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From visual perception to language, sensory stimuli change their meaning depending on prior experience.
Recurrent neural dynamics can interpret stimuli based on externally cued context, but it is unknown whether
similar dynamics can compute and employ internal hypotheses to resolve ambiguities. Here, we show that
mouse retrosplenial cortex (RSC) can form hypotheses over time and perform spatial reasoning through
recurrent dynamics. In our task, mice navigated using ambiguous landmarks that are identified through
their mutual spatial relationship, requiring sequential refinement of hypotheses. Neurons in RSC and in
artificial neural networks encoded mixtures of hypotheses, location, and sensory information, and were
constrained by robust low dimensional dynamics. RSC encoded hypotheses as locations in activity space with
divergent trajectories for identical sensory inputs, enabling their correct interpretation. Qur results indicate
that interactions between internal hypotheses and external sensory data in recurrent circuits can provide a
substrate for complex sequential cognitive reasoning.

Introduction

External context can change the processing of stimuli'* via recurrent neural dynamics®. To study how hypotheses
can serve as internal context signals, we developed a task that requires sequential integration of ambiguous stimuli
across time and space’. Freely moving mice have to distinguish between two perceptually identical landmarks,
formed by identical dots on a computer-display arena floor, by sequentially visiting them and reasoning about their
relative locations. The landmarks were separated by <180 degrees in an otherwise featureless circular arena (50 cm
diameter), to create a clockwise (‘a’) and a counterclockwise (‘b’) landmark. Across trials, the relative angle
between landmarks was fixed and the same relative port was always the rewarded one; within trials, the locations
of landmarks was fixed. The mouse’s task was to find and nose-poke at the ‘b’ landmark for water reward (‘b” was
near one of 16 identical reward ports spaced uniformly around the arena; other ports caused a time-out). At most
one landmark was visible at a time (enforced by tracking mouse position and modulating landmark visibility based
on relative distance, see Methods, Supplementary Fig. 1). Each trial began with the mouse in the center of the arena
in the dark (‘LMO’ phase, Fig. 1b), without knowledge of its initial pose. In the interval after first encountering a
landmark (‘LM1’ phase), an ideal agent’s location uncertainty is reduced to two possibilities, but there is no way to
disambiguate whether it saw ‘a’ or ‘b’. After seeing the second landmark, an ideal agent could infer landmark
identity (‘a’ or ‘b’; this is the ‘LM2’ phase, Fig. 1b) by estimating the distance and direction traveled since the first
landmark and comparing those with the learned relative layout of the two landmarks; thus, an ideal agent can use
sequential spatial reasoning to localize itself unambiguously. To randomize the absolute angle of the arena at the
start of each new trial (and thus avoid use of any olfactory or other cues), mice had to complete a separate instructed
visually-guided dot-hunting task, after which the landmarks were randomly rotated together (Supplementary Fig.
1). Mice learned the task (Fig.1c, p < 0.0001 on all mice, Binomial test vs. random guessing), showing that they
learn to form hypotheses about their position during the LM1 phase, retain and update these hypotheses with self-
motion information until they encounter the second (perceptually identical) landmark, and use them to disambiguate
location and determine the rewarded port.
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We hypothesized that RSC, which integrates self-motion®, position®®, and sensory’ inputs, could perform this
computation. RSC is causally required to process landmark information'’, and we verified that RSC is required for
integrating spatial hypotheses with visual information but not for direct visual search with no memory component
(Supplementary Fig. 2).

Spatial hypotheses are encoded conjunctively with other navigation variables in RSC

We recorded 50-90 simultaneous neurons in RSC during navigational task performance using tetrode array drives''
(Fig. 1a) and behavioral tracking (see Methods, Supplementary Figs. 1,3,4). RSC neurons encoded information
about both the mouse’s location (Fig. 1d) and about the task phase, corresponding to possible location hypotheses
(Fig. 1d,e). This hypothesis encoding was not restricted to a separate population: most cells encoded both hypothesis
state as well as the animal’s location (Fig. 1g). This encoding was distinct from the encoding of landmark encounters
in the interleaved dot-hunting task and was correlated per-session with behavioral performance (Supplementary
Fig. 6). The encoding of mouse location changed across task phases (Fig. 1d,f), similar to the conjunctive coding
for other spatial and task variables in RSC®. This mixed encoding suggests that RSC can transform new ambiguous
sensory information into unambiguous spatial information through the maintenance and contextual use of internally
generated spatial hypotheses.
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Hypothesis-dependent spatial computation via recurrent dynamics

105  To test whether recurrent neural networks can solve sequential spatial reasoning tasks that require hypothesis
formation, and to provide insight into how this might be achieved in the brain, we trained a recurrent artificial neural
network (ANN) on a simplified 1-dimensional version of the task, since the relevant position variable for the
landmarks was their angular position (Fig. 2b; inputs were random noisy velocity trajectories and landmark
positions, but not their identity). The ANN performed as well as a near Bayes-optimal particle filter (Fig. 2b),

110  outperforming path integration with correction (corresponding to continuous path integration'>" with
boundary/landmark resetting'*'®), and represented multi-modal hypotheses, transitioning from a no-information
state (in LMO) to a bimodal two-hypothesis coding state (LM1), and finally to a full information, one-hypothesis
coding state (LM2) (Fig. 2c,d, Supplementary Fig.7). This result shows that recurrent neural dynamics are sufficient
to internally generate, retain, and apply hypotheses to reason across time based on ambiguous sensory and motor

115 information, with no external context inputs.
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145 Instantaneous position uncertainty (variance derived from particle filter) could be decoded from ANN activity
(Supplementary Fig. 8a), analogous to RSC (Fig.1e). Both ANN and RSC neurons encoded multiple navigation
variables conjunctively (Supplementary Fig.5b), and preferentially represented landmark locations (Supplementary
Fig.5c; consistent with overrepresentation of reward sites in hippocampus'®'?), and transitioned from encoding
egocentric landmark-relative position during LM1 to a more allocentric encoding during LM2 (Supplementary Fig.

150  9). Average spatial tuning curves of ANN neurons were shallower in the LM1 state relative to LM2, corresponding

to trial-by-trial ‘disagreements’ between neurons, evident as bimodal rates per location. RSC rates similarly became
less variable across trials per-location in LM2 (Supplementary Fig. 10), indicating that in addition to the explicit
encoding of hypotheses/uncertainty (Fig.1le,g), there is a higher degree of trial-to-trial variability in RSC as a
function of spatial uncertainty.
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The ANN computed, retained, and used multi-modal hypotheses to interpret otherwise ambiguous inputs: after
encountering the first landmark, the travel direction and distance to the second is sufficient to identify it as ‘a’ or
‘b’ (Figs. 1b, 2a). There are four possible scenarios for the sequence of landmark encounters: ‘a’ then ‘b’, or ‘b’
then ‘a’, for CW or CCW travel directions respectively. To understand the mechanism by which hypothesis
encoding enabled disambiguation, we examined the moment when the second landmark becomes visible and can
be identified (Fig. 2a). We designate LM1 states in which the following second landmark is ‘a’ as ‘LM1,’ and those
that lead to ‘b’ as ‘LM1y . Despite trial-to-trial variance resulting from random exploration trajectories and initial
poses, ANN hidden unit activity fell on a low-dimensional manifold (correlation dimension d = 3, Fig. 3d) and
could be well captured in a 3D embedding via PCA (Fig. 2d). Activity states during the LMO0,1,2 phases (green,
blue, grey, respectively) were distinct, and transitions between phases (mediated by identical LM encounters; black
arrows) clustered into discrete locations. Examining representative trajectories (for the CCW case, Fig.2e) reveals
that LM1, and LM1, states are well-separated in activity space. If the second landmark appears at the shorter CCW
displacement (corresponding to the ‘a’ to ‘b’ interval), the state jumps to the ‘b’ coding point on the LM?2 attractor
(Fig.2e). On the other hand, the absence of a landmark at the shorter displacement causes the activity to traverse
LM1,, until the 2" landmark causes a jump onto the ‘a’ coding location on the LM2 attractor. In both cases, an
identical transient landmark input pushes the activity from distinct hypothesis-encoding regions of activity space
onto different appropriate locations in the LM2 state, constituting successful localization.

a B Figure 3 Stable low-dimensional dynamics for
3 Neuron LM1 LM2 hypothesis-based stimulus disambiguation. (a)

Bk A= : Correlation structure in ANN activity is maintained
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30 3:*- <53 statistics (sessions and quartiles) for maintenance

1D location encoding in ANN 2D location encoding in RSC of correlations across task phases, This also extends
to a separate visually guided dot-hunting task (see

B also Supplementary Fig. 13). (d) Activity in both
N=16 sessions the ANN and RSC is locally low-dimensional (via
correlation dimension, Supplementary Fig.13 for

analysis via PCA).
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aios ek ool logba radus) encode the same angular position variables
across LM1 and LM2 regimes while also

encoding the different hypotheses required to disambiguate identical landmarks. Does the latter drive the network
to functionally reorganize throughout the computation? Or, does the former, together with the need to maintain and
use the internal hypotheses across time, require the network to exhibit stable low-dimensional recurrent attractor
dynamics? To test this, we computed the pairwise correlations of the ANN activity states (Fig. 3a) and found them
to be well conserved across LM1 and LM2 states. As these correlation matrices are the basis for projections into
low-dimensional space, this shows that the same low-dimensional dynamics were maintained, despite spanning
different computational and hypothesis-encoding regimes (metastable two-state encoding with path integration in
LMI vs. stable single-state path integration unchanged by further landmark inputs in LM?2, Supplementary Fig. 7).
Low-dimensional pairwise structure was also conserved across different landmark configurations and varied ANN
architectures, and the low-dimensionality of ANN states was robust to large perturbations (Supplementary Figs.12,
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15). In sum, these computations were determined by one stable set of underlying recurrent network dynamics,
which, together with appropriate self-motion and landmark inputs, can maintain and update hypotheses to
disambiguate identical landmarks over time, with no need for external context inputs.

RSC fulfills requirements for hypothesis-dependent spatial computation via recurrent dynamics

We hypothesized that RSC and its reciprocally connected brain regions may, similarly to the ANN, use internal
hypotheses to resolve landmark ambiguities via recurrent dynamics. To test this, we first computed pairwise rate
correlations and found a preserved structure between LM1 and LM2, as in the ANN (median R or Rs = 0.74 in
RSC, vs 0.73 in ANN, Fig. 3c). Firing rates could be well-predicted from rates of other neurons, using pairwise rate
relationships across task phases; this maintained structure also extended to the visual dot-hunting behavior
(Supplementary Fig. 13), indicating that RSC activity is coordinated by the constraints of stable recurrent neural
dynamics and not a feature of a specific behavioral task.

Consistent with highly conserved cell-cell relationships, RSC population activity was low-dimensional (~6
significant principal components, and correlation dim. ~5.4, Fig. 3d, Supplementary Fig. 13), similar to findings in
hippocampus'®. Together, we find that despite significant changes in neural encoding as different hypotheses are
entertained across task phases (Fig.1d.f, Supplementary Fig. 5a) and across different tasks (Supplementary Fig. 6),
the evolution of firing rates in RSC is constrained by stable attractor dynamics that could implement qualitatively
similar computations as the ANN (Fig. 4a).

Figure 4 RSC exhibits stable attractor dynamics
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We next examined the dynamical evolution of neural states in RSC during the spatial reasoning process. States
evolved at speeds correlated with animal locomotion (Supplementary Fig. 14a), consistent with the observation that
hypotheses are updated by self-motion in between landmark encounters (Fig. 1) and were driven by landmarks
(Supplementary Fig. 14a), consistent with findings in head-fixed tasks'®. To test the hypothesis that different neural
states in LM 1, and LM1,, together with stable low-dimensional attractor dynamics can resolve the identity of the
second perceptually ambiguous landmark, we identified subsets of trials in which mouse motion around the LM1
to LM2 transition was closely matched and aligned them in time to the point when the second landmark became
visible (Fig. 4a, Supplementary Fig. 14). In these trials, locomotion and visual inputs are matched, but the preceding
hypothesis state (LM1, or p) differs. RSC firing rates differed between LM1, and LM1, states, as did subsequent
rates in LM2 (Fig. 4b, comparing within- to across-group distances in neural state space across matched trials, and
by decoding state from firing rates: Supplementary Fig. 14). The evolution of RSC firing rates was also predictable
across trials such that neighboring trials remained nearby in activity space (Fig. 4c), which further confirms stable
recurrent dynamics and indicates a topological organization of abstract task variables'®. This indicates that stably
maintained hypothesis-encoding differences in firing over LM1 in the low-dimensional attractor dynamics could
interact with identical visual landmark inputs to push neural activity from distinct starting points in neural state
space to points that correspond to correct landmark interpretations, as in the ANN.

Further, we observed that neural trajectories from LM1, that were close in activity-space to LM1, were dragged
along LM1, trajectories and vice-versa (they had similar movement directions, Supplementary Fig. 14g.h),
suggesting that behavioral landmark identification outcomes might be affected by how hypotheses were encoded in
RSC during LM1. We tested this hypothesis and found that RSC activity in LM1 (last 5 sec preceding LM?2) was
indeed predictive of the animal’s behavioral choice of the correct vs. incorrect port (Fig. 4d). Notably, this
behaviorally predictive hypothesis encoding was absent during training in sessions with low task performance
(Supplementary Fig. 6), indicating that the dynamical structures and hypothesis states observed in RSC were task-
specific and acquired during learning. Our unrestrained non-stereotyped behavior is not amenable to direct
comparison of activity trajectories in ANNs and the brain as others have done in highly stereotyped trials of macaque
behavior’. Instead, we found that the dynamics of firing rates in mouse RSC are consistent with, and sufficient for,
implementing hypothesis-based disambiguation of identical landmarks using a similar computational mechanism
as observed in the ANN.

Discussion

We report that RSC represents internal spatial hypotheses, sensory inputs, and their interpretation and fulfills the
requirements for computing and using hypotheses to disambiguate landmark identity via local recurrent dynamics.
Specifically, we found that low-dimensional recurrent dynamics were sufficient to perform spatial reasoning (i.e.
to form, maintain, and use hypotheses to disambiguate landmarks over time) in an ANN (Fig. 2). We then found
that RSC fulfills the requirements for such dynamics, i.e. encoding of the required variables (Figs. 1, 4) with stable
low-dimensional (Fig. 3) and smooth dynamics that predicted behavioral outcomes (Fig. 4).

We observed that local dynamics in RSC can disambiguate sensory inputs based on internally generated and
maintained hypotheses without relying on external context inputs at the time of disambiguation (Fig. 4), indicating
that RSC can derive hypotheses over time and combine these hypotheses with accumulating evidence from the
integration of self-motion (e.g., paths after the first landmark encounter) and sensory stimuli to solve a
spatiotemporally extended spatial reasoning task. These results do not argue for RSC as an exclusive locus of such
computations. There is evidence for parallel computations, likely at different levels of abstraction, across sub-
cortical'® and cortical regions such as PEC"***' PPC*?, LIP%, and visual®** areas. Further, hippocampal circuits
contribute to spatial computations beyond representing space by learning environmental topology*® and
constraining spatial coding via attractor dynamics®"?*'® shaped by prior experience”. Finally, the landmark
disambiguation that we observed likely interacts with lower sensory areas*’ and action selection computations®'**,

The emergence of conjunctive encoding, explicit hypothesis codes, and similar roles for dynamics across RSC and
the ANN suggests that spatial computations and, by extension, cognitive processing in neocortex may be
constrained by simple cost functions®, similar to sensory®* or motor*> computations. The ANN does not employ
sampling-based representations which have been proposed as possible mechanisms for probabilistic
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computation®®*’, showing that explicit representation of hypotheses and uncertainty as separate regions in rate-
space could serve as alternative or supplementary mechanism to sampling.

A key open question is how learning a specific environment, task, or behavioral context occurs. We observed that
hypothesis coding emerges with task learning (Supplementary Fig. 6). Possible, and not mutually exclusive,
mechanisms include: i) changes of the stable recurrent dynamics in RSC, as is suggested in hippocampal CA1%; ii)
modification of dynamics by context-specific tonic inputs'?®; or iii) changes in how hypotheses and sensory
information are encoded and read-out while maintaining attractor dynamics that generalize across environments or
tasks, as indicated by the maintenance of recurrent structure across tasks in our data (Supplementary Fig. 13) and
as has been shown in entorhinal?’ and motor cortex® and ANNs™*°, possibly helped by the high-dimensional mixed
nature of RSC representations***?. Further, how such processes are driven by factors such as reward expectation®
is an active area of research.

Our findings show that recurrent dynamics in neocortex can simultaneously represent and compute with task and
environment-specific multi-modal hypotheses in a way that gives appropriate meaning to ambiguous data, possibly
serving as a general mechanism for cognitive processes.

Methods Summary

Microdrive implants with 16 tetrodes were implanted in RSC targeting layer 5, and sorted single-unit spike trains
were analyzed together with mouse position and task state. All sorted neurons were included in the analysis. The
ANN consisted of rate neurons with an input layer into 128 hidden recurrent units (tanh nonlinearity) into 80 output
neurons, trained on random velocity trajectories in random environments of up to 4 landmarks. For the analyses in
the main text, LM inputs were relayed to the ANN as a map that encoded their relative position but not identity
(‘external map’ ANN, 80 input neurons). The findings were replicated with an ANN that only received binary LM
presence input (‘internal map’ ANN, 11 input neurons) and non-negative ANNs (Supplementary Figs. 15-16), on a
subset of environments.
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Methods
Mouse navigation behavior and retrosplenial cortex recordings

Drive implants: Light weight drive implants with 16 movable tetrodes were built as described before'. The
tetrodes were arranged in an elongated array of approximately 1250x750 pm, with an average distance
between electrodes was 250 um. Tetrodes were constructed from 12.7 um nichrome wire (Sandvik —
Kanthal, QH PAC polyimide coated) with an automated tetrode twisting machine® and gold-electroplated
to an impedance of approximately 300 KQ.

Surgery: Mice (C57BL/6 RRID: IMSR JAX:000664) were aged 8-15 weeks at the time of surgery.
Animals were housed in pairs or triples when possible and maintained on a 12-h cycle. All experiments
were conducted in accordance with the National Institutes of Health guidelines and with the approval of the
Committee on Animal Care at the Massachusetts Institute of Technology (MIT). All surgeries were
performed under aseptic conditions under stereotaxic guidance. Mice were anesthetized with isofluorane
(2% induction, 0.75-1.25% maintenance in 1 I/min oxygen) and secured in a stereotaxic apparatus. A
heating pad was used to maintain body temperature, additional heating was provided until fully recovered.
The scalp was shaved, wiped with hair-removal cream and cleaned with iodine solution and alcohol. After
intraperitoneal (IP) injection of dexamethasone (4 mg/kg), Carprofen (5mg/kg), subcutaneous injection of
slow-release Buprenorphine (0.5 mg/kg), and local application of Lidocaine, the skull was exposed. The
skull was cleaned with ethanol, and a thin base of adhesive cement (C&B Metabond and Ivoclar Vivadent
Tetric EvoFlow) was applied. A stainless steel screw was implanted superficially anterior of bregma to serve
as electrical ground.

A 3 mm craniotomy was drilled over central midline cortex, a durotomy was performed on one side of the
central sinus, and tetrode drives' were implanted above Retrosplenial cortex, at around AP -1.25 to -2.5 mm
and ML 0.5 mm, with the long axis of the tetrode array oriented AP, and the tetrode array tilted inwards at
an angle of ~15-20°, and fixed with dental cement. The ground connection on the drive was connected to
the ground screw, and the skin around the drive implant was brought over the base layer of adhesive as
much as possible to minimize the resulting open wound, sutured, and secured with surgical adhesive.

At the time of implant surgery, only two of the tetrodes were extended from the drive to serve as guides
during the procedure. All other tetrodes were lowered into superficial layers of cortex within 3 days post-
surgery. Mice were given 1 week to recover before the start of recordings.

Chronic Electrophysiology: After implant surgery, individual tetrodes were lowered over the course of
multiple days until a depth corresponding to layer 5 was reached and spiking activity was evident. Data
were acquired with an Open Ephys® ONIX* prototype system at 30kHz using the Bonsai software’. The
tether connecting the mouse headstage to the acquisition system was routed through a commutator above
the arena and was counterbalanced via a segment of flexible rubber tread.

Spike sorting: Voltage data from the 16 tetrodes, sampled at 30 KHz were band-pass filtered at 300-6000
Hz, and a median of the voltage across all channels that were well connected to tetrode contacts was
subtracted from each channel to reduce common-mode noise such as licking artifacts.

Spike sorting was then performed per tetrode using the Mountainsort software® (https:/github.com/
flatironinstitute/mountainsort_examples), and neurons were included for further analysis if they had a noise
overlap score below 0.05, an isolation score > 0.75 (provided by Mountainsort®), a clear refractory period
(to ensure spikes originated from single neurons), and a spike waveform with one peak and a clear
asymmetry (to exclude recordings from passing axon segments), and a smooth voltage waveform and
histogram (to exclude occasional spike candidates driven by electrical noise). Units were not excluded
based on firing rates, tuning, or any higher order firing properties.

Histology: To verify the localization of the recording sites (Supplementary Fig. 3), electrolytic lesions were
created by passing currents of 20 pA through a subset of tetrodes (~4 tetrodes per animal) for 30s each
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under isoflurane anesthesia, and animals were perfused and brain processed 1h later. Brains were mounted
with DAPI and imaged.

Behavioral experiment hardware: Behavior was carried out in a circular arena of 50 cm diameter. The
floor of the arena was formed by a clear acrylic sheet, under which a diffusion screen and a flat-screen TV
was positioned on which visual stimuli were displayed. The circular arena wall was formed by 32 flat black
acrylic segments, every other one of which contained an opening for a recessed reward ports, 16 in total.
Each reward port contained an optical beam break (880nm IR, invisible to mouse) that detected if a mouse
was holding its nose in the port, a computer-controlled syringe pump for water reward delivery, and a
dedicated beeper as a secondary reward indicator. The behavior arena was housed in a soundproof and
light-insulated box with no indicators that could allow the mice to establish their heading. Video was
acquired by a central overhead camera at 30 Hz using a low level of infrared light at 850 nm and the mouse
position was tracked using the oat software’ (https://github.com/jonnew/Oat). A custom behavioral control
state-machine written in Python was triggered every time a new camera frame was acquired, and the
position of the animal, time passed, and port visits were used to transition the logic of the state machine
(Supplementary Fig.1). For analysis purposes, all behavioral data was re-sampled to 100 Hz and
synchronized to the electrophysiological data.

Inactivation of RSC and causal necessity for hypothesis-based computations: For pharmacological
inactivation of RSC (Supplementary Fig.2), 4 mice were trained on a simplified parametric task that
permitted us to causally test the role of RSC in individual recording and inactivation sessions. The task
required integration of an allocentric position hypothesis with visual landmarks (Supplementary Fig. 2a,b).
After mice learned the task, quantified as reaching a hit rate of above 30% in the simple conditions (high
eccentricity, see Supplementary Fig.2b), they were given access to unrestricted water and implanted
following the procedure described for the main experiment, but instead of a chronic drive implant, a
removable cap was implanted and two burr holes were prepared above RSC and covered with dental cement
(Supplementary Fig.2c). After recovery from surgery, mice were put back on water restriction over the
course of one week and re-introduced to the task. Before each experiment, mice were briefly anesthetized
with isoflurane, the cap was temporarily opened, and the exposed skull was wiped with lidocaine and an
injection of either 50nl of 1ug/ml muscimol solution in cortex buffer per side, or the same volume of cortex
solution was performed through the existing burr holes. Mice were left to recover from anesthesia for 15
min and tested on the task. Performance was assessed as the hit rate on the 1* port visit per trial, and
confidence level were computed via binomial bootstrap.

Behavioral Training: After mice had undergone preparatory surgery, they were given at least one week to
recover before water scheduling began. Initially, mice received 3 ml of water per day in the form of 3 g of
HydroGel (ClearH20, Watertown, MA, USA), which was gradually reduced to 1.0-1.5 g per day. During
this period, mice were handled by experimenters and habituated to the arena. Throughout the entire
experiment mice were given water rewards for completion of the task and were given additional water to
maintain their total water intake at 1.25-1.5ml.

After initial acclimatization to the recording arena over 2 days, mice were trained on the task. Throughout
the task we used white circular cues on the floor (referred to as landmarks) of ~30mm diameter on a black
background. These landmarks were the only source of light in the experiment. Mice were run every day or
every other day, for a single session of 30 min to 3 hours per day. Training progressed in multiple phases:

1) Initially, mice were trained that circular visual cues on the floor of the arena indicated reward locations.
One of the 16 ports was randomly selected as reward port and a cue was shown in front of this port. Visiting
an incorrect port resulted in a timeout (~1 second initially, increased later), during which the entire arena
floor was switched to grey leading to a widespread visual stimulus. Visiting the correct port resulted in an
audible beep from the beeper located in the port and around 0.005ml of water were delivered by the syringe
pump. After a reward, a new reward port was randomly chosen, and the landmark was rotated together with
the port, effectively performing a rotation of the entire task, and the next trial began. This meant that mice
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95  learned to not rely on any cues other than the visual landmark to locate the correct port. Mice usually
completed this phase in by day 4.

2) We then introduced a new task phase: After each reward, the landmark disappeared and instead a blinking
dot was shown in a random location in the arena. If the mouse walked over that dot, it disappeared and
either a new dot in a new random location appeared, repeating the process, or the next trial was initiated.

100  The number of required dots-chases was sampled uniformly from a range and was increased to 6-8 by the
time recordings began, and the last dot was always positioned at the arena center. This task phase served to
obfuscate the rotation of the task. Data acquired during this task phase was used during spike sorting but
was not further analyzed. Mice learned this task phase, with 6-8 dots, by day 7 on average.

3) Throughout phases 1 and 2, we progressively introduced a requirement for the mice to hold their snouts
105  in the reward port for increasing durations to trigger a reward or timeout. For each port visit, the required

duration was randomly drawn from a uniform distribution, so on any given trial the mice did not know

when exactly to expect to know the outcome of the port visit. Initially, this hold time was 500 ms, and the

time range was slowly increased throughout training, depending on animal performance. By the time

recordings began, a range of around 4-6 seconds was used. Mice were able to tolerate this holding time by
110  day 20 on average.

4) Next, we introduced an identical 2™ landmark at a non-rewarded port. Initially, the two landmarks were
set two ports apart (e.g. ports 1 and 3), and this distance was progressively increased to 4 or 5 ports. As
before, the rewarded port and landmarks were randomly rotated after each trial, but their relative positions
remained stable. Visiting the reward port at the incorrect, ‘a’ landmark (and holding there for the required
115  duration) was handled identically to visits to any other non-reward port and triggered the same time-out.
As a result, mice learned to visit the ‘b’ port. Mice learned to make an initial distinction between the ports
approximately by day 14-16. In one mouse we maintained this training phase until overall task performance
was significant over entire sessions (Supplementary Fig.1f) but we noticed that the mouse had trouble
consistently re-learning the next task phase. We therefore transitioned subsequent mice to the next phases
120  before a stable behavior was established.

5) After the mice started learning to visit the port at the ‘b’ landmark, we introduced a view-distance
limitation that made landmarks invisible from far away: The mouse’s position was tracked at 30Hz and for
each landmark its brightness was modulated in real-time as a function of the mouse’s distance from it. The
visibility was 0 for distances above a threshold, 1 for distances below a 2™ threshold, and transitioned
125 linearly between the two values. Initially these thresholds were set so that both landmarks were visible from
the arena center (~20 cm), then they were progressively reduced to values where at any time only one of
the landmarks was visible to the mouse (~10 cm). At this stage, mice that encounter a landmark after a new
trial starts have no way of knowing whether this is the rewarded or non-rewarded landmark. Recordings
began when mice were able to complete 100 trials/hour at a hit/miss rate >1. Mice reached this criterion
130 level on average by total day 30-40 of training.

Statistical Analysis: Analyses were carried out using custom code in Matlab (Mathworks). Unless stated
otherwise, confidence intervals were computed at a 95% level via bootstrap, and p-values were computed
using a Mann—Whitney U test or Wilcoxon signed-rank test. In figures, significance values are indicated as
‘NS’ (P>0.05), “** (P <0.05), “** (P <0.01) or “***” (P <0.001).

135  Behavior Analysis: Recording sessions were included once mice performed the task well enough to
achieve a session average hit/miss ratio > 1, indicating that mice could infer the correct port between the
‘a’ and ‘b’ landmarks (a correct rate of >1/16 would indicate that they can associate landmarks with
rewarded ports, but not that they can infer landmark identity). Because landmarks are only visible
sequentially after full training, a ratio >1 shows that mice employed a memory based strategy where they
140  used a prior hypothesis derived from seeing or not seeing the 1* landmark to infer the identity of the 2™
landmark they encounter. Only sessions with at least 50 recorded single neurons, and with at least 50
minutes of task performance were included. This yielded 16 sessions from 4 mice. For some analyses,

Voigts et al. , Methods 3


https://doi.org/10.1101/2022.04.12.488024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.12.488024; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

particularly for analyses where trajectories of the mice were matched across trial types to control for
potential motor and sensory confounds, additional selection criteria were applied yielding a lower N of

145  sessions that could be used, this is stated for the respective analyses. For plots of the learning rates we
included trials where mice encountered their 1% landmark after 20 seconds or faster to exclude periods
where mice were not engaged, plots using all trials are also included in the supplement.

Behavioral epochs: For analysis, each trial was split into epochs: The time between the onset of a trial

(right after the mouse completes the preceding re-initialization procedure) and the onset of the reward (the
150 first time the mouse could know whether it reached the correct port, other than by process of elimination

after visiting other ports) was split up based on the amount of information the mouse could have

accumulated: the initial state when mice had not seen any landmark was labeled ‘LMO’, time after the first

landmark encounter was labelled ‘LM1’, and after the 2" as ‘LM2’. The timepoints when landmarks

became visible and the mouse transitioned from LMO to LM1 or from LM1 to LM2, referred to as ‘landmark
155  encounters’ were defined as the timepoint when landmark visibility exceeded 50%.

For analyses of the correlation of neural state and eventual behavioral outcomes, each 2" landmark
encounter was further categorized as whether it occurred at the ‘a’ or ‘b’ landmark. For behavioral analyses
in Fig.4d, trials were further categorized by whether they led to a correct port visit or to a incorrect visit
and a time-out.

160  Similarity of spatial tuning across conditions: Changes in spatial tuning in individual RSC neurons as
mice encounter successive landmarks (Fig.1f) was quantified by the Euclidian distance of their spatial
tuning profiles (in an 8x8 map, for each comparison non-visited ties were omitted). As an internal control,
distance between tuning profiles within —condition and across-condition were compared using non-
overlapping 1 minute segments. For each comparison (LM1 vs. LM2 and LMO vs. LM1), the split spatial

165  tuning maps were compared either within the conditions, e.g. within LM1 and within LM2, and compared
to distances between LM1 and LM2 maps.

Neural decoding of mouse position: To decode the mouse position from RSC firing rates, neural firing
rates were first low-pass filtered at 1Hz with a single-pole butterworth filter. The resulting firing rate time
series were used to predict the mouse position as 100 categorical variables forming a 10x10 bin grid, (bin

170  width = 50 mm). The network was made up of a single LSTM layer with 20 units, and a fully connected
layer into a softmax output into the 100 possible output categories. For analyses of intermediate information
content of the decoder, the network input into the final softmax layer was analyzed.

Decoding was re-initialized for each trial. For each decoded trial, all other trials served as training set. For
analysis of how the neural coding of position was dependent on the LM state of the mouse (Supplementary

175  Fig. 5a), the same analysis was repeated with training and testing data further divided by LM state. For
analysis of the decoding performance, the output likelihood from the decoder was evaluated at the mouse’s
true position for all positions that were shared across conditions for this session. Statistical analysis was
then performed on a per-session average likelihood (not weighted by number of trials per session).

Neural decoding of LM state: For the analysis of LM state (Fig.1le), trials with at least 0.5 seconds of data

180 from all 3 states were used (16 sessions, 486 total trials), and individual trials were held out from training
for decoding. Firing rates were low-pass filtered with a causal single-pole butterworth filter at 0.05 Hz, and
LM state (0, 1 or 2) was decoded independently for each timepoint using a categorical linear decoder
(dummy variable coding, (Nneurons +1)*3 parameters), or a neural network with no recurrence, using a single
20 unit layer receiving instantaneous firing rates, into a 6 unit layer, into 3 softmax outputs.

185  Dimensionality analysis: (Supplementary Fig. 13c). Principal component analysis was performed by first
computing the covariance matrices of the low-pass filtered (as before) firing rates, and plotting their
eigenvalue spectra, normalized by sum. Each scaled eigenvalue corresponds to a proportion of explained
variance. Spectra are plotted together with a control spectrum computed from covariances of randomly
shuffled data. For a description of the method used to compute the correlation dimension of RSC rates
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190  (Supplementary Fig. 13d) see the heading ‘Correlation dimension’ in the section about artificial neural
network methods below.

Prediction of firing rates across RSC population: For quantification of the independence of individual
RSC neurons from the surrounding RSC population (Supplementary Fig. 13f,g), the firing rates of each
neuron were predicted from those of all other neurons using linear regression. Rates were first filtered at
195  0.01-0.5 Hz with a 3" order butterworth filter, and sub-sampled to 3.3 Hz. Each neuron’s rate was predicted
with L; regularized linear regression ®* (lasso, 2 ~ 0.0001) from the rates of all other neurons and preceding
firing rates using 8 lags (~0.2.5 sec). Goodness of fit was quantified as the proportion of variance explained:

2 _
RZ=1- Zi(Yi — Yl.pred) / ¥ (Y; — Y)?2. Predictions were computed both within condition (LM1, LM2,
and dot-hunting phase), as well as across conditions, where the model was fit using coefficients determined

200  from the other conditions.

Computation of firing rate distribution entropies: Entropies of empirical firing rate distributions were
computed in bits via their Shannon entropy: H(X) = — Xt P(x;)log, P(x;) ,relative to a uniform
histogram of the same size: H(X) = —( H(X) — H(unif orm)). In cases where zeros appeared, a small

offset term <<1 was added and all histograms were normalized to a sum of 1. For example, A(10]) =
205  H([1100]) =1bitand H([1111.3]) = 0.01 bit.

Trial-to-trial variance of firing rates conditioned on position: For analysis of whether partial hypothesis
representation in the LM1 state corresponds to trial-by-trial changes in firing rates, evident in bimodal firing
rate histograms, histograms of hidden unit firing rates of the ANN, conditioned on binned 1-D position are
displayed (Supplementary Fig. 10a). Data are from Experiment configuration 2 (See Methods, section

210  ‘Overview over experiment configurations used with ANNs’). Tuning curves were calculated using 20 bins
of location/displacements and normalized individually for each neuron. The first time step in each trial and
time steps with non-zero landmark input were excluded from the analysis. For histograms, each condition
was binned in 100 column bins and neuron rates in 10 row bins. Histogram were normalized to equal sum
per column. For analysis of RSC firing rates (Supplementary Fig. 10b-d), we did not observe bimodal rate

215  distributions and instead quantified the dispersion of the rate distributions via their entropy: Firing rates
were low-pass filtered at 0.5 Hz to bring them into the time scale of navigation behavior, and firing rate
histograms were computed with 8 bins spanning from each neurons lowest to highest firing rate per neuron,
for each spatial bin in a 4x4 grid. Because the computation of histogram entropy is biased by the N of
samples, for each spatial bin, the same number of time points were used for the LM1 and LM2 conditions.

220  The dispersion of the firing rate distribution was then computed as average entropies per cell across all
space bin, and compared across the two conditions.

Analysis of encoding of angular position and displacement from last seem landmark: Firing rate
profiles were analyzed in two reference frames: Global angle of the mouse in the arena, and relative angle
to the last visible landmark. Only time-points from the foraging state where the distance of mouse from the

225  center of the arena exceeded 70% of the arena diameter were included. Time points from the LM1 and LM2
conditions were sub-sampled to yield matched N of time points. Firing rates were analyzed in a —m to &t
range in 6 bins by computing their entropy as described before.

Pairwise correlation of firing rates: Recordings were split into LM[0,1,2] states as before, firing rates
were low-pass filtered at 1Hz, and the Pearson correlation coefficient between each pair of neurons was

230  computed. For display purposes, the neurons were re-ordered by first computing the matrix for the LM1
state, applying hierarchical clustering’, and the resulting re-ordering was applied to both LM1 and LM2
conditions. This re-ordering has no impact on any further analyses. For summary statistics, we computed
the correlation of correlations for each session.

Low-dimensional embedding of neural activity: Neural firing rates were band-pass filtered as before,
235  and an initial smoothing and dimensionality-reduction step was performed by training a small LSTM with
a single layer of 30 units to decode the mouse position. The hidden unit activations were then embedded in
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3-D space with the isomap algorithm'® , using the Toolbox for Dimensionality Reduction by Laurens van
der Maaten''.

Analysis of speed of neural state evolution: (Supplementary Fig. 14a) For quantification of how fast the
240  neural state evolves, the firing rates of the entire population were computed by low-pass filtering the spike
trains at 1Hz (3" order butterworth filter), and the speed of the 5 largest principal components of the
resulting vector in Hz/sec were related to the running speed of the mouse (m/sec, also low-pass filtered at
1Hz), or the change in landmark brightness (percent/sec). Data were binned in 30 bins from 0-0.5m/sec and
10 bins from 0.5-2 m/sec for running speed, and 10 bins from -50 to 50% and 10 bins for +£50-200%.
245  Confidence intervals were computed by treating median data from each session as independent samples.

Analysis of context-encoding in RSC across similar motor and sensory states: To study the encoding
of context with minimal sensory and motor confounds (Fig. 4, and Supplementary Fig. 14), we split the
appearances of the 2" landmark into two groups depending on whether the 2™ landmark is ‘a’ or ‘b’, as
described in the main text. We then manually selected subsets of trials where egocentric paths just before

250  the appearance of the 2" landmark are matched across the two groups. Fig. 4a shows an example of such
matched approach paths/trials. Sessions in which at least 16 trials could be matched were used for these
analyses, yielding a total of 133 trials from 6 sessions (per session: 16, 23, 24, 24, 25 and 21). For each
session, all of these trials were aligned to the time when the 2™ landmark became visible, yielding a set of
time ranges where the animals experienced similar visual inputs, performed similar locomotion behavior,

255  but potentially encoded different prior experience leading them to subsequently disambiguate the
perceptually identical 2" landmark as ‘a’ or ‘b’.

To test whether there was consistent encoding of this context in RSC, we then compared the distances
across these groups in 3-dimensional neural activity space (see ‘Low-dimensional embedding of neural
activity’) to distances within the groups (Fig.4d, Supplementary Fig.14). This test was performed at the

260  point where the 2™ landmark became visible to assess encoding of prior context, as well as 200ms
afterwards to assess how the identity of the (now visible) landmark affects encoding in RSC.

Analysis of smooth neural trajectories across sessions: (Fig.4c, Supplementary Fig.14) To assess if
neural trajectories were determined by population dynamics that were stable across trials and could
therefore serve as substrate for the computation performed by the mice, we tested whether neural trajectories

265  behaved consistent with a laminar flow regime where neighboring particles (in our case neural firing rate
vectors) remain neighbors for a significant amount of time, or whether they decorrelate quickly (Fig.4c,
Supplementary Fig.14e,f). To assess temporal dynamics of the neural spiking without imposing any
smoothing, we investigated raw spike counts in 750ms windows for this analysis. For each session, an
initial set of pairwise high-dimensional distances in spike-counts between the trials with egocentrically

270  similar paths (see prev. section) was computed from the last 750ms preceding the appearance of the 2™
landmark. These distances were then correlated with those in a second sliding window, Supplementary Fig.
14f). An offset of 0 seconds was defined as the point where both windows stopped overlapping. The
correlation coefficient R was then computed for increasing window offset up to 2 seconds. Summary
statistics were computed across sessions by first shifting each session individually by its 95% level for R

275  (from a shuffled control) which results in the summary plot showing a highest value for R of ~0.8 even for
offsets where the windows fully overlap and the uncorrected R value is 1. Because of this offset, the null
level for each trial is now at R=0. We then computed the CIs for the group via bootstrap relative to this
level.

Analysis of direction of neural trajectories: (Supplementary Fig. 14gh) To further test if neural
280 trajectories were determined by population dynamics that were stable across trials, and were independent
of the interpretation of the 2™ (locally ambiguous) landmark, we tested if neural activity evolved in similar
directions across trials if it started close together in 3-dimensional neural activity space (see ‘Low-
dimensional embedding of neural activity’). We therefore looked at neural trajectories within the motor and
sensory-matched LM2 approaches where the neural state at the point where the 2™ landmark became visible
285  started neurally close to other trials from the opposing class. For example, for a LM2, trial, we looked if
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this trial might follow other close-by LM?2; trials. We computed neural proximity in the 3-dimensional
neural embedding (see above) and defined close-by trials as ones that were within 1 arbitrary units in
Euclidean distance in the isomap embedding around the time when the 2™ landmark became visible,
yielding a total of 42 out of 79 trials with close neighbors from opposing classes from the 5 sessions, one
290  session was excluded because the neural activity in the relevant time ranges was collapsed onto a point in
the LSTM embedding. As a control, we also selected corresponding neurally furthest points. Similarity of
neural evolution was then quantified as the angular difference between the trials in (3-dimensional) LSTM
space over time, in order to assess co-evolution independently of the initial selection by distance.
Significance was computed via bootstrap across trials, vs random alignments corresponding to a 90 degree
295  difference.

Behavior prediction: For the behavior prediction analysis, sessions with at least 5 correct and incorrect
port visits after the ond port visit were used (N=11) and an equal number of hit and miss trials (outcome of
next port visit is a timeout or a correct) were selected, leading to a chance prediction level of 0.5. The spike
rates from the 5 seconds preceding the 2™ landmark becoming visible, binned into one-second bins, were

300 used to predict the behavioral outcome with a binary classification decision tree with a minimum leaf size
of 6, previously determined via cross-validation. Predictions for each trial were fit using all other trials.

Specificity of landmark encounter coding to the foraging task: (Supplementary Fig. 6) We trained a
decoder to predict either the number of encountered dots in the main task, or in the dot-hunting task. These
tasks were interleaved and the same neurons were used. Train and test sets were split by trial, and decoding

305  was performed with a regression tree on lowpass-filtered firing rates as before, performance was quantified
as mean error on the N of landmarks. Only the first 2 landmarks were predicted in the dot-hunting task to
allow use of the same classifier across both. Decoding performance was compared between the within-class
(e.g. decode main task encounters with decoder trained on other trials in the main task) and cross-class (e.g.
decode dot-hunting from decoder trained on the main task etc.).

310  Analysis of neural coding as a function of task performance: (Supplementary Fig. 6) To test whether
the encoding of hypothesis states in RSC is specific to task performance, we analyzed a larger number of
sessions from the entire period during which two landmarks with local visibility were used (92 recording
sessions in total). We analyzed the effect of task performance on the behavior prediction analysis (as
described above, and in Supplementary Fig. 6). We also analyzed the more general decoding of landmark

315  encounter count (same method as’ Specificity of landmark encounter coding to the foraging task’ or Fig.1)
in all of the 92 sessions with 2 landmarks, and correlated decoding performance with task-performance on
a per-session level. As an additional control, we performed the same analysis on the N of dots encountered
in the interleaved dot-hunting task. For all of these analyses analogous method as for the non behavior-
correlated analyses was used.

320 Artificial neural networks

A simulated animal runs with varying velocity in a circular environment starting from a random, unknown
position and eventually infers its position using noisy velocity information and two, three or four
indistinguishable landmarks. A trial consists of a fixed duration of exploration in a fixed environment,
starting from an unknown starting location; the environment can change between trials. Environments are
325  generated by randomly drawing a constellation of 2-4 Landmarks, and the network must generalizably
localize in any of these environments when supplied with its map. The network must adjust its spatial
inference computations on the basis of the configurations of the different environments, without changing
its weights; thus, the adjustments must be dynamic. In the internal map scheme (Supplementary Fig 15), an
input cell simply encodes by its activation whether the animal is at any landmark; it does not specify the
330 location of the landmark, the identity of the environment, or the spatial configuration of the various
landmarks in the environment. The task in the internal map scheme is substantially harder, since the network
must infer the configuration of landmarks in the environment purely from the time sequence of landmark
visits, while simultaneously localizing itself within the environment. Information about the maps must be
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acquired and stored within the network. To make the task tractable, we limit training and testing in the
335 internal map setting to four specific environments.

In the external map task (Figs. 2,3, Supplementary Figs. 6-12), landmark locations were random and the set
of locations (map) were provided to the network, whereas in the internal map task (Supplementary Fig. 15)
one of four landmark configurations was used, but the maps were not provided to the network. landmarks
could only be observed a short distance. A three-layer network with a recurrent hidden layer was trained to

340 infer location. Velocity and landmark encounter information were encoded in the input layer, and all
weights of the network were trained. The training target for the output layer was activation of a unit with
von Mises tuning and preferred location matching the true location.

Network performance was compared to a number of alternative algorithms: Path integration + correction
integrated the noisy velocity information starting from an initial location guess and corrected this estimate
345 by a reset to the coordinates of the nearest landmark when a landmark was encountered. Particle filters
approximated sequential Bayesian inference given the available velocity and landmark information, with
each particle capturing a location hypothesis whose posterior probability is given by an associated weight.
Particle locations are updated using velocity information and particles are reweighted after landmark
encounters. The enhanced particle filter also reweights particles when a landmark is expected but not
350 encountered, thus can infer location not only from the presence but also from the absence of landmarks.
The output and hidden representations of the trained network were evaluated in a variety of conditions
involving both random and fixed landmark locations and trajectories with random and fixed velocities.

Definition of environments and trajectories: The task is defined by a simulated animal moving along a
circular track of radius 0.5 m for 10 seconds. The animal starts at a random, unknown position along the

355  circle at rest and starts running along a trajectory at non-constant velocity. A trajectory is sampled every dt
= 0.1s in the following way: At each time t, acceleration at is sampled from a zero-mean Gaussian
distribution with standard deviation ¢, = m/4 m/s” that is truncated if |a] > 7/2 m/s* . Acceleration is
integrated to obtain the velocity v, and truncated if |v{| > vmax = 7/2 m/s. The actual location on the track is
the integral of this velocity.

360 In a trial of the external map task, the locations of K = 2, 3, or 4 indistinguishable landmarks were
determined sequentially: the first landmark was sampled from a uniform random distribution on the circle,
with subsequent landmarks also sampled from a uniform random distribution but subject to the condition
that the minimum angular distance from any previously sampled landmark is at least = /9 rad.

The internal map task involved four environments, each with a unique configuration of landmarks: two
365  environments had two landmarks, one had three and the last had four. Landmark locations in the four
environments were chosen so that pairwise angular distances were sufficiently unique to allow the inference
of environment identity. Landmark coordinates in environment ei were given by: e; = {0, 2n/3} rad, e, =
{1.9562, 3.7471} rad, ez = {0.2641, 1.2920, 3.7243} rad, es = {3.0511, 3.8347, 5.1625, 5.7165} rad.

Experiment configurations used with ANNs: After training, the networks were evaluated in different
370 testing configurations that each consisted of a distribution over landmark configurations and trajectories:

Experiment configuration 1. Training distribution: This test set was generated exactly as in the training set,
as described in section “Definition of environments and trajectories”. 5 different

Experiment configuration 2. Fixed landmarks, random trajectories: The landmark configuration was given
by two landmarks located at e = {0, 2n/3}, the trajectories were sampled in an identical way as in the

375  training distribution. Note that this landmark configuration corresponds to the first environment in the
internal map task.

Experiment configuration 3. Fixed landmarks, constant velocity trajectories: The landmark configuration
was given by two landmarks located at e = {0, 2n/3} and the trajectories were given by constant velocity
trajectories with |v{| = vma/2. The initial position and the direction of the trajectory was random.
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380  Experiment configuration 4. Two variable landmarks, constant velocity trajectory: The landmark
configuration was given by two landmarks located at e = {0, 2n/3 + an/3}, where a € [0, 1]. The trajectories
were given by constant velocity trajectories with |v| = vmax/2 and the initial position and the direction of the
trajectory was random.

Experiment configuration 5. Two environments, random trajectories: The landmark configuration was
385  given by either e or e, of the internal map task, trajectories are random.

Landmark observation: The animal is considered to have encountered a landmark if it approached within
dmin = Vmax - dt/2 =71/40 m/2 = /20 rad. This threshold is large enough to prevent an animal from “missing”
a landmark even if it is running at maximum velocity. This ‘visibility radius’ is smaller than the one we
used for the mouse behavior experiments (Fig.1). In the ANN experiments, landmark encounters were

390 therefore roughly coincident with the agent’s position coinciding with the landmark, whereas in the mouse
data, landmark encounters occur a significant distance away from the landmark, when it becomes visible
(e.g. Fig.4a). In the same way as in the mouse behavior analysis, hovering around the same landmark or
approaching the same landmark consecutively would only trigger a landmark encounter at the first
approach; a new encounter was only triggered if the animal approached a landmark different than the

395  previous one, equivalent to the definition used in the analysis of mouse behavior. Also, only trials in which
the animal encountered at least two different landmark were included.

Sensory noise: The largest sources of uncertainty in the tasks were the unknown starting position and the
indistinguishability of the landmarks. In addition, we assumed that the velocity information and the
landmark-location memory (in the external map scenario) were corrupted by noise. At each time step of
400  size dt = 0.1, the velocity input to the network corresponded to the true displacement vdt corrupted by zero-
mean Gaussian noise of standard deviation oy = vuwd#/10. In the external map task, the landmark map
provided to the network and particle filter was corrupted by zero-mean Gaussian noise with standard
deviation g; = /50 rad, without changing the relative landmark positions: The map was coherently slightly
rotated at a landmark encounter, and the rotation was independently sampled at each landmark encounter.

405  ANN preferred firing at landmark locations: (Supplementary Fig. 5¢) This analysis was performed by
evaluating the network of the external map task on the experiment configuration 1 of the internal map task.
First, location tuning curves were determined after the second landmark encounter using 5000 trials from
distribution 1 and using 50 location bins. Tuning curves were calculated separately for each of the four
environment of the internal map task. Preferred location was determined to be the location corresponding

410  to the tuning curve maximum. The density of preferred locations smaller than distance dmin away from a
landmark was then compared to the density of preferred locations further away from landmarks.

Network architecture and training: The network consisted of three layers of rate neurons with input-to-
hidden, hidden-to-hidden and hidden-to-output weights. All weights were trained.

Network input: The input layer consisted of 80 neurons in the external map case and 11 neurons in the

415  internal map case. Ten neurons coded for velocity corrupted by noise (noise as described above). The
velocity neurons had a minimum firing rate between 0 and .2 and a maximum firing rate between .8 and 1
in arbitrary units, and within this output range coded linearly for the whole range of velocity between —viuux
and v... Negative and positive velocity here corresponds to clockwise and counterclockwise travel
respectively.

420  The remaining neurons (70 in the external map case and 1 in the internal map case) coded for landmark
input and were activated only at the time step of, and up to three time steps after an landmark encounter. In
the external map case, the landmark input simultaneously encoded the locations of all landmarks in the
environment, thus supplying a map of the environment, but contained no information about which landmark
was currently encountered. The landmark neurons had von Mises tuning with preferred locations xj = (j —

425 1) - 2/70 rad, j = 1...70, that tiled the circle equally. Given n landmarks at locations /; , i = 1...n, the firing
rate of the j-th landmark input neuron was given by
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cos(xj — 1) — 1

where [, ~ N(li,alz) is the noise-corrupted landmark coordinate (see “Sensory noise” section). This

mixture of von Mises activation hills produces the pattern depicted as the “map” input in Supplementary
430  Fig.7a.

In the internal map case (Supplementary Fig. 15), the landmark input neuron consisted of a single binary
neuron that responded for four time steps with activation 1 in arbitrary units whenever a landmark was
encountered. This input encoded neither environment identity nor landmark location.

Hidden layer: The hidden layer consisted of 128 recurrently connected neurons. The activation h, of hidden

435  layer neurons at time step t was determined by h; = tanh(W.x; + W;h,—1 + b), where x, are the activations
of input neurons at time step t, W, are the input-to-hidden weights, W}, are the hidden-to-hidden weights and
b are the biases of hidden neurons. The nonlinearity should be considered as an effective nonlinearity at
long times; since the time step dt = 0.1s was large compared to a typical membrane time constant (t =
0.02s), we did not include an explicit leak term.

440  Hidden layer (non-negative network): In the non-negative network (Supplementary Fig. 16), the recurrent
activation was determined by ki, = tanh([W,x; + W;h,—; + b].), where [u]. denotes rectification.

Output layer: The output layer consisted of a population of 70 neurons with activity o, given by o, =
tanh(W,h; + b,), where W, are the output weights and b, the biases of the output neurons.

Network training: The training targets of the output layer were place cells with von Mises tuning of width
445 o, =7/6 rad to the true location y;,

cos(zg — y¢) — 1)

Ot = exp( oy
o

where z,, o = 1...70 are the equally spaced preferred locations of each training target.

The network was trained by stochastic gradient descent using the Adam algorithm'? to minimize the
average square error between output o, and training targets 0; , with the average taken over neurons, time

450  within each trial, and trials. The gradients were clipped to 100. The training set consisted of 10°
independently generated trials. During training, performance was monitored on a validation set of 1000
independent trials and network parameters with the smallest validation error were selected. All results were
cross-validated on a separate set of test trials to ensure that the network generalized across new random
trajectories and/or landmark configurations.

455  Network location estimate: Given the activity of the output layer at time t, we define the network location
estimate for that time to equal the preferred location (the preferred location was set over training) of the
most active output neuron:

Vi = zat,c?t = argmax0q t

Performance comparisons: In Figure 2b, we compared the performance of the network in the external

460  map task with a number of alternative algorithms. To ensure a fair comparison, we make sure that each
alternative algorithm has access to exactly the same information as the network: the landmark identities are
indistinguishable and both velocity and landmark location information are corrupted by the same small
amount of sensory noise. Error statistics are computed from 5000 trials.

Path integration + correction: This algorithm implements path integration and landmark correction using

465  a single location estimate, similar to what is implemented in hand-designed continuous attractor networks
that implement resets at boundaries or other landmarks [37, 36, 25, 9]. The algorithm starts with an initial
location estimate at y = O (despite the true initial location being random and unknown), and integrates the
noise-corrupted velocity signal to obtain location. At each landmark encounter the algorithm corrects its
location estimate to equal the coordinates of the landmark nearest to its current estimate.
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470  Basic Particle filter: Particle filters implement approximate sequential Bayesian inference using a
sampling-based representation of the posterior distribution. Here, the posterior distribution over location at
each time point is represented using a cloud of weighted particles, each of which encodes through its
weights a belief, or estimated probability, of being at a certain location. In the beginning of the trial, N, =
1000 particles are sampled from a uniform distribution along the circle and weighted equally. In the

475  prediction step, particles are independently propagated using a random walk whose mean is the noise-
corrupted velocity update and whose standard deviation is the velocity noise o,. In the absence of a landmark
encounter, particle weights remain unchanged and the particle cloud diffuses. If a landmark is encountered,
the importance weights w; s of particles = 1...Np are multiplied by

Z cos(yt,/; — il-) -1
Wt,ﬁ X Wt—l,ﬂ * ) eXp 20_2 )
i 1

480  where y;p are the current estimates of the particles, and the weights are subsequently normalized such that
2B Wtz_ﬁ = 1. If the effective number of particles becomes too small, i.e. Nosr = 1/3p WtZ,ﬁ < N,/5, the

particles are resampled using low variance sampling'® and the weights equalized. This resampling step both
allows for better coverage of probabilities and permits the particle cloud to sharpen again. The particle filter
estimate at a given time point is given by the weighted circular mean y; = arg(Xz wyzexp(iy;g)) of the

485  particle locations. In addition we also calculate the circular variance as var(y;) = 1 — |Z BWe,B exp(i Ve, ﬂ) |

Enhanced particle filter: This particle filter has identical initialization, prediction step and weight update
at landmark encounters as the basic particle filter and proceeds in exactly the same way until the first
landmark encounter. Subsequently, the enhanced particle filter can also use the absence of expected
landmark encounters to narrow down its location posterior, similar to the network’s ability shown in
490  Supplementary Fig. 7. This is implemented in the follow way: If a particle comes within the observation
threshold ¢ of a possible landmark location but no landmark encounter occurs, the particle is deleted by
setting its weight to zero; afterwards the particle weights are renormalized. A complication to this
implementation is that a subsequent landmark encounter only occurs if the current landmark is different
than the previous one (see section “Landmark encounters”); to prevent the deletion of particles that correctly
495  report a landmark at the current position but do not receive a landmark encounter signal because it is the
same landmark as previously encountered, particles are only deleted if they come within the observation
threshold ¢ to a possible landmark that is different than the last landmark and do not encounter it. In case
all particles have been deleted, particles are resampled from a uniform distribution and their weights are
equalized. As for the basic particle filter, particles are resampled whenever the effective number of particles
500 becomes too small Ngr=1/%p WtZ'B < N,/5. Also the particle filter estimate J; =

arg(X g wegexp(iy.z)) and the circular variance var(y,) = 1 — Iz BWe g exp(iyt,3)| is calculated in an
identical way.

Analysis of location disambiguation in output layer: The timing and accuracy of location disambiguation
in Supplementary Fig. 7 was calculated in the following way: We first constructed the trajectory of the

505  “alternative location hypothesis”, corresponding to the location estimates of a model animal that made the
wrong location disambiguation at the first landmark encounter, but otherwise updated its location by the
correct velocity. This trajectory is shifted relative to the true trajectory by a constant distance equal to the
distance between the two landmarks. At each point in time, we then identified the two neurons in the output
population whose preferred locations were closest to that of the true and alternative trajectory, respectively;

510 the activation of these neurons roughly corresponded to the height of the activation bump corresponding to
the true and alternative location hypothesis as seen in Supplementary Fig. 7c&d. The disambiguation time
was defined as the earliest time after which either the true or alternative location bump height fell below a
threshold of 0.1 and stayed beyond that threshold until the end of the trial. To determine the accuracy of
location disambiguation the network estimate at the last landmark interaction was analyzed. If this network

515  estimate was closer to the true than to the wrong landmark location the trial was categorized as a correct
trial, otherwise it was categorized as an incorrect trial.
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State space analysis: We performed principal components analysis (PCA) on the hidden neuron states
from training trials to obtain the top three principal directions. We then projected network states obtained
from the distribution of testing trials 2 or 3 (see SI) onto these principal directions. The resulting reduced-

520  dimension versions of the hidden neuron states from testing trials are shown in Fig.2 and Supplementary
Figs. 8, 12, and 15.

Correlation dimension: To calculate the correlation dimension for the ANN and RSC activity we first
performed linear dimensionality reduction (PCA) on hidden layer activations from the training trials,
retaining 20 principal components. For RSC data, rates were low-pass filtered at 0.5Hz first. In the 20-
525  dimensional space, we randomly picked 1000 base points (500 for RSC). From each of these base points,
we estimated how the number of neighbors in a ball of radius R scales with R. The minimum ball radius
was determined such that the logarithm of the number of neighbors averaged over base points was near 1.
The maximum radius was set to 10 times the minimum radius, and intermediate values for the radius were
equally spaced on a log-scale. The slope of the linear part of the relationship between the logarithm of
530  number of neighbors versus ball radius determined the fractal dimension
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