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Abstract

Protein kinases play a vital role in a wide range of cellular processes and compounds that inhibit kinase activity
have emerged as a primary focus for targeted therapy development in cancer. This has inspired work that
characterizes the spectrum of kinases targeted by specific inhibitors and the inclusion of these inhibitors in
large-scale cell viability screening efforts. Previous work with smaller datasets have used baseline profiling of
cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these
efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation.
This work focuses on two primary data types, kinase inhibitor profiles and gene expression, to predict the
results of cell viability screening. We describe the process by which we combined these data sets, examined
their properties in relation to cell viability and finally developed a set of computational models that achieve
reasonable prediction accuracy (R2 of 0.78 and RMSE of 0.154). Using these models, we identified a set of
kinases, several of which are understudied, that are strongly influential in the cell viability prediction models. In
addition, we also tested to see if a wider range of multiomics data sets could improve the model results. Finally,
we validated a small subset of the model predictions in several triple-negative and HER2 positive breast
cancer cell lines demonstrating that the model performs well with compounds and cell lines that were not
included in the training data set. Overall, this result demonstrates that generic knowledge of the kinome is
predictive of very specific cell phenotypes, and has the potential to be integrated into targeted therapy
development pipelines.

Introduction

While chemotherapy remains a mainstay in cancer treatment, the use of targeted therapies clearly holds
significant promise, with their use leading to improved outcomes in a variety of cancers (Falzone et al., 2018;
Keefe and Bateman, 2019). Examples include the use of imatinib (Gleevec) for chronic myelogenous leukemia,
crizotinib and other anaplastic lymphoma kinase (ALK) inhibitors for non-small-cell lung cancers, and
trastuzumab and lapatinib for ERBB2/HER2 amplified breast cancers (Deininger et al., 2009; Geyer et al.,
2006; O’Brien et al., 2003; Slamon et al., 2001; Solomon et al., 2014; Yuan et al., 2019). Together with the
potential to reduce toxicity and associated side effects, the development of targeted therapies has gained
increasing momentum over the last two decades (Seebacher et al., 2019; Zhong et al., 2021).

Since the development of imatinib, protein kinases have emerged as a primary focus for targeted therapy
development (Attwood et al., 2021; Bhullar et al., 2018; Cohen et al., 2021; Pottier et al., 2020). Kinases are a
~500-member enzyme family that catalyzes the transfer of phosphate groups from ATP to specific substrates.
Integrated into a complex network of interactions defined as the kinome, kinases regulate information transfer
across a myriad of cellular processes including growth, proliferation, differentiation, motility, and apoptosis
(Shapiro, 2020). Linked to its role in this wide array of functions, dysregulation of one or more members of the
kinome is directly implicated in numerous pathologies, especially cancer (Lahiry et al., 2010). Modulation of
kinase activity through targeted inhibition has been the primary therapeutic approach to date and as of 2021,
over 85 kinase inhibitors have been clinically approved worldwide, though only targeting 42 kinases from the
21 kinase families(Laufer and Bajorath, 2022), highlighting the opportunity for further advancement of this
druggable target.

Recent work characterizing kinome behavior in response to targeted kinase inhibitor therapies has established
that the kinome is a highly dynamic system, with significant ramifications in our understanding of drug
resistance, adaptive reprogramming and the broader design of effective therapies (Collins et al., 2018; Duncan
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et al., 2012; Frejno et al., 2017; Golkowski et al., 2020; Yesilkanal et al., 2021; Zawistowski et al., 2017).
Underlying these investigations of kinome dynamics are the advancement of proteomic approaches that
enable the characterization of protein kinome behavior in response to perturbation en masse, allowing
characterization of changes not just to the kinase to which the inhibitor was designed, but also across the
entire kinome (Bantscheff et al., 2007; Plowright, 2019). However, while providing transformative insight into
how these targeted therapies interact with and modify cellular systems, our understanding of kinome changes
and the resulting downstream cellular changes is still lacking.

Given the potential of targeted therapies and the potential to quantitatively assess their effect on the protein
kinome, in this work we sought to establish a predictive framework that links the behavior of the kinome as
defined by “kinase inhibition states'' with a downstream phenotype - in this instance, cell viability. Enabling this
effort is recent work by Klaeger et al., who conducted a comprehensive investigation using a proteomic
kinobead approach, establishing a target landscape for 229 kinase inhibitors across a wide range of compound
concentrations (Klaeger et al., 2017). In addition, we utilized the extensive data available via the Broad
Institute’s Cancer Cell Line Encyclopedia (CCLE)(Ghandi et al., 2019), including the PRISM (Profiling Relative
Inhibition Simultaneously in Mixtures) highly multiplexed cell viability assay, along with accompanying
multi-omics data (gene expression, copy number variation, proteomics and gene essentiality) from the Cancer
Dependency Map. These data consist of cell viability measurements for 499 cell lines across 1448 drugs,
transcriptomic profiles for 1389 cell lines, whole proteomic profiles for 375 cell lines, whole genome copy
number variation for 1750 cell lines and CRISPR-KO genetic dependency scores for 1054 cell lines. While
predictive models for drug-induced cell viability have been built using various strategies (Corsello et al., 2020;
Daemen et al., 2013; J. Lu et al., 2021; Lu J. et al., 2021), most have focused on using baseline and
drug-perturbed transcriptomic data to make predictions on the sensitivity of cancer cell lines to drugs.
Drug-target interaction data like kinome profiles are relatively underutilized in these approaches, but have been
shown to have predictive power in smaller datasets(Vidović et al., 2014).

Here, we describe a framework that integrates kinome profiling data with general multi-omics, and build
tree-based regression models to predict cell viability for 480 cancer cell lines across 230 kinase inhibitors with
high accuracy (R2 = 0.79). Integrating nearly half a million data points, we find that kinome inhibition profiles
have by far the greatest predictive power of any single data set. While not highly predictive on its own, baseline
transcriptomic data does significantly enhance prediction accuracy, “tuning” the model to individual cell lines.
Remarkably, adding in other multi-omics data does not significantly increase the quality of predictions. As the
model enables prediction of complete dose-response curves, we experimentally validate predictions for over
two dozen compounds on two breast cancer cell lines and find strong agreement for most compounds tested.
These results suggest that the link between kinotype and phenotype is significant, with sufficient power to
enable the prediction of cell viability and likely other cellular phenotypes as well. Along with integration of
transcriptional data, these predictive models can greatly enhance our understanding of adaptive kinome
reprogramming and drug resistance while facilitating the development of future targeted therapy regimes.

Results

This work is divided into three parts. We start by describing how we processed and organized the data sets
used to build predictive models of cell viability related to a set of kinase inhibitors. Next, we describe the
methods we used to select which features and data sets to include in these models and apply a set of
modeling methods to the organized data. Finally, we make a set of cell viability predictions and then
experimentally test these predictions in a panel of breast cancer cell lines.

Linking Kinome Inhibitor States with Cancer Cell Viability

There are two primary data sources that we needed to process and combine in order to link kinotype with
phenotype and build a model to predict the cell viability effects of kinase inhibitors. The first of these data
sources is the large-scale PRISM cell viability screening effort. The PRISM data collection consists of a set of
cell line viability measurements following exposure to a wide range of compounds(Yu et al., 2016) (Figure 1A).
These compounds span multiple different target classes, but in this work we have focused on a specific subset
of kinase inhibitors that have been independently assayed using the kinobead/MS-based method. This
determines their precise kinase targets as well as the magnitude of inhibition of each kinase in response to
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different concentrations of the inhibitors(Klaeger et al., 2017). Given that the compounds used in Klaeger et al.
were all well known kinase inhibitors, most of the proteins that appear in the assay results are either known
kinases or closely associated proteins. As such, we’ll refer to the data originating from the Klaeger et al. result
as “kinase inhibition states.”

The primary challenge with combining these data sets is a lack of overlap between some of the concentrations
used in the PRISM assay and those used by Klaeger et al. To overcome this problem, we used the viability
curve fits provided by the PRISM database and imputed cell viability values for all of the concentrations used
by Klaeger et al (Figure 1B). These cell viability results are represented as a value from 0-1, with 0 indicating
complete cell death and 1 indicating no effect on cell viability. As expected, a majority of the treatments yielded
little change in cell viability (Figure 1C). The distribution of cell viability values within each individual compound
shows that while many of the compounds have minimal effects on cell viability, some compounds show a much
wider range of cell viability effects (Figure 1D).

Figure 1: Study Design Overview and Imputation of Cell Viability from PRISM. (A) Flow chart showing
data source collection, integration and modeling strategy. (B) Sample imputed cell viability curves for all
assayed cell lines (gray underlying lines) and corresponding average imputed cell viability response (blue line)
for three compounds showing low changes (Motesanib), medium level changes (AZD-2014) and high changes

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487646doi: bioRxiv preprint 

https://paperpile.com/c/PIGziB/GuNX
https://doi.org/10.1101/2022.04.08.487646
http://creativecommons.org/licenses/by-nd/4.0/


(SB-1317) in cell viability. (C) Overall distribution of cell viability values imputed at Klaeger et al compound
concentrations. (D) Distribution of imputed cell viability across all concentrations for a selection (60 out of 168)
sampled evenly across the average imputed cell viability effect of the compounds present in both PRISM and
the Klaeger et al set. The blue and green color scheme does not indicate anything about the underlying data
and is meant to act as a visual aid for differentiating between adjacent curves.

After combining the PRISM and Klaeger et al. data sets, we have 168 compounds which have been assayed
across 480 cell lines. We imputed the cell viabilities at each of the 8 concentrations used in the Klaeger et al.
work, yielding about half a million treatment combinations across combinations of cell line, compound and
concentration. With this data set, we also integrated the gene expression data available through the Cancer
Cell Line Encyclopedia(Barretina et al., 2012). These gene expression values (log2 TPM values with a
pseudocount of 1) were available in all but four of the 480 lines used in the PRISM compound screens.
Following the integration of gene expression, we next examined how well single kinase inhibition and gene
expression values were correlated with cell viability.

Cell Viability After Treatment with Kinase Inhibitors Shows Mild Correlation with Kinase inhibition state

Next, we investigated the relationship between kinase inhibition states (~520 proteins) and gene expression
values with inhibitor-induced cell viability. To do this, we took each individual kinase inhibition state and gene
expression value (~21,000 TPM values) and calculated the Pearson’s correlation coefficient with the imputed
cell viabilities (Figure 2A,B). These correlations were in general lower for the gene expression values, while the
kinase inhibition state values showed both a higher average correlation and more variance (Figure 2C). This
was not unexpected as the gene expression values are all characterized in unperturbed cell lines. Thus, as cell
viability changes the gene expression values remain fixed, and any variation across gene expression must be
correlated with broad changes in drug response between the cell lines. The examination of single correlation
values gives a picture of how well related single expression or inhibition states are related to the cell viability
phenotype.

Figure 2: Single Feature Correlations Across Kinase inhibition and Gene Expression. (A) Sample kinase
inhibition state versus imputed viability heatmap plots showing inhibition states with high (STK10), medium
(FGR) and low (TUFM) correlation values. (B) Sample gene expression versus imputed viability heatmap plots
showing genes with high (HAGH), medium (LRFN5) and low (DKC1) correlation values. (C) Overall distribution
of correlations between kinase inhibition states and gene expression levels. (D) Plots showing what order
classes of features are selected from the inhibition and expression correlations. The number of features from
each class (left) selected at a given rank value and the percentage of the possible features (right) selected at a
given feature selection rank cutoff.
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While single features with correlation coefficient values in the ~0.3 range (the highest value observed in the
kinase inhibition state data) will not produce sufficiently predictive models, the integration of multiple features
may provide greater power. As such, we next sought to use the correlation values for feature selection. The
most obvious way to use the correlation values is to put all the potential features (in this case, kinase inhibition
state and gene expression) in correlation rank order and then select the top-X number of features for model
inclusion. This produces differing sets of feature class counts and ratios depending on the number of features
selected (Figure 2D right). Interestingly, the top ~350 features all come from the kinase inhibition states, with
gene expression then starting to be included into the list above 350 features. As an alternative method to
visualize the same selection process, we plotted what percent of a given feature class is included in the top list
for the top 2000 features (Figure 2D left). This alternative view of the feature selection process shows that
~80% of the inhibition states are included in the model before gene expression starts to be included. This
indicates that nearly all of the inhibition states are more highly correlated than the gene inhibition states and
will thus be the sole factor considered for lower feature count models. Extending the feature list visualization to
include lists greater than 2000 show that remaining inhibition states are slowly included as the top feature list
expands (Figure S1A). This analysis of the structure of the single feature correlation results lays the
groundwork for working with more sophisticated computational models to predict cell viability.

Supplemental Figure 1: Expanded Correlation Rankings (Associated with Figure 2). Extended version of
Figure 2D covering all correlation ranks.

Computational Models Can Predict Cell Viability From a Combination of Kinase inhibition state and
Gene Expression

With our initial analysis of the predictive power of single features from the Klaeger and gene expression data
sets completed, we next moved to the development of models that integrated more than one feature with the
end goal of predicting cell viability. To do this, we tested three types of models: linear regression, random forest
and XGBoost. For our initial tests with these models, we used the default settings for all three model types and
varied the number of features (either kinase inhibition states or gene expression values) provided to the model.
Our cross validation strategy sought to balance our eventual goals of using the resulting models to make
predictions about the cell viability effects in new cell lines and in untested compounds. As such, we choose a
10-fold cross validation strategy that randomized fold exclusion across the cell line-compound treatments
(63767 total combinations) to improve the likelihood that our model testing results would be similar to
downstream experiments. After producing the cross validation splits, we selected a specific number of features
and built corresponding models (Figure 3A).
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For benchmarking model performance, we built a naive model that simply guessed the average cell viability at
each of the tested concentrations as a baseline for comparison (gray dotted lines in Figure 3A), and also
compared results to previously run models on similar datasets(Corsello et al., 2020). Initially, we tested each
model type with 100, 200, 300, 400, 500, 1000, 1500 and 2000 features. These preliminary tests showed that
the random forest method performed the best at all of these feature counts and that performance (R2 and
RMSE) peaked at 500 features and out-performed our baseline dose-concentration-only model. To ensure that
we had indeed found the peak in feature performance, we then tested 600, 700, 800 and 900 feature models
and found that the 500 feature model was the peak (although all of these models performed very similarly). To
better understand this model, we also looked more closely at the predicted versus actual imputed viability of
the 500 feature random forest model (Figure 3B). This examination of the cross validation model results,
showed that the average model performance was best at higher imputed viability values, while the predictions
at lower imputed viabilities were not as accurate.

Figure 3: Development of a Regression Model to Predict Cell Viability and Assessment of Which
Features Contribute to Model Predictions. (A) Comparison of R2 and RMSE values from linear regression,
random forest and XGBoost models. The gray dotted line shows the performance level of a dose-only model
performance. (B) Actual imputed viability versus cross validated model predictions for the random forest model.
The dashed line indicates where a perfect set of predictions would appear, while the red line shows a loess fit
through the actual results. (C) Variable importance plot for the top 25 features in the final regression model.
Each feature is prefixed with act or exp representing either kinase inhibition or gene expression respectively.
(D) The top 25 most important expression features in the final model. (E) The overall distributions of feature
importance values for the inhibition and expression features.

With random forest using 500 features selected as our best modeling strategy, we moved on to examining
feature selection in the cross-validation models as well as parameter tuning. One concern with doing feature
selection in each cross validation set was that there would be a large amount of volatility in feature selection
between each cross validation model run. We found that in each of the cross validation runs, at least 75% of
the features are included in all of the feature selection sets (Figure S2A). To ensure that the default random
forest parameter models were near the optimal tuning, we also tested cross-validated models with 1000, 1500
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and 2000 trees (500 trees is the default value). Increasing the tree count had little effect on model quality
(Figure S2B), so we opted to use the default value of 500 trees.

Supplemental Figure 2: Feature Selection with Cross Validation and Assessment of Increasing
Random Forest Trees (Associated with Figure 3). (A) The effect of cross validation data division on which
features are selected for model inclusion. (B) The effect on R2 and RMSE of increasing the number of trees
used in the random forest algorithm.

Our first step in building the final kinase inhibition and gene expression model, was to first select the 500
features that would be included in the model. Using the same correlation ranking scheme used in our cross
validated models, 390 out of 520 kinase inhibition states and 110 out 19177 gene expression features were
selected for model inclusion. We next built the final random forest model with the full data set and collected
variable importance metrics for each of the included features. In order to understand the kinase and
non-kinases included in the selected inhibition states, we classified each protein as either a non-kinase or as a
well-studied (Light) or understudied (Dark) kinase (Figure 3C)(Berginski et al., 2020). Several of these genes
have well-known roles in cell viability and cancer, including MAP2K1 (MEK1), AURKB and CDK7. Interestingly,
the model also identifies several understudied kinases, CSNK2A2, PIP4K2C, CAMKK2 and DYRK1B, as being
influential in the model’s cell viability predictions. To better contextualize the expression values included in the
model, we used the STRING database to see how many of the selected genes interacted with the proteins
included in the inhibition features (Figure 4D). Of the 110 genes included in the expression values, 40 interact
with at least one protein in the inhibition set and the average expression gene interacts with 1.7 inhibition state
genes. In comparison to 10,000 randomly drawn expression gene sets of size 110, 84% interact with fewer
than 40 inhibition states and 80% have a lower average inhibition gene interactor count below 1.7. The global
view of the variable importance metrics also shows that nearly all of the expression features have similar
importance values in the final random forest model (Figure 3E). We next attempted to better understand how
the interaction between inhibition states and gene expression levels affected model performance.

The Combination of Kinase Inhibition States and Baseline Gene Expression Produces the Best Results

After thoroughly examining the results of the inhibition state and gene expression combined model, we next
wanted to investigate how the model would perform when we excluded certain parts of the full data set. Using
the same 10-fold feature selection cross validation strategy and the same cross validation fold splits described
above, we rebuilt the model using only inhibition state or only gene expression (Figure 4A). The
gene-expression-only models performed very poorly (R2 of ~0.01 and RMSE of 0.33), which was expected due
to the fact that the gene expression values are fixed and do not vary with the compound concentrations. When
we built models using the inhibition states alone, we observed identical performance for feature counts 300
and below. This was also expected as the correlational feature selection methods always select inhibition
features for the first ~350 features. With feature counts of 400 and 500, we observed that the additional
information provided by the gene expression features began to improve the model (0.05 improvement in R2

and a 0.02 decrease in RMSE). Thus, while the expression features alone are not sufficient to predict cell
viability, they do provide an appreciable improvement in the model performance in combination with inhibition
features.
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Figure 4: Model Performance is Best with Access to All Inhibition States and Gene Expression Values.
(A) Comparison of R2 and RMSE performance for models using only expression, only inhibition or inhibition
and expression features. (B) Comparison of R2 and RMSE performance for models using gene expression and
all inhibition data or only the kinase subset.

Having established that both inhibition and expression data are needed for the best model performance, we
next investigated how the non-kinases in the inhibition data set affected model performance. This question is
an interesting avenue to explore as, while the Klaeger et al. study was confined to kinase inhibitors, the
presence of ~50% non-kinase proteins inspired us to assess how the model would perform without the
non-kinases. We rebuilt the inhibition data set and ran the same modeling methodology including the gene
expression values to allow us to compare to our previous models (Figure 4B). The optimum kinase-only
inhibition data model had a maximum R2 of 0.76 and a RMSE of 0.17 (compared to R2 of 0.79 and RMSE of
0.15 for the full set). These results indicate that the non-kinases are providing some additional information that
the model is able to use, which is in agreement with the presence of non-kinases in the top 25 of the variable
importance metrics (Figure 3C). Having fully examined the kinase inhibition state and expression model, we
next investigated if any of the other multiomics data sets available could improve upon these models.

Models Only Show Mild Improvement from Inclusion of a Broad Spectrum of Omics Data

Gene expression is only one of several different types of comprehensive data that has been collected for many
of the cell lines used in the PRISM assay. These additional data sets include:

● DepMap CRISPR-KO screening: genome-wide gene knockout viability measurements (DepMap Score)
● Copy-number-variation: gene level copy number variation (CNV)
● Whole Genome Proteomics: mass spectroscopy-based measurement of relative protein abundance

(proteomics)

Given the broad and complementary nature of these data sets, we investigated whether we could integrate
these data sets to improve upon the kinase inhibition and gene expression models we described above. The
Depmap, CNV and proteomics data sets all overlap with a different number of cell lines present in the PRISM
data set (Figure S3A). All of the data sets are available for 212 cell lines (gene expression is available for 476
cell lines represented in PRISM). We focused our modeling efforts on these 212 cell lines to ensure that a
complete collection of data was available. We followed the same strategy as in the above modeling effort
where we first investigated the correlation between single features and cell viability. The 212 cell line subset
showed very similar correlation distributions between kinase inhibition and gene expression (Figure S3B). The
newly added feature (CNV, DepMap scores and proteomics) correlations, had correlation distributions very
similar to gene expression (Figure S3B). Using the correlation feature ranking, we also determined which
features would be included in models of various sizes (Figure 5A and Figure S3C). With these data sets
organized and our feature selection techniques specified, we tested how inclusion of these data sets affected
model quality.
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Figure 5: Regression Models using Additional Data Sets Don’t Dramatically Outperform inhibition and
Expression Models. (A) Plot showing the order features are selected for model inclusion (left) and the
percentile rank within each feature class as features are selected for inclusion in the model (right). (B)
Comparison between models built with inhibition data and expression or all available data sets by R2 (left) and
by RMSE (right).

Based on our previous experience with building the kinase inhibition and expression models, we decided to
only test the best-performing random forest method. We also used the same 10-fold cross validation across the
cell line/compound combinations. This resulted in higher instability in feature inclusion across the cross
validation folds (Figure S3D). As shown in Figure 5B, integration of these other data sets led to performance
that was nearly identical to the model with only kinase inhibition and gene expression. The peak performance
was achieved at 500 features in both model variants with R2 values of 0.794 (0.153 RMSE) and 0.793 (0.154
RMSE) for the all data and inhibition/expression models respectively. This indicates that gene expression
values alone contain substantially similar information as the remaining set of multiomics data. Given our desire
to build a model which uses the most easily reproducible data sets and only minor improvements were
observed with the full data collection, we decided to move forward with the integrated model combining kinase
inhibition states and gene expression values.

Supplemental Figure 3: Expanded Correlation Rankings and Effect of Cross Validation Subsetting on
Feature Selection (Associated with Figure 5) (A) Upset plot showing the overlap between data sets across
cell lines in the PRISM assay. (B) Small multiples plot showing the correlation of individual features to imputed
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cell viability for each of the feature types considered in this model. (C) Full feature correlation rankings for all
data set types considered for Figure 5. (D) Effect of random 10-fold cross validation subsetting on which
features are included in what percentage of the cross validation data sets.

Validating the Models was Successful within the Our Ability to Replicate Previous PRISM Results

With the model production decisions finalized, we then applied this model to the untested cell line and
compound combinations. The final model was produced using the 63189 cell line and compound combinations
with interpolated viability values (Figure 6A). Of the data that went into model production, 476 cell lines and
168 compounds were represented. This left 903 cell lines in the CCLE gene expression data set and 61
Kleager kinase inhibitors that have not been tested in the PRISM viability assays (in addition to a few other
untested combinations) where we were able to apply our model to predict cell viability at each of the compound
concentrations used in the Klaeger assay. Ultimately, this resulted in us producing predictions for about
250,000 cell line and compound combinations (Sup Data 1). We hope that providing these prediction results
will enable other researchers to find interesting or unexpected compounds that target specific cancer types.
For the work presented here, we focused our validation efforts on a subset of breast cancer cell lines.
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Figure 6: Validating a Subset of Compound Predictions in Breast Cancer Cell Lines. (A) Visualization of
the space of compound (Y-axis) and cell line (X-axis) combinations that have been tested (white) and non
tested (black) with a blue box surrounding the entire visualization. (B) Cell viability results from testing a set of
compounds (labeled above each curve) and a cell line (HCC1806) already tested in the PRISM collection. (C)
Scatterplot summarizing all the results from part B into a single plot with a linear best fit line showing in blue.
(D) Cell viability results and corresponding predictions or PRISM results from a set of cell lines included in
PRISM (BT-474 and HCC1806) and a selection of compounds which were mostly not included in PRISM. (E)
Scatterplot summarizing all the prediction results from part D into a single plot. (F) Cell viability results and
corresponding predictions for a set of cell lines and compounds not included in PRISM. (G) Scatterplot
summarizing all the results from part F into a single plot.

Our first goal when beginning to validate a subset of model predictions was to see how well we could replicate
the results from the PRISM assay. We selected the well characterized triple negative breast cancer (TNBC) cell
line HCC1806 and a set of compounds that displayed a range of viability effects from the 134 Kleager kinase
inhibitors that had been used in the PRISM assay with the HCC1806 cell line (Figure 6B). Several of these
compounds performed very similarly in our assay as compared with the imputed viability PRISM values,
notably Cobimetinib, UCN-01, AT-9283, Lestauritinib and Dinaciclib. However, several of the compounds that
showed high viability effects at high concentrations were not reflected in the imputed viability results, which
lowered the replication R2 to 0.492 and the RMSE to 0.299 (Figure 6C). With the limitations identified by the
replication effort acknowledged, we next moved into testing new cell line and compound combinations.

We started testing new cell line and compound combinations by continuing with the HCC1806 line and adding
in the HER2 positive breast cancer cell line BT-474. We selected a set of compounds predicted to have a
range of effects on the two cell lines and then conducted a viability screen with each of these compounds
(Figure 6D). Much like the replication attempt, we observed several compounds where the predicted viabilities
were close to the measured viability (K-252a, UCN-01, PF-3758309 and Lesauritinib). Overall, the R2 (0.518)
and RMSE (0.239) values were comparable with replication effort, indicating that the model was performing
well on new compounds (Figure 6E). As our most challenging final test, we decided to test two cell lines that
are not present in the PRISM data set (HER2+ line SKBR3 and TNBC line SUM159PT) against a set of
compounds that weren’t included in the PRISM compound set. Once again, with this “double-untested”
experiment, we selected a set of compounds predicted to have varying effects across concentrations and
observed a combination of compounds with strong and weak correlation between predictions and results
(Figure 6F). Notable among the better results were JANEX-1, Losmapimod and K-252a, while the model
struggled with CC-401 and parts of the RGB-286638, ACTB-1003 and Ceritinib curves. The overall
performance of the model (R2 of 0.588 and RMSE of 0.246) were comparable to the other model validation
results (Figure 6G). These independent validation efforts demonstrate that the model predictions are able to
generalize into previously untested cell lines and compounds.

Discussion

Given the potential of targeted kinase inhibitor therapies, the ability to predict how a given treatment may alter
kinome state and lead to a given phenotype is fundamentally enabling. In this work, we developed a set of
computational models that predict cell viability after treatment with a set of small molecule kinase inhibitors. To
accomplish this, we used several publicly available data sets that provided information concerning the
untreated gene expression of the cell lines used in the viability screen and another that gave detailed
information about the proteins targeted by small molecule kinase inhibitors. We examined how single gene
expression and kinome state values were related to cell viability and how models with various numbers of gene
expression and kinome state values varied in quality. In addition to gene expression, we also tested a set of
models which included a broader range of baseline measurements (CNV, proteomics and gene essentiality)
and concluded that these additional data sets were not able to significantly improve model performance.
Finally, we tested some of the model predictions in several triple negative and HER2 positive breast cancer
lines and found acceptable agreement between the model predictions and these results.

This work demonstrates how generic knowledge of the kinome can predict a cellular process as fundamental
as viability. Importantly, the models achieved these surprising results by using a "generic" or "general" kinase
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inhibition profile measured with proteomic kinobead profiling of a four cell line lysate exposed to an extensive
library of kinase inhibitors at multiple doses(Klaeger et al., 2017). Thus, the models learned by linking non-cell
line specific kinome inhibition state information with that of specific drug-cell line relationships.

We also hope that by providing a full set of viability predictions for the broad range of cancer cell lines covered
by the CCLE that this work can act as a resource for other researchers to find unexpected or interesting kinase
inhibitors that affect their most used cell line model systems. We would also like to acknowledge several
limitations of this work. All of the results in this paper rest on the availability of kinome profiling data specific to
a given kinase inhibitor, so the methods here are not applicable to prediction of cell viability effects in any other
class of compound. We believe that a similar strategy could be used to build models in compound classes
where the spectrum of targets were as comprehensively identified. The universe of small molecule kinase
inhibitors is substantially larger than those that were surveyed by Klaeger et al., but since our modeling
methodology depends on the comprehensive nature of their work, we’re limited in the number of compounds
where we can make predictions. One of our next goals is to attempt to broaden the scope of compounds
through integration of other high-content kinome profiling techniques such as KinomeScan and Nano-BRET. In
addition, while the models described in this paper do make somewhat accurate predictions, these results point
to a degree of missing predictability in cell viability for which new methods and data will need to be developed
and collected.

This work also suggests several extensions that would broaden or improve the model. Given recent interest in
finding new compound combinations computationally, we are beginning to examine how best to combine the
information from multiple compound kinome inhibition states to predict the resulting cell viability effects. This
would allow us to run computational drug combination screens. In addition, the methods outlined here will also
likely work for any phenotype that can be measured after treatment with small molecule inhibitors and with
sufficient throughput to gather a large enough data set. Finally, while we have made all of the code and data
necessary to reuse our models available to the public on github, we also acknowledge that this is not the most
user-friendly method for allowing non-computationally minded users to access the model. Thus, we also plan
on developing a web-based system for allowing non-computationally minded users to submit a gene
expression profile and receive a set of predictions concerning how their cellular system is expected to respond
to the Klaeger set of kinase inhibitors.

Overall, we hope that this paper makes a contribution to our understanding of how the overall state of kinome
in response to small molecule inhibitors contributes to cell viability phenotypes. Our findings demonstrate that
while individual kinase inhibition states and other single gene or protein readings are not very predictive of cell
viability, machine learning approaches are able to combine sets of measurements related to the small molecule
kinase inhibitors and gene expression data to make cell viability predictions. The results presented here show
how a thorough understanding of kinase activity levels in conjunction with baseline omics data can be used to
gain a better understanding of cell viability.

Methods

Our methods can be divided into two parts describing the computational aspects of this work and the
experimental methods used to test the output of the computational components.

Data Sources

We used two primary data sources for this paper: the supplemental data section from Klaeger et al.(Klaeger et
al., 2017) and the cell viability screening results from the PRISM lab. Specifically, we collected and organized
the kinase inhibition states from supplemental table 2 of Klaeger et al, focusing on the Kinobeads subsheet. As
for the PRISM data, we used the data from 2019 Q4 (labeled 19Q4 in the depmap portal), specifically the
secondary screening data. In addition to these two data sets, we used supplemental data sets from the
CCLE(Barretina et al., 2012) and DepMap(Tsherniak et al., 2017). These data included results from baseline
RNAseq (CCLE_expression.csv), copy number variation (CNV, CCLE_gene_cn.csv) and CRISPR-KO viability
screening (CRISPR_gene_effect.csv). The 2021Q3 versions of these files were used. The proteomics data
was downloaded from the Gygi lab website (https://gygi.hms.harvard.edu/publications/ccle.html), specifically

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487646doi: bioRxiv preprint 

https://paperpile.com/c/PIGziB/GuNX
https://paperpile.com/c/PIGziB/GuNX
https://paperpile.com/c/PIGziB/GuNX
https://paperpile.com/c/PIGziB/ujtK
https://paperpile.com/c/PIGziB/TBLI
https://gygi.hms.harvard.edu/publications/ccle.html
https://doi.org/10.1101/2022.04.08.487646
http://creativecommons.org/licenses/by-nd/4.0/


Table S2 (Nusinow et al., 2020). We also used version 11.5 of the STRING (Szklarczyk et al., 2021) protein
network database (9606.protein.links.v11.5.txt.gz).

Data Preprocessing

The scripts implementing these descriptions are all available through github.

Klaeger et al. Kinase Inhibition Profiles: We read the values from the supplemental data table into R and
produced a list of all proteins observed in any of the kinase inhibitor treatments. Since this table only contains
the proteins affected by each compound, we filled in the relative intensity values for genes not associated with
a given inhibitor with the default value of 1. There was a small (1.8%) number of single concentration values
missing from the listed affected proteins, so we filled these values as the average of two nearest
concentrations. Finally, a smaller set (0.01%) of likely outlier relative intensity readings were truncated to the
99.99 percentile (3.43).

PRISM Cell Viability: Since relatively few of the concentrations used in the PRISM assay match those used by
Klaeger et al., we opted to use the response curve parameters provided through the depmap portal to
interpolate the cell viability values. We interpolated these values at 30 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30
nM, 10 nM and 3 nM to match those used by Klaeger et al. We applied a filter to remove any response curve
parameter set that indicated that a given cell line and compound combination produced enhanced cell growth
with increasing compound concentration. To perform the viability extrapolation, we used the four-parameter
log-logistic formula described in the drc R package(Ritz et al., 2015).

Gene Expression, CNV, CRISPR-KO and Proteomics: The files provided by the depmap portal for gene
expression, CNV and CRISPR-KO values required very little modification to work in our machine learning
pipelines. The primary modification was to add identifiers to each gene label, to ensure that omics data related
to the same gene weren’t accidentally combined. The CRISPR-KO data also required an additional filter to
remove 10 cell lines with missing data. The proteomics data processing was slightly more complicated, as
there were substantially more protein readings missing from many more lines. In the cases of missing protein
readings, we imputed these values to the minimum value for the overall distribution of that protein minus one
standard deviation.

String: The STRING database(Szklarczyk et al., 2021) also required only mild preprocessing to extract the
proteins that interacted with the components of our models. We filtered the interaction list to the high
confidence (above 0.7) set and used bioMart(Durinck et al., 2009) to convert the Ensemble protein identifiers
to HGNC identifiers for matching with the other data sets.

Modeling Techniques and Types

To assess our models we used a 10-fold cross validation strategy which randomized training and test set
inclusion across the cell line and compound combinations. Thus, for any given viability curve resulting from
treatment of a cell line with a compound, all of the results from the assay were considered as one unit for cross
validation purposes. All steps of feature selection were also conducted under this cross validation framework
as well. For every fold of our data, we recalculated the correlation coefficient between cell viability and the
features available to the model (kinase inhibition state, gene expression, etc) using only the data in the training
set. The number of features was varied as specified in the results section. We used the entire data set to build
the final model used to make the predictions in Supplemental Data File 1 and the results displayed in Figure 6.

We used random forest, XGBoost and linear regression for all of our modeling efforts. All of our models are
implemented using the tidymodels framework in R. We used the ranger random forest engine(Wright and
Ziegler, 2017), the default XGBoost engine(Chen and Guestrin, 2016) and the default linear regression engine.
After selecting random forest as our primary modeling method, we also tuned the number of trees.

Compound Testing
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BT-474, HCC1806, SUM-159 and SKBR-3 cells were grown in ATCC recommended media and seeded at
4000, 2000, 4000 and 500 cells per well respectively, in white flat-bottom 96-well plates (Corning). 24 hours
after seeding, cells were treated with the respective drugs prepared in DMSO. All drugs were dosed at the
same eight concentrations used in the Klaeger study: 30 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM and
3 nM. Seventy-two hours post-treatment, cells were lysed with CellTiter-Glo (Promega) per the manufacturer’s
protocol. Luminescence was read using the PHERAstar FS microplate reader (BMG Labtech) and gain
adjustments were conducted for each cell line. Data were normalized row-wise to the DMSO-only (0.5% on
cells) control samples on each plate to calculate relative viability. Quality checks were performed to look at the
data distribution and the presence of spatial bias on a plate. A quality control metric of <120% of DMSO was
applied to all rows analyzed. Across all >150 rows analyzed, only one row of XL-228 treated SKBR-3 cells
failed to meet this criteria and was removed from analysis.

Software and Data Availability

All of the code written to support this paper is available through github
(https://github.com/gomezlab/kinotype_viability) along with a walkthrough explaining where to find the code
relevant to each part of the paper. We have also made all of the model validation results available through
zenodo (https://doi.org/10.5281/zenodo.6323686).
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