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Abstract 
Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely 
used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci 
(QTL) associated with transcriptional changes would help to identify mechanisms underlying 
these traits. We generated genotype and transcriptome data for five brain regions from 88 HS 
rats. We identified 21,392 cis-QTLs associated with expression and splicing changes across all 
five brain regions. Surprisingly, use of a linear mixed model had little impact on the eQTLs 
identified compared to linear regression. We also characterized empirical properties of these 
QTLs and validated their effects using allele specific expression data. We identified 80 cases 
where eQTLs were colocalized with GWAS results from nine physiological traits, demonstrating 
the utility of these eQTL data. Comparing our dataset to human data from the Genotype-Tissue 
Expression (GTEx) project, we found that the HS rat data yields twice as many significant 
eQTLs as a similarly sized human dataset. We also identified a modest but highly significant 
correlation between genetic regulatory variation among orthologous genes. Surprisingly, we 
found less genetic variation in gene regulation in HS rats relative to humans, though we still 
found eQTLs for the orthologs of many human genes for which eQTLs had not been found. 
These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new 
discoveries of the genetic influences of complex traits. 
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Introduction 
Rats are used in a variety of fields including physiological and behavioral research because of 
their similarities to humans and are preferred over mice for studying certain traits1–4. In 
particular, research into the genetic basis of complex behavioral tasks such as measures of 
impulsivity and complex models of substance abuse and other motivated behavior has made 
extensive use of various inbred and outbred rat populations5. Many associations with these 
traits have been detected6. However, similar to the situation in human complex trait genetics, 
resolving implicated chromosomal regions to specific genes and underlying mechanisms is a 
critically important step that remains challenging.  
 
Identification of heritable differences in gene expression via expression quantitative trait loci 
(eQTL) mapping offers one way to identify the molecular mediators of loci implicated by 
genome-wide association studies (GWAS)7–10. Mapping of eQTLs has been conducted at scale 
for dozens of human tissues, most notably by the Genotype-Tissue Expression Consortium 
(GTEx)7. In contrast, eQTL mapping in rats has been limited in terms of populations, tissues, 
sample size, and number of genetic markers used11–27. Some eQTL mapping has been 
conducted in Heterogeneous Stock (HS) rats28,29, but to our knowledge this has not yet been 
done transcriptome-wide. 
 
HS rats were developed in the 1980s by interbreeding eight inbred rat strains30 and have been 
maintained as an outbred population ever since. As a result, each HS rat chromosome is a 
mosaic of the eight possible founder haplotypes meaning that all alleles are common. The 
relatively high minor allele frequency is in stark contrast to humans, which have a 
preponderance of rare variants, and provides greater power for mapping eQTLs. 
 
Because HS rats are being used for a variety of behavioral and physiological studies, there is an 
urgent need for a well-powered and complete library of QTLs. Here, we used tissue from five 
brain regions that have been implicated in addiction and other psychiatrically important traits to 
map eQTLs and splicing QTLs (sQTLs) in HS rats. We explored several important 
considerations for eQTL mapping in this population. We also have compared the results of 
eQTL mapping in HS rats to publicly available human data, identifying both similarities and 
important differences. Finally, we have provided all the data generated here on an online portal 
(RatGTEx.org) that provides a clearing house for this and other eQTL datasets.  

Results 
We obtained gene expression profiles from five brain regions from 88 HS rats using RNA-Seq 
with an average library size of 26.7 million reads (Supplementary Table 1). The regions 
examined were: nucleus accumbens core (NAcc), infralimbic cortex (IL), prelimbic cortex (PL), 
orbitofrontal cortex (OFC), and lateral habenula (LHb) (Fig. 1a). These brain regions were 
selected because of their relevance to a variety of behavior traits, including but not limited to 
substance abuse-related traits.  
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We determined genotypes at 3,511,003 SNPs across all autosomes using genotyping by 
sequencing31. Consistent with our expectations based on their population history (Fig. 1b), 
linkage disequilibrium (LD) decayed over much longer distances in this population as compared 
to humans (Fig. 1c). Minor allele frequencies were fairly uniform, with a mean of 24% and the 
first and third quartiles of 11% and 36%; importantly the spike of rare alleles typically observed 
in human populations was not present (Fig. 1d).  
 
Clusters of expression profiles for the three cortical regions were relatively close along their first 
two principal components, while nucleus accumbens core and lateral habenula profiles formed 
separate clusters (Fig. 1e). Further separation between the cortical regions was apparent in the 
fourth principal component (Fig. 1f). 
 

 
 
Figure 1: Overview of genotypes and expression data. a Diagram of the rat brain showing the five 
regions sampled in this study. b Diagram of the genetic outcome of heterogeneous stock rat breeding. 
The maternal and paternal chromosomes of a hypothetical autosome is depicted for each founder strain 
and for multiple HS rats. c LD decay in the HS rats in the present study and in humans in the GTEx 
project. LD was calculated using frequency-matched SNPs with MAF > 20%. d Distribution of SNP minor 
allele frequency in HS rats and in the humans in GTEx. e-f First two (e) and next two (f) components from 
principal component analysis applied to log-count expression data for all samples. 
 

HS founder haplotype diversity 
Since the HS rats have been maintained as an outbred population for many generations (73-80 
for this cohort), the chromosomes are expected to be random mosaics of the eight founder 
haplotypes. In addition to the accumulation of recombinations, which improves mapping 
resolution, genetic drift inevitably erodes haplotype diversity (Fig. 2). We inferred ancestral 
haplotypes across each animal’s genome, which showed that at many loci the founder 
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haplotypes had deviated substantially from their initially uniform proportions (Fig. 2a, 
Supplementary Fig. 1). To determine if the observed loss of haplotype diversity was consistent 
with genetic drift versus other possibilities such as genotyping errors, breeding errors, or 
inadvertent selection for fitness and fecundity, we simulated the breeding history. In particular, 
since the HS population has undergone periods of both circular and random pair mating, we 
simulated both strategies separately. We found that the distribution of observed haplotype 
diversity, as measured by Shannon entropy, lies between that of the two simulated strategies at 
generation 80 (Fig. 2b), suggesting that the changes in haplotype frequency are broadly 
consistent with random genetic drift. 
 

 
 
Figure 2: HS founder haplotype diversity. a Estimated haplotype proportions across three 
chromosomes in the 88 HS rats. The total proportions over all autosomes are shown in the legend. b 
Simulated and observed haplotype diversity in the HS population. Diversity (Shannon entropy of mean 
strain probabilities at each locus) is shown for every tenth generation for the simulated data. Each 
simulation type was run 200 times, representing 200 independent loci, and 200 real loci were sampled 
from the real cohort from HS generations 73-80. 
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Mapping eQTLs 
We tested for associations between gene expression and each SNP across the genome (Fig. 
3a). As observed in other organisms7,9, associations with SNPs near the gene’s location in the 
genome, which we presumed to be cis-eQTLs, were prevalent. While we observed some 
associations with distant SNPs, which may represent trans-eQTLs, we primarily focused on 
putatively cis-acting eQTLs within ±1 Mb of each gene’s transcription start site (TSS) to retain 
statistical power and limit false positives (see Methods). The cis-window of 96.6% of the genes 
contained at least 10 SNPs that were not in full LD, and 28.1% contained at least 100 such 
SNPs. The TSS of 73% of genes were in high LD (r2 > 0.99) with at least one other gene’s TSS. 
In instances where multiple top SNPs in perfect LD were associated with the same gene, a 
single SNP was selected randomly for downstream analyses and visualization (Fig. 3b). We 
estimated the effect sizes for the cis-eQTLs using allelic fold change (aFC) and found that 87% 

of the cis-eQTLs alter the gene expression by up to two fold (|log2 aFC| ≤ 1), and 96% did so up 

to four fold (|log2 aFC| ≤ 2) (Fig. 3c). Consistent with their higher statistical power, minor allele 

frequencies of eQTLs were higher on average than the set of all measured SNPs (Fig. 3d). 
eQTLs were enriched close to the associated gene’s TSS, occurring upstream and downstream 
of the TSS at similar frequencies (Fig. 3e). 
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Figure 3: Overview of eQTLs for nucleus accumbens core. a Full-genome eQTL scans. Results are 
shown for nucleus accumbens core but were similar for all five brain regions. Each 20 Mb by 20 Mb bin is 
colored by its highest -log10(p-value), values below five are white. b Left: nominal -log10(p-values) for all 
cis-window SNPs for the top six NAcc cis-eQTLs, ranked by permutation-derived p-values. Vertical solid 
lines show each gene’s TSS, and horizontal dotted lines show each eQTL’s nominal p-value threshold as 
determined by permutations. The gene symbol and chromosome of each eQTL are labeled. LD values 
refer to each eQTL’s most significant eSNP(s). Right: effect plots for the representative eSNP per eQTL. 
Expression values are inverse normal transformed as used for eQTL mapping. Sample counts per 
genotype are shown in parentheses. c Allelic fold change of NAcc cis-eQTLs. d Minor allele frequency of 
top NAcc cis-eSNPs shown as solid gray bars. The red outline shows the histogram of minor allele 
frequency for all genotyped SNPs for comparison. e Top eSNP distance from TSS, oriented along the 
eGene strand. Each NAcc cis-eQTL is represented by one top eSNP, randomly chosen in the case of 
variants with identical p-values. TSS, transcription start site. 
 
We identified cis-eQTLs for between 3,339 and 4,003 genes for each of the brain regions at a 
5% false discovery rate (Fig. 4a), which represented 20% to 24% of the genes examined. A 
total of 7,788 genes were affected by a cis-eQTL in at least one brain region, 3,234 (42%) of 
which were identified in only one brain region and 1,170 (15%) of which were identified in all five 
brain regions (Fig. 4b). To validate the mapped cis-eQTLs, we measured their regulatory effect 
size from total gene expression and allele specific expression (ASE) data independently using 
aFC32. These two independent measurements were consistent for each brain region (mean 
Pearson’s r = 0.58 ± SD 0.02, Deming regression β = 1.26 ± 0.10, Supplementary Fig. 2). We 
used a stepwise regression procedure to identify conditionally independent cis-eQTLs beyond 
the strongest cis-eQTL per gene, and found an average of 174 genes with two eQTLs and 4 
genes with three eQTLs in each brain region, resulting in an average of 4.9% additional eQTLs 
per brain region. 
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Figure 4: eQTLs and sQTLs across brain regions. a For each brain region, the number of genes for 
which at least one significant cis-eQTL was found. b The unique genes in panel (a), grouped by the 
number of tissues in which a cis-eQTL was found for the gene. c Overlap of eGene sets across tissues. 
Size of intersection is given for each combination of tissues, colored by the number of tissues in the 
combination. d For each tissue, the number of genes for which at least one significant cis-sQTL was 
found. e The unique genes in panel (d), grouped by the number of tissues in which a cis-sQTL was found 
for the gene. f Overlap of sQTL gene (sGene) sets across tissues. g Left: Enrichment of functional 
annotations in eSNPs. Right: Proportion of eSNPs and sSNPs with each annotation. Representative 
eSNPs and sSNPs were randomly chosen among the top associations per e/sQTL in case of ties. Some 
SNPs have more than one annotation. Enrichment is with respect to all tested (cis-window) SNPs. Points 
and bars show mean across the five brain regions, and lines show standard deviations. 
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Next we looked at the tissue specificity of the eQTLs that may reflect biological differences 
across brain regions. The three cortical regions (IL, PL, and OFC) shared a greater overlap of 
cis-eQTL genes (eGenes) than any other tissue trio, with 349 eGenes shared exclusively 
among them, compared to only 104 eGenes for the next-highest trio (Fig. 4c). This observation 
is broadly consistent with our expectation that cortical tissues should have similar expression 
patterns. However, there were a number of eQTLs that were only detected in a single tissue 
(Supplementary Table 2). In some cases, this may reflect real biological differences that give 
rise to tissue specific eQTLs. In other cases, this apparent tissue specificity could be also 
caused by noise in associations that are close to the significance threshold, such that only one 
tissue reached the significance threshold, or by low expression of the gene in question in other 
tissues (Supplementary Table 3).  
 
We quantified splicing in terms of intron excision ratios and used these phenotypes to map cis-
sQTLs7. Because these measurements are based on a smaller number of reads, power to 
detect sQTLs is likely lower than for eQTLs. We found 305 to 403 independent cis-sQTLs per 
brain region, impacting a total of 764 genes (Fig. 4d). This included 404 genes for which cis-
sQTLs were identified in only one brain region and 117 for which cis-sQTLs were found in all 
five brain regions (Fig. 4e, Fig. 4f). Importantly, 47% of the genes with an sQTL in a brain 
region did not have an eQTL in that brain region, demonstrating the added benefit of mapping 
sQTLs. 
 
We annotated top associated SNPs (eSNPs) per eQTL and found enrichment in all gene-
associated categories (Fig. 4g). However, these enrichments may also reflect the tendency for 
both eSNPs and gene-associated features to occur near the gene’s transcription start site 
relative to the full cis-window. While there were too few sQTLs to reliably measure sQTL SNP 
(sSNP) annotation enrichment, especially for smaller categories such as “Splice region”, the 
proportions of annotations among the sSNPs were similar to the proportions among eSNPs. 
Given that there were often blocks of multiple eSNPs with identical p-values, the level of eSNP 
resolution in HS rats is limited by LD structure. 
 
Because of the complex familial relationships among members of an outbred population like the 
HS, several prior eQTL mapping studies in similar mouse populations employed a linear mixed 
model (LMM) that includes a kinship matrix that accounts for relatedness9,33,34. However, LMMs 
are more computationally intensive, and given the large number of genes being examined, we 
questioned the need for an LMM. We repeated cis-eQTL mapping for one brain region, NAcc, 
using GEMMA35 in linear model (LM) mode and in LMM mode. The absolute values of Z-scores 
for the top association per gene were highly correlated (Spearman’s rho = 0.991, 
Supplementary Fig. 3a). The sets of eGenes below a wide range of p-value thresholds had 
strong overlap between the modes (97%, 97%, and 95% for 10-9, 10-6, and 10-3, respectively, 
Supplementary Fig. 3c). This is in stark contrast to the scenario of GWAS in a panel of inbred 
mouse or rat strains, where use of LMM is critical to avoid false positive results36. In our dataset, 
p-values for LMM tended to be slightly more significant (Supplementary Fig. 3d). 
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Comparison to human 
The GTEx Consortium recently released a comprehensive map of eQTLs in 49 human tissues 
including 13 brain regions7. The number of eGenes in our data was lower (mean of 3736 over 
five tissues) than for the human brain tissues in GTEx data (mean of 6870 over 13 tissues) 
where the authors used 114 to 209 donor samples to map eQTLs. We sought to compare these 
counts in light of the correlation between sample size and eGene count among the GTEx 
tissues (Pearson’s r = 0.86, Fig. 5a). We subsampled each GTEx brain tissue dataset to 81 
samples, the largest sample size in the present study. Mapping eQTLs with these subsampled 
datasets resulted in fewer eGenes (mean: 1900, SD: 473) than the rat brain tissues (mean: 
3736, SD: 304), showing that on a per subject basis we had greater power to map eQTLs in HS 
rats. 
 
The distances between each eGene’s top eSNP and TSS were much greater for rat brain 
(median 271 Kb) than for human brain (median 35 Kb, Fig. 5b). In many cases a rat brain eQTL 
had a cluster of eSNPs in perfect LD (r2=1), which therefore had identical p-values. In these 
cases a single SNP was randomly chosen, which is one reason for the greater distances 
between the top eSNP and the TSS observed in HS rats. 
 
Colocalization analysis and other transcriptome-informed functional population genomic 
analyses rely on presence of common regulatory variation in a population such as eQTLs to 
interpret GWAS signal. Next, we focused on genes that do not have an eQTL mapped in any 
brain tissues in the GTEx data. Out of 11,686 orthologous genes that are well expressed 
(median TPM > 1 in at least one tissue) in both GTEx human and HS rat data, we found that 
85% have an eQTL in at least one GTEx brain tissue, leaving 1,717 genes with no mapped 
eQTLs. As previously reported, the genes with no eQTLs are enriched for critical genes that are 
intolerant to loss of function coding genetic variation32. We found that for 44% (n=749) of these 
genes we identified an eQTL in at least one rat brain region. Indeed, the orthologous genes 
associated with these eGenes that are exclusive to the rat eQTL data are significantly more 
likely to be intolerant of loss-of-function mutations than those genes with eQTLs in GTEx data 
(Fig. 5c). These results suggest that the HS rat population may be a valuable resource for 
characterizing phenotypic consequences of genetic variation in genes that are highly depleted 
for functional variation in human populations. 
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Figure 5: Comparisons to human eQTLs. a Scatter plot showing the relationship between sample size 
and number of detected eGenes for the five rat brain tissues in the present study and for all GTEx 
tissues. The boxplot summarizes the 13 counts for the human brain tissues after subsampling each 
dataset to 81 samples. Both axes are square-root-scaled. b Distributions of distances to transcription start 
site for each top eSNP in HS rat and GTEx brain tissues. c Probability of loss-of-function intolerance 
(pLI)37 for expressed ortholog pairs in which one, both, or neither gene had an eQTL in any brain tissue. 
Ortholog pairs counts are shown in parentheses. d Pearson correlation of eQTL effect size in ortholog 
pairs in which eQTLs were found for both genes. For each gene, |log2(aFC)| for significant eQTLs were 
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averaged across rat and across human brain tissues. e Pearson correlation of cis-heritability estimates in 
ortholog pairs. For each gene, h2 was averaged across all rat and all human brain tissues where it could 

be computed. f Pearson Correlation of SDG (���) estimates in ortholog pairs. For each gene, SDG was 
averaged across all rat and all human brain tissues where it could be computed. g For each set in a 
collection of human gene sets, averaged SDG values from (f) subsetted to gene ortholog pairs in which 
the human gene is in the set. Points are medians, vertical segments are 95% confidence intervals of the 
medians, and horizontal lines show medians of all human or rat values from (f). Sets are sorted by human 
gene median, and set sizes, considering only the genes with SDG data, are indicated in parentheses. DD, 
developmental disorder; LoF, loss-of-function; BMI, body mass index; ECG, electrocardiogram. 
 

Conservation of genetic regulatory constraint between human and rat 
Genetic regulatory variation present in a population is negatively correlated with the coding 
constraint of the genes32,38,39. We compared the amount of genetic variation present in the HS 
rat population to human data using different approaches. Effect sizes (|log2 aFC|) of the cis-
eQTLs in rat brain regions were smaller overall than those measured in 13 human brain tissues 
in GTEx7. We looked at eQTL effect sizes for ortholog pairs to detect correspondence in 
tolerance to regulatory variation between similar human and rat genes. For each gene, we 
averaged the absolute effect size per top eQTL across tissues, and then paired up these values 
for every ortholog pair with any eQTL in rat brain tissues and any eQTL in human brain tissues 
(n = 6079 pairs). Effect sizes correlated significantly (Pearson’s r = 0.24, P = 1.3e-79, Fig. 5d). 
This suggests that some degree of variance in tolerance to regulatory variation is conserved 
between rat and human. 
 
For each gene in each tissue, we estimated cis-heritability (h2) of expression. We averaged h2 
across tissues per gene and compared to h2 estimates for human genes averaged over 13 
GTEx brain tissues. Mean h2 between orthologs correlated modestly but was highly significant 
due to the large number of observations (Pearson’s r = 0.096, P = 4.5e-31, Fig. 5e). 
 
We then estimated VG, the expected variance in the gene dosage due to interindividual genetic 
differences observed in allele specific expression using ANEVA39. We compared the SDG 

(standard deviation, √��) values per gene to those estimated for GTEx brain tissues. As 
expected, VG correlated much more highly between tissues from the same species than did VG 
between orthologs in cross-species tissue pairs (Supplementary Fig. 4). When averaged 
across tissues per rat gene and human gene, SDG values for ortholog pairs were weakly but 
significantly correlated (Pearson’s r = 0.14, P = 9.9e-15, Fig. 5f). SDG tended to be lower (i.e., 
lower genetic dosage variance) for the rat gene in ortholog pairs, including the orthologs for a 
wide range of human gene sets representing both essential and non-essential genes (Fig. 5g). 

Colocalization 
Due to the longer-range LD in HS rats compared to humans, particularly the blocks of SNPs in 
complete LD within the cohort, colocalization methods that model colocalization as the overlap 
of single causal SNPs are less informative because colocalization probabilities are divided 
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among the group of SNPs that are in LD with one another. To address this limitation, we tested 
colocalization with a set of nine traits related to body morphology and adiposity40 using the SMR 
method, which only evaluates consistency of effect for the top eQTL41. We found 80 significant 
colocalizations among the 45 tissue-trait pairs using tissue-trait-specific Bonferroni p-value 
thresholds ranging from 1.3e-5 to 1.6e-5 (Supplementary Table 4), with the most 
colocalizations found for prelimbic cortex eQTLs and the RetroFat trait (Fig. 6a). Eight genes 
were involved in at least four colocalizations: Apip, Cacul1, Drc1, Gpn1, Mrpl45, Nudt4, Pnpo, 
and Rbks. Colocalizations for multiple tissues and traits generally clustered together in or near 
the QTL regions of the original GWAS (Fig. 6b, Supplementary Fig. 5). 
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Figure 6: Colocalization of eQTLs and GWAS. a Colocalization for one tissue-trait pair, prelimbic cortex 
and RetroFat. Top, p-values from the RetroFat GWAS, with p-values for significant SMR tests overlaid. 
Bottom, p-values for significant eSNPs in PL. b SMR p-values for all tissue-trait pairs overlaid. Only 
significant SNPs are colored by tissue, and the remainder are gray. The traits involved in each cluster of 
significant colocalizations are labeled. Bonferroni p-value thresholds for each tissue-trait pair are shown 
as horizontal lines colored by tissue. 
 

Data portal 
All gene expression, eQTL, and sQTL data are available at RatGTEx.org, for which we have 
adapted code and API design from the GTEx Portal to host rat eQTL data. This portal also 
includes interactive visualizations, derived from those in the GTEx portal, that can display 
results for any queried genes and variants. These five datasets initiate the RatGTEx portal, with 
datasets for additional tissues to be added as they become available. 
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Discussion 
We used RNA-Seq to map eQTLs and sQTLs in five brain regions in a cohort of 88 outbred HS 
rats. We also explored the unique genetic characteristics of the HS rat population. We focused 
on cis-eQTLs and sQTLs and characterized the degree of tissue specificity. We compared our 
results to human eQTL data from the GTEx project. We also used colocalization to demonstrate 
the utility of these eQTLs for interpreting GWAS results from HS rats. We have made all of the 
data generated here including the eQTL and sQTL mapping results available through a new 
portal (RatGTEx.org) to facilitate the application of these data to rat genetic and genomic 
research. 
 
We mapped both cis-eQTLs and trans-eQTLs. The trans-eQTLs were much less prevalent. The 
biological significance of trans-eQTL signals is generally harder to ascertain as the analysis 
suffers from limited statistical power and can be confounded by batch effects. Furthermore, the 
rat genome assembly is not as thoroughly characterized as the human genome. Thus, some 
trans-eQTLs may reflect mismapping of reads from RNA-Seq such that a cis-eQTL appears to 
be a trans-eQTL or the information about a SNP’s location can also be incorrect due to an error 
in the genome assembly, which also creates an apparent trans-eQTL that is actually a cis-
eQTL, as has been observed in human eQTL studies42. For all of these reasons, we focused 
most of our efforts on cis-eQTLs. 
 
We compared HS rat data presented here with human data from the GTEx project. We found 
fewer cis-eQTLs in rats compared to humans. This difference is consistent with our smaller 
sample size. Indeed, when we downsampled GTEx brain datasets so that the number of 
individuals matched our study, we only identified half as many eQTLs compared to our rat data. 
One reason that HS rats had more power than humans on a per-sample basis might be the 
longer-range LD in HS rats, which reduces the effective number of tests being performed43. 
Another advantage of HS rats is the higher MAF as compared to humans. The greater power in 
HS rats could also reflect the much more controlled environment of laboratory rats.  
 
The greater LD in HS rats compared to humans increases power but does so at the expense of 
precision since there are often large LD blocks that increase uncertainty about which SNP 
causes a given eQTL. Another consequence of this causal SNP uncertainty is that the eSNP 
annotation enrichments reported here are less indicative of the specific regulatory mechanisms 
driving the effect compared to those obtained in humans. For example, the distances between 
the eSNP and the TSS in rats is much wider in HS rats as compared to humans (Fig. 5b).  
   
We found ten times fewer cis-sQTLs compared to cis-eQTLs. The GTEx project reported about 
four fold fewer cis-sQTLs compared to cis-eQTLs. The larger difference between sQTLs and 
eQTLs in our dataset may be due to both our use of single-end sequencing and our lower 
sequencing depth, both of which reduce the number of junction-spanning reads, which are 
essential for sQTL detection. Therefore, we do not believe this difference reflects a true 
biological difference between the two species.  
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Our study is similar to several previous studies that have mapped eQTLs or similar features in 
mice and rats. Prior mouse and rat studies have used inbred, recombinant inbred, and outbred 
populations, with microarrays or RNA-Seq9,11–29,33,44–49. While some of these previous studies 
have used more computationally intensive linear mixed models to account for population 
structure effects, we did not find appreciable difference between the results from the linear 
regression and linear mixed model, which is consistent with Parker et al.9. This may be 
explained by the fact that we avoided sampling multiple individuals from the same family. Had 
the breeding scheme been less carefully designed, there may have been isolated clusters of 
more closely related individuals within the population, and an LMM might have been necessary. 
 
Genes that are intolerant to loss of function mutations tend to have lower levels of regulatory 
variation as well32. We found cis-eQTLs in the rat orthologs of many of the human genes with no 
cis-eQTLs in the GTEx brain tissue data. Indeed, these genes with eQTLs in only rats had 
relatively high intolerance scores in humans. Given the lower statistical power in our study 
versus the GTEx brain dataset, these rat exclusive eQTLs are likely a result of relaxed selection 
pressure against eQTLs in these genes in rats. Presence of common regulatory variants in 
these genes presents an opportunity to study the downstream dosage effects in some of these 
variation-intolerant human gene orthologs. 
 
Comparing the amount of genetic variation in gene expression in rats and humans, we found 
that this quantity is only moderately correlated between the populations. This low correlation 
level is likely a combined effect of low statistical power and the artificial nature of the rat 
population that relaxes selection constraints on genes. However, surprisingly, we found that the 
rat population shows lower levels of genetic regulatory variation across a diverse set of genes 
as measured by eQTL effect sizes, cis heritability of gene expression, and the ASE-derived 
estimates of genetic variance in gene expression. Notably, these results cannot be explained by 
the difference in statistical power and the sample sizes. Future investigation could uncover the 
cause, in particular whether it relates to biological differences between humans and rats, 
consequences of the HS rat population design, environmental conditions, or other factors. 
 
We were able to use eQTLs from brain tissue to show colocalization with nine body morphology 
and adiposity traits. The success of this approach may reflect the idea that eQTLs are shared 
across many tissues, not just among brain regions. Furthermore, adiposity is heavily influenced 
by consummatory behavior and energy expenditure, both of which are controlled by the brain.  
 
The results of this study offer practical guidance for future HS rat eQTL studies. For example, 
the degree of eQTL overlap across brain regions was very high, especially for the three cortical 
regions. Had we sampled the fewer brain regions from a larger number of individuals, we would 
have obtained greater statistical power.  
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Methods 

Brain samples 
Brains were extracted from 88 HS rats (43 M and 45 F). Mean age was 85.7 ± 2.2 for males and 
87.0 ± 3.8 for females. All rats were group housed under standard laboratory conditions and 
were naïve to behavioral or drug treatment. 
 
Rat brains were taken out of a -80°C freezer and cryosectioned into 60 μm sections, which were 
mounted onto RNase-free glass slides. Slides were stored in -80°C until dissection. During 
dissection, slides were placed on a -20°C cold plate. One drop (approximately 50 μl) of 
RNAlater was placed on the brain region of interest. Each brain region then was dissected out 
under a dissecting video camera by using a pair of fine-tipped forceps with the assistance of an 
18 gauge needle with a bent tip. Bilateral tissue of the same brain region from each rat was 
immediately transferred into 350 μl Buffer RLT (containing beta-mercaptoethanol) and placed on 
dry ice. Tissue was stored in -80°C before RNA extraction. 
 
Tissue was thawed on ice and homogenized by using a clean stainless steel bead using Qiagen 
TissueLyser (40 Hz, 3 min). AllPrep DNA/RNA mini kit (Qiagen) was used to extract RNA. 
Samples were processed by using the QIAcube robot following standard protocols. The optional 
DNase digestion step was included for RNA samples. The average RIN for PL, IL, OFC, NAcc 
and LHb were 9.47 ± 0.58, 9.33 ± 0.63, 9.7 ± 0.53, 8.88 ± 0.79, and 8.94 ± 0.88, respectively. 

RNA sequencing 
We performed RNA-Seq on mRNA from each brain region sample using Illumina HiSeq 4000 to 
obtain 100 bp single-end reads for 435 samples. 
 
To quantify gene expression, reads were first trimmed for adapter and poor-quality base calls 
using cutadapt50. Reads were then aligned to the Ensembl Rat Transcriptome using RSEM51. 
Upper quartile adjustment was applied to estimated gene read counts using DESeq252. 
Samples were filtered based on low reads counts, mismatched genotypes (as described in the 
paragraph below), and expression PCA outliers. For two rats, all samples were removed by 
these filters, yielding processed data for 397 samples in 86 rats. Genes were eliminated if less 
than 25% of libraries had more than one read or if the total number of reads among all libraries 
for the gene was less than 100. Read counts were log2 transformed after adding a pseudocount 
of one to each read count. We used those values for calculating effect size with aFC.py, and for 
eQTL mapping we applied rank-based inverse normal transformation to the values per gene. 
 
Separately, to quantify allele specific expression and splicing, RNA-Seq reads were aligned to 
the Rnor_6.0 genome using STAR v2.7.3a53. STAR was run in two passes per sample, where 
novel splice junctions identified in the first pass were used to align additional reads in the 
second pass. The second pass used WASP to reduce mapping bias due to polymorphisms54. 
Duplicate reads were then marked with the Picard MarkDuplicates function. 
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To check for mismatched RNA-Seq/genotype samples, we counted reads containing each allele 
for each exonic SNP using GATK ASEReadCounter55 and compared counts to the genotypes at 
those SNPs. We identified 13 samples in which the RNA-Seq sample did not correspond to the 
label-associated genotype. Two of these samples matched each other’s genotypes, and their rat 
IDs were swapped and the samples were kept. Of the remaining 11, three matched with 
genotypes for which samples already existed for the same brain region, and the other eight 
matched with none of the 88 genotypes, so these 11 samples were removed from the study. 

Genotyping 
We used genotyping-by-sequencing as described previously31 to genotype the 88 rats, yielding 
125,686 high-quality observed autosomal SNPs. We used SHAPEIT56 followed by IMPUTE257 
to impute additional SNPs based on the genotypes of the eight HS founder strains (ACI/N, 
BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N, and WN/N), resulting in phased genotypes 
for 3,511,003 SNPs. 

Founder haplotypes 
Regions of the 88 rat genomes were mapped to the eight HS founders using the calc_genoprob 
function of R/qtl2 with the cohort and founder strain genotypes58. Diploid haplotype pair 
probabilities were collapsed to probabilities per strain per locus per animal using the 
genoprob_to_alleleprob function. 
 
Haplotype probabilities were compared to the results of breeding simulations. For one simulated 
locus, one of eight haplotype labels was randomly chosen for each of the two copies per 
individual, for 100 individuals grouped into 50 female-male pairs. To progress one generation, 
individuals were rearranged into new pairs either by rotating the males by one in the sequence 
of pairs (circular mating), or by shuffling the pair assignment of the males (random mating). For 
each new pair, the locus is inherited in an offspring by randomly selecting one of the two alleles 
from the female and another from the male. This was done twice per pair to produce a new set 
of 50 female-male pairs. This was repeated for 80 generations. This full locus simulation was 
repeated 200 times using circular mating and 200 times using random mating. 

eQTL mapping 
We performed cis-eQTL mapping using tensorQTL59, testing variants within 1 Mb upstream and 
downstream of each gene’s transcription start site. We included 28 covariates: the first 20 
principal components of the brain region's expression matrix, and the genotype similarity to 
each of the eight HS founder strains. Empirical beta-approximated p-values were computed 
using data permutations60 and were then used to calculate gene-level q-values and nominal p-
value significance thresholds. A q-value cutoff of 0.05 was used to determine the genes for 
which at least one significant eQTL was found. We then ran tensorQTL in cis_independent 
mode to find conditionally independent eQTLs per eGene using a stepwise regression 
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procedure61. Finally, we ran tensorQTL in trans mode without excluding cis-window SNPs to 
identify all trans+cis-eQTLs. 

sQTL mapping 
We quantified splice phenotypes by first identifying splice junctions using regtools62. Using the 
cluster_prepare_fastqtl.py script provided by the GTEx pipeline, we clustered introns using 
LeafCutter63, mapped clusters to genes, and applied filtering and normalization. We then 
mapped cis-sQTLs using tensorQTL, using genes as phenotype groups when doing 
permutations to compute empirical p-values. We used the same eight genotype covariates as 
for eQTL mapping, plus the first ten principal components of the splice phenotypes. 

eQTL effect size 
We define cis-eQTL effect size as allelic fold change (aFC) and computed it in two independent 
ways. Primarily, we computed aFC from total gene expression based on the additive cis-
regulatory model32, with the same covariates as were used for eQTL mapping. For validation, 
we computed haplotype-level allele specific expression (ASE) using phASER64, which we then 
used to compute aFC when possible65. 
 
Effect sizes for GTEx eQTLs were obtained from tables downloaded from https://gtexportal.org. 
Human-rat ortholog pairs were obtained from Ensembl BioMart. 

GEMMA 
The leave one chromosome out (LOCO) method was used, so GEMMA35 was run in gk mode to 
create 20 kinship matrices, each based on all genotypes except those on the same 
chromosome as the genes for which it would be used. GEMMA was run on the nucleus 
accumbens core samples in lmm mode using the Wald test. It was run separately for each 
gene, testing only the gene’s cis-window variants with minimum MAF = 5%. As with the 
tensorQTL mapping, the first 20 expression PCs were used as covariates, but the eight 
genotype-based covariates were omitted so as not to interfere with the random effect term. 
Percent variance explained (PVE) by the kinship matrix for each gene was computed by running 
GEMMA in vc mode, supplying a kinship matrix but not genotypes. The lmm mode mapping was 
repeated in lm mode for comparison, identically aside from not supplying a kinship matrix. 

Heritability estimates 
The cis-heritability (h2) for rat genes were calculated with GEMMA by first computing a kinship 
matrix for each gene using only cis-window variants. GEMMA was then run in vc mode, 
supplying the gene-specific kinship matrix and the same covariates used for eQTL mapping, 
and recording the PVE from the output log. Human cis-heritability estimates were previously 
computed66. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.07.487560doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487560
http://creativecommons.org/licenses/by-nd/4.0/


 

 

VG estimates 
VG was estimated for each gene in each rat brain region by running ANEVA39 using the phased, 
gene-level allele specific expression counts. VG estimates for human genes were similarly 
obtained using GTEx v8 data, and VG estimates calculated with at least 5000 ASE counts were 
included. 
 
The human gene sets used to subset human-rat ortholog pairs for VG comparison were based 
on those previously collected by Mohammadi et al.39,67,68. We removed sets that overlapped with 
fewer than 20 ortholog pairs, and replaced the GWAS-derived sets with sets of all author-
reported genes for traits in the GWAS Catalog v1.0.2 69, choosing the 10 traits with the most 
author-reported genes while avoiding redundant traits. 

Variant annotation 
SNPs were annotated with functional categories using the Ensembl Variant Effect Predictor70. 
The background SNP set for enrichment was all cis-window SNPs for all tested genes. The test 
sets for enrichment were the eSNPs with lowest p-value per eGene in each brain region, 
including multiple SNPs in the case of tied p-values. 

Colocalization 
We collected linear association statistics from eQTL mapping in the five brain regions and from 
the nine traits from a published GWAS40 GWAS scores were available for a set of pruned SNPs 
(r2 < 0.95), so for each brain region we selected the top cis-eSNP per gene that was present in 
the pruned GWAS dataset to test for colocalization. We computed z-scores for eQTL and 
GWAS associations by dividing the slope by its standard error for each selected SNP. Using the 
SMR method41 we computed the approximate �2 test statistic and computed a p-value using the 
upper tail of the chi-squared distribution with one degree of freedom. We computed SMR p-
values for each selected SNP and used a Bonferroni threshold to determine SNPs with 
significant colocalization. We repeated this for each of the 45 tissue-trait combinations. 

Data availability 
Raw RNA-Seq data is available at NCBI GEO accession GSE173141. Processed genotype, 
expression, eQTL, and sQTL data are available at https://RatGTEx.org. 
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