.
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Figure 2. Multi-omics is useful for prioritization of GWAS-significant genes. Genes that are
proximal to a GWAS-significant locus and are identified by multi-omics methods in the smaller
GWAS are likely to contain a GWAS-significant locus in the larger GWAS. A) The positive
predictive value and sensitivity for each method, and for all methods combined (Any). ‘SNP-only’
= the gene is proximal to a GWAS-significant locus, but is not identified by multi-omics. B)
Performance for increasing agreement between multi-omics methods. C) Performance of
machine-learning (ML) in the larger GWAS (ML was trained in the smaller GWAS). Points
represent the estimates, while horizonal bars reflect the 95% CIl. AUD/PAU = Alcohol use
disorder/Problematic alcohol use; MDD = Major depressive disorder; SCZ = Schizophrenia; ICV
= Intracranial volume.
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Figure 3. Machine learning variable importance. A) Average neural net variable importance using
the area-under the ROC method. The maximum possible importance is ‘“1.0’. B) Tree-based
importance in AdaBoost. The maximum possible importance is “100’. AUD/PAU = Alcohol use
disorder/Problematic alcohol use; MDD = Major depressive disorder; SCZ = Schizophrenia; ICV
= Intracranial volume.


https://doi.org/10.1101/2022.04.13.487655
http://creativecommons.org/licenses/by-nc-nd/4.0/

>
c
o
2
c
<
S]
o
0
0
N
9)
<

@
)

Any

MAGMA -

fastBAT A

H-MAGMA -

FUSION A

sMetaXcan 1

SMR
Brain—eMeta
SMR
PsychENCODE
SMR

Proteome

DEPICT

Human
post—-mortem
Mouse
post—-mortem

i i A s

Mouse gene set

00 02 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Positive predictive value Sensitivity

w
=
o

©c o ©9
A o o

o
N

Positive predictive value

o
o

012345678910

Agreeing methods

AdaBoost

Sensitivity

012345678910
Agreeing methods

Average |
Neural Net

Ensemble 1

&
5]
o

&

00 02 04 06 0.8 1.0 00 02 04 0.6 08 1.0
Positive predictive value Sensitivity


https://doi.org/10.1101/2022.04.13.487655
http://creativecommons.org/licenses/by-nc-nd/4.0/

O @)
Any 2 e S e
SNP-only Q. © ® 8 ©
MAGMA 1 %@ © © .o o ©
fastBAT 0’. © © 3 ®
H-MAGMA - S © O', ®
FUSION A o P © Oo,
sMetaXcan 1 o ® © O.’
SMR |O @ [@3)
Brain—eMeta f
SMR [O
PsychENCODE s @)
SMR [O )
Proteome @
DEPICT ©
Human e
post—-mortem @
Mouse 0)
post-mortem 5 @ 5

Mouse gene set .

0.0 0.2 0.4 0.6 0.8 1.0
Positive predictive value

0.0 02 04 0.6 0.8 1.0
Sensitivity

B

1.0 1.0
=
< 0.8 0.8
>
[}
> 2
3 0.6 < 0.6
g |, E
%0.4- 2 0.4+
=
20.2- 0.2
a

0.0 0.0

12345678910
Agreeing methods

C

AdaBoost o .2

Average | &
Neural Net O @
Ensemble - O. ®

00 02 0.4 0.6 0.8 1.0
Positive predictive value

123456780910
Agreeing methods

@)

Se
00 02 04 0.6 08 1.0
Sensitivity



https://doi.org/10.1101/2022.04.13.487655
http://creativecommons.org/licenses/by-nc-nd/4.0/

fastBAT -

MAGMA -
H-MAGMA 1
sMetaXcan

Fusion

SMR - Brain—eMeta
SMR - PsychENCODE {
SMR - Proteome
Depict

Human post-mortem
Mouse post—-mortem

Mouse gene set

O AUD/PAU © MDD @ SCz ©

AdaBoost
o
)
8
’o
8
o ®
o
)
8
0
@
@
0 20 40 60 80 100

Tree—based importance

ICV

B Average neural net

o
o ®
o
®
o ©
o
®
o®
o
®
o ©
o
o %
)
@
0 @
&
o
@
®
o
®
®
o
o 8
’ o
00 02 04 06 08 1.0

Area—under ROC importance


https://doi.org/10.1101/2022.04.13.487655
http://creativecommons.org/licenses/by-nc-nd/4.0/

