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Abstract

Spatially resolved transcriptomics (ST) provides genetic information in space toward
elucidation of the spatial architecture in intact organs and the spatially resolved cell-
cell communications mediating tissue homeostasis, development, and disease. To
facilitate inference of spatially resolved cell-cell communications from ST data, we here
present SpaTalk, which relies on a graph network and knowledge graph to model and
score the ligand-receptor-target signaling network between spatially proximal cells,
decomposed from ST data through a non-negative linear model and spatial mapping
between single-cell RNA-sequencing and ST data. The performance of SpaTalk
benchmarked on public single-cell ST datasets was superior to that of existing cell-cell
communication inference methods. SpaTalk was then applied to STARmap, Slide-seq,
and 10X Visium data, revealing the in-depth communicative mechanisms underlying
normal and disease tissues with spatial structure. SpaTalk can uncover spatially
resolved cell-cell communications for single-cell and spot-based ST data universally,

providing new insights into spatial inter-cellular dynamics.
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Introduction

Cell-cell communications via secreting and receiving ligands frequently occur in
multicellular organisms, which is a vital feature involving numerous biological
processes®. Standard algorithms for inferring cell-cell communications mediated by
ligand—receptor interactions (LRIs) primarily incorporate a database of known LRIs and
single-cell transcriptomic data by delineating cell populations and their lineage
relationships® 3. One common strategy is to integrate the abundance of ligands and
receptors for the inference of signals from senders to receivers based on the premise
that highly co-expressed ligands and receptors are likely to mediate inter-cellular
communications®°. Another strategy applies the downstream targets triggered by LRIs
in receivers to enrich and score the ligand-receptor-target (LRT) signaling network®2.
Although single-cell transcriptomic data can provide information on the genes
contributing to cell-cell communications, the spatial information of cells is inevitably
lost when dissociating tissues into single cells, thereby hindering the extension of
current tools to investigate cell-cell communications in tissues with spatial structure®.

Recent technological advances in spatially resolved transcriptomics (ST) benefiting
from spatial barcoding and imaging-based approaches have enabled the measurement
of whole or mostly whole transcriptomes while retaining the spatial information!® 1%,
which have been increasingly adopted to generate new insights in the biological and
biomedical domains, with dramatically improved accuracy and reliability in the
inference of spatially proximal cell-cell communications!?. Given the space-
constrained nature of juxtacrine and paracrine signaling, such spatial gene expression
information is vital to understand cell-cell communications mediating tissue

homeostasis, development, and disease®® 14,
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Several methods have recently emerged to decode the mechanisms of cell-cell
communications in space®>. For example, Giotto utilizes preferential cell neighbors
over single-cell ST datasets for each pair of cell types with an enrichment test to
evaluate the likelihood of a given LRI based on proximal co-expressing cells and infer
cell-cell communication in space!®. SpaOTsc applies structured optimal transport
mapping between scRNA-seq and ST data to assign a spatial position for each cell,
resulting in a cell—cell distance as a transport cost to infer the ligand—receptor signaling
network that mediates space-constrained cell-cell communication'’. However, Giotto
and SpaOTsc are limited to infer inter-cellular communications over single-cell ST data
rather than the spot-based ST data and between paired cell types rather than paired
cells. It still lacks of methods that can infer and visualize spatially resolved cell-cell
communications at single-cell resolution over ST data to date, posing a great challenge
for decoding spatial inter-cellular dynamics underlying disease pathology.

To address this challenge, we herein proposed SpaTalk, a spatially resolved cell-
cell communication inference method by creatively integrating the principles of the
ligand—receptor proximity and ligand—receptor—target (LRT) co-expression to model
and score the LRT signaling network between spatially proximal cells relying on the
graph network and knowledge graph approaches®®. The performance of SpaTalk was
evaluated on benchmarked datasets with remarkable superiority over other methods.
By applying to STARmap?®, Slide-seq?® 2%, and 10X Visium?? datasets, SpaTalk revealed
the in-depth communicative mechanisms underlying normal and disease tissues with
spatial structure. Collectively, these results demonstrate SpaTalk as a useful and
universal method that can help to uncover spatially resolved cell-cell communications

for both single-cell and spot-based ST data, providing insights into the understanding
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of spatial inter-cellular dynamics in tissues.

Results

Overview of the SpaTalk method. Fig. 1 provides an overview of the workflow for
developing and testing SpaTalk, comprising two main components: (1) dissect the cell-
type composition of ST data and (2) infer spatially resolved cell-cell communications
over decomposed single-cell ST data (Fig. 1a). In the first component, the non-negative
linear model (NNLM)?3-2°> was applied to decode the cell-type composition for a single-
cell or spot-based ST data matrix using the scRNA-seq data matrix with k cell types as
the underlying reference. By incorporating Lee’s multiplicative iteration algorithm and
relative entropy loss?®, the model was trained with default hyperparameters until
convergence, producing a weight matrix representing the optimal proportion of cell
types for each cell/spot. For single-cell ST data, the cell type with the maximum weight
was assigned to label each cell. For spot-based ST data, the cell types with different
weights were used as the reference to project the cells from scRNA-seq data onto the
spatial spot (Fig. 1b). Through random sampling and deep iteration processes, the
optimal cellular combination that most resembled the spatial spot was refined to
reconstruct the single-cell ST data for spot-based ST data.

The second component of SpaTalk is to infer spatially resolved cell—cell
communications and downstream signal pathways. To identify possible
communications among cells mediated by LRIs, the principles of ligand—-receptor
proximity and ligand—receptor—target (LRT) co-expression were incorporated based on
a recent review!?. In detail, the KNN algorithm is first applied to each cell in space to

construct the cell graph network. For the ligand of the sender (cell type A) and the
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receptor of the receiver (cell type B), the number of LRI pairs is obtained from the
graph network by counting the 1-hop neighbor nodes of receivers for each sender. A
permutation test filters and scores the significantly enriched LRIs, generating the inter-

cellular score (Fig. 1c).
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Fig. 1 Workflow of the SpaTalk method and visualization. a Overview of SpaTalk,
including the input, intermediate process of decoding spatially resolved cell—cell
communications, and output. b Conceptual framework of cell-type decomposition
with SpaTalk. Five different spatial technologies and datasets were selected and
analyzed: spot-based ST data (Slide-seq and 10X Visium) and single-cell ST data
(STARmap, MERFISH, and segFISH+). NNLM was used to dissect the optimal proportion
of cell types for the projection of cells from scRNA-seq reference data onto the spatial
cells/spots, generating single-cell ST data with known cell types. ¢ Schematic
representation of SpaTalk to infer spatially resolved cell-cell communications
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mediated by LRIs. The inter-cellular and intra-cellular scores were obtained and
combined from the cell-cell graph network and the LRT-knowledge graph (KG),
respectively, by integrating the KNN, permutation test, and random walk algorithms.
L, ligand; R, receptor; TF, transcription factor; T, target. d Visualization of spatially
resolved cell-cell communications, including a heatmap, Sankey plot, and diagram of
the LRI from senders to receivers in space, as well as ligand-receptor-target (LRT)
signaling pathways over the reconstructed single-cell ST data.

The knowledge graph (KG) was then introduced to model the intracellular signal
propagation process. In practice, LRIs from CellTalkDB?®, pathways from Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome, and TFs from
AnimalTFDB?’ were integrated to construct the LRT-KG, wherein the weight between
entities represents the co-expressed coefficient. Taking the receptor as the query node,
we incorporated the random walk algorithm?® into the LRT-KG to filter and score the
downstream activated TFs and calculate the intracellular score of the LRI from senders
to receivers. Inter-cellular and intra-cellular scores are combined to rank the LRIs that
mediate spatially resolved cell-cell communications.

SpaTalk also includes numerous visualization functions to characterize the cell-
type composition and spatially resolved cell-cell communications, such as the diagram
of the LRI from senders to receivers in space and LRT signaling pathways, over the
reconstructed single-cell ST data (Fig. 1d). Five broad ranges of different spatial
technologies and corresponding representative datasets were analyzed and visualized:
spot-based ST data (Slide-seq?® 2! and 10X Visium??) and single-cell ST data (STARmap??,
MERFISH?°, and seqFISH+30).

Performance comparison of SpaTalk with other methods. The cell-type

decomposition by SpaTalk is the foundation for subsequent analyses. To evaluate its

performance, four single-cell ST datasets from the mouse cortex, hypothalamus,
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olfactory bulb, and sub-ventricular zone were utilized (Supplementary Fig. 1a). All cells
were split according to the fixed spatial distance and then merged into simulated spots
as the benchmark datasets (Fig. 2a). The quality of predicted cell-type decompositions
and expression profiles was evaluated by Pearson’s correlation coefficient and the root
mean square error (RMSE) based on the ground truth, wherein SpaTalk exhibited
fantastic performance over the benchmark datasets (Supplementary Fig. 1b, c).
Although the majority of existing cell-type deconvolution methods (RCTD3?, Seurat?,
SPOTIlight33, deconvSeqg3*, and Stereoscope®®) can achieve a decent correlation
coefficient and low RMSE on spot deconvolution, SpaTalk outperformed these
methods on most benchmark datasets with the top-ranked performance, except for
the MERFISH dataset (Fig. 2b). The MERFISH dataset only includes 155 genes, whereas
the STARmap and seqFISH+ datasets cover 1020 and 10,000 genes per cell, respectively,
suggesting that SpaTalk is potentially more effective for spatial data with higher gene
coverage.

We next compared the performance of SpaTalk with that of existing cell—cell
communication inference methods (Supplementary Fig. 2a). Consequently, most
methods exhibited a large fraction of overlapped predictions with the rest of the
methods despite the different number of inferred cell-cell communications
(Supplementary Fig. 2b, c), indicating the reproducible inference across these methods.
Regarding the inferred LRIs (Supplementary Fig. 2d), we reasoned that the spatial
distances of the inferred LRI between sender—receiver pairs will be shorter than those
between all cell-cell pairs and thus the inferred LRI will be more co-expressed in local
space as cells that are close are more likely to signal (Fig. 2c). The one-sided Wilcoxon

test was performed to evaluate the spatial proximity significance of the inferred LRls,
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and the co-expressed percentage of the LRI was calculated as the co-expression level
using the cell—cell graph network. Although most LRIs inferred by other methods
showed significantly closer spatial distances between sender—receiver pairs than that
between all cell—cell pairs, superior performance of SpaTalk was observed, ranking first
for both evaluation indices for STARmap datasets (Fig. 2d). Similarly, SpaTalk obtained
a higher median —logio P value and co-expression percent on the seqFISH+ OB and SVZ

datasets but not for SpaOTsc (Fig. 2e).
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Fig. 2 Superior performance of SpaTalk over existing methods. a Schematic diagram
for generating simulated spot data. Cells were split according to the fixed spatial
distance and then merged for the single-cell ST data with known cell types. b
Performance comparison of SpaTalk with other existing cell-type deconvolution
methods (RCTD, Seurat, SPOTlight, deconvSeq, Stereoscope). The asterisk represents
the top-ranked method for each dataset. NA, not available. ¢ Schematic illustration of
the procedure and rationale for single-cell ST data to evaluate predicted LRIs that
mediate spatially resolved cell-cell communications. d and e Performance comparison
of SpaTalk with existing cell-cell communication inference methods (Giotto, SpaOTsc,
NicheNet, CytoTalk, and CellCall) on the STARmap and segFISH+ datasets. The P value
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represents the difference of spatial distances between sender—receiver and all cell-
cell pairs assessed with the Wilcoxon test. f Schematic illustration of the procedure
and rationale for single-cell ST data to evaluate predicted downstream target and
pathways underlying LRIs. g Performance comparison of SpaTalk on the inferred
downstream targets with other methods (NicheNet, CytoTalk, and CellCall) over the
STARmap and seqFISH+ datasets. The P value represents the significance of enriched
pathways or biological processes from the KEGG and Reactome databases using
inferred downstream targets with the Fisher exact test.

We compared the performance of SpaTalk for inference of intra-cellular signal
pathways of the receiver cell type triggered by the LRI with those of NicheNet®,
CytoTalk’, and CellCall® that also infer the downstream targets of LRIs. We reasoned
that a more accurate method would be more likely to enrich the receptor-related
biological processes or pathways using the inferred downstream target genes in the
receiver cell type (Fig. 2f); hence, the Fisher-exact test was adopted for pathway
enrichment analysis with the KEGG and Reactome databases on target genes in
receivers. The target genes inferred by all methods enriched the most intra-cellular
pathways or biological processes triggered by the inter-cellular LRI (Fig. 2g).
Nevertheless, SpaTalk exhibited the top-ranked performance over three benchmarked
datasets, exceeding other existing methods in inference of the LRT signal network.
Identification of signal transmission among neurons and non-neuronal cells. SpaTalk
was first applied to investigate and visualize the cell-cell communications over the
STARmap ST dataset of the mouse visual cortex (Fig. 3a), including data of 1020
sequenced genes for 973 cells in space covering the spatial axis of excitatory neurons
(eL2/3, el4, el5, eL6, annotated by anatomic cortical layers); Pvalb, Reln, Sst, and Vip-
expressing neurons; and non-neuronal cells, including astrocytes (Astro), endothelial

cells (Endo), microglia (Micro), oligodendrocytes (Oligo), and smooth muscle cells


https://doi.org/10.1101/2022.04.12.488047
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.12.488047; this version posted April 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(SMCs) from layers L1 though L6 to the corpus callosum and hippocampus. As shown
in Fig. 3b, SpaTalk identified the spatial signal transmission among excitatory and
inhibitory neurons and non-neuronal cells such as Sst—Sstr2, Inhba—Acvric, and Cort—
Sstr2. For example, the direct cell-cell communication mediated by the Sst—Sstr2
interaction was observed between Sst-expressing neurons and Pvalb-expressing
neurons (Supplementary Fig. 3a), which are known to regulate neuron activity via non-
synaptic, inter-neuronal communication3® 37, Concordantly, these identified LRIs
among neurons and non-neuronal cells are associated with multiple biological
processes and pathways that play vital roles in the regulation of physiological neural
development and the balance of excitatory/inhibitory transmission in the central
nervous system3® 3% including growth hormone synthesis, secretion, and action;
neuroactive ligand-receptor interaction; signaling by activin; and the transforming
growth factor (TGF)-beta signaling pathway (Fig. 3c).

Notably, Astro were relatively abundant across space of the L5 layer and
colocalized with numerous excitatory neurons, exhibiting direct cell—cell
communication with eL2/3, el5, and eL6 (Supplementary Fig. 3b). Given the Cort-Sstr2
interaction between el5 and Astro, eL5 highly expressed and secreted the CORT ligand
to interact with the SSTR2 receptor on Astro with a highly overlapped distribution
density of eL5 and Astro in the constrained space, wherein the spatial distances of Cort
and Sstr2 in eL5—Astro pairs were significantly closer than those in all cell—cell pairs
(Fig. 3d). Focusing on the intra-cellular signal pathway of the Cort-Sstr2 interaction
reconstructed by SpaTalk, two downstream TFs were identified, Egr1 and Smad3,
which are involved in canonical TGF-beta signaling, in line with previous findings®°.

Despite the relatively low-rise co-expression of target genes in receivers, the intra-
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cellular signal triggered by the Cort—Sstr2 interaction successfully propagated to the
target genes, reaching a high percentage of cells expressing most target genes (Fig. 3e).
The Fisher exact test showed significant enrichment with receptor-related pathways
(Fig. 3f), indicating the reliability of eL5—Astro communications mediated by the Cort—
Sstr2 interaction.

We then applied SpaTalk to another spot-based ST dataset of the mouse cortex
(Slide-seq v2), including 17,545 unique genes among 42,550 spots in space, reaching
up to 4000 expressed genes per spot. Leveraging previously published adult mouse
cortical cell taxonomy by scRNA-seq data*' (Supplementary Fig. 3c), SpaTalk
reconstructed the spatial transcriptomics atlas at the single-cell resolution for Slide-
seq data, which showed consistent spatial localization of neurons and non-neuronal
cells across different layers, including the major excitatory and inhibitory neurons and
Oligo (Fig. 3g). Compared to STARmap data, oligodendrocyte progenitor cells, and Igtp-,
Ndnf-, and Smad3-expressing neurons were also observed in the Slide-seq data.
Concordantly, most cell-cell communications in STARmap data were also found in
Slide-seq data except for those of distinct cell types in the two datasets
(Supplementary Fig. 3d). For example, the eL5—Astro communications mediated by the
Cort=Sstr2 interaction in space and the downstream targets such as SMAD3 were also
observed in Slide-seq data (Fig. 3h), suggesting the universality of the spatially resolved
cell-cell communications inferred by SpaTalk. In addition, the direct communications
among Pvalb neurons, eL6, and Oligo were also significantly enriched, in accordance
with the fact that neuron-oligo communication controls the oligodendrocyte function

and myelin biogenesis (Supplementary Fig. 3e).
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Fig. 3 Identification of spatial inhibitory signal transmission among neurons and non-
neuronal cells. a STARmap single-cell ST dataset of the mouse visual cortex involving
973 cells and 1020 genes. Astro, astrocytes; elL2/3, el4, el5, el6, excitatory neuron
subtypes; Endo, endothelial cells; HPC, hippocampus; Micro, microglia; Oligo,
oligodendrocytes; SMC, smooth muscle cells; cc, corpus callosum. b Significantly
enriched LRIs that mediate cell-cell communications among neurons and non-
neuronal cells inferred by SpaTalk with P < 0.05. The P value represents the significance
of spatial proximity of LRIs using the permutation test. ¢ Sanky plot of the associations
among ligands, receptors, and biological processes or pathways in the KEGG and
Reactome databases that mediate cell-cell communications in the central nervous
system. d Spatial distribution and intra-cellular signaling pathways of the Cort-Sstr2
pairs between the el5 senders and Astro receivers. P values were calculated with the
Wilcoxon test. e Co-expression of target genes in receivers and the percentage of
expressed cells for target genes. f Significantly enriched biological processes and
pathways with the ligand-receptor-target genes using the Fisher exact test. g Slide-seq
spot-based ST dataset of the mouse visual cortex involving 42,550 spots and 22,542
genes. OPC, oligodendrocyte progenitor cell. h Communications of elL5—Astro
mediated by the Cort=Sstr2 interaction in space and the intra-cellular signal pathway
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inferred by SpaTalk over Slide-seq data.

Metabolic modulation of periportal hepatocytes on pericentral hepatocytes. We
applied SpaTalk to the Slide-seq ST dataset of the mouse liver covering 17,545 unique
genes among 25,595 spots in space (Fig. 4a). To explore the cell-type composition of
Slide-seq data, a mouse liver scRNA-seq reference integrating the non-parenchymal
cells from the Mouse Cell Atlas (MCA)*? and the parenchymal hepatic cells from the
GSE125688 dataset*® were utilized (Supplementary Fig. 4a), containing 6029 cells,
including major immune cells such as macrophages (Macro), and the pericentral and
periportal hepatocytes. The reconstructed single-cell ST atlas was perfectly accordant
with the original outcome obtained by Slide-seq (Fig. 4b), wherein the expression of
known marker genes** and the percent for each cell type were highly correlated across
spots (Supplementary Fig. 4b, c, d), such as the pericentrally and periportally zonated
genes Cyp2el and Pck1 (Fig. 4c). Immune cells were hardly observed in each spot, with
pericentral and periportal hepatocytes accounting for the major proportion across
spots (Supplementary Fig. 4e); the same phenomenon was observed in recently
published ST data of the healthy liver®.

The cell-cell communications between pericentral and periportal hepatocytes
were further explored by SpaTalk (Fig. 4d). Both hepatocyte types secrete and receive
multiple ligands for their communication, forming spatially distributed metabolic
cascades to cooperatively optimize the metabolic environment. For instance, with the
gradient expression of enzymes in sequential lobule layers, pericentral hepatocytes
perform the primary steroid, alcohol, and lipid metabolic processes, while periportal
hepatocyte mainly carry out the small-molecule and monosaccharide biosynthetic

processes, amino acid and triglyceride metabolic processes, and gluconeogenesis (Fig.
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4e, f), in line with the variable functions of zonated hepatocytes residing in the central
and portal veins®. Notably, the periportal hepatocytes substantially expressed more
ligands, including epidermal growth factor (Egf), transforming growth factor alpha
(Tgfa), heparin-binding EGF-like growth factor (Hbegf), insulin-like growth factor 1
(lgf1), and vascular endothelial growth factor A (Vegfa), to promote the growth of
pericentral hepatocytes. As the blood flows from the portal vein toward the central
vein, this could reflect the fact that periportal hepatocytes respire most of the oxygen,
leading to decreased oxygen concentrations along the lobule axis; thus, periportal
hepatocytes secrete numerous growth factors via paracrine signaling to modulate the
pericentral hepatocytes for the prevention of hypoxia and the maintenance and
amelioration of pericentrally metabolic functions?®.

Taking the LRI of Apob—Cd36 as an example, the spatially resolved cell—cell
communications between periportal and pericentral hepatocytes mainly occurred
across the mid-lobule layers (Fig. 4g). The gene product of Apob is an apolipoprotein
of chylomicrons and low-density lipoproteins highly involved with the regulation of
lipids and fatty acids metabolism through CD36, indicating the modulation of
periportal hepatocytes on the metabolic microenvironment sensed by pericentral
hepatocytes. From the reconstructed intra-cellular signal propagation network
triggered by the Apob—Cd36 interaction (Fig. 4h), sequential target TFs were activated,
including Ahr that regulates xenobiotic-metabolizing enzymes such as cytochrome
P450, and Nr1h4 that regulates the expression of genes involved in bile acid synthesis
and transport, in agreement with the corresponding module score of pericentral
hepatocytes in space (Fig. 4i). The LRT network was also remarkably enriched in the

AMPK and PPAR signaling pathways, which play crucial roles in the regulation of energy
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and metabolic homeostasis, suggesting the spatially fine-tuned cell—cell
communications along the portal—-central lobule axis for minimizing risks to pericentral

hepatocytes.
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Fig. 4 Modulation of periportal hepatocytes on the metabolic microenvironment
sensed by pericentral hepatocytes. a Slide-seq spot-based ST dataset of the mouse
liver involving 25,595 spots and 17,545 genes. b Cell-type decomposition by SpaTalk.
PC, pericentral; PP, periportal; Hep, hepatocytes. ¢ Scaled Pearson’s correlation
coefficients between the expression of known marker genes and the percent for each
cell type. DC, dendritic cell; Macro, macrophages. d Enriched LRIs that mediate cell-
cell communications between pericentral and periportal hepatocytes. e Significant
differentially expressed genes (DEGs) between periportal and pericentral hepatocytes
assessed with the Wilcoxon test and the corresponding significantly enriched
biological processes and pathways determined with the Metascape web tool.
Representative DEGs are labeled beside the heatmap. f Significantly activated
pathways in pericentral (up) and periportal (down) hepatocytes determined by Gene
Set Enrichment Analysis (GSEA). g Communications from periportal hepatocytes to
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pericentral hepatocytes mediated by the Apob—Cd36 interaction in space. h Intra-
cellular signal pathway inferred by SpaTalk over Slide-seq data and the significantly
enriched pathways over the ligand-receptor-target network. i Inferred module score
of each hepatocyte type over the pathway signatures determined with Seurat.

Spatial characterization of cell types over 10X Visium data. Given the widely used 10X
Visium tool in ST studies, we applied SpaTalk to a human skin squamous cell carcinoma
(SCC) ST dataset published by Ji et al.?2, who profiled SCC and matched normal tissues
via 10X scRNA-seq and used Visium to identify a tumor-specific keratinocyte (TSK) in
the tumor (Fig. 5a). Using the matched SCC scRNA-seq data of patient 2 as reference,
the optimal cell-type composition for each spot was deconvoluted by SpaTalk, which
exhibited a similar characterization with that histologically assessed from hematoxylin
and eosin-stained frozen sections (Fig. 5b). The percent of TSK inferred by our method
was compared to the TSK score based on markers (e.g., MMP10, PTHLH, LAMC2, and
IL24) defined by Ji et al. across 646 spots (Fig. 5¢). A high correlation between the TSK
percent and score was observed (Fig. 5d). Moreover, the percent of inferred cell types
was prominently associated with the expression of known marker genes, indicating
the accuracy of SpaTalk for cell-type decomposition (Supplementary Fig. 5a, b).

Next, we reconstructed the single-cell ST profile by assuming a total of 30 cells in
each spot according to a recent review!?, which covered the main epithelial cells,
including differentiating, cycling, and basal keratinocytes; melanocytes; fibroblasts
(FB); Endo; natural killer (NK) cells; and T cells (Fig. 5e). Despite the asymmetrical
distribution for most cell types, TSK, FB, and Endo showed specific patterns of locations
in space, which were highly adjacent in some tumor areas (Fig. 5f), forming direct cell—-
cell communications in the tumor microenvironment (TME). By filtering cells from the

TSK leading spots (score > 0.8), we found that TSKs reside within a fibrovascular niche,
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resulting in high colocalization of TSKs, FB, and Endo at the TSK leading spots (Fig. 5g),
in line with the previous findings?2. Moreover, we used SpaTalk to investigate the cell-
type composition over the ST data of another SCC patient. Despite a low percentage
across 621 spatial spots, most TSKs centered on a handful of corner spots in space,
exhibiting a highly consistent distribution with TSK scores (Fig. 5h and Supplementary
Fig. 5¢). Unsurprisingly, the fibrovascular niche was also observed in the TSK leading
spots of patient 10 with clear spatial co-localization (Supplementary Fig. 5d), indicating
the close cell-cell communication among TSKs, FB, and Endo in the TME underlying

the occurrence and development of SCC.
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carcinoma Visium data with SpaTalk. a Visium spot-based ST dataset of human skin
SCCin patient 2 with the matched scRNA-seq dataset involving the main keratinocytes
(KC), stromal cells, and immune cells. b Cell-type decomposition by SpaTalk. Cyc,
cycling; Diff, differentiating; NK, natural killer; FB, fibroblast. ¢ TSK percent and TSK
score across spatial spots. The expression of known TSK markers is plotted. d Pearson’s
correlation coefficient between the TSK percent and TSK score. f Contour plot of TSK,
FB, and Endo based on the reconstructed single-cell ST atlas by SpaTalk. g TSK leading
spots with a TSK score > 0.8 in space. The bar chart represents the number of different
cell types and the line chart represents the number of neighbors adjacent to TSKs
among the TSK leading spots. h Visium spot-based ST dataset of human skin SCC in
patient 10 and the cell-type decomposition by SpaTalk showing the percent of TSKs
across 621 spatial spots.

Reconstruction of TSK-stroma communications in space. To dissect the underlying
LRI mediating the spatially resolved cell-cell communications between TSKs and
stromal cells of the fibrovascular niche in the TME, we applied SpaTalk to infer the
communications between TSK—FB and TSK—Endo pairs over the decomposed single-
cell ST data of SCC in patient 2, including the top-ranked 20 LRIs based on the
integrated inter-cellular and intra-cellular scores (Fig. 6a). Consistent with a TSK—
fibrovascular niche, prominent TSK signaling to FB and Endo was mediated by several
common ligand—receptor pairs, including VEGFA-NPR1, VEGFB—-NPR1, PGF-SDC1, and
CDH1-ITGAE, associated with tumor angiogenesis. Additionally, TSKs modulate FB
through secreting matrix metallopeptidase (MMP)1 and MMP9, which are linked to
tumor metastasis via cellular movement and extracellular matrix (ECM) disassembly.
Conversely, FB and Endo prominently co-expressed numerous ligands such as MDK,
HGF, HMGB1, and THBS1, matching TSK receptors that promote the proliferation and
differentiation of TSKs (Fig. 6b). Further supporting TSKs as an epithelial mesenchymal
transition (EMT)-like population, SpaTalk predicted that the widely expressed TGFB1

regulates TSKs. TSK receptors corresponding to additional ligands from FB and Endo
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included several integrins (e.g., ITGA5 and ITGB6) and nectins (e.g., NECTIN1 and

NECTIN2), highlighting other pathways associated with EMT and epithelial tumor
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Fig. 6 Reconstruction of cell-cell communications between TSK subpopulations and
stromal cells in space with SpaTalk. a Top 20 inferred LRIs that mediate cell—cell
communication from the TSK senders to the FB and Endo receivers. Colored blocks
represent the known ligand—receptor pairs in CellTalkDB. The asterisk represents the
significantly enriched LRIs determined by SpaTalk. b Top 20 inferred LRIs that mediate
cell-cell communication from the FB and Endo senders to TSK receivers. ¢ Region of
interest (ROI) covering 42 spatial spots in space with a high total score of TSK, FB, and
Endo according to their signature genes. The point plot shows the decomposed single-
cell ST atlas determined by SpaTalk. d Expression of known cancer-associated
fibroblast (CAF) markers across TSKs, FB, Endo, and other cells. e Differentially
expressed genes (DEGs) between EMT-like and EMT-unlike TSKs and the corresponding
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enriched biological processes and pathways. Representative DEGs are labeled beside
the point. f Number of cell-cell pairs over the LRIs from the EMT-like and EMT-unlike
TSKs to CAFs. g Communications from EMT-like and EMT-unlike TSKs to CAFs mediated
by the MMP1-CD44 interaction in space. h Comparison of communications among
CAFs, Endo, EMT-like TSKs, and EMT-unlike TSKs with respect to the number of cell-cell
pairs in space over the matched LRIs evaluated with a paired t test.

Next, we focused on a region of interest (ROI) covering 42 spatial spots in space
for in-depth exploration of TSK-stroma communications, which exhibited a high total
score of TSK, FB, and Endo according to their signature genes, occupying the major
part in the ROI (Fig. 6¢). By mapping cancer-associated fibroblast (CAF) markers to the
cells in space, the majority of FB in the ROI highly expressed the known CAF marker
genes (e.g., VIM, FAP, POSTIN, and SPARC) (Fig. 6d), hinting at the transformation of FB
to CAFs induced by the adjacent TSKs and conversely supporting the stemness of TSKs
via direct cell-cell communication in space (Supplementary Fig. 6a). Notably, the TSKs
appear to be extremely heterogeneous with respect to the broad range of EMT scores
in the ROI; thus, TSKs were further classified into 268 EMT-like and 268 EMT-unlike
populations (Supplementary Fig. 6b). By comparing their differentially expressed
genes, EMT-like TSKs were dramatically enriched with ECM organization,
proteoglycans in cancer, regulation of cell adhesion, and the VEGFA-VEGFR2 signaling
pathway, representing more invasive properties compared with EMT-unlike TSKs (Fig.
6e).

Additionally, EMT-like TSKs appear to be more communicative with surrounding
CAFs in the TME in light of the greater number of cell-cell pairs over the LRIs that
prominently mediate TSK—stroma communications in space, such as LAMB3-ITGB1,
LAMA3-ITGB1, LAMC2-ITGB1, and MMP1-CD44 (Fig. 6f and Supplementary Fig. 6c, d,

e). Metastasis-related laminins are essential for formation and function of the
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basement membrane, whereas MMPs are involved in ECM breakdown, both
contributing to the aggravated malignancy of tumors. Moreover, CD44 expression on
CAFs plays a supporting role in the induction of cellular stemness, wherein CAFs have
a preference of cell-cell communications with EMT-like TSKs in space (Fig. 6g).
Interestingly, EMT-unlike TSKs notably exhibited more communicative cell—cell pairs
with Endo, whereas EMT-like TSKs exhibited significantly more communicative cell—cell
pairs with CAFs over the matched LRIs (Fig. 6h), consistent with the observed

contribution of CAFs to EMT in a broad range of tumors*® >0

Discussion

We have demonstrated the capabilities of SpaTalk to infer and visualize spatially
resolved cell-cell communications mediated by significantly enriched LRIs under
normal and disease states over existing representative datasets, including the single-
cell ST data generated from STARmap, MERFISH, and seqFISH+, and the spot-based ST
data obtained via Slide-seq and 10X Visium.

There are two principles to decode the mechanisms of cell-cell communications:
ligand-receptor proximity and LRT co-expression'2. In a given tissue niche, cells are
more likely to communicate with each other when they are spatially adjacent and
activate downstream target genes in the receiving cell triggered by the LRI in proximal
cells; thus, ST data are well suited to apply the two principles for inferring inter-cellular
communications. Accordingly, our proposed SpaTalk realizes the integration of these
two principles by incorporating the KNN and cell—cell graph network to filter spatially
proximal cell pairs and corresponding LRls, followed by utilizing the knowledge graph

algorithm to model the LRT signal propagation process. Consequently, the
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performance of SpaTalk was superior to that of other methods over the benchmarked
ST datasets with respect to several evaluation indices, demonstrating the reliability of
the two principles in decoding cellular cross-talk, especially for juxtracrine and
paracrine communication.

Importantly, SpaTalk is applicable to either single-cell or spot-based ST datasets
generated from mainstream ST technologies. For the former, SpaTalk assigns a label to
each cell by selecting similar cell types with the top-ranked weight via NNLM for single-
cell ST data, generating the ST atlas at single-cell resolution with known cell types for
the subsequent inference of cell—cell communications. For spot-based ST data, SpaTalk
selects and maps the optimal combination of cells in accordance with the decomposed
optimal weight/percent of cell types via NNLM and the transcriptome profiles of
spatial spots to reconstruct the ST atlas at single-cell resolution with known cell types.
Notably, applications of SpaTalk to the mouse cortex and liver datasets sequenced by
STARmap and Slide-seq, respectively, revealed the evidential LRIs in space that
mediate the spatially resolved cell-cell communications contributing to normal
physiological processes. Moreover, exploration of SpaTalk on the human skin SCC
dataset obtained from 10X Visium identified the variable preference of
communication among tumor subpopulations, CAF, and Endo. These cases
convincingly demonstrate the universality of SpaTalk in decoding the mechanism of
cell-cell communications in space underlying normal and disease tissues for single-cell
and spot-based ST data.

As unmatched scRNA-seq and ST data would directly influence the cell-type
decomposition, an important feature of SpaTalk is the ability to assign a spot/cell into

an unsure category considering the unseen cell types in the scRNA-seq reference. For
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example, the scRNA-seq reference for the Slide-seq mouse cortex ST data was
obtained from another repository for the same tissue, resulting in numerous unsure
cells by assuming one cell in each spot in terms of the high resolution (10 um) of Slide-
seq technology that almost approaches single-cell resolution. Additionally, the
extremely low gene coverage of several spatial spots severely affects the regression
model, which were regarded as the unsure type by SpaTalk. However, with respect to
the human skin SCC datasets, SpaTalk removed the unsure type for the matched
scRNA-seq and ST data. As the matched multi-modal datasets will undoubtedly
become greater in number, application of SpaTalk and similar methods will be required
for accurate inference of spatially resolved cell-cell communications.

Additionally, SpaTalk characterizes the spatial distribution for each cell type within
the reconstructed ST at single-cell resolution through the contour plot of cellular
density in space, which enables analyzing the proximal relationship between paired
cell types. Moreover, SpaTalk enables the statistical analyses and visualization of
spatially proximal LRIs in space, forming a dynamic cell-cell communication network.
Currently, it is hard to analyze and visualize the LRI at single-cell resolution for scRNA-
seq data, wherein the common practice is to interpret the LRI for paired cell types. By
incorporating spatial information, SpaTalk displays the enriched LRI at single-cell
resolution via the spatially proximal co-expressed cell pairs, offering an informatively
brand-new approach for the analysis and visualization of the LRI and its mediated cell-
cell communication underlying the disease pathology from a novel perspective, as
shown in the application of SpaTalk to the human skin SCC datasets.

Adding spatial constraints in cell-cell communication inference is critical to the

spatial analysis of juxtracrine and paracrine communications. However, this constraint
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inevitably causes the failure of inferring long-range communications such as endocrine
and telecrine signaling. Classification of LRIs into short-range and long-range
communications with prior knowledge might be helpful to infer the comprehensive
communication categories computationally. Moreover, it is potentially beneficial to
include other omics data with the increasing multi-modal datasets generated from
state-of-the-art technologies such as 10X Multiome and Digital Spatial Profiling® in
studying spatially regulated cell-cell communications. Thus, more reliable
computational models might be needed for more accurate integration of multi-modal

data and inference.

Methods

Datasets. For STARmap, the single-cell ST data of the mouse cortex (20180410-
BY3_1kgenes) was obtained from a public data portal

(https://www.dropbox.com/sh/f7ebherullbz91s/AABYSS{STopBmVmWI2H4sKa?d|=0).

For MERFISH, the single-cell ST data of the naive female mouse (Animal_ID: 1, Bregma:
0.26) hypothalamic  preoptic region was downloaded from Dryad

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248). For seqFISH+, the

single-cell ST data of the mouse cortex and olfactory bulb were retrieved from the

Github repository (https://github.com/CaiGroup/seqFISH-PLUS). For Slide-seq, the

spot-based ST data of the mouse liver (Puck_180803_8) and somatosensory cortex
(Puck_200306_03) were obtained from the Broad Institute Single Cell Portal

(https://singlecell.broadinstitute.org/single cell/study/SCP354/slide-seqg-study) and

(https://singlecell.broadinstitute.org/single cell/study/SCP815/highly-sensitive-

spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2), respectively. For
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10X Visium, the spot-based ST data and scRNA-seq data of human SCC were
downloaded from the Gene Expression Omnibus (GEO) repository (GSE144240). The
mouse liver scRNA-seq data of non-parenchymal and parenchymal hepatic cells were

refined from the MCA (https://figshare.com/articles/MCA DGE Data/5435866) and

GSE125688, respectively. The mouse cortex scRNA-seq data were obtained from
GSE71585.

Data processing. For the liver scRNA-seq datasets, the non-parenchymal cells and
parenchymal hepatic cells were collected from the MCA and GSE125688, respectively,
wherein hepatocytes were classified into pericentral and periportal hepatocytes with
principal component analyses and clustering analysis. For the MERFISH dataset,
ependymal cells were excluded due to the limited cell number in the section (<2). For
other datasets, all cells were included in the filtered matrices. Human and mouse gene
symbols were revised in accordance with NCBI gene data

(https://www.ncbi.nlm.nih.gov/gene/) updated on June 30, 2021, wherein unmatched

genes and duplicated genes were removed. For all ST and scRNA-seq datasets, the raw
counts were normalized via the global-scaling normalization method LogNormalize in
preparation for running the subsequent scDeepSort pipeline.

SpaTalk algorithm. The SpaTalk model consists of two components: cell-type
decomposition and spatial LRI enrichment. The first component is to infer cell-type
composition for single-cell or spot-based ST data, and the second component is to infer
spatially proximal ligand—-receptor interactions that mediate cell-cell communications
in space.

Cell-type decomposition. To dissect the cell-type composition for the ST data

matrix T[n X s](n genes and s spots/cells), NNLM was first applied to obtain the
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optimal proportion of cell types using the scRNA-seq data matrix S[n X c] (n genes
and c cells) as the reference with k cell types. Let Y = {y;, y2,..., Yn} be the
expression profile for each spot/cell to establish the following linear model:
Y=X[+¢

where X = [n X k] is the average expression profile generated from S and ¢
represents random error. Mean relative entropy loss was then used to measure the
difference between the predicted and observed values. Therefore, the objective
function can be written as:

argmin {f = 0} L(Y — XB) + 11R1(B) + AaRa(B) + A2R2(B)
where Ry, R, and R, represent the L1, angle, and L2 regularization with non-
negative A,, A, and A, initialized by zero?® ?*. The model was trained with the
above objective function using Lee’s multiplicative iteration algorithm?> with default
hyperparameters until convergence or after 10,000 iterations to generate the
coefficient matrix C[k X s].

For single-cell ST data, the cell type with the maximum coefficient was assigned
to each cell. For spot-based ST data, let M be the maximum cell number for each spot,
which was set to 30 for 10X Visium data and was set to 1 for Slide-seq data according
to a recent review. In practice, the optimal cellular combination w for each spot was
determined by the following function:

[MB:]+1 ({MB} = 0.5)

w; (i € {1, 2, ,k}) = {[Mﬁl] ({M)Bl} < 0.5)

wherein [Mf;] and {Mf;} represent the integer and fractional parts of Mf;,
respectively. For each spot, we randomly selected m (m = XX, w;) cells from S to

compare their merged expression profile € with the ground truth according to the
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following function:
n m .
argmin {m < M} z Y; — z €l)?
i=1 j=1
To assign a coordinate (x, y) to each sampled cell, we applied stochastic « € [0, 1]
and 6 € [0, 360] in spot (x,, ¥y) to locate the cell into the space detailed in the

following function:

X = x¢ + adyin cos(01/180)
Y = Yo + adpyin Sin(6m/180)

where d,;;, represents the spatial distance of the closest neighbor spot. By
integrating the optimal cellular combinations for all spots, ST data at single-cell
resolution were reconstructed for the spot-based ST data.

Spatial LRI enrichment. To generate the cell—cell distance matrix D, the Euclidean
distance between cells was calculated using the single-cell spatial coordinates of ST
data. The KNN algorithm was then applied to each cell to select the K nearest cells
from D to construct the cell graph network. For ligand i of the sender (cell type A)
and receptor j of the receiver (cell type B), the number of LRI pairs (PXLB]-) was
obtained from the graph network by counting the 1-hop neighbor nodes of receivers
for each sender. The permutation test was then performed by randomly shuffling cell
labels to recalculate the number of LRI pairs. By repeating this step Z times, a
background distribution P = {le-,Bj, Pji,Bj, s PAZL-'B]-} was obtained for comparison
with the real interacting score, and the P value was calculated as follows:

Pyipj = crad{x € P|x = Py p;}/Z

where Py; g; values less than 0.05 were filtered to calculate the intercellular score of
LRI from senders to receivers (Sj’iftBe]-T = 1— P4 g;). To further enrich the LRIs that

activate downstream TFs, target genes, and the related pathways of receivers, the
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knowledge graph was introduced to model the intracellular signal propagation process.
In practice, LRIs from CellTalkDB, pathways from KEGG and Reactome, and TFs from
AnimalTFDB were integrated to construct the ligand—receptor-TF knowledge graph
(LRT-KG), wherein the weight between entities represents the co-expressed coefficient.
Taking the receptor as the query node, we incorporated the random-walk algorithm
into the LRT-KG to filter and score the downstream activated t TFs with no more than
10 steps and Z iterations; thus, the probability p for each TF can be calculated with
the ratio of successful hits from the query node to the target TF during the Z random
walks. By integrating the co-expressed TFs and the corresponding target genes from

the LRT-KG, the intracellular score of LRI from senders to receivers can be written as:

. t
Sﬂgﬁ = Zk=10k X Pr/Mk
where 6 represents the number of targeted genes, n represents the step from the
receptor to the TF in the LRT-KG. By the sigmoid transformation for Sj’iftBrja, the final

score of the LRI from cell type A to cell type B can be written as:

SaiBj = \/ Sjril,%ejr X 52?,%3-“

Comparison with other methods. STARmap, MERFISH, and seqFISH+ ST data were
used to compare the performance of SpaTalk with other existing cell-type
decomposition methods. For these single-cell ST data, all cells were split according to
the fixed spatial distance and then merged into simulated spots as the benchmark
datasets. RCTD, SPOTlight, Seurat, deconvSeq, and Stereoscope were benchmarked
with the default parameters and evaluated with Pearson’s correlation coefficient and
RMSE over the predicted and real cell-type composition for each spot.

Given the limited genes of MERFISH ST data, STARmap and seqFISH+ single-cell ST
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data (including 1020 and 10,000 genes, respectively) were used as the benchmark
datasets to compare the performance of SpaTalk with other cell-cell communication
inference methods (Giotto, SpaOTsc, NicheNet, CytoTalk, and CellCall). The one-sided
Wilcoxon test was performed to evaluate the spatial proximity significance of the
inferred LRIs by comparing the number of expressed LRIs between sender—receiver
pairs and all cell—cell pairs, and the co-expressed percent of the LRI was calculated to
evaluate the co-expression level by counting the number of expressed LRIs from
senders to receivers from the cell-cell graph network. All methods were benchmarked
with the default parameters and all inferred LRIs were unbiasedly evaluated with the
above criteria except for the LRIs from SpaOTsc since the number of inferred LRIs was
much larger than that of the other methods; thus, the top 1000 LRIs for each cell—cell
communication were selected from SpaOTsc according to the final score. Given the
significantly enriched biological processes or pathways in the receiver cell type, the
Fisher exact test was adopted for pathway enrichment analysis with the KEGG and
Reactome databases on the activated genes in receivers using the following function:
p= (a+b)<c+d>/( n )
a c a+c

where n=a+ b+ c+d; a is the number of inferred target genes that match a
given pathway, b is the number of given pathway genes that exclude a, c¢ is the
number of inferred target genes that unmatch a given pathway, and d is the number
of all genes excluding a, b, and c. NicheNet, CytoTalk, and CellCall were
benchmarked with the default parameters and the inferred target genes for each LRI
were evaluated according to the significance of pathway enrichment.

Pathway and biological process enrichment. The Metascape web tool
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(https://metascape.org/) was used to perform the enrichment analysis of pathways

and biological processes, wherein the top 100 highly expressed genes were selected
according to the fold change of the average gene expression. Gene Set Enrichment
Analysis (GSEA) was performed using the ranked gene list with the clusterprofiler tool
to enrich the significantly activated pathways and biological processes, whose
signatures were obtained from the Molecular Signatures Database v7.4 (MSigDB,

http://www.gsea-msigdb.org/gsea/msigdb), including the gene sets from Gene

Ontology (GO) and the canonical pathway gene sets derived from the KEGG, Reactome,
and WikiPathways pathway databases.

Module scoring of hallmarks and signatures. Hallmark scoring of metabolism of
xenobiotics by cytochrome P450, synthesis of bile acids and bile salts, TSK, and EMT
was performed using the “AddModuleScore” function in Seurat with default
parameters. Hallmark pathways and EMT were obtained from MSigDB, and the
signature genes of the TSK were download from the original publication by Jin et al.

Statistics. R (version 4.1.1) and GraphPad Prism 8 were used for all statistical analyses.

Data and code availability

No new data was generated for this study. All data used in this study is publicly
available as previously described. Source codes for the SpaTalk R package and the

related scripts are available at github (https://github.com/ZJUFanLab/SpaTalk).
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