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Abstract 

Spatially resolved transcriptomics (ST) provides genetic information in space toward 

elucidation of the spatial architecture in intact organs and the spatially resolved cell-

cell communications mediating tissue homeostasis, development, and disease. To 

facilitate inference of spatially resolved cell-cell communications from ST data, we here 

present SpaTalk, which relies on a graph network and knowledge graph to model and 

score the ligand-receptor-target signaling network between spatially proximal cells, 

decomposed from ST data through a non-negative linear model and spatial mapping 

between single-cell RNA-sequencing and ST data. The performance of SpaTalk 

benchmarked on public single-cell ST datasets was superior to that of existing cell-cell 

communication inference methods. SpaTalk was then applied to STARmap, Slide-seq, 

and 10X Visium data, revealing the in-depth communicative mechanisms underlying 

normal and disease tissues with spatial structure. SpaTalk can uncover spatially 

resolved cell-cell communications for single-cell and spot-based ST data universally, 

providing new insights into spatial inter-cellular dynamics. 
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Introduction 

Cell-cell communications via secreting and receiving ligands frequently occur in 

multicellular organisms, which is a vital feature involving numerous biological 

processes1. Standard algorithms for inferring cell–cell communications mediated by 

ligand–receptor interactions (LRIs) primarily incorporate a database of known LRIs and 

single-cell transcriptomic data by delineating cell populations and their lineage 

relationships2, 3. One common strategy is to integrate the abundance of ligands and 

receptors for the inference of signals from senders to receivers based on the premise 

that highly co-expressed ligands and receptors are likely to mediate inter-cellular 

communications4, 5. Another strategy applies the downstream targets triggered by LRIs 

in receivers to enrich and score the ligand-receptor-target (LRT) signaling network6-8. 

Although single-cell transcriptomic data can provide information on the genes 

contributing to cell-cell communications, the spatial information of cells is inevitably 

lost when dissociating tissues into single cells, thereby hindering the extension of 

current tools to investigate cell-cell communications in tissues with spatial structure9.  

Recent technological advances in spatially resolved transcriptomics (ST) benefiting 

from spatial barcoding and imaging-based approaches have enabled the measurement 

of whole or mostly whole transcriptomes while retaining the spatial information10, 11, 

which have been increasingly adopted to generate new insights in the biological and 

biomedical domains, with dramatically improved accuracy and reliability in the 

inference of spatially proximal cell-cell communications12. Given the space-

constrained nature of juxtacrine and paracrine signaling, such spatial gene expression 

information is vital to understand cell-cell communications mediating tissue 

homeostasis, development, and disease13, 14.  
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Several methods have recently emerged to decode the mechanisms of cell-cell 

communications in space15. For example, Giotto utilizes preferential cell neighbors 

over single-cell ST datasets for each pair of cell types with an enrichment test to 

evaluate the likelihood of a given LRI based on proximal co-expressing cells and infer 

cell-cell communication in space16. SpaOTsc applies structured optimal transport 

mapping between scRNA-seq and ST data to assign a spatial position for each cell, 

resulting in a cell–cell distance as a transport cost to infer the ligand–receptor signaling 

network that mediates space-constrained cell–cell communication17. However, Giotto 

and SpaOTsc are limited to infer inter-cellular communications over single-cell ST data 

rather than the spot-based ST data and between paired cell types rather than paired 

cells. It still lacks of methods that can infer and visualize spatially resolved cell-cell 

communications at single-cell resolution over ST data to date, posing a great challenge 

for decoding spatial inter-cellular dynamics underlying disease pathology. 

To address this challenge, we herein proposed SpaTalk, a spatially resolved cell-

cell communication inference method by creatively integrating the principles of the 

ligand–receptor proximity and ligand–receptor–target (LRT) co-expression to model 

and score the LRT signaling network between spatially proximal cells relying on the 

graph network and knowledge graph approaches18. The performance of SpaTalk was 

evaluated on benchmarked datasets with remarkable superiority over other methods. 

By applying to STARmap19, Slide-seq20, 21, and 10X Visium22 datasets, SpaTalk revealed 

the in-depth communicative mechanisms underlying normal and disease tissues with 

spatial structure. Collectively, these results demonstrate SpaTalk as a useful and 

universal method that can help to uncover spatially resolved cell–cell communications 

for both single-cell and spot-based ST data, providing insights into the understanding 
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of spatial inter-cellular dynamics in tissues. 

Results 

Overview of the SpaTalk method. Fig. 1 provides an overview of the workflow for 

developing and testing SpaTalk, comprising two main components: (1) dissect the cell-

type composition of ST data and (2) infer spatially resolved cell–cell communications 

over decomposed single-cell ST data (Fig. 1a). In the first component, the non-negative 

linear model (NNLM)23-25 was applied to decode the cell-type composition for a single-

cell or spot-based ST data matrix using the scRNA-seq data matrix with k cell types as 

the underlying reference. By incorporating Lee’s multiplicative iteration algorithm and 

relative entropy loss25, the model was trained with default hyperparameters until 

convergence, producing a weight matrix representing the optimal proportion of cell 

types for each cell/spot. For single-cell ST data, the cell type with the maximum weight 

was assigned to label each cell. For spot-based ST data, the cell types with different 

weights were used as the reference to project the cells from scRNA-seq data onto the 

spatial spot (Fig. 1b). Through random sampling and deep iteration processes, the 

optimal cellular combination that most resembled the spatial spot was refined to 

reconstruct the single-cell ST data for spot-based ST data.  

The second component of SpaTalk is to infer spatially resolved cell–cell 

communications and downstream signal pathways. To identify possible 

communications among cells mediated by LRIs, the principles of ligand–receptor 

proximity and ligand–receptor–target (LRT) co-expression were incorporated based on 

a recent review12. In detail, the KNN algorithm is first applied to each cell in space to 

construct the cell graph network. For the ligand of the sender (cell type A) and the 
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receptor of the receiver (cell type B), the number of LRI pairs is obtained from the 

graph network by counting the 1-hop neighbor nodes of receivers for each sender. A 

permutation test filters and scores the significantly enriched LRIs, generating the inter-

cellular score (Fig. 1c).  

 

Fig. 1 Workflow of the SpaTalk method and visualization. a Overview of SpaTalk, 

including the input, intermediate process of decoding spatially resolved cell–cell 

communications, and output. b Conceptual framework of cell-type decomposition 

with SpaTalk. Five different spatial technologies and datasets were selected and 

analyzed: spot-based ST data (Slide-seq and 10X Visium) and single-cell ST data 

(STARmap, MERFISH, and seqFISH+). NNLM was used to dissect the optimal proportion 

of cell types for the projection of cells from scRNA-seq reference data onto the spatial 

cells/spots, generating single-cell ST data with known cell types. c Schematic 

representation of SpaTalk to infer spatially resolved cell–cell communications 
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mediated by LRIs. The inter-cellular and intra-cellular scores were obtained and 

combined from the cell–cell graph network and the LRT-knowledge graph (KG), 

respectively, by integrating the KNN, permutation test, and random walk algorithms. 

L, ligand; R, receptor; TF, transcription factor; T, target. d Visualization of spatially 

resolved cell–cell communications, including a heatmap, Sankey plot, and diagram of 

the LRI from senders to receivers in space, as well as ligand-receptor-target (LRT) 

signaling pathways over the reconstructed single-cell ST data. 

 

The knowledge graph (KG) was then introduced to model the intracellular signal 

propagation process. In practice, LRIs from CellTalkDB26, pathways from Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Reactome, and TFs from 

AnimalTFDB27 were integrated to construct the LRT-KG, wherein the weight between 

entities represents the co-expressed coefficient. Taking the receptor as the query node, 

we incorporated the random walk algorithm28 into the LRT-KG to filter and score the 

downstream activated TFs and calculate the intracellular score of the LRI from senders 

to receivers. Inter-cellular and intra-cellular scores are combined to rank the LRIs that 

mediate spatially resolved cell-cell communications. 

SpaTalk also includes numerous visualization functions to characterize the cell-

type composition and spatially resolved cell–cell communications, such as the diagram 

of the LRI from senders to receivers in space and LRT signaling pathways, over the 

reconstructed single-cell ST data (Fig. 1d). Five broad ranges of different spatial 

technologies and corresponding representative datasets were analyzed and visualized: 

spot-based ST data (Slide-seq20, 21 and 10X Visium22) and single-cell ST data (STARmap19, 

MERFISH29, and seqFISH+30). 

Performance comparison of SpaTalk with other methods. The cell-type 

decomposition by SpaTalk is the foundation for subsequent analyses. To evaluate its 

performance, four single-cell ST datasets from the mouse cortex, hypothalamus, 
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olfactory bulb, and sub-ventricular zone were utilized (Supplementary Fig. 1a). All cells 

were split according to the fixed spatial distance and then merged into simulated spots 

as the benchmark datasets (Fig. 2a). The quality of predicted cell-type decompositions 

and expression profiles was evaluated by Pearson’s correlation coefficient and the root 

mean square error (RMSE) based on the ground truth, wherein SpaTalk exhibited 

fantastic performance over the benchmark datasets (Supplementary Fig. 1b, c). 

Although the majority of existing cell-type deconvolution methods (RCTD31, Seurat32, 

SPOTlight33, deconvSeq34, and Stereoscope35) can achieve a decent correlation 

coefficient and low RMSE on spot deconvolution, SpaTalk outperformed these 

methods on most benchmark datasets with the top-ranked performance, except for 

the MERFISH dataset (Fig. 2b). The MERFISH dataset only includes 155 genes, whereas 

the STARmap and seqFISH+ datasets cover 1020 and 10,000 genes per cell, respectively, 

suggesting that SpaTalk is potentially more effective for spatial data with higher gene 

coverage. 

We next compared the performance of SpaTalk with that of existing cell–cell 

communication inference methods (Supplementary Fig. 2a). Consequently, most 

methods exhibited a large fraction of overlapped predictions with the rest of the 

methods despite the different number of inferred cell-cell communications 

(Supplementary Fig. 2b, c), indicating the reproducible inference across these methods. 

Regarding the inferred LRIs (Supplementary Fig. 2d), we reasoned that the spatial 

distances of the inferred LRI between sender–receiver pairs will be shorter than those 

between all cell–cell pairs and thus the inferred LRI will be more co-expressed in local 

space as cells that are close are more likely to signal (Fig. 2c). The one-sided Wilcoxon 

test was performed to evaluate the spatial proximity significance of the inferred LRIs, 
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and the co-expressed percentage of the LRI was calculated as the co-expression level 

using the cell–cell graph network. Although most LRIs inferred by other methods 

showed significantly closer spatial distances between sender–receiver pairs than that 

between all cell–cell pairs, superior performance of SpaTalk was observed, ranking first 

for both evaluation indices for STARmap datasets (Fig. 2d). Similarly, SpaTalk obtained 

a higher median –log10 P value and co-expression percent on the seqFISH+ OB and SVZ 

datasets but not for SpaOTsc (Fig. 2e). 

 

Fig. 2 Superior performance of SpaTalk over existing methods. a Schematic diagram 

for generating simulated spot data. Cells were split according to the fixed spatial 

distance and then merged for the single-cell ST data with known cell types. b 

Performance comparison of SpaTalk with other existing cell-type deconvolution 

methods (RCTD, Seurat, SPOTlight, deconvSeq, Stereoscope). The asterisk represents 

the top-ranked method for each dataset. NA, not available. c Schematic illustration of 

the procedure and rationale for single-cell ST data to evaluate predicted LRIs that 

mediate spatially resolved cell–cell communications. d and e Performance comparison 

of SpaTalk with existing cell–cell communication inference methods (Giotto, SpaOTsc, 

NicheNet, CytoTalk, and CellCall) on the STARmap and seqFISH+ datasets. The P value 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488047
http://creativecommons.org/licenses/by-nc-nd/4.0/


represents the difference of spatial distances between sender–receiver and all cell–

cell pairs assessed with the Wilcoxon test. f Schematic illustration of the procedure 

and rationale for single-cell ST data to evaluate predicted downstream target and 

pathways underlying LRIs. g Performance comparison of SpaTalk on the inferred 

downstream targets with other methods (NicheNet, CytoTalk, and CellCall) over the 

STARmap and seqFISH+ datasets. The P value represents the significance of enriched 

pathways or biological processes from the KEGG and Reactome databases using 

inferred downstream targets with the Fisher exact test. 

 

We compared the performance of SpaTalk for inference of intra-cellular signal 

pathways of the receiver cell type triggered by the LRI with those of NicheNet6, 

CytoTalk7, and CellCall8 that also infer the downstream targets of LRIs. We reasoned 

that a more accurate method would be more likely to enrich the receptor-related 

biological processes or pathways using the inferred downstream target genes in the 

receiver cell type (Fig. 2f); hence, the Fisher-exact test was adopted for pathway 

enrichment analysis with the KEGG and Reactome databases on target genes in 

receivers. The target genes inferred by all methods enriched the most intra-cellular 

pathways or biological processes triggered by the inter-cellular LRI (Fig. 2g). 

Nevertheless, SpaTalk exhibited the top-ranked performance over three benchmarked 

datasets, exceeding other existing methods in inference of the LRT signal network. 

Identification of signal transmission among neurons and non-neuronal cells. SpaTalk 

was first applied to investigate and visualize the cell–cell communications over the 

STARmap ST dataset of the mouse visual cortex (Fig. 3a), including data of 1020 

sequenced genes for 973 cells in space covering the spatial axis of excitatory neurons 

(eL2/3, eL4, eL5, eL6, annotated by anatomic cortical layers); Pvalb, Reln, Sst, and Vip- 

expressing neurons; and non-neuronal cells, including astrocytes (Astro), endothelial 

cells (Endo), microglia (Micro), oligodendrocytes (Oligo), and smooth muscle cells 
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(SMCs) from layers L1 though L6 to the corpus callosum and hippocampus. As shown 

in Fig. 3b, SpaTalk identified the spatial signal transmission among excitatory and 

inhibitory neurons and non-neuronal cells such as Sst–Sstr2, Inhba–Acvr1c, and Cort–

Sstr2. For example, the direct cell–cell communication mediated by the Sst–Sstr2 

interaction was observed between Sst-expressing neurons and Pvalb-expressing 

neurons (Supplementary Fig. 3a), which are known to regulate neuron activity via non-

synaptic, inter-neuronal communication36, 37. Concordantly, these identified LRIs 

among neurons and non-neuronal cells are associated with multiple biological 

processes and pathways that play vital roles in the regulation of physiological neural 

development and the balance of excitatory/inhibitory transmission in the central 

nervous system38, 39, including growth hormone synthesis, secretion, and action; 

neuroactive ligand-receptor interaction; signaling by activin; and the transforming 

growth factor (TGF)-beta signaling pathway (Fig. 3c). 

Notably, Astro were relatively abundant across space of the L5 layer and 

colocalized with numerous excitatory neurons, exhibiting direct cell–cell 

communication with eL2/3, eL5, and eL6 (Supplementary Fig. 3b). Given the Cort–Sstr2 

interaction between eL5 and Astro, eL5 highly expressed and secreted the CORT ligand 

to interact with the SSTR2 receptor on Astro with a highly overlapped distribution 

density of eL5 and Astro in the constrained space, wherein the spatial distances of Cort 

and Sstr2 in eL5–Astro pairs were significantly closer than those in all cell–cell pairs 

(Fig. 3d). Focusing on the intra-cellular signal pathway of the Cort–Sstr2 interaction 

reconstructed by SpaTalk, two downstream TFs were identified, Egr1 and Smad3, 

which are involved in canonical TGF-beta signaling, in line with previous findings40. 

Despite the relatively low-rise co-expression of target genes in receivers, the intra-
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cellular signal triggered by the Cort–Sstr2 interaction successfully propagated to the 

target genes, reaching a high percentage of cells expressing most target genes (Fig. 3e). 

The Fisher exact test showed significant enrichment with receptor-related pathways 

(Fig. 3f), indicating the reliability of eL5–Astro communications mediated by the Cort–

Sstr2 interaction. 

We then applied SpaTalk to another spot-based ST dataset of the mouse cortex 

(Slide-seq v2), including 17,545 unique genes among 42,550 spots in space, reaching 

up to 4000 expressed genes per spot. Leveraging previously published adult mouse 

cortical cell taxonomy by scRNA-seq data41 (Supplementary Fig. 3c), SpaTalk 

reconstructed the spatial transcriptomics atlas at the single-cell resolution for Slide-

seq data, which showed consistent spatial localization of neurons and non-neuronal 

cells across different layers, including the major excitatory and inhibitory neurons and 

Oligo (Fig. 3g). Compared to STARmap data, oligodendrocyte progenitor cells, and Igtp-, 

Ndnf-, and Smad3-expressing neurons were also observed in the Slide-seq data. 

Concordantly, most cell–cell communications in STARmap data were also found in 

Slide-seq data except for those of distinct cell types in the two datasets 

(Supplementary Fig. 3d). For example, the eL5–Astro communications mediated by the 

Cort–Sstr2 interaction in space and the downstream targets such as SMAD3 were also 

observed in Slide-seq data (Fig. 3h), suggesting the universality of the spatially resolved 

cell-cell communications inferred by SpaTalk. In addition, the direct communications 

among Pvalb neurons, eL6, and Oligo were also significantly enriched, in accordance 

with the fact that neuron-oligo communication controls the oligodendrocyte function 

and myelin biogenesis (Supplementary Fig. 3e). 
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Fig. 3 Identification of spatial inhibitory signal transmission among neurons and non-

neuronal cells. a STARmap single-cell ST dataset of the mouse visual cortex involving 

973 cells and 1020 genes. Astro, astrocytes; eL2/3, eL4, eL5, eL6, excitatory neuron 

subtypes; Endo, endothelial cells; HPC, hippocampus; Micro, microglia; Oligo, 

oligodendrocytes; SMC, smooth muscle cells; cc, corpus callosum. b Significantly 

enriched LRIs that mediate cell–cell communications among neurons and non-

neuronal cells inferred by SpaTalk with P < 0.05. The P value represents the significance 

of spatial proximity of LRIs using the permutation test. c Sanky plot of the associations 

among ligands, receptors, and biological processes or pathways in the KEGG and 

Reactome databases that mediate cell–cell communications in the central nervous 

system. d Spatial distribution and intra-cellular signaling pathways of the Cort–Sstr2 

pairs between the eL5 senders and Astro receivers. P values were calculated with the 

Wilcoxon test. e Co-expression of target genes in receivers and the percentage of 

expressed cells for target genes. f Significantly enriched biological processes and 

pathways with the ligand-receptor-target genes using the Fisher exact test. g Slide-seq 

spot-based ST dataset of the mouse visual cortex involving 42,550 spots and 22,542 

genes. OPC, oligodendrocyte progenitor cell. h Communications of eL5–Astro 

mediated by the Cort–Sstr2 interaction in space and the intra-cellular signal pathway 
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inferred by SpaTalk over Slide-seq data. 

Metabolic modulation of periportal hepatocytes on pericentral hepatocytes. We 

applied SpaTalk to the Slide-seq ST dataset of the mouse liver covering 17,545 unique 

genes among 25,595 spots in space (Fig. 4a). To explore the cell-type composition of 

Slide-seq data, a mouse liver scRNA-seq reference integrating the non-parenchymal 

cells from the Mouse Cell Atlas (MCA)42 and the parenchymal hepatic cells from the 

GSE125688 dataset43 were utilized (Supplementary Fig. 4a), containing 6029 cells, 

including major immune cells such as macrophages (Macro), and the pericentral and 

periportal hepatocytes. The reconstructed single-cell ST atlas was perfectly accordant 

with the original outcome obtained by Slide-seq (Fig. 4b), wherein the expression of 

known marker genes44 and the percent for each cell type were highly correlated across 

spots (Supplementary Fig. 4b, c, d), such as the pericentrally and periportally zonated 

genes Cyp2e1 and Pck1 (Fig. 4c). Immune cells were hardly observed in each spot, with 

pericentral and periportal hepatocytes accounting for the major proportion across 

spots (Supplementary Fig. 4e); the same phenomenon was observed in recently 

published ST data of the healthy liver45. 

The cell–cell communications between pericentral and periportal hepatocytes 

were further explored by SpaTalk (Fig. 4d). Both hepatocyte types secrete and receive 

multiple ligands for their communication, forming spatially distributed metabolic 

cascades to cooperatively optimize the metabolic environment. For instance, with the 

gradient expression of enzymes in sequential lobule layers, pericentral hepatocytes 

perform the primary steroid, alcohol, and lipid metabolic processes, while periportal 

hepatocyte mainly carry out the small-molecule and monosaccharide biosynthetic 

processes, amino acid and triglyceride metabolic processes, and gluconeogenesis (Fig. 
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4e, f), in line with the variable functions of zonated hepatocytes residing in the central 

and portal veins46. Notably, the periportal hepatocytes substantially expressed more 

ligands, including epidermal growth factor (Egf), transforming growth factor alpha 

(Tgfa), heparin-binding EGF-like growth factor (Hbegf), insulin-like growth factor 1 

(Igf1), and vascular endothelial growth factor A (Vegfa), to promote the growth of 

pericentral hepatocytes. As the blood flows from the portal vein toward the central 

vein, this could reflect the fact that periportal hepatocytes respire most of the oxygen, 

leading to decreased oxygen concentrations along the lobule axis; thus, periportal 

hepatocytes secrete numerous growth factors via paracrine signaling to modulate the 

pericentral hepatocytes for the prevention of hypoxia and the maintenance and 

amelioration of pericentrally metabolic functions46. 

Taking the LRI of Apob–Cd36 as an example, the spatially resolved cell–cell 

communications between periportal and pericentral hepatocytes mainly occurred 

across the mid-lobule layers (Fig. 4g). The gene product of Apob is an apolipoprotein 

of chylomicrons and low-density lipoproteins highly involved with the regulation of 

lipids and fatty acids metabolism through CD36, indicating the modulation of 

periportal hepatocytes on the metabolic microenvironment sensed by pericentral 

hepatocytes. From the reconstructed intra-cellular signal propagation network 

triggered by the Apob–Cd36 interaction (Fig. 4h), sequential target TFs were activated, 

including Ahr that regulates xenobiotic-metabolizing enzymes such as cytochrome 

P450, and Nr1h4 that regulates the expression of genes involved in bile acid synthesis 

and transport, in agreement with the corresponding module score of pericentral 

hepatocytes in space (Fig. 4i). The LRT network was also remarkably enriched in the 

AMPK and PPAR signaling pathways, which play crucial roles in the regulation of energy 
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and metabolic homeostasis, suggesting the spatially fine-tuned cell–cell 

communications along the portal–central lobule axis for minimizing risks to pericentral 

hepatocytes. 

 
Fig. 4 Modulation of periportal hepatocytes on the metabolic microenvironment 

sensed by pericentral hepatocytes. a Slide-seq spot-based ST dataset of the mouse 

liver involving 25,595 spots and 17,545 genes. b Cell-type decomposition by SpaTalk. 

PC, pericentral; PP, periportal; Hep, hepatocytes. c Scaled Pearson’s correlation 

coefficients between the expression of known marker genes and the percent for each 

cell type. DC, dendritic cell; Macro, macrophages. d Enriched LRIs that mediate cell–

cell communications between pericentral and periportal hepatocytes. e Significant 

differentially expressed genes (DEGs) between periportal and pericentral hepatocytes 

assessed with the Wilcoxon test and the corresponding significantly enriched 

biological processes and pathways determined with the Metascape web tool. 

Representative DEGs are labeled beside the heatmap. f Significantly activated 

pathways in pericentral (up) and periportal (down) hepatocytes determined by Gene 

Set Enrichment Analysis (GSEA). g Communications from periportal hepatocytes to 
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pericentral hepatocytes mediated by the Apob–Cd36 interaction in space. h Intra-

cellular signal pathway inferred by SpaTalk over Slide-seq data and the significantly 

enriched pathways over the ligand-receptor-target network. i Inferred module score 

of each hepatocyte type over the pathway signatures determined with Seurat. 

Spatial characterization of cell types over 10X Visium data. Given the widely used 10X 

Visium tool in ST studies, we applied SpaTalk to a human skin squamous cell carcinoma 

(SCC) ST dataset published by Ji et al.22, who profiled SCC and matched normal tissues 

via 10X scRNA-seq and used Visium to identify a tumor-specific keratinocyte (TSK) in 

the tumor (Fig. 5a). Using the matched SCC scRNA-seq data of patient 2 as reference, 

the optimal cell-type composition for each spot was deconvoluted by SpaTalk, which 

exhibited a similar characterization with that histologically assessed from hematoxylin 

and eosin-stained frozen sections (Fig. 5b). The percent of TSK inferred by our method 

was compared to the TSK score based on markers (e.g., MMP10, PTHLH, LAMC2, and 

IL24) defined by Ji et al. across 646 spots (Fig. 5c). A high correlation between the TSK 

percent and score was observed (Fig. 5d). Moreover, the percent of inferred cell types 

was prominently associated with the expression of known marker genes, indicating 

the accuracy of SpaTalk for cell-type decomposition (Supplementary Fig. 5a, b). 

Next, we reconstructed the single-cell ST profile by assuming a total of 30 cells in 

each spot according to a recent review12, which covered the main epithelial cells, 

including differentiating, cycling, and basal keratinocytes; melanocytes; fibroblasts 

(FB); Endo; natural killer (NK) cells; and T cells (Fig. 5e). Despite the asymmetrical 

distribution for most cell types, TSK, FB, and Endo showed specific patterns of locations 

in space, which were highly adjacent in some tumor areas (Fig. 5f), forming direct cell–

cell communications in the tumor microenvironment (TME). By filtering cells from the 

TSK leading spots (score ≥ 0.8), we found that TSKs reside within a fibrovascular niche, 
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resulting in high colocalization of TSKs, FB, and Endo at the TSK leading spots (Fig. 5g), 

in line with the previous findings22. Moreover, we used SpaTalk to investigate the cell-

type composition over the ST data of another SCC patient. Despite a low percentage 

across 621 spatial spots, most TSKs centered on a handful of corner spots in space, 

exhibiting a highly consistent distribution with TSK scores (Fig. 5h and Supplementary 

Fig. 5c). Unsurprisingly, the fibrovascular niche was also observed in the TSK leading 

spots of patient 10 with clear spatial co-localization (Supplementary Fig. 5d), indicating 

the close cell–cell communication among TSKs, FB, and Endo in the TME underlying 

the occurrence and development of SCC. 

 
Fig. 5 Spatial characterization of tumor and stromal cells in human squamous cell 
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carcinoma Visium data with SpaTalk. a Visium spot-based ST dataset of human skin 

SCC in patient 2 with the matched scRNA-seq dataset involving the main keratinocytes 

(KC), stromal cells, and immune cells. b Cell-type decomposition by SpaTalk. Cyc, 

cycling; Diff, differentiating; NK, natural killer; FB, fibroblast. c TSK percent and TSK 

score across spatial spots. The expression of known TSK markers is plotted. d Pearson’s 

correlation coefficient between the TSK percent and TSK score. f Contour plot of TSK, 

FB, and Endo based on the reconstructed single-cell ST atlas by SpaTalk. g TSK leading 

spots with a TSK score > 0.8 in space. The bar chart represents the number of different 

cell types and the line chart represents the number of neighbors adjacent to TSKs 

among the TSK leading spots. h Visium spot-based ST dataset of human skin SCC in 

patient 10 and the cell-type decomposition by SpaTalk showing the percent of TSKs 

across 621 spatial spots. 

Reconstruction of TSK–stroma communications in space. To dissect the underlying 

LRI mediating the spatially resolved cell–cell communications between TSKs and 

stromal cells of the fibrovascular niche in the TME, we applied SpaTalk to infer the 

communications between TSK–FB and TSK–Endo pairs over the decomposed single-

cell ST data of SCC in patient 2, including the top-ranked 20 LRIs based on the 

integrated inter-cellular and intra-cellular scores (Fig. 6a). Consistent with a TSK–

fibrovascular niche, prominent TSK signaling to FB and Endo was mediated by several 

common ligand–receptor pairs, including VEGFA–NPR1, VEGFB–NPR1, PGF–SDC1, and 

CDH1–ITGAE, associated with tumor angiogenesis. Additionally, TSKs modulate FB 

through secreting matrix metallopeptidase (MMP)1 and MMP9, which are linked to 

tumor metastasis via cellular movement and extracellular matrix (ECM) disassembly. 

Conversely, FB and Endo prominently co-expressed numerous ligands such as MDK, 

HGF, HMGB1, and THBS1, matching TSK receptors that promote the proliferation and 

differentiation of TSKs (Fig. 6b). Further supporting TSKs as an epithelial mesenchymal 

transition (EMT)-like population, SpaTalk predicted that the widely expressed TGFB1 

regulates TSKs. TSK receptors corresponding to additional ligands from FB and Endo 
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included several integrins (e.g., ITGA5 and ITGB6) and nectins (e.g., NECTIN1 and 

NECTIN2), highlighting other pathways associated with EMT and epithelial tumor 

invasion47, 48. 

 
Fig. 6 Reconstruction of cell–cell communications between TSK subpopulations and 

stromal cells in space with SpaTalk. a Top 20 inferred LRIs that mediate cell–cell 

communication from the TSK senders to the FB and Endo receivers. Colored blocks 

represent the known ligand–receptor pairs in CellTalkDB. The asterisk represents the 

significantly enriched LRIs determined by SpaTalk. b Top 20 inferred LRIs that mediate 

cell–cell communication from the FB and Endo senders to TSK receivers. c Region of 

interest (ROI) covering 42 spatial spots in space with a high total score of TSK, FB, and 

Endo according to their signature genes. The point plot shows the decomposed single-

cell ST atlas determined by SpaTalk. d Expression of known cancer-associated 

fibroblast (CAF) markers across TSKs, FB, Endo, and other cells. e Differentially 

expressed genes (DEGs) between EMT-like and EMT-unlike TSKs and the corresponding 
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enriched biological processes and pathways. Representative DEGs are labeled beside 

the point. f Number of cell-cell pairs over the LRIs from the EMT-like and EMT-unlike 

TSKs to CAFs. g Communications from EMT-like and EMT-unlike TSKs to CAFs mediated 

by the MMP1–CD44 interaction in space. h Comparison of communications among 

CAFs, Endo, EMT-like TSKs, and EMT-unlike TSKs with respect to the number of cell-cell 

pairs in space over the matched LRIs evaluated with a paired t test. 

Next, we focused on a region of interest (ROI) covering 42 spatial spots in space 

for in-depth exploration of TSK-stroma communications, which exhibited a high total 

score of TSK, FB, and Endo according to their signature genes, occupying the major 

part in the ROI (Fig. 6c). By mapping cancer-associated fibroblast (CAF) markers to the 

cells in space, the majority of FB in the ROI highly expressed the known CAF marker 

genes (e.g., VIM, FAP, POSTIN, and SPARC) (Fig. 6d), hinting at the transformation of FB 

to CAFs induced by the adjacent TSKs and conversely supporting the stemness of TSKs 

via direct cell-cell communication in space (Supplementary Fig. 6a). Notably, the TSKs 

appear to be extremely heterogeneous with respect to the broad range of EMT scores 

in the ROI; thus, TSKs were further classified into 268 EMT-like and 268 EMT-unlike 

populations (Supplementary Fig. 6b). By comparing their differentially expressed 

genes, EMT-like TSKs were dramatically enriched with ECM organization, 

proteoglycans in cancer, regulation of cell adhesion, and the VEGFA-VEGFR2 signaling 

pathway, representing more invasive properties compared with EMT-unlike TSKs (Fig. 

6e).  

Additionally, EMT-like TSKs appear to be more communicative with surrounding 

CAFs in the TME in light of the greater number of cell-cell pairs over the LRIs that 

prominently mediate TSK–stroma communications in space, such as LAMB3-ITGB1, 

LAMA3-ITGB1, LAMC2-ITGB1, and MMP1-CD44 (Fig. 6f and Supplementary Fig. 6c, d, 

e). Metastasis-related laminins are essential for formation and function of the 
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basement membrane, whereas MMPs are involved in ECM breakdown, both 

contributing to the aggravated malignancy of tumors. Moreover, CD44 expression on 

CAFs plays a supporting role in the induction of cellular stemness, wherein CAFs have 

a preference of cell–cell communications with EMT-like TSKs in space (Fig. 6g). 

Interestingly, EMT-unlike TSKs notably exhibited more communicative cell–cell pairs 

with Endo, whereas EMT-like TSKs exhibited significantly more communicative cell–cell 

pairs with CAFs over the matched LRIs (Fig. 6h), consistent with the observed 

contribution of CAFs to EMT in a broad range of tumors49, 50. 

Discussion 

We have demonstrated the capabilities of SpaTalk to infer and visualize spatially 

resolved cell–cell communications mediated by significantly enriched LRIs under 

normal and disease states over existing representative datasets, including the single-

cell ST data generated from STARmap, MERFISH, and seqFISH+, and the spot-based ST 

data obtained via Slide-seq and 10X Visium. 

There are two principles to decode the mechanisms of cell–cell communications: 

ligand-receptor proximity and LRT co-expression12. In a given tissue niche, cells are 

more likely to communicate with each other when they are spatially adjacent and 

activate downstream target genes in the receiving cell triggered by the LRI in proximal 

cells; thus, ST data are well suited to apply the two principles for inferring inter-cellular 

communications. Accordingly, our proposed SpaTalk realizes the integration of these 

two principles by incorporating the KNN and cell–cell graph network to filter spatially 

proximal cell pairs and corresponding LRIs, followed by utilizing the knowledge graph 

algorithm to model the LRT signal propagation process. Consequently, the 
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performance of SpaTalk was superior to that of other methods over the benchmarked 

ST datasets with respect to several evaluation indices, demonstrating the reliability of 

the two principles in decoding cellular cross-talk, especially for juxtracrine and 

paracrine communication. 

Importantly, SpaTalk is applicable to either single-cell or spot-based ST datasets 

generated from mainstream ST technologies. For the former, SpaTalk assigns a label to 

each cell by selecting similar cell types with the top-ranked weight via NNLM for single-

cell ST data, generating the ST atlas at single-cell resolution with known cell types for 

the subsequent inference of cell–cell communications. For spot-based ST data, SpaTalk 

selects and maps the optimal combination of cells in accordance with the decomposed 

optimal weight/percent of cell types via NNLM and the transcriptome profiles of 

spatial spots to reconstruct the ST atlas at single-cell resolution with known cell types. 

Notably, applications of SpaTalk to the mouse cortex and liver datasets sequenced by 

STARmap and Slide-seq, respectively, revealed the evidential LRIs in space that 

mediate the spatially resolved cell–cell communications contributing to normal 

physiological processes. Moreover, exploration of SpaTalk on the human skin SCC 

dataset obtained from 10X Visium identified the variable preference of 

communication among tumor subpopulations, CAF, and Endo. These cases 

convincingly demonstrate the universality of SpaTalk in decoding the mechanism of 

cell–cell communications in space underlying normal and disease tissues for single-cell 

and spot-based ST data. 

As unmatched scRNA-seq and ST data would directly influence the cell-type 

decomposition, an important feature of SpaTalk is the ability to assign a spot/cell into 

an unsure category considering the unseen cell types in the scRNA-seq reference. For 
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example, the scRNA-seq reference for the Slide-seq mouse cortex ST data was 

obtained from another repository for the same tissue, resulting in numerous unsure 

cells by assuming one cell in each spot in terms of the high resolution (10 μm) of Slide-

seq technology that almost approaches single-cell resolution. Additionally, the 

extremely low gene coverage of several spatial spots severely affects the regression 

model, which were regarded as the unsure type by SpaTalk. However, with respect to 

the human skin SCC datasets, SpaTalk removed the unsure type for the matched 

scRNA-seq and ST data. As the matched multi-modal datasets will undoubtedly 

become greater in number, application of SpaTalk and similar methods will be required 

for accurate inference of spatially resolved cell–cell communications. 

Additionally, SpaTalk characterizes the spatial distribution for each cell type within 

the reconstructed ST at single-cell resolution through the contour plot of cellular 

density in space, which enables analyzing the proximal relationship between paired 

cell types. Moreover, SpaTalk enables the statistical analyses and visualization of 

spatially proximal LRIs in space, forming a dynamic cell–cell communication network. 

Currently, it is hard to analyze and visualize the LRI at single-cell resolution for scRNA-

seq data, wherein the common practice is to interpret the LRI for paired cell types. By 

incorporating spatial information, SpaTalk displays the enriched LRI at single-cell 

resolution via the spatially proximal co-expressed cell pairs, offering an informatively 

brand-new approach for the analysis and visualization of the LRI and its mediated cell–

cell communication underlying the disease pathology from a novel perspective, as 

shown in the application of SpaTalk to the human skin SCC datasets. 

Adding spatial constraints in cell–cell communication inference is critical to the 

spatial analysis of juxtracrine and paracrine communications. However, this constraint 
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inevitably causes the failure of inferring long-range communications such as endocrine 

and telecrine signaling. Classification of LRIs into short-range and long-range 

communications with prior knowledge might be helpful to infer the comprehensive 

communication categories computationally. Moreover, it is potentially beneficial to 

include other omics data with the increasing multi-modal datasets generated from 

state-of-the-art technologies such as 10X Multiome and Digital Spatial Profiling51 in 

studying spatially regulated cell–cell communications. Thus, more reliable 

computational models might be needed for more accurate integration of multi-modal 

data and inference.  

Methods 

Datasets. For STARmap, the single-cell ST data of the mouse cortex (20180410-

BY3_1kgenes) was obtained from a public data portal 

(https://www.dropbox.com/sh/f7ebheru1lbz91s/AABYSSjSTppBmVmWl2H4sKa?dl=0). 

For MERFISH, the single-cell ST data of the naïve female mouse (Animal_ID: 1, Bregma: 

0.26) hypothalamic preoptic region was downloaded from Dryad 

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248). For seqFISH+, the 

single-cell ST data of the mouse cortex and olfactory bulb were retrieved from the 

Github repository (https://github.com/CaiGroup/seqFISH-PLUS). For Slide-seq, the 

spot-based ST data of the mouse liver (Puck_180803_8) and somatosensory cortex 

(Puck_200306_03) were obtained from the Broad Institute Single Cell Portal 

(https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study) and 

(https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-

spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2), respectively. For 
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10X Visium, the spot-based ST data and scRNA-seq data of human SCC were 

downloaded from the Gene Expression Omnibus (GEO) repository (GSE144240). The 

mouse liver scRNA-seq data of non-parenchymal and parenchymal hepatic cells were 

refined from the MCA (https://figshare.com/articles/MCA_DGE_Data/5435866) and 

GSE125688, respectively. The mouse cortex scRNA-seq data were obtained from 

GSE71585.  

Data processing. For the liver scRNA-seq datasets, the non-parenchymal cells and 

parenchymal hepatic cells were collected from the MCA and GSE125688, respectively, 

wherein hepatocytes were classified into pericentral and periportal hepatocytes with 

principal component analyses and clustering analysis. For the MERFISH dataset, 

ependymal cells were excluded due to the limited cell number in the section (<2). For 

other datasets, all cells were included in the filtered matrices. Human and mouse gene 

symbols were revised in accordance with NCBI gene data 

(https://www.ncbi.nlm.nih.gov/gene/) updated on June 30, 2021, wherein unmatched 

genes and duplicated genes were removed. For all ST and scRNA-seq datasets, the raw 

counts were normalized via the global-scaling normalization method LogNormalize in 

preparation for running the subsequent scDeepSort pipeline. 

SpaTalk algorithm. The SpaTalk model consists of two components: cell-type 

decomposition and spatial LRI enrichment. The first component is to infer cell-type 

composition for single-cell or spot-based ST data, and the second component is to infer 

spatially proximal ligand–receptor interactions that mediate cell–cell communications 

in space.  

Cell-type decomposition. To dissect the cell-type composition for the ST data 

matrix 끫殎[끫殶 × 끫毀] (끫殶  genes and 끫毀  spots/cells), NNLM was first applied to obtain the 
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optimal proportion of cell types using the scRNA-seq data matrix 끫殌[끫殶 × 끫殠] (끫殶 genes 

and 끫殠  cells) as the reference with 끫殰  cell types. Let 끫殘 = {끫毌1, 끫毌2, … , 끫毌끫殶}  be the 

expression profile for each spot/cell to establish the following linear model: 끫殘 = 끫殖끫毺 + 끫欀 

where 끫殖 = [끫殶 × 끫殰]  is the average expression profile generated from 끫殌  and 끫欀 

represents random error. Mean relative entropy loss was then used to measure the 

difference between the predicted and observed values. Therefore, the objective 

function can be written as: 끫殜끫殜끫殜끫殜끫殜끫殶 {끫毺 ≥ 0} 끫歾(끫殘 − 끫殖끫毺) + 끫欌1끫殊1(끫毺) + 끫欌끫毸끫殊끫毸(끫毺) + 끫欌2끫殊2(끫毺) 

where 끫殊1 , 끫殊끫毸  and 끫殊2  represent the L1, angle, and L2 regularization with non-

negative 끫欌1 , 끫欌끫毸  and 끫欌2  initialized by zero23, 24. The model was trained with the 

above objective function using Lee’s multiplicative iteration algorithm25 with default 

hyperparameters until convergence or after 10,000 iterations to generate the 

coefficient matrix 끫歬[끫殰 × 끫毀].  

For single-cell ST data, the cell type with the maximum coefficient was assigned 

to each cell. For spot-based ST data, let 끫殀 be the maximum cell number for each spot, 

which was set to 30 for 10X Visium data and was set to 1 for Slide-seq data according 

to a recent review. In practice, the optimal cellular combination 끫欨 for each spot was 

determined by the following function: 

끫欨끫殬 (끫殜 ∈ {1, 2, … ,끫殰}) = �[끫殀끫毺끫殬] + 1      ({끫殀끫毺끫殬} ≥ 0.5)

[끫殀끫毺끫殬]             ({끫殀끫毺끫殬} < 0.5)
 

wherein [끫殀끫毺끫殬]  and {끫殀끫毺끫殬}  represent the integer and fractional parts of 끫殀끫毺끫殬 , 
respectively. For each spot, we randomly selected 끫殜 (끫殜 = ∑ 끫欨끫殬끫殰끫殬=1 ) cells from 끫殌 to 

compare their merged expression profile 끫欬 with the ground truth according to the 
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following function: 

끫殜끫殜끫殜끫殜끫殜끫殶 {끫殜 ≤ 끫殀} � (끫殘끫殬 −� 끫欬끫殬끫殮끫殴끫殮=1 )2끫殶끫殬=1  

To assign a coordinate (끫毊, 끫毌) to each sampled cell, we applied stochastic 끫毸 ∈ [0, 1] 

and 끫欆 ∈ [0, 360] in spot (끫毊0, 끫毌0) to locate the cell into the space detailed in the 

following function: 끫毊 = 끫毊0 + 끫毸끫殢끫殴끫殬끫殶 cos(끫欆끫欆/180)끫毌 = 끫毌0 + 끫毸끫殢끫殴끫殬끫殶 sin(끫欆끫欆/180)
 

where 끫殢끫殴끫殬끫殶  represents the spatial distance of the closest neighbor spot. By 

integrating the optimal cellular combinations for all spots, ST data at single-cell 

resolution were reconstructed for the spot-based ST data. 

Spatial LRI enrichment. To generate the cell–cell distance matrix 끫歮 , the Euclidean 

distance between cells was calculated using the single-cell spatial coordinates of ST 

data. The KNN algorithm was then applied to each cell to select the K nearest cells 

from 끫歮 to construct the cell graph network. For ligand i of the sender (cell type A) 

and receptor j of the receiver (cell type B), the number of LRI pairs (끫殆끫歨끫殬,끫歪끫殮0  ) was 

obtained from the graph network by counting the 1-hop neighbor nodes of receivers 

for each sender. The permutation test was then performed by randomly shuffling cell 

labels to recalculate the number of LRI pairs. By repeating this step Z times, a 

background distribution 끫殆 = {끫殆끫歨끫殬,끫歪끫殮1 , 끫殆끫歨끫殬,끫歪끫殮2 , … , 끫殆끫歨끫殬,끫歪끫殮끫殚 } was obtained for comparison 

with the real interacting score, and the 끫殆 value was calculated as follows: 끫殆끫歨끫殬,끫歪끫殮 = 끫殠끫殜끫殜끫殢{끫毊 ∈ 끫殆 | 끫毊 ≥ 끫殆끫歨끫殬,끫歪끫殮0 }/Z 

where 끫殆끫歨끫殬,끫歪끫殮 values less than 0.05 were filtered to calculate the intercellular score of 

LRI from senders to receivers (끫殌끫歨끫殬,끫歪끫殮끫殬끫殶끫殬끫殬끫殬 = 1− 끫殆끫歨끫殬,끫歪끫殮 ). To further enrich the LRIs that 

activate downstream TFs, target genes, and the related pathways of receivers, the 
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knowledge graph was introduced to model the intracellular signal propagation process. 

In practice, LRIs from CellTalkDB, pathways from KEGG and Reactome, and TFs from 

AnimalTFDB were integrated to construct the ligand–receptor–TF knowledge graph 

(LRT-KG), wherein the weight between entities represents the co-expressed coefficient. 

Taking the receptor as the query node, we incorporated the random-walk algorithm 

into the LRT-KG to filter and score the downstream activated 끫毂 TFs with no more than 

10 steps and Z iterations; thus, the probability 끫殺 for each TF can be calculated with 

the ratio of successful hits from the query node to the target TF during the Z random 

walks. By integrating the co-expressed TFs and the corresponding target genes from 

the LRT-KG, the intracellular score of LRI from senders to receivers can be written as: 

끫殌끫歨끫殬,끫歪끫殮끫殬끫殶끫殬끫殬끫殬 = � 끫欆끫殰 × 끫殺끫殰/끫欄끫殰끫殬끫殰=1  

where 끫欆 represents the number of targeted genes, 끫欄 represents the step from the 

receptor to the TF in the LRT-KG. By the sigmoid transformation for 끫殌끫歨끫殬,끫歪끫殮끫殬끫殶끫殬끫殬끫殬, the final 

score of the LRI from cell type A to cell type B can be written as: 

끫殌끫歨끫殬,끫歪끫殮 = �끫殌끫歨끫殬,끫歪끫殮끫殬끫殶끫殬끫殬끫殬 × 끫殌끫歨끫殬,끫歪끫殮끫殬끫殶끫殬끫殬끫殬 

Comparison with other methods. STARmap, MERFISH, and seqFISH+ ST data were 

used to compare the performance of SpaTalk with other existing cell-type 

decomposition methods. For these single-cell ST data, all cells were split according to 

the fixed spatial distance and then merged into simulated spots as the benchmark 

datasets. RCTD, SPOTlight, Seurat, deconvSeq, and Stereoscope were benchmarked 

with the default parameters and evaluated with Pearson’s correlation coefficient and 

RMSE over the predicted and real cell-type composition for each spot. 

Given the limited genes of MERFISH ST data, STARmap and seqFISH+ single-cell ST 
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data (including 1020 and 10,000 genes, respectively) were used as the benchmark 

datasets to compare the performance of SpaTalk with other cell–cell communication 

inference methods (Giotto, SpaOTsc, NicheNet, CytoTalk, and CellCall). The one-sided 

Wilcoxon test was performed to evaluate the spatial proximity significance of the 

inferred LRIs by comparing the number of expressed LRIs between sender–receiver 

pairs and all cell–cell pairs, and the co-expressed percent of the LRI was calculated to 

evaluate the co-expression level by counting the number of expressed LRIs from 

senders to receivers from the cell–cell graph network. All methods were benchmarked 

with the default parameters and all inferred LRIs were unbiasedly evaluated with the 

above criteria except for the LRIs from SpaOTsc since the number of inferred LRIs was 

much larger than that of the other methods; thus, the top 1000 LRIs for each cell–cell 

communication were selected from SpaOTsc according to the final score. Given the 

significantly enriched biological processes or pathways in the receiver cell type, the 

Fisher exact test was adopted for pathway enrichment analysis with the KEGG and 

Reactome databases on the activated genes in receivers using the following function: 

끫殆 =  �끫殜 + 끫殞끫殜 � �끫殠 + 끫殢끫殠 � / � 끫殶끫殜 + 끫殠� 

where 끫殶 = 끫殜 + 끫殞 + 끫殠 + 끫殢 ; 끫殜  is the number of inferred target genes that match a 

given pathway, 끫殞  is the number of given pathway genes that exclude 끫殜 , 끫殠  is the 

number of inferred target genes that unmatch a given pathway, and 끫殢 is the number 

of all genes excluding 끫殜 , 끫殞 , and 끫殠 . NicheNet, CytoTalk, and CellCall were 

benchmarked with the default parameters and the inferred target genes for each LRI 

were evaluated according to the significance of pathway enrichment. 

Pathway and biological process enrichment. The Metascape web tool 
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(https://metascape.org/) was used to perform the enrichment analysis of pathways 

and biological processes, wherein the top 100 highly expressed genes were selected 

according to the fold change of the average gene expression. Gene Set Enrichment 

Analysis (GSEA) was performed using the ranked gene list with the clusterprofiler tool 

to enrich the significantly activated pathways and biological processes, whose 

signatures were obtained from the Molecular Signatures Database v7.4 (MSigDB, 

http://www.gsea-msigdb.org/gsea/msigdb), including the gene sets from Gene 

Ontology (GO) and the canonical pathway gene sets derived from the KEGG, Reactome, 

and WikiPathways pathway databases. 

Module scoring of hallmarks and signatures. Hallmark scoring of metabolism of 

xenobiotics by cytochrome P450, synthesis of bile acids and bile salts, TSK, and EMT 

was performed using the “AddModuleScore” function in Seurat with default 

parameters. Hallmark pathways and EMT were obtained from MSigDB, and the 

signature genes of the TSK were download from the original publication by Jin et al. 

Statistics. R (version 4.1.1) and GraphPad Prism 8 were used for all statistical analyses.  

Data and code availability 

No new data was generated for this study. All data used in this study is publicly 

available as previously described. Source codes for the SpaTalk R package and the 

related scripts are available at github (https://github.com/ZJUFanLab/SpaTalk).  
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